WO2017121083A1 - 一种有机发光显示器及显示装置 - Google Patents

一种有机发光显示器及显示装置 Download PDF

Info

Publication number
WO2017121083A1
WO2017121083A1 PCT/CN2016/089592 CN2016089592W WO2017121083A1 WO 2017121083 A1 WO2017121083 A1 WO 2017121083A1 CN 2016089592 W CN2016089592 W CN 2016089592W WO 2017121083 A1 WO2017121083 A1 WO 2017121083A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
emitting display
circuit
light emitting
surge
Prior art date
Application number
PCT/CN2016/089592
Other languages
English (en)
French (fr)
Inventor
张成庚
刘颖
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/322,458 priority Critical patent/US10043446B1/en
Publication of WO2017121083A1 publication Critical patent/WO2017121083A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/026Arrangements or methods related to booting a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an organic light emitting display and a display device.
  • the brightness of the display device mainly adjusts the overall brightness by adjusting the brightness of the backlight, and the pixel unit controls the liquid crystal cell, and the liquid crystal display does not emit light when the gate line of the pixel area is not turned on.
  • an Active Matrix Organic Light Emitting Diode (AMOLED) display device controls the illumination of an Organic Light Emitting Diode (OLED) device by voltage programming.
  • AMOLED Active Matrix Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • An embodiment of the present disclosure provides an organic light emitting display and a display device for limiting current surge during startup, reducing the risk of display failure, and solving the problem of leakage of the display panel during the initialization phase, and improving the DC-DC power supply. The reliability of the chip.
  • An organic light emitting display provided by the embodiment of the present disclosure includes a DC-DC power supply driving chip and an organic light-emitting display panel, wherein the DC-DC power supply driving chip is provided with a soft start circuit, and the soft start circuit includes the first a delay circuit, a first surge prevention circuit and a second surge prevention circuit;
  • the first input end of the first delay circuit is connected to the high voltage level signal line, the second input end is connected to the low voltage level signal line, and the output end is connected to the first surge preventing circuit and the second
  • the anti-surge circuit is connected to control the first anti-surge circuit to be inoperative during the initialization phase, and to control the operation of the second anti-surge circuit;
  • the surge circuit operates to control the second surge-proof circuit to not work
  • the first surge preventing circuit is connected between the first input end of the organic light emitting display panel and the second input end of the first delay circuit for controlling input to the organic after the initialization phase ends a voltage value of the first input end of the light emitting display panel;
  • the second surge-proof circuit is connected between the first input end of the organic light-emitting display panel and the second input end of the organic light-emitting display panel, and the second input end of the organic light-emitting display panel is A first input end of the first delay circuit is coupled for controlling a voltage value input to the first input end of the organic light emitting display panel during an initialization phase.
  • the second surge preventing circuit is connected between the first input end of the organic light emitting display panel and the second input end of the first delay circuit
  • the first delay circuit controls the first surge preventing circuit to be inactive during the initialization phase, and controls the second surge preventing circuit to operate. Therefore, in the initialization phase, the first anti-surge circuit separates the first input end of the organic light emitting display panel from the second input end of the first delay circuit, thereby preventing leakage of the organic light emitting display panel to the DC-DC power source.
  • the impact of the chip's input low voltage level signal pin protects the DC-DC power driver chip and improves the reliability of the DC-DC power driver chip.
  • the first delay circuit due to the first delay circuit, the voltage of the output terminal is delayed, and after the initialization phase is finished, the first anti-surge circuit is controlled to operate, and the second anti-surge circuit is not operated, so the first anti-surge circuit works. There is a time delay process that limits the current surge during startup and reduces the risk of display failure.
  • the soft start circuit further includes a second delay circuit, one end of the second delay circuit is connected to the output end of the first delay circuit, and the other end is connected to the first anti-surge circuit Connected for controlling the operation of the first surge-proof circuit.
  • the first delay circuit comprises a first resistor, a second resistor, a first capacitor and an operational amplifier; one end of the first resistor is connected to the second input end of the first delay circuit, and the other end is connected One end of the second resistor is connected; the other end of the second resistor is connected to the first input end of the first delay circuit; the first capacitor is connected in parallel at both ends of the first resistor; An inverting terminal of the amplifier is connected between the first resistor and the second resistor, an inverting terminal is connected to the reference voltage terminal, and an output terminal is connected to the first surge preventing circuit and the second surge preventing circuit .
  • the first surge-proof circuit includes a first thin film transistor, a gate of the first thin film transistor is connected to an output end of the operational amplifier, and a source and a second input end of the first delay circuit Connected, the drain is connected to the first input end of the organic light emitting display panel.
  • the second surge-proof circuit includes a second thin film transistor, a gate of the second thin film transistor is connected to an output end of the operational amplifier, and a source is connected to a first input end of the organic light emitting display panel. The drain is connected to the second input end of the organic light emitting display panel.
  • the first thin film transistor is a P-type thin film transistor; and the second thin film transistor is an N-type thin film transistor.
  • the second delay circuit includes a third resistor, a fourth resistor and a second capacitor; one end of the third resistor is connected to the ground signal line, and the other end is connected to the first end of the fourth resistor.
  • the first end of the fourth resistor is connected to the gate of the first thin film transistor, the second end is connected to the output end of the operational amplifier, and the second capacitor is connected in parallel at both ends of the third resistor.
  • the organic light emitting display further includes a third capacitor disposed at a first input end of the organic light emitting display panel, and one end of the third capacitor is connected to the first input end of the organic light emitting display panel, and One end is connected to the ground signal line.
  • a third capacitor disposed at a first input end of the organic light emitting display panel, and one end of the third capacitor is connected to the first input end of the organic light emitting display panel, and One end is connected to the ground signal line.
  • the organic light emitting display further includes a fourth capacitor disposed at a second input end of the organic light emitting display panel, one end of the fourth capacitor being connected to the second input end of the organic light emitting display mask, and One end is connected to the ground signal line.
  • a fourth capacitor disposed at a second input end of the organic light emitting display panel, one end of the fourth capacitor being connected to the second input end of the organic light emitting display mask, and One end is connected to the ground signal line.
  • the DC-DC power supply driving chip is further provided with a voltage generator, and the voltage generator is connected to the soft start circuit for adjusting the duty ratio of the pulse width and adjusting the voltage input to the organic light-emitting display panel. For the regular step voltage.
  • Embodiments of the present disclosure also provide a display device including the above-described organic light emitting display.
  • 1 is a schematic view of an organic light emitting display
  • FIG. 2 is a schematic circuit diagram of a soft start circuit included in an organic light emitting display according to an embodiment of the present disclosure
  • FIG. 3 is another circuit diagram of a soft start circuit included in an organic light emitting display according to an embodiment of the present disclosure
  • FIG. 4 is still another circuit of a soft start circuit included in the organic light emitting display according to an embodiment of the present disclosure Road diagram.
  • FIG. 5 is a schematic diagram of an organic light emitting display according to an embodiment of the present disclosure.
  • the DC-DC power supply driving chip 11 when the AM-OLED display device is powered on, the DC-DC power supply driving chip 11 generates an instantaneous large current surge when charging the overall parasitic capacitance of the pixel region of the organic light-emitting display panel 12, that is, if the organic light is emitted.
  • the Gate of the display panel 12 is turned on earlier than the high-level voltage/low-level voltage (ELVDD/ELVSS), and in the organic light-emitting display panel 12, when the power is turned on, it is equivalent to short-circuiting with the ELVDD/ELVSS through the OLED, resulting in Current surges occur in the circuit.
  • the overcurrent protection function of the DC-DC power driving chip 11 is triggered, thereby causes the AMOLED display device to fail to boot.
  • the related art has a breakdown voltage of the ELVSS pin of the DC-DC power supply driving chip for supplying power to the AMOLED display device, which is generally 0.2V.
  • the pixel circuit that drives the OLED panel will generate leakage after the ELVDD voltage is generated, because the compensation terminal is in an indeterminate state, which may cause the ELVSS pin to be at a potential higher than 0.2V. Therefore, when the AMOLED display device is turned on, it will cause the ELVSS pin inside the DC-DC power supply driving chip. Impact, may damage the DC-DC power driver chip.
  • An embodiment of the present disclosure provides an organic light emitting display and a display device for limiting current surge during startup, reducing the risk of display failure, and solving the problem of leakage of the display panel during the initialization phase, and improving the DC-DC power supply. The reliability of the chip.
  • a specific embodiment of the present disclosure provides an organic light emitting display including a DC-DC power driving chip 51 and an organic light emitting display panel 12, wherein the DC-DC power driving chip 51 is provided with soft
  • the startup circuit 52 includes a first delay circuit 21, a first surge prevention circuit 22, and a second surge prevention circuit 23.
  • the first input terminal of the first delay circuit 21 is connected to a high voltage level signal line (corresponding to a high voltage level signal ELVDD), and the second input terminal is connected to a low voltage level signal line (corresponding to a low voltage).
  • the level signal ELVSS is connected, and the output terminal is connected to the first surge preventing circuit 22 and the second surge preventing circuit 23 for controlling the first surge preventing circuit 22 not to operate during the initialization phase, and controlling the second surge preventing wave
  • the circuit 23 operates; and is used to delay the voltage of the output terminal. After the initialization phase ends, the first surge preventing circuit 22 is controlled to operate, and the second surge preventing circuit 23 is controlled to be inoperative.
  • the first surge prevention circuit 22 is connected between the first input end (corresponding to the low voltage level signal ELVSS_MDL) of the organic light emitting display panel and the second input end of the first delay circuit 21 for controlling after the initialization phase ends.
  • the second surge preventing circuit 23 is connected between the first input end of the organic light emitting display panel and the second input end of the organic light emitting display panel (corresponding to the high voltage level signal ELVDD_MDL), and the second input end of the organic light emitting display panel is
  • the first input end of the first delay circuit 21 is connected for controlling the voltage value input to the first input end of the organic light emitting display panel in the initialization phase.
  • the first delay circuit 21 in the specific embodiment of the present disclosure includes a first resistor R1, a second resistor R2, a first capacitor C1, and an operational amplifier OP.
  • one end of the first resistor R1 is connected to the second input end of the first delay circuit 21 (corresponding to the low voltage level signal ELVSS), the other end is connected to one end of the second resistor R2; the other end of the second resistor R2 is The first input terminal (corresponding to the high voltage level signal ELVDD) of the first delay circuit 21 is connected; the first capacitor C1 is connected in parallel across the first resistor R1; the non-inverting terminal B of the operational amplifier OP is connected to the first resistor R1 And the second resistor R2, the inverting terminal C is connected to the reference voltage terminal, the output terminal A and the first surge prevention The wave circuit 22 is connected to the second surge preventing circuit 23.
  • the first surge preventing circuit 22 in the specific embodiment of the present disclosure includes a first thin film transistor T1.
  • the gate of the first thin film transistor T1 is connected to the output terminal A of the operational amplifier OP, and the source and the first delay circuit 21 are The two inputs (corresponding to the low voltage level signal ELVSS) are connected, and the drain is connected to the first input terminal (corresponding to the low voltage level signal ELVSS_MDL) of the organic light emitting display panel.
  • the second surge preventing circuit 23 in the specific embodiment of the present disclosure includes a second thin film transistor T2 whose gate is connected to the output terminal A of the operational amplifier OP, and the first input of the source and the organic light emitting display panel.
  • the terminal (corresponding to the low voltage level signal ELVSS_MDL) is connected, and the drain is connected to the second input terminal (corresponding to the high voltage level signal ELVDD_MDL) of the organic light emitting display panel.
  • the first thin film transistor T1 is a P-type thin film transistor
  • the second thin film transistor T2 is an N-type thin film transistor.
  • the working principle of the soft start circuit in the specific embodiment of the present disclosure is described in detail below, and the setting of the soft start circuit can limit the current surge at the time of power on, reduce the risk of display display failure, and solve the problem that the display panel generates leakage during the initialization phase. Improve the reliability of DC-DC power supply driver chips.
  • a high voltage level signal ELVDD and a low voltage level signal ELVSS are generated due to the first input terminal of the first delay circuit 21 and the high voltage level signal line.
  • the second input terminal is connected to the low voltage level signal line, and the first delay circuit 21 is triggered to start working.
  • the inverting terminal C of the operational amplifier OP is connected to the reference voltage VREF.
  • the first thin film transistor T1 since the first thin film transistor T1 is turned off, the first input end of the organic light emitting display panel (corresponding to the low voltage level signal ELVSS_MDL) and the second input end of the DC-DC power supply driving chip (corresponding to the low voltage level)
  • the signal ELVSS is isolated to prevent the leakage of the organic light-emitting display panel from impacting the ELVSS pin of the DC-DC power driver chip, thereby protecting
  • the DC-DC power supply driver chip enhances the reliability of the DC-DC power supply driver chip.
  • the voltage input to the first input end of the organic light emitting display panel is ELVDD_MDL-VDS, that is, ELVDD-VDS, wherein the value of the VDS is small, and the voltage input to the first input end of the organic light emitting display panel is initialized.
  • the potential is close to ELVDD, so that the voltage difference of the light-emitting diodes in the organic light-emitting display panel is small, so that the current surge at the time of power-on can be limited, and the risk of display failure is reduced.
  • is the delay coefficient of the first delay circuit 21
  • R2 ⁇ C1
  • V is the high voltage level signal ELVDD.
  • the voltage VB1 of the non-inverting terminal B of the operational amplifier OP is smaller than VREF, and the polarity of the voltage at the output terminal is inverted.
  • the DC-DC power source driving chip outputs the low voltage level signal ELVSS to the organic light emitting display panel through the first thin film transistor T1, and the organic light emitting display in the embodiment of the present disclosure is normally turned on.
  • the soft start circuit in the specific embodiment of the present disclosure further includes a second delay circuit 24, one end of the second delay circuit 24 is connected to the output end of the first delay circuit 21, and One end is connected to the first surge preventing circuit 22 for controlling the operation of the first surge preventing circuit 22.
  • the second delay circuit 24 includes a third resistor R3, a fourth resistor R4, and a second capacitor C2; one end of the third resistor R3 is connected to the ground signal line, and the other end is connected to the first end of the fourth resistor R4; The first end of the fourth resistor R4 is connected to the gate of the first thin film transistor T1, and the second end is shipped The output of the amplifier OP is connected; the second capacitor C2 is connected in parallel at both ends of the third resistor R3.
  • the current passing through the first thin film transistor T1 is initially limited to be small, and as the absolute value of the gate-source voltage rises, the current allowed to pass is gradually increased, that is, The first thin film transistor T1 in the disclosed embodiment is gradually turned on.
  • the low voltage level signal ELVSS provided by the DC-DC power supply driving chip is loaded by the first thin film transistor T1, and the first input terminal (corresponding to the low voltage level signal ELVSS_MDL) loaded to the organic light emitting display panel has a slow rise.
  • Time is designed through a two-stage resistor-capacitor (RC) delay circuit.
  • the organic light emitting display of the embodiment of the present disclosure When the organic light emitting display of the embodiment of the present disclosure is turned off, the high voltage level signal ELVDD and the low voltage level signal ELVSS generated by the DC-DC power source driving chip are powered down, and the first resistor R1 and the first in the first delay circuit A capacitor C1 constitutes a fast discharge circuit, and the first thin film transistor T1 and the second thin film transistor T2 are quickly turned off to achieve rapid discharge.
  • the organic light emitting display in the specific embodiment of the present disclosure further includes a third capacitor C3 disposed at a first input end of the organic light emitting display panel (corresponding to the low voltage level signal ELVSS_MDL), one end of the third capacitor C3 and the first input end of the organic light emitting display panel (corresponding to the low voltage level signal ELVSS_MDL) ) connected and connected to the ground signal line at the other end.
  • a third capacitor C3 disposed at a first input end of the organic light emitting display panel (corresponding to the low voltage level signal ELVSS_MDL), one end of the third capacitor C3 and the first input end of the organic light emitting display panel (corresponding to the low voltage level signal ELVSS_MDL) ) connected and connected to the ground signal line at the other end.
  • the organic light emitting display in the embodiment of the present disclosure further includes a fourth capacitor C4 disposed at the second input end of the organic light emitting display panel (corresponding to the high voltage level signal ELVDD_MDL), and one end of the fourth capacitor C4 is organic
  • the second input end of the light-emitting display mask (corresponding to the high voltage level signal ELVDD_MDL) is connected, and the other end is connected to the ground signal line.
  • the specific embodiment of the present disclosure can stabilize and filter by the setting of the third capacitor C3 and the fourth capacitor C4, so that the low voltage level signal ELVSS_MDL and the high voltage level signal ELVDD_MDL input to the organic light emitting display panel are enabled. more stable.
  • the DC-DC power supply driving chip 51 in the embodiment of the present disclosure is further provided with a voltage generator 53 connected to the soft start circuit 52 for adjusting the pulse width.
  • the duty ratio adjusts the voltage input to the organic light-emitting display panel 12 to a conventional step voltage.
  • the resistance RDS between the source and the drain of the first thin film transistor T1 at this time may be confirmed according to the on state of the first thin film transistor T1 in the specific embodiment of the present disclosure, for example, at a current of 300 mA, the source of the first thin film transistor T1
  • the resistance RDS between the drains is about 200 m ⁇ to 300 m ⁇
  • the low voltage level signal ELVSS of the DC-DC power supply driving chip has a voltage drop of about 0.06 V to 0.1 V on the first thin film transistor T1.
  • the voltage generator 53 adjusts the duty ratio of the pulse width to reach the voltage required for the organic light emitting display panel.
  • a specific embodiment of the present disclosure further provides a display device, which includes the above-described organic light emitting display, and the display device may be a display device such as an OLED television or an electronic paper.
  • a specific embodiment of the present disclosure provides an organic light emitting display including a DC-DC power supply driving chip and an organic light emitting display panel.
  • the DC-DC power supply driving chip is provided with a soft start circuit
  • the soft start circuit comprises a first delay circuit, a first anti-surge circuit and a second anti-surge circuit.
  • the first input end of the first delay circuit is connected to the high voltage level signal line
  • the second input end is connected to the low voltage level signal line
  • the output end is connected to the first anti-surge circuit and the second anti-surge circuit.
  • controlling the first anti-surge circuit does not work, controlling the operation of the second anti-surge circuit; and delaying the voltage of the output end, after the end of the initialization phase, the first control
  • the anti-surge circuit works to control the second anti-surge circuit to not work.
  • a first surge prevention circuit is connected between the first input end of the organic light emitting display panel and the second input end of the first delay circuit for controlling input to the first input end of the organic light emitting display panel after the initialization phase ends a voltage value;
  • a second surge prevention circuit is connected between the first input end of the organic light emitting display panel and the second input end of the organic light emitting display panel, and the second input end of the organic light emitting display panel and the first delay circuit
  • An input terminal is coupled for controlling a voltage value input to the first input end of the organic light emitting display panel during the initialization phase.
  • the first surge-proof circuit is connected between the first input end of the organic light-emitting display panel and the second input end of the first delay circuit
  • the second surge-proof circuit is connected to the first input end of the organic light-emitting display panel and Between the second input end of the organic light emitting display panel, the first delay circuit controls the first anti-surge circuit to be inactive during the initialization phase, and controls the second anti-surge circuit to operate. Therefore, in the initialization phase, the first anti-surge circuit separates the first input end of the organic light emitting display panel from the second input end of the first delay circuit, thereby preventing leakage of the organic light emitting display panel to the DC-DC power source.
  • the impact of the chip's input low voltage level signal pin protects the DC-DC power driver chip and improves the reliability of the DC-DC power driver chip.
  • the first delay circuit due to the first delay circuit, the voltage of the output terminal is delayed, and after the initialization phase is finished, the first anti-surge circuit is controlled to operate, and the second anti-surge circuit is not operated, so the first anti-surge circuit works. There is a time delay process that limits the current surge during startup and reduces the risk of display failure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种有机发光显示器及显示装置。所述有机发光显示器包括电源驱动芯片(51)和有机发光显示面板(12),电源驱动芯片(51)中设置有软启动电路(52),软启动电路(52)包括第一延时电路(21),以及第一和第二防涌浪电路(22,23)。第一延时电路(21)用于在初始化阶段,控制第一防涌浪电路(22)不工作,控制第二防涌浪电路(23)工作;以及对输出端的电压进行延时,在初始化阶段结束后,控制第一防涌浪电路(22)工作,控制第二防涌浪电路(23)不工作;第一防涌浪电路(22)用于在初始化阶段结束后控制输入到有机发光显示面板(12)的第一输入端的电压值;第二防涌浪电路(23)用于在初始化阶段控制输入到有机发光显示面板(12)的第一输入端的电压值。

Description

一种有机发光显示器及显示装置
相关申请的交叉引用
本申请主张在2016年1月15日在中国提交的中国专利申请号No.201610028326.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种有机发光显示器及显示装置。
背景技术
在传统液晶显示器中,显示装置的亮度主要通过调节背光的亮度来调节整体亮度,其像素单元控制液晶单元,其像素区域的栅线(Gate)不打开时,液晶显示器不发光。但有源矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode,AMOLED)显示装置是以电压编程的方式控制有机发光二极管(Organic Light Emitting Diode,OLED)器件发光。相关技术中AMOLED显示装置开机时会产生一个大的电流涌浪,会造成AMOLED显示装置显示不良,而且OLED面板会在初始化阶段产生漏电,会对DC-DC电源驱动芯片内部的ELVSS引脚造成冲击,降低了DC-DC电源驱动芯片的信赖性。
发明内容
本公开实施例提供了一种有机发光显示器及显示装置,用以限制开机时的电流涌浪,降低显示器显示不良的风险;以及解决显示面板在初始化阶段产生漏电的问题,提升DC-DC电源驱动芯片的信赖性。
本公开实施例提供的一种有机发光显示器,包括直流转直流电源驱动芯片和有机发光显示面板,其中,所述直流转直流电源驱动芯片中设置有软启动电路,所述软启动电路包括第一延时电路、第一防涌浪电路和第二防涌浪电路;
所述第一延时电路的第一输入端与高电压电平信号线相连,第二输入端与低电压电平信号线相连,输出端与所述第一防涌浪电路和所述第二防涌浪电路相连,用于在初始化阶段,控制所述第一防涌浪电路不工作,控制所述第二防涌浪电路工作;以及
用于对输出端的电压进行延时,在初始化阶段结束后,控制所述第一防 涌浪电路工作,控制所述第二防涌浪电路不工作;
所述第一防涌浪电路连接在所述有机发光显示面板的第一输入端和所述第一延时电路的第二输入端之间,用于在初始化阶段结束后控制输入到所述有机发光显示面板的第一输入端的电压值;
所述第二防涌浪电路连接在所述有机发光显示面板的第一输入端和所述有机发光显示面板的第二输入端之间,所述有机发光显示面板的第二输入端与所述第一延时电路的第一输入端相连,用于在初始化阶段控制输入到所述有机发光显示面板的第一输入端的电压值。
由本公开实施例提供的有机发光显示器,由于第一防涌浪电路连接在有机发光显示面板的第一输入端和第一延时电路的第二输入端之间,第二防涌浪电路连接在有机发光显示面板的第一输入端和有机发光显示面板的第二输入端之间,第一延时电路在初始化阶段,控制第一防涌浪电路不工作,控制第二防涌浪电路工作,因此,在初始化阶段,第一防涌浪电路将有机发光显示面板的第一输入端和第一延时电路的第二输入端隔开,能够防止有机发光显示面板产生漏电对DC-DC电源驱动芯片的输入低电压电平信号的引脚造成的冲击,从而保护DC-DC电源驱动芯片,提升DC-DC电源驱动芯片的信赖性。另外,由于第一延时电路,对输出端的电压进行延时,在初始化阶段结束后,控制第一防涌浪电路工作,控制第二防涌浪电路不工作,因此第一防涌浪电路工作有一个延时的过程,能够限制开机时的电流涌浪,降低显示不良发生的风险。
较佳地,所述软启动电路还包括第二延时电路,所述第二延时电路的一端与所述第一延时电路的输出端相连,另一端与所述第一防涌浪电路相连,用于控制所述第一防涌浪电路的工作。
较佳地,所述第一延时电路包括第一电阻、第二电阻、第一电容和运算放大器;所述第一电阻的一端与第一延时电路的第二输入端相连,另一端与所述第二电阻的一端相连;所述第二电阻的另一端与第一延时电路的第一输入端相连;所述第一电容并联连接在所述第一电阻的两端;所述运算放大器的同相端连接在所述第一电阻和所述第二电阻之间,反相端与参考电压端相连,输出端与所述第一防涌浪电路和所述第二防涌浪电路相连。
较佳地,所述第一防涌浪电路包括第一薄膜晶体管,所述第一薄膜晶体管的栅极与所述运算放大器的输出端相连,源极与第一延时电路的第二输入端相连,漏极与有机发光显示面板的第一输入端相连。
较佳地,所述第二防涌浪电路包括第二薄膜晶体管,所述第二薄膜晶体管的栅极与所述运算放大器的输出端相连,源极与有机发光显示面板的第一输入端相连,漏极与有机发光显示面板的第二输入端相连。
较佳地,所述第一薄膜晶体管为P型薄膜晶体管;所述第二薄膜晶体管为N型薄膜晶体管。
较佳地,所述第二延时电路包括第三电阻、第四电阻和第二电容;所述第三电阻的一端与接地信号线连接,另一端与所述第四电阻的第一端连接;所述第四电阻的第一端与所述第一薄膜晶体管的栅极相连,第二端与运算放大器的输出端相连;所述第二电容并联连接在所述第三电阻的两端。
较佳地,所述有机发光显示器还包括设置在所述有机发光显示面板的第一输入端的第三电容,所述第三电容的一端与所述有机发光显示面板的第一输入端相连,另一端与接地信号线相连。
较佳地,所述有机发光显示器还包括设置在所述有机发光显示面板的第二输入端的第四电容,所述第四电容的一端与所述有机发光显示面膜的第二输入端相连,另一端与接地信号线相连。
较佳地,所述直流转直流电源驱动芯片中还设置有电压生成器,电压生成器与软启动电路相连,用于调节脉冲宽度的占空比,并将输入到有机发光显示面板的电压调整为常规的步进电压。
本公开实施例还提供了一种显示装置,包括上述的有机发光显示器。
附图说明
图1为一种有机发光显示器的示意图;
图2为本公开实施例提供的一种有机发光显示器包括的软启动电路的电路示意图;
图3为本公开实施例提供的有机发光显示器包括的软启动电路的另一电路示意图;
图4为本公开实施例提供的有机发光显示器包括的软启动电路的又一电 路示意图;以及
图5为本公开实施例提供的一种有机发光显示器的示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
如图1所示,AMOLED显示装置开机时直流转直流(DC-DC)电源驱动芯片11对有机发光显示面板12像素区域的整体寄生电容充电时产生一个瞬间大的电流涌浪,即如果有机发光显示面板12的Gate早于高电平电压/低电平电压(ELVDD/ELVSS)打开,在电源导通瞬间,在有机发光显示面板12中,相当于与ELVDD/ELVSS直接通过OLED短接,致使电路中出现电流涌浪。如果此电流涌浪流经DC-DC电源驱动芯片11的ELVSS端,并超过DC-DC电源驱动芯片11的输出限流阈值时,会触发DC-DC电源驱动芯片11的过电流保护功能,从而引起AMOLED显示装置开机失败的现象。
另外,相关技术为AMOLED显示装置供电的DC-DC电源驱动芯片的ELVSS引脚的耐压值一般为0.2V。驱动OLED面板的像素电路会在初始化阶段,即ELVDD电压产生后,由于补偿端处于一个不确定的状态的原因而产生漏电,进而导致ELVSS引脚可能处于一个高于0.2V的电位状态。因此,AMOLED显示装置开机时会对DC-DC电源驱动芯片内部的ELVSS引脚造成 冲击,可能损毁DC-DC电源驱动芯片。
本公开实施例提供了一种有机发光显示器及显示装置,用以限制开机时的电流涌浪,降低显示器显示不良的风险;以及解决显示面板在初始化阶段产生漏电的问题,提升DC-DC电源驱动芯片的信赖性。
下面结合附图详细介绍本公开具体实施例提供的有机发光显示器。
如图2和图5所示,本公开具体实施例提供了一种有机发光显示器,包括DC-DC电源驱动芯片51和有机发光显示面板12,其中,DC-DC电源驱动芯片51中设置有软启动电路52,软启动电路52包括第一延时电路21、第一防涌浪电路22和第二防涌浪电路23。
如图2所示,第一延时电路21的第一输入端与高电压电平信号线(对应高电压电平信号ELVDD)相连,第二输入端与低电压电平信号线(对应低电压电平信号ELVSS)相连,输出端与第一防涌浪电路22和第二防涌浪电路23相连,用于在初始化阶段,控制第一防涌浪电路22不工作,控制第二防涌浪电路23工作;以及用于对输出端的电压进行延时,在初始化阶段结束后,控制第一防涌浪电路22工作,控制第二防涌浪电路23不工作。
第一防涌浪电路22连接在有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)和第一延时电路21的第二输入端之间,用于在初始化阶段结束后控制输入到有机发光显示面板的第一输入端的电压值。
第二防涌浪电路23连接在有机发光显示面板的第一输入端和有机发光显示面板的第二输入端(对应高电压电平信号ELVDD_MDL)之间,有机发光显示面板的第二输入端与第一延时电路21的第一输入端相连,用于在初始化阶段控制输入到有机发光显示面板的第一输入端的电压值。
具体地,如图2所示,本公开具体实施例中的第一延时电路21包括第一电阻R1、第二电阻R2、第一电容C1和运算放大器OP。其中,第一电阻R1的一端与第一延时电路21的第二输入端(对应低电压电平信号ELVSS)相连,另一端与第二电阻R2的一端相连;第二电阻R2的另一端与第一延时电路21的第一输入端(对应高电压电平信号ELVDD)相连;第一电容C1并联连接在第一电阻R1的两端;运算放大器OP的同相端B连接在第一电阻R1和第二电阻R2之间,反相端C与参考电压端相连,输出端A与第一防涌 浪电路22和第二防涌浪电路23相连。
本公开具体实施例中的第一防涌浪电路22包括第一薄膜晶体管T1,第一薄膜晶体管T1的栅极与运算放大器OP的输出端A相连,源极与第一延时电路21的第二输入端(对应低电压电平信号ELVSS)相连,漏极与有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)相连。
本公开具体实施例中的第二防涌浪电路23包括第二薄膜晶体管T2,第二薄膜晶体管T2的栅极与运算放大器OP的输出端A相连,源极与有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)相连,漏极与有机发光显示面板的第二输入端(对应高电压电平信号ELVDD_MDL)相连。
可选地,本公开具体实施例中第一薄膜晶体管T1为P型薄膜晶体管,第二薄膜晶体管T2为N型薄膜晶体管。
下面详细介绍本公开具体实施例中软启动电路的工作原理,说明通过软启动电路的设置,能够限制开机时的电流涌浪,降低显示器显示不良的风险;以及解决显示面板在初始化阶段产生漏电的问题,提升DC-DC电源驱动芯片的信赖性。
如图2所示,DC-DC电源驱动芯片开始工作时,产生高电压电平信号ELVDD和低电压电平信号ELVSS,由于第一延时电路21的第一输入端与高电压电平信号线相连,第二输入端与低电压电平信号线相连,此时触发第一延时电路21开始工作。运算放大器OP的反相端C连接参考电压VREF,在高电压电平信号ELVDD产生后的初始化阶段,可以忽略在第二电阻R2上的电压降,运算放大器OP的同相端B的电压VB=ELVDD。此时VB大于VREF,运算放大器OP的输出端A输出的电压为VA=ELVDD。此时第二薄膜晶体管T2开启,第一薄膜晶体管T1关闭,有机发光显示面板的第一输入端输入的电压值为:ELVSS_MDL=ELVDD_MDL-VDS,其中,VDS表示第二薄膜晶体管T2的源极和漏极之间的电压。
在该初始化阶段,由于第一薄膜晶体管T1关闭,将有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)和DC-DC电源驱动芯片的第二输入端(对应低电压电平信号ELVSS)隔离,能够防止有机发光显示面板产生漏电对DC-DC电源驱动芯片的ELVSS引脚造成冲击,从而保护 DC-DC电源驱动芯片,提升DC-DC电源驱动芯片的信赖性。
另外,有机发光显示面板的第一输入端输入的电压值为:ELVDD_MDL-VDS,即为ELVDD-VDS,其中VDS的值较小,有机发光显示面板的第一输入端输入的电压在初始化时的电位接近ELVDD,使得有机发光显示面板中发光二极管的压差较小,从而能够限制开机时的电流涌浪,降低显示不良发生的风险。
随着时间的推移,运算放大器OP的同相端B的电压从ELVDD下降到VREF,这个过程中所需要的时间为:
Figure PCTCN2016089592-appb-000001
其中:τ为第一延时电路21的延时系数,τ=R2×C1;V为高电压电平信号ELVDD。
当运算放大器OP的同相端B的电压VB=VREF时,运算放大器OP的输出开始极性翻转,当对第一电容C1充电基本达到一定阈值,例如0.99V时,第一延时电路达到稳定状态,这个过程大约需要的时间为4τ到5τ,第一延时电路21达到稳定状态时,运算放大器OP的同相端B的电压最终为:VB1=(ELVDD×R1+ELVSS×R2)/(R1+R2),该电压小于VREF。
当第一延时电路延时结束后,运算放大器OP的同相端B的电压VB1小于VREF,输出端的电压极性翻转。此时运算放大器OP的输出端A输出的电压为VA=ELVSS,此时第二薄膜晶体管T2关闭,第一薄膜晶体管T1开启。这里,第一薄膜晶体管T1开启门限电压为VON=Vth<0,当第一薄膜晶体管T1的栅极电压满足VGS<VON时,第一薄膜晶体管T1开始启动。此时,DC-DC电源驱动芯片将低电压电平信号ELVSS通过第一薄膜晶体管T1输出到有机发光显示面板,本公开具体实施例中的有机发光显示器正常开启。
可选地,如图3所示,本公开具体实施例中的软启动电路还包括第二延时电路24,第二延时电路24的一端与第一延时电路21的输出端相连,另一端与第一防涌浪电路22相连,用于控制第一防涌浪电路22的工作。
具体地,第二延时电路24包括第三电阻R3、第四电阻R4和第二电容C2;第三电阻R3的一端与接地信号线连接,另一端与第四电阻R4的第一端连接;第四电阻R4的第一端与第一薄膜晶体管T1的栅极相连,第二端与运 算放大器OP的输出端相连;第二电容C2并联连接在第三电阻R3的两端。
第二延时电路24的工作过程与第一延时电路21的工作过程类似,延时系数为τ′=R4×C2。当第二延时电路24开始工作时,第一薄膜晶体管T1的栅极电压由运算放大器OP的输出端A输出的电压VA=ELVSS逐渐变为:VG=R3/(R3+R4)×ELVSS,假设第一薄膜晶体管T1开启门限电压为VON,由于第二延时电路24的延时作用,第一薄膜晶体管T1的电压达到开启门限的时间为:
Figure PCTCN2016089592-appb-000002
其中:τ′为第二延时电路24的延时系数,τ′=R4×C2;V′为低电压电平信号ELVSS。
根据P型薄膜晶体管的电流和栅源电压曲线,开始时通过第一薄膜晶体管T1的电流被限制到很小,随着栅源电压的绝对值的上升,允许通过的电流才逐步上升,即本公开具体实施例中的第一薄膜晶体管T1是逐渐开启的。此时DC-DC电源驱动芯片提供的低电压电平信号ELVSS在第一薄膜晶体管T1的作用下,加载到有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)有一个缓慢上升的过程,从而在有机发光显示器开机时,能够进一步限制开机时的电流涌浪。
本公开具体实施例在第一延时电路和第二延时电路的作用下,有机发光显示面板的启动时间为t=t1+t2,经过t后有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)开始输出有机发光显示面板所需要的电压值,ELVSS_MDL经过整个电路后上升时间大约为5τ+t2,这个时间可以满足实际电路设计的要求,在时间设计中,具体的延时时间通过两级电阻电容(RC)延时电路进行设计。
本公开具体实施例的有机发光显示器在关机时,DC-DC电源驱动芯片产生的高电压电平信号ELVDD和低电压电平信号ELVSS掉电,第一延时电路中的第一电阻R1和第一电容C1组成快速放电电路,第一薄膜晶体管T1和第二薄膜晶体管T2快速关断实现快速放电。
可选地,如图4所示,本公开具体实施例中的有机发光显示器还包括设 置在有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)的第三电容C3,第三电容C3的一端与有机发光显示面板的第一输入端(对应低电压电平信号ELVSS_MDL)相连,另一端与接地信号线相连。
可选地,本公开具体实施例中的有机发光显示器还包括设置在有机发光显示面板的第二输入端(对应高电压电平信号ELVDD_MDL)的第四电容C4,第四电容C4的一端与有机发光显示面膜的第二输入端(对应高电压电平信号ELVDD_MDL)相连,另一端与接地信号线相连。
本公开具体实施例通过第三电容C3和第四电容C4的设置,能够起到稳压、滤波的作用,使得输入到有机发光显示面板中的低电压电平信号ELVSS_MDL和高电压电平信号ELVDD_MDL更稳定。
可选地,如图5所示,本公开具体实施例中的DC-DC电源驱动芯片51中还设置有电压生成器53,电压生成器53与软启动电路52相连,用于调节脉冲宽度的占空比,将输入到有机发光显示面板12的电压调整为常规的步进电压。
具体地,可以根据本公开具体实施例中的第一薄膜晶体管T1开启状态确认此时第一薄膜晶体管T1源漏极之间的电阻RDS,例如,在300mA的电流下,第一薄膜晶体管T1源漏极之间的电阻RDS大约为200mΩ到300mΩ,则DC-DC电源驱动芯片的低电压电平信号ELVSS在第一薄膜晶体管T1上大约有0.06V到0.1V的压降。为了补偿此压降,电压生成器53调节脉冲宽度的占空比,达到有机发光显示面板需要的电压。
本公开具体实施例还提供了一种显示装置,该显示装置包括上述的有机发光显示器,该显示装置可以为OLED电视或电子纸等显示装置。
综上所述,本公开具体实施例提供一种有机发光显示器,包括直流转直流电源驱动芯片和有机发光显示面板。其中,直流转直流电源驱动芯片中设置有软启动电路,软启动电路包括第一延时电路、第一防涌浪电路和第二防涌浪电路。第一延时电路的第一输入端与高电压电平信号线相连,第二输入端与低电压电平信号线相连,输出端与第一防涌浪电路和第二防涌浪电路相连,用于在初始化阶段,控制第一防涌浪电路不工作,控制第二防涌浪电路工作;以及用于对输出端的电压进行延时,在初始化阶段结束后,控制第一 防涌浪电路工作,控制第二防涌浪电路不工作。第一防涌浪电路连接在有机发光显示面板的第一输入端和第一延时电路的第二输入端之间,用于在初始化阶段结束后控制输入到有机发光显示面板的第一输入端的电压值;第二防涌浪电路连接在有机发光显示面板的第一输入端和有机发光显示面板的第二输入端之间,有机发光显示面板的第二输入端与第一延时电路的第一输入端相连,用于在初始化阶段控制输入到有机发光显示面板的第一输入端的电压值。由于第一防涌浪电路连接在有机发光显示面板的第一输入端和第一延时电路的第二输入端之间,第二防涌浪电路连接在有机发光显示面板的第一输入端和有机发光显示面板的第二输入端之间,第一延时电路在初始化阶段,控制第一防涌浪电路不工作,控制第二防涌浪电路工作。因此,在初始化阶段,第一防涌浪电路将有机发光显示面板的第一输入端和第一延时电路的第二输入端隔开,能够防止有机发光显示面板产生漏电对DC-DC电源驱动芯片的输入低电压电平信号的引脚造成的冲击,从而保护DC-DC电源驱动芯片,提升DC-DC电源驱动芯片的信赖性。另外,由于第一延时电路,对输出端的电压进行延时,在初始化阶段结束后,控制第一防涌浪电路工作,控制第二防涌浪电路不工作,因此第一防涌浪电路工作有一个延时的过程,能够限制开机时的电流涌浪,降低显示不良发生的风险。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (12)

  1. 一种有机发光显示器,包括直流转直流电源驱动芯片和有机发光显示面板,其中,所述直流转直流电源驱动芯片中设置有软启动电路,所述软启动电路包括第一延时电路、第一防涌浪电路和第二防涌浪电路;
    所述第一延时电路的第一输入端与高电压电平信号线相连,第二输入端与低电压电平信号线相连,输出端与所述第一防涌浪电路和所述第二防涌浪电路相连,用于在初始化阶段,控制所述第一防涌浪电路不工作,控制所述第二防涌浪电路工作;以及用于对输出端的电压进行延时,在初始化阶段结束后,控制所述第一防涌浪电路工作,控制所述第二防涌浪电路不工作;
    所述第一防涌浪电路连接在所述有机发光显示面板的第一输入端和所述第一延时电路的第二输入端之间,用于在初始化阶段结束后控制输入到所述有机发光显示面板的第一输入端的电压值;并且
    所述第二防涌浪电路连接在所述有机发光显示面板的第一输入端和所述有机发光显示面板的第二输入端之间,所述有机发光显示面板的第二输入端与所述第一延时电路的第一输入端相连,用于在初始化阶段控制输入到所述有机发光显示面板的第一输入端的电压值。
  2. 根据权利要求1所述的有机发光显示器,其中,所述软启动电路还包括第二延时电路,所述第二延时电路的一端与所述第一延时电路的输出端相连,另一端与所述第一防涌浪电路相连,用于控制所述第一防涌浪电路的工作。
  3. 根据权利要求1或2所述的有机发光显示器,其中,所述第一延时电路包括第一电阻、第二电阻、第一电容和运算放大器;
    所述第一电阻的一端与第一延时电路的第二输入端相连,另一端与所述第二电阻的一端相连;
    所述第二电阻的另一端与第一延时电路的第一输入端相连;
    所述第一电容并联连接在所述第一电阻的两端;
    所述运算放大器的同相端连接在所述第一电阻和所述第二电阻之间,反相端与参考电压端相连,输出端与所述第一防涌浪电路和所述第二防涌浪电 路相连。
  4. 根据权利要求1-3任一项权利要求所述的有机发光显示器,其中,所述第一防涌浪电路包括第一薄膜晶体管,所述第一薄膜晶体管的栅极与所述运算放大器的输出端相连,源极与第一延时电路的第二输入端相连,漏极与有机发光显示面板的第一输入端相连。
  5. 根据权利要求1-4任一项权利要求所述的有机发光显示器,其中,所述第二防涌浪电路包括第二薄膜晶体管,所述第二薄膜晶体管的栅极与所述运算放大器的输出端相连,源极与有机发光显示面板的第一输入端相连,漏极与有机发光显示面板的第二输入端相连。
  6. 根据权利要求4所述的有机发光显示器,其中,所述第一薄膜晶体管为P型薄膜晶体管。
  7. 根据权利要求5所述的有机发光显示器,其中,所述第二薄膜晶体管为N型薄膜晶体管。
  8. 根据权利要求2所述的有机发光显示器,其中,所述第二延时电路包括第三电阻、第四电阻和第二电容;
    所述第三电阻的一端与接地信号线连接,另一端与所述第四电阻的第一端连接;
    所述第四电阻的第一端与所述第一防涌浪电路包括的第一薄膜晶体管的栅极相连,第二端与运算放大器的输出端相连;
    所述第二电容并联连接在所述第三电阻的两端。
  9. 根据权利要求前述任一项权利要求所述的有机发光显示器,还包括设置在所述有机发光显示面板的第一输入端的第三电容,所述第三电容的一端与所述有机发光显示面板的第一输入端相连,另一端与接地信号线相连。
  10. 根据权利要求前述任一项权利要求所述的有机发光显示器,还包括设置在所述有机发光显示面板的第二输入端的第四电容,所述第四电容的一端与所述有机发光显示面膜的第二输入端相连,另一端与接地信号线相连。
  11. 根据权利要求前述任一项权利要求所述的有机发光显示器,其中,直流转直流电源驱动芯片中还设置有电压生成器,电压生成器与软启动电路相连,用于调节脉冲宽度的占空比,并将输入到有机发光显示面板的电压调 整为常规的步进电压。
  12. 一种显示装置,包括权利要求1-11任一权利要求所述的有机发光显示器。
PCT/CN2016/089592 2016-01-15 2016-07-11 一种有机发光显示器及显示装置 WO2017121083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,458 US10043446B1 (en) 2016-01-15 2016-07-11 Organic light-emitting diode display assembly and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610028326.4 2016-01-15
CN201610028326.4A CN105469742B (zh) 2016-01-15 2016-01-15 一种有机发光显示器及显示装置

Publications (1)

Publication Number Publication Date
WO2017121083A1 true WO2017121083A1 (zh) 2017-07-20

Family

ID=55607377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089592 WO2017121083A1 (zh) 2016-01-15 2016-07-11 一种有机发光显示器及显示装置

Country Status (3)

Country Link
US (1) US10043446B1 (zh)
CN (1) CN105469742B (zh)
WO (1) WO2017121083A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469742B (zh) * 2016-01-15 2018-11-13 京东方科技集团股份有限公司 一种有机发光显示器及显示装置
CN106448561B (zh) * 2016-10-21 2017-11-10 京东方科技集团股份有限公司 用于控制显示面板的el驱动电压的装置及方法
CN107103871B (zh) * 2017-06-30 2019-11-22 京东方科技集团股份有限公司 显示装置以及显示屏的供电电路和供电方法
CN110544452B (zh) * 2018-05-28 2021-08-17 京东方科技集团股份有限公司 供电时序控制电路及控制方法、显示驱动电路、显示装置
CN109449911B (zh) * 2018-12-26 2023-11-28 上海艾为电子技术股份有限公司 一种保护电路
CN109830201A (zh) * 2018-12-29 2019-05-31 广州市源瑞信息科技有限公司 一种可远程控制供电的显示屏
CN109584775B (zh) * 2019-01-03 2022-04-08 合肥鑫晟光电科技有限公司 驱动控制电路及显示装置
CN110021258B (zh) * 2019-04-23 2023-06-02 京东方科技集团股份有限公司 一种信号转换电路和方法,以及驱动电路和显示装置
CN112017604B (zh) * 2019-05-31 2022-07-08 京东方科技集团股份有限公司 一种驱动方法、驱动装置、显示装置和计算机可读存储介质
CN110138206A (zh) * 2019-06-10 2019-08-16 北海惠科光电技术有限公司 电源驱动电路及显示装置
CN112562564B (zh) * 2020-12-07 2022-07-08 湖北长江新型显示产业创新中心有限公司 一种显示装置
CN114373417A (zh) * 2022-01-17 2022-04-19 武汉华星光电半导体显示技术有限公司 显示装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069871A (ko) * 2003-12-30 2005-07-05 엘지.필립스 엘시디 주식회사 공통전압 발생회로
JP2007189522A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp 演算増幅回路、駆動回路、電気光学装置及び電子機器
CN102243841A (zh) * 2010-05-10 2011-11-16 三星移动显示器株式会社 有机发光显示器及其驱动方法
CN103236234A (zh) * 2013-04-28 2013-08-07 合肥京东方光电科技有限公司 一种栅极驱动器及显示装置
CN103354083A (zh) * 2013-07-11 2013-10-16 京东方科技集团股份有限公司 背光源驱动电路及显示装置
CN105469742A (zh) * 2016-01-15 2016-04-06 京东方科技集团股份有限公司 一种有机发光显示器及显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050034259A (ko) * 2003-10-09 2005-04-14 엘지전자 주식회사 돌입 전류 방지 회로
CN101207327B (zh) 2006-12-22 2010-05-19 鸿富锦精密工业(深圳)有限公司 电源软启动装置
KR101142702B1 (ko) 2010-05-06 2012-05-03 삼성모바일디스플레이주식회사 유기전계발광표시장치 및 그의 구동방법
KR101146989B1 (ko) * 2010-05-06 2012-05-22 삼성모바일디스플레이주식회사 Dc-dc 컨버터, 이를 포함하는 유기 전계 발광 표시 장치 및 그 구동 방법
KR101897679B1 (ko) * 2012-03-14 2018-09-13 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함한 유기전계발광 표시장치
KR102085061B1 (ko) * 2012-07-17 2020-03-06 삼성디스플레이 주식회사 Dc-dc 컨버터 및 이를 포함한 유기전계발광 표시장치
US20140118413A1 (en) * 2012-10-30 2014-05-01 Samsung Display Co., Ltd. Dc-dc converter and organic light emitting display device using the same
JP6460592B2 (ja) * 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 Dcdcコンバータ、及び半導体装置
KR102243464B1 (ko) * 2013-11-14 2021-04-23 삼성디스플레이 주식회사 유기전계발광 표시장치와 그 구동방법
CN104269148B (zh) * 2014-09-30 2017-02-01 南京中电熊猫液晶显示科技有限公司 液晶驱动电路、液晶驱动方法和液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069871A (ko) * 2003-12-30 2005-07-05 엘지.필립스 엘시디 주식회사 공통전압 발생회로
JP2007189522A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp 演算増幅回路、駆動回路、電気光学装置及び電子機器
CN102243841A (zh) * 2010-05-10 2011-11-16 三星移动显示器株式会社 有机发光显示器及其驱动方法
CN103236234A (zh) * 2013-04-28 2013-08-07 合肥京东方光电科技有限公司 一种栅极驱动器及显示装置
CN103354083A (zh) * 2013-07-11 2013-10-16 京东方科技集团股份有限公司 背光源驱动电路及显示装置
CN105469742A (zh) * 2016-01-15 2016-04-06 京东方科技集团股份有限公司 一种有机发光显示器及显示装置

Also Published As

Publication number Publication date
CN105469742A (zh) 2016-04-06
US10043446B1 (en) 2018-08-07
US20180218675A1 (en) 2018-08-02
CN105469742B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2017121083A1 (zh) 一种有机发光显示器及显示装置
CN105321460B (zh) 像素电路及其驱动方法
US9697775B2 (en) AMOLED pixel driving circuit and pixel driving method that implements threshold voltage compensation by directly gaining threshold voltage of driving TFT
US9761173B2 (en) AMOLED pixel driving circuit and pixel driving method
US9349319B2 (en) AMOLED driving circuit, AMOLED driving method, and AMOLED display device
US9570000B2 (en) Pixel circuit and driving method thereof, organic light-emitting display panel and display apparatus
US20180102397A1 (en) Amoled pixel driving circuit and pixel driving method
TWI484860B (zh) 關聯於發光二極體的負載驅動裝置
WO2019109615A1 (en) Pixel driving circuit, driving method thereof, and display apparatus
GB2534098A (en) Over-current protection circuit, LED backlight driving circuit and liquid crystal display
US20150302798A1 (en) Pixel driving circuit, display device and pixel driving method
US10037736B2 (en) Liquid crystal devices (LCDs) and the organic light emitting diodes (OLEDs ) compensation circuits thereof
WO2017121124A1 (zh) 一种有机发光二极管的驱动方法、驱动电路和显示装置
US11308866B2 (en) OLED pixel compensation circuit and OLED pixel compensation method
US7545348B2 (en) Pixel unit and display and electronic device utilizing the same
TW201327527A (zh) 發光二極體電路,驅動發光二極體電路之方法及顯示器
KR102609948B1 (ko) 표시 패널 구동 유닛, 이의 구동 방법, 및 이를 포함하는 표시 장치
US20210335246A1 (en) Pixel circuit, driving method thereof and display device
TWI743555B (zh) 基於GaN之可調電流驅動器電路
US9431823B2 (en) ESD protection circuit
US10510295B2 (en) Apparatus and method for controlling EL drive voltage of display panel
KR102302699B1 (ko) 과전류 보호회로 및 액정 디스플레이 장치
US10311784B2 (en) Pixel driver circuit, display device and pixel driving method
US11418182B2 (en) Switch circuitry
JP6342305B2 (ja) Esd保護回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15322458

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884638

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16884638

Country of ref document: EP

Kind code of ref document: A1