WO2017115738A1 - バルブタイミング変更装置 - Google Patents

バルブタイミング変更装置 Download PDF

Info

Publication number
WO2017115738A1
WO2017115738A1 PCT/JP2016/088624 JP2016088624W WO2017115738A1 WO 2017115738 A1 WO2017115738 A1 WO 2017115738A1 JP 2016088624 W JP2016088624 W JP 2016088624W WO 2017115738 A1 WO2017115738 A1 WO 2017115738A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
oil passage
fastening bolt
valve timing
oil
Prior art date
Application number
PCT/JP2016/088624
Other languages
English (en)
French (fr)
Inventor
崇寛 小倉
力 及川
Original Assignee
株式会社ミクニ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミクニ filed Critical 株式会社ミクニ
Priority to US16/060,027 priority Critical patent/US10533462B2/en
Priority to CN201680070338.1A priority patent/CN108474274B/zh
Priority to EP16881713.8A priority patent/EP3399162B1/en
Publication of WO2017115738A1 publication Critical patent/WO2017115738A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/46Component parts, details, or accessories, not provided for in preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0471Assembled camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements

Definitions

  • the present invention relates to a valve timing changing device that changes the opening / closing timing (valve timing) of an intake valve or an exhaust valve of an internal combustion engine in accordance with an operation state.
  • a case and cam sprocket housing rotor that rotate on the axis of the camshaft in synchronization with the crankshaft, and an advance chamber and a retard chamber are defined in cooperation with the case.
  • a movable member (vane rotor) that rotates on an axis, a bolt that has an oil passage (port) while fastening the movable member to the camshaft, and an oil passage (through)
  • a flow control valve composed of a sleeve having a portion and a spool that is reciprocally inserted into the sleeve to open and close an oil passage (port and through portion), and a movable member to which the outer peripheral surface of the bolt is fitted
  • the amount of oil introduced into and led out from the advance chamber and the retard chamber through the advance oil passage and the retard oil passage is adjusted by appropriately driving and controlling the flow control valve. It has become.
  • the sleeve is formed of a material having a higher thermal expansion coefficient than that of the bolt in order to suppress oil leakage from a gap caused by thermal expansion at the fitting interface between the sleeve of the flow control valve and the bolt. ing.
  • the gap at the fitting interface between the bolt and the movable member there is no mention of the gap at the fitting interface between the bolt and the movable member. If the bolt is made of an iron-based material and the movable member is made of an aluminum-based material, the fitting interface is caused by a difference in thermal expansion between the two. Create a gap in As a result, the advance oil passage and the retard oil passage formed as annular grooves on the inner peripheral surface of the movable member communicate with each other, and there is a possibility that the oil cannot be guided to a desired oil passage.
  • the advance oil oil passage and the retard oil oil passage that form an annular groove provided on the inner peripheral surface of the movable member are generally subjected to boring processing that feeds in the axial direction and the radial direction using a boring machine or the like. Is formed. Therefore, the machining with the above configuration is more troublesome than the boring or counterbore machining that forms the feed cylindrical surface only in the axial direction.
  • This invention is providing the valve timing change apparatus which can eliminate the problem of the said prior art and can aim at the oil leakage prevention from the clearance gap between components, etc.
  • the valve timing changing device of the present invention is a bubble timing changing device that changes the opening / closing timing of an intake valve or an exhaust valve driven by a camshaft, and is a housing rotor that rotates on the axis of the camshaft, and the housing rotor.
  • a vane rotor that operates to define an advance chamber and a retard chamber and rotates on the axis, a fastening bolt that is fastened to rotate the vane rotor integrally with the camshaft, and that has an oil passage, and an outer peripheral surface of the fastening bolt
  • the vane rotor has a thermal expansion coefficient larger than that of the fastening bolt, and includes an advance oil passage that communicates with the advance chamber and a retard oil passage that communicates with the retard chamber.
  • the rotor sleeve may be press-fitted into the rotor body.
  • the rotor body includes a small-diameter inner peripheral portion that is in close contact with the outer peripheral surface of the fastening bolt, and a large-diameter inner peripheral portion that is formed to have a larger diameter than the small-diameter inner peripheral portion.
  • the annular end surface that defines one of the advance angle oil passage and the retard angle oil passage in cooperation with the small diameter inner circumference portion is in close contact with the outer peripheral surface of the fastening bolt and the advance angle oil passage and the retard oil passage.
  • a configuration may be employed that includes a cylindrical portion that defines the other of the square oil passage, and a flange portion that is in contact with the opening end surface of the large-diameter inner peripheral portion and that is directly pressed against the fastening bolt in the axial direction.
  • the rotor sleeve may have a positioning portion that positions an angular position around the axis with respect to the rotor body.
  • the rotor sleeve includes an urging spring that urges the vane rotor to rotate in one direction around the axis with respect to the housing rotor, and the rotor sleeve has a hook portion that hooks one end portion of the urging spring at the flange portion.
  • the fastening bolt and the rotor sleeve may be formed of an iron-based material
  • the rotor body may be formed of an aluminum-based material
  • valve timing changing device configured as described above, it is possible to solve the above-mentioned problems of the prior art, achieve prevention of oil leakage from the gap between components, etc., and guarantee the expected function.
  • FIG. 7 is a cross-sectional view taken along line E1-E1 in FIG. 5B, showing a rotor body of a vane rotor that forms part of the valve timing changing device of the present invention.
  • 6 is a cross-sectional view taken along line E2-E2 in FIG. 5B, showing a rotor body of a vane rotor that forms part of the valve timing changing device of the present invention.
  • FIG. 7 is a cross-sectional view taken along line E3-E3 in FIG. 5A, showing the rotor body of the vane rotor that forms part of the valve timing changing device of the present invention.
  • FIG. 6 is a partial cross-sectional view taken along line E4-E4 in FIG. 5B, showing a rotor body of a vane rotor that forms part of the valve timing changing device of the present invention. It is a front view which shows the rotor sleeve integrated in the rotor main body of the vane rotor which makes a part of valve timing change apparatus of this invention. It is a side view which shows the rotor sleeve integrated in the rotor main body of the vane rotor which makes a part of valve timing change apparatus of this invention.
  • FIG. 9 is a cross-sectional view taken along line E5-E5 in FIG. 8A, showing a rotor sleeve that is integrally incorporated in the rotor body of the vane rotor that forms part of the valve timing changing device of the present invention.
  • FIG. 9 is a cross-sectional view taken along line E6-E6 in FIG. 8B, showing a rotor sleeve that is integrally incorporated in the rotor body of the vane rotor that forms part of the valve timing changing device of the present invention.
  • This valve timing changing device includes a housing rotor 10 that rotates on an axis L of a camshaft S, a rotor body 20 and a rotor sleeve 30 that rotate integrally with the camshaft S, and a vane rotor that is integrated with the camshaft S.
  • a fastening bolt 40 that is fastened to rotate, a biasing spring 50, a flow rate control valve 60 that controls the flow rate of oil, and a lock mechanism 70 that can lock the vane rotor with respect to the housing rotor 10 are provided.
  • the flow control valve 60 is driven and controlled by an electromagnetic actuator A attached to, for example, a chain cover (not shown) separately from the device.
  • the camshaft S is rotatably supported around an axis L by a bearing (not shown) formed on a cylinder head (not shown) of the engine, and rotates in one direction CW as shown in FIG.
  • the valve or exhaust valve is opened and closed by cam action.
  • the camshaft S has, in its end region, a cylindrical portion S1 that rotatably supports the housing rotor 10, an oil passage S2 that supplies oil guided from an oil pan (not shown) to the oil passage 45 of the fastening bolt 40, A female screw part S3 for fastening the fastening bolt 40 and a fitting hole S4 for fitting the positioning pin P are provided.
  • the housing rotor 10 is supported so as to be rotatable on the axis L of the camshaft S, interlocked with the rotation of the crankshaft via a chain or the like, and the rotational driving force of the crankshaft is connected to the camshaft via the vane rotor (20, 30). S is transmitted to S.
  • the housing rotor 10 has a two-part structure composed of a substantially disc-shaped first housing member 11 and a bottomed cylindrical second housing member 12 coupled to the front side of the first housing member 11.
  • the housing rotor 10 defines an accommodation chamber R for accommodating the vane rotor so as to be relatively rotatable in a predetermined angle range ⁇ (an angle range between the most advanced angle position ⁇ a and the most retarded angle position ⁇ r), and the lock mechanism 70.
  • the storage chamber R is divided into the advance chamber 10a and the retard chamber 10b by the vane portion 21 of the stored vane rotor.
  • the first housing member 11 includes a sprocket 11a around which a chain for transmitting the rotational driving force of the crankshaft is wound, an inner peripheral surface 11b, a wall surface 11c, a fitting hole 11d, an oil passage 11e, and a screw hole 11f.
  • the inner peripheral surface 11b is formed so as to be rotatably fitted to the cylindrical portion S1 of the camshaft S.
  • the wall surface 11c is formed so that the back surface of the rotor body 20 is slidably contacted.
  • 11 d of fitting holes are formed so that the lock pin 71 contained in the lock mechanism 70 may be fitted.
  • the oil passage 11e is formed so as to supply and discharge oil to the fitting hole 11d.
  • the screw hole 11f is formed so as to screw a bolt B for fastening the second housing member 12.
  • the second housing member 12 is formed in a bottomed cylindrical shape having a cylindrical wall 12a and a front wall 12b.
  • the second housing member 12 includes an opening 12c, three through holes 12d through which the bolts B are passed, three shoe parts 12e, a latching groove part 12f, an accommodation concave part 12g, an annular shape A coupling portion 12h is provided.
  • the opening 12c is formed on the axis L so as to allow the fastening bolt 40 to pass therethrough.
  • the three shoe portions 12e are formed on the back side of the front wall 12b so as to protrude from the cylindrical wall 12a toward the center (axis L) and at equal intervals in the circumferential direction.
  • the latching groove portion 12f is formed by cutting out a part of the opening portion 12c so that the first end portion 52 of the urging spring 50 is fitted and latched.
  • the housing recess 12g is formed so as to house the coil portion 51 of the biasing spring 50.
  • the annular coupling portion 12 h is formed so as to be fitted and coupled to the outer peripheral edge region of the wall surface 11 c of the first housing member 11.
  • the vane rotor (the rotor body 20 and the rotor sleeve 30) is housed in the housing chamber R of the housing rotor 10 so as to advance through the housing chamber R in order to define the advance chamber 10a and the retard chamber 10b in cooperation with the housing rotor 10.
  • the angular chamber 10a and the retarding chamber 10b are divided into two, and rotate integrally with the camshaft S.
  • the rotor body 20 is formed using a material having a larger thermal expansion coefficient than the fastening bolt 40, for example, a light metal material such as an aluminum-based material.
  • the rotor body 20 includes three vane portions 21, a hub portion 22 that integrally holds the three vane portions 21 at substantially equal intervals, a small-diameter inner peripheral portion 23, and a large-diameter inner peripheral portion 24 that press-fits the rotor sleeve 30.
  • a sealing member is provided that is fitted into a groove formed at the tip of the vane portion 21.
  • the small-diameter inner peripheral portion 23 is formed so as to define an advance oil passage 23a that forms an annular groove in cooperation with the annular end surface 31 of the rotor sleeve 30 to be press-fitted, and is in close contact with the outer peripheral surface 41a of the fastening bolt 40. It is formed in the internal diameter dimension assembled
  • the large-diameter inner peripheral portion 24 is formed to have a larger diameter than the small-diameter inner peripheral portion 23, and the apparatus is used in a state where the cylindrical portion 32 of the rotor sleeve 30 formed of an iron-based material is press-fitted.
  • the inner diameter dimension is such that no gap is generated in the entire temperature change range.
  • the advance oil passage 25 is formed to extend radially at the hub portion 22 and communicate with the advance oil passage 23a.
  • the retard oil passage 26 extends radially at the hub portion 22 and is formed to communicate with the large-diameter inner peripheral portion 24.
  • the opening end surface 27 is formed in a counterbore shape at the end of the large-diameter inner peripheral portion 24.
  • the positioning hole 28 is formed to fit a positioning pin P attached to the camshaft S.
  • the rotor sleeve 30 is formed of an iron-based material having a thermal expansion coefficient equivalent to that of the fastening bolt 40 and is press-fitted into the rotor body 20.
  • the rotor sleeve 30 includes an annular end surface 31, a cylindrical portion 32, a flange portion 33, a positioning hole 34 as a positioning portion, an annular retarding oil passage 35, three retarding oil passages 36, and a latching portion 37. I have.
  • the annular end surface 31 is formed so as to define an advance oil passage 23 a in cooperation with the small-diameter inner peripheral portion 23 of the rotor body 20.
  • the cylindrical portion 32 is formed so as to be press-fitted into the large-diameter inner peripheral portion 24 of the rotor body 20.
  • the flange portion 33 is formed so that its inner surface abuts on the opening end surface 27 of the large-diameter inner peripheral portion 24 and the fastening bolt 40 directly abuts on its outer surface and is pressed in the direction of the axis L. .
  • the positioning hole 34 is formed to fit a positioning pin P that positions an angular position around the axis L with respect to the rotor body 20 and the camshaft S.
  • the retard oil passage 35 is formed on the inner peripheral surface 32 a of the cylindrical portion 32.
  • the retard oil passage 36 is formed so as to extend radially through the cylindrical portion 32 and communicate with the retard oil passage 35.
  • the latching portion 37 is formed by notching a part of the flange portion 33 so as to latch the second end portion 53 of the biasing spring 50.
  • the length dimension in the axis L direction of the cylindrical portion 32 is formed slightly shorter than the length dimension in the axis L direction of the large-diameter inner peripheral portion 24 of the rotor body 20.
  • the outer diameter dimension of the cylindrical portion 32 is formed such that three areas including the vicinity where the retarded oil passage 36 opens are larger in outer diameter dimension than the other areas.
  • the cylindrical part 32 produces a clearance gap in the whole temperature change range received when the said apparatus is used in the state press-fit in the large diameter inner peripheral part 24 of the rotor main body 20 formed with the aluminum-type material. It is formed so that there is no. That is, the rotor sleeve 30 is partially press-fitted into the large-diameter inner peripheral portion 24 of the rotor body 20. Further, the inner peripheral surface 32 a of the cylindrical portion 32 is formed to have an inner diameter dimension that can be assembled in close contact with the outer peripheral surface 41 a of the fastening bolt 40.
  • the fastening bolt 40 directly contacts the rotor sleeve 30 of the vane rotor and fastens the vane rotor (20, 30) so as to rotate integrally with the camshaft S while exerting a pressing force in the axis L direction. It is made of an iron-based material with high mechanical strength.
  • the fastening bolt 40 includes a cylindrical portion 41 having an outer peripheral surface 41a, a male screw portion 42 positioned on the distal end side of the cylindrical portion 41, a flanged head portion 43, an insertion portion 44, an oil passage 45, an oil passage 46, an oil passage 47, An annular groove 48 and a positioning portion 49 are provided.
  • the outer peripheral surface 41a of the cylindrical portion 41 can be fitted in the direction of the axis L with respect to the inner peripheral surface 32a of the cylindrical portion 32 of the rotor sleeve 30 and the inner peripheral surface of the small-diameter inner peripheral portion 23 of the rotor body 20.
  • the outer diameter is in close contact with no gap.
  • the flanged head 43 is formed so as to directly contact the flange 33 of the rotor sleeve 30 and press the flange 33 in the direction of the axis L on the side opposite to the male screw portion 42.
  • the insertion portion 44 is formed in a bottomed shape in which the inside of the cylindrical portion 41 is thinned and the flow control valve 60 is fitted.
  • the oil passage 45 is formed in a connection region between the cylindrical portion 41 and the male screw portion 42.
  • the oil passage 46 is formed in the outer peripheral surface 41a of the cylindrical portion 41 so as to open and communicate with the advance oil passage 23a.
  • the oil passage 47 is formed so as to open on the outer peripheral surface 41 a of the cylindrical portion 41 and communicate with the retarded oil passage 35.
  • the annular groove 48 is formed on the opening end side of the insertion portion 44 so as to fit the washer 64 and the snap ring 65.
  • the positioning portion 49 is formed in a concave shape for receiving the positioning portion 61e in order to position the sleeve 61 of the flow control valve 60 about the axis L.
  • the fastening bolt 40 is inserted into the cylindrical portion 32 of the rotor sleeve 30 press-fitted into the rotor main body 20 and the small-diameter inner peripheral portion 23 of the rotor main body 20 through the opening 12c of the second housing member 12, and the male screw portion. 42 is screwed into the female screw portion S3 of the camshaft S.
  • the fastening bolt 40 directly contacts the rotor sleeve 30 and exerts a pressing force (fastening force) in the direction of the axis L, and fastens the vane rotor (20, 30) so as to rotate integrally with the camshaft S.
  • the outer peripheral surface 41a of the fastening bolt 40 blocks the advance oil passage 23a and the retard oil passage 35 that form an annular groove of the rotor 20 body so as not to communicate with each other.
  • the rotor sleeve 30 is press-fitted into the rotor main body 20, and the fastening bolt 40 is fastened to rotate the vane rotor (20, 30) integrally with the camshaft S via the rotor sleeve 30.
  • a configuration is obtained that includes a rotor sleeve 30 that is formed of a material having a thermal expansion coefficient equivalent to that of the fastening bolt 40 and that is integrated with the camshaft S so as to be in non-contact with the outer peripheral surface 41 a of the fastening bolt 40.
  • the rotor sleeve 30 is press-fitted into the rotor body 20 and integrated integrally, the advance oil passages 23a, 25 and the retard angle which are blocked from each other by the outer peripheral surface 41a of the fastening bolt 40 and communicate with the advance chamber 10a.
  • a vane rotor provided with retarded oil passages 35, 36, and 26 communicating with the chamber 10b is obtained.
  • the vane rotor including the rotor body 20 and the rotor sleeve 30 and the fastening bolt 40 having the above-described configuration, even if the fastening bolt 40 and the vane rotor undergo thermal expansion, they are in close contact with the outer peripheral surface 41a of the fastening bolt 40 and at least advance. Since the rotor sleeve 30 formed of a material having a thermal expansion coefficient equivalent to that of the fastening bolt 40 is integrally incorporated in a region where the square oil passage 23a and the retarded oil passage 45 are blocked from each other, There is no gap between the outer peripheral surface 41a and the inner peripheral surface 32a of the rotor sleeve 30.
  • the rotor sleeve 30 is in non-contact with the camshaft S and contacts only the outer peripheral surface 41a of the fastening bolt 40, for example, a fitting relationship that is a concern when the rotor sleeve is in contact with the camshaft. And it is not affected by assembly variation. Therefore, a reliable contact state between the inner peripheral surface 32a of the rotor sleeve 30 and the outer peripheral surface 41a of the fastening bolt 40 can be obtained.
  • the advance oil passage 23a and the retard oil passage 45 are not communicated by the gap on the outer peripheral surface 41a of the fastening bolt 40, and oil leakage is prevented and oil can be guided to a desired oil passage. . Therefore, the opening / closing timing can be changed with high accuracy.
  • the press-fitting allowance is always in a fitting state that does not generate a gap in the range of thermal deformation, so that both of them are thermally expanded. However, the press-fitting operation can be easily performed without generating a gap.
  • fastening bolt 40 is fastened in direct contact with the rotor sleeve 30 having the same thermal expansion coefficient, thermal deformation between the fastening bolt 40 and the rotor sleeve 30 is caused even in an environment in which thermal deformation occurs. Does not cause relative displacement. Therefore, compared with the case where the fastening bolt 40 directly contacts the rotor body 20 having a different coefficient of thermal expansion, it is possible to prevent the fastening bolt 40 from being loosened, and therefore, between the advance oil passage 23a and the retard oil passage 45. Oil leakage can be prevented.
  • the gap between the fastening bolt 40 and the rotor sleeve 30 can be prevented from causing a difference in thermal expansion while ensuring the strength of the fastening bolt 40. Occurrence can be prevented. Moreover, weight reduction can be achieved and responsiveness can be improved by forming the rotor main body 20 with an aluminum-type material.
  • the rotor sleeve 30 and the rotor body 20 are positioned with respect to the common positioning pin P that positions the angular position around the axis L with respect to the camshaft S, and the positioning hole 34 of the rotor sleeve 30 and the positioning hole 28 of the rotor body 20.
  • the common positioning pin P positions the angular position around the axis L with respect to the camshaft S
  • the positioning hole 34 of the rotor sleeve 30 and the positioning hole 28 of the rotor body 20 By adapting, three parts can be positioned at once. Therefore, it is possible to reliably prevent misalignment between the retarded oil passage 36 provided in the rotor sleeve 30 and the retarded oil passage 26 provided in the rotor body 20.
  • the rotor sleeve 30 includes the annular end surface 31 and the cylindrical portion 32, so that the cylindrical portion 32 of the rotor sleeve 30 is the rotor main body 20.
  • the annular end surface 31 cooperates with the small-diameter inner peripheral portion 23 to define an advance oil passage 23a that forms an annular groove, and the cylinder of the press-fitted rotor sleeve 30
  • the shaped portion 32 defines a retarded oil passage 35 that forms an annular groove.
  • the fastening bolt 40 is screwed and the flange portion 33 is pressed in the direction of the axis L toward the opening end surface 27 of the rotor body 20, so that the rotor sleeve 30 is press-fitted.
  • the vane rotor (20, 30) can be securely fastened so as to rotate integrally with the camshaft S by the pressing force in the direction of the axis L while making the light press fit.
  • the urging spring 50 urges the vane rotor (20, 30) to rotate in one direction with respect to the housing rotor 10.
  • the biasing spring 50 is a torsion coil spring having a coil portion 51, a first end portion 52, and a second end portion 53. Inside the housing rotor 10, the opening end surface 27 of the rotor body 20 and the second housing are provided. It arrange
  • the first end portion 52 is formed so as to extend in a direction perpendicular to the axis L and to extend outward from the coil portion 51 in the radial direction of the coil portion 51.
  • the second end portion 53 is formed to extend in a direction perpendicular to the axis L and to extend from the coil portion 51 toward the center of the coil portion 51.
  • FIG. 1 The second end portion 53 is fitted into the latching portion 37 of the rotor base 30 and latched.
  • the first end 52 is fitted into the latching groove 12 f of the second housing member 12 and latched.
  • the biasing spring 50 rotates and biases the vane rotor (20, 30) relative to the housing rotor 10 in the advance direction.
  • the biasing spring 50 that biases in the advance angle direction, it is possible to prevent the vane rotors (20, 30) from rattling, reduce the required hydraulic pressure when advancing, and improve responsiveness. Can be improved. Furthermore, the controllability can be improved by setting the load of the urging spring 50 so that the difference between the operating torque and the load torque is substantially equal between the advance angle and the retard angle.
  • the second end portion 53 of the urging spring 50 is hooked not by the rotor body 20 but by the hook portion 37 provided on the flange portion 33 of the rotor sleeve 30, the end surface of the coil portion 51 is used as the flange portion 33. By being received by the opening end surface 27 around the center, it is possible to prevent the biasing spring 50 from falling and the rotor body 20 from being worn.
  • the flow rate control valve 60 is incorporated in the fastening bolt 40 and controls the flow rate of oil (operating oil).
  • the flow control valve 60 is attached to the sleeve 61 fitted into the insertion portion 44 of the fastening bolt 40, the spool 62 fitted in the sleeve 61 so as to be able to reciprocate in the direction of the axis L, and the spool 62 in a direction protruding from the sleeve 61.
  • a biasing spring 63 for biasing, a washer 64 for preventing the sleeve 61 from coming off and preventing the spool 62 from falling off, and a C-shaped snap ring 65 for fixing the washer 64 are provided.
  • the sleeve 61 is formed so as to be closely fitted to the insertion portion 44 of the fastening bolt 40 by using a material having a thermal expansion coefficient larger than that of the fastening bolt 40, for example, an aluminum-based material.
  • the sleeve 61 includes an oil passage 61a, an inner peripheral surface 61b, oil passages 61c and 61d, a positioning portion 61e, and a receiving portion 61f.
  • the oil passage 61a is formed from the concave groove to a through hole communicating with the inside so as to guide oil supplied through the oil passage 45 of the fastening bolt 40 to the inside.
  • the inner peripheral surface 61b is formed so that the spool 62 is slidably fitted.
  • the oil passages 61c and 61d are formed penetrating radially outward from the inner peripheral surface 61b.
  • the positioning portion 61e is formed in a convex shape so as to be fitted and positioned in the positioning portion 49 of the fastening bolt 40.
  • the receiving portion 61f is formed to receive one end portion of the biasing spring 63.
  • the spool 62 is formed in a substantially cylindrical shape with a bottom using, for example, an aluminum-based material.
  • the spool 62 slides in close contact with the inner peripheral surface 61b of the sleeve 61, and the first valve portion 62a, the second valve portion 62b, and the sliding portion 62c, the oil passage 62d, the oil passage 62e, and the reduced diameter.
  • a portion 62f, an oil passage 62g, an oil passage 62h, an oil passage 62i, and a receiving portion 62j are provided.
  • the oil passage 62d is formed so as to form an annular groove between the first valve portion 62a and the second valve portion 62b.
  • the oil passage 62e is formed so as to form an annular groove between the second valve portion 62a and the sliding portion 62c.
  • the reduced diameter portion 62f is formed with a reduced diameter from the sliding portion 62c toward the end portion.
  • the oil passage 62g is formed so as to extend in the axial direction inside.
  • the oil passage 62h is formed so as to form a through hole communicating with the oil passage 62g in the oil passage 62e.
  • the oil passage 62i is formed so as to form a through hole communicating with the oil passage 62g in the reduced diameter portion 62f.
  • the receiving portion 62j is formed to receive the other end portion of the biasing spring 63.
  • the urging spring 63 is a compression type coil spring, and is arranged between the receiving portion 61 f of the sleeve 61 and the receiving portion 62 j of the spool 62 so as to exert an urging force in a direction in which the spool 62 is pushed out from the sleeve 61. Has been.
  • the sleeve 61 is fitted and fixed to the insertion portion 44 of the fastening bolt 40 while being positioned.
  • the distal end side of the sleeve 61 is partially press-fitted into the insertion portion 44 and fixed.
  • the oil passage 45 and the oil passage 61a communicate with each other
  • the oil passage 46 and the oil passage 61c communicate with each other
  • the oil passage 47 and the oil passage 61d communicate with each other.
  • the urging spring 63 is inserted into the sleeve 61, the spool 62 is inserted from the outside thereof, and the washer 64 and the snap ring 65 are fastened to the fastening bolt while pushing the spool 62 against the urging force of the urging spring 63. It is fitted into the 40 annular grooves 48.
  • the spool 62 is stopped by being pushed outward by the biasing force of the biasing spring 63 while the outer end surface of the sliding portion 62 c is in contact with the washer 64.
  • the first valve section 62a cuts off the communication between the oil passage 61a and the oil passages 61c, 46, and the advance angle chamber 25, 23a ⁇ the oil passage 46 ⁇ the oil passage 61c ⁇ the oil passage 62g ⁇ the oil passage 62i.
  • the oil in 10a will be in the state discharged
  • the second valve portion 62b communicates the oil passage 61a with the oil passages 61d and 47, and the oil passage 45 ⁇ the oil passage 61a ⁇ the oil passage 62d ⁇ the oil passage 61d ⁇ the oil passage 47 ⁇ the retarded oil passages 35, 36, 26, oil is introduced into the retarding chamber 10b.
  • the first valve portion 62a cuts off the communication between the oil passage 61a and the oil passages 61c, 46 and the oil passages 46, 61c. And disconnection of the oil passage 62g. Further, the second valve portion 62b blocks communication between the oil passage 61a and the oil passages 61d and 47 and blocks communication between the oil passages 47 and 61d and the oil passages 62h and 62g. And it will be in the state which blocked the inflow and outflow of the oil with respect to the advance chamber 10a and the retard chamber 10b.
  • the first valve portion 62a causes the oil passage 61a and the oil passages 61c and 46 to communicate with each other.
  • the oil is introduced into the advance chamber 10a through 45 ⁇ oil passage 61a ⁇ oil passage 62d ⁇ oil passage 61c ⁇ oil passage 46 ⁇ advance oil passages 23a and 25.
  • the second valve portion 62b blocks the communication between the oil passage 61a and the oil passages 61d, 47, and the retarded oil passages 26, 36, 35 ⁇ oil passage 47 ⁇ oil passage 61d ⁇ oil passage 62e ⁇ oil passage 62g ⁇ oil.
  • the oil in the retard chamber 10b is discharged to the outside through the path 62i.
  • the flow control valve 60 is configured to be incorporated in the fastening bolt 40, it is possible to reduce the pressure loss of the oil as the fluid system, the centralization as the hydraulic system, and the responsiveness when changing the valve timing. Can be increased. Furthermore, since the flow control valve 60 is preliminarily incorporated in the fastening bolt 40 and handled as a module product, it is possible to reduce the number of parts management man-hours.
  • the lock mechanism 70 locks the vane rotor (20, 30) with respect to the housing rotor 10 at a predetermined position within the predetermined angle range ⁇ (here, the most retarded angle position ⁇ r) and is unlocked by hydraulic pressure.
  • the lock mechanism 70 includes a lock pin 71, an urging spring 72, and a cylindrical holder 73.
  • the lock pin 71 is reciprocally movable in the direction of the axis L and is formed so as to protrude from the rear end surface of the rotor body 20.
  • the biasing spring 72 is formed so as to exert a biasing force in a direction in which the lock pin 71 protrudes.
  • the cylindrical holder 73 is formed so as to be fitted into the recess 29 of the rotor body 20 so as to hold the lock pin 71 urged by the urging spring 72 in a reciprocating manner.
  • the lock pin 71 is urged by the urging spring 72 in a state where the hydraulic pressure supplied through the advance oil passage 25 and the oil passage 11e to press the lock pin 71 is lowered, and the housing rotor 10 (the first housing member 11). ) Is locked in a predetermined position (here, the most retarded angle position ⁇ r) within a predetermined angle range ⁇ with respect to the housing rotor 10.
  • a predetermined position here, the most retarded angle position ⁇ r
  • the lock pin 71 enters from the rear end surface of the rotor body 20 to release the lock. Yes.
  • the electromagnetic actuator A is fixed to an engine chain cover (not shown) or the like, and reciprocates in the direction of the axis L so as to contact the end of the spool 62 and exert a pushing force around the plunger A1 and the plunger A1. Is provided with an exciting coil A2.
  • the amount of protrusion of the plunger A1 is adjusted by appropriately controlling energization, the amount of pushing the spool 62 against the urging force of the urging spring 63 is adjusted as appropriate.
  • the retard angle mode shown, the hold mode shown in FIG. 11B, and the advance angle mode shown in FIG. 11C are selected.
  • valve timing changing device In the state where the engine is stopped, as shown in FIG. 12, the oil in the advance chamber 10a is discharged, and the vane rotor (20, 30) is at the most retarded angle position ⁇ r against the urging force of the urging spring 50. Positioned on. In addition, the lock pin 71 of the lock mechanism 70 is fitted in the fitting hole 11 d and the vane rotor (20, 30) is locked to the housing rotor 10. Thereby, when starting the engine, the engine can be started while preventing the vane rotor (20, 30) from fluttering.
  • the flow control valve 60 is appropriately switched so that the vane rotors (20, 30) and the camshaft S are moved to the retarded side (retarded mode) or advanced (advanced mode), and further predetermined.
  • the phase control is performed so as to be held at the intermediate angle position (holding mode).
  • the spool 62 is projected by the urging force of the urging spring 63 as shown in FIG. 11A.
  • the advance chamber 10a ⁇ the advance oil passage 25 ⁇ the advance oil passage 23a ⁇ the oil passage 46 ⁇ the oil passage 61c ⁇ the oil passage 62g ⁇ the oil passage 62i passes the oil in the advance chamber 10a to, for example, a chain. It is discharged into the oil pan through the cover.
  • the oil is supplied into the retard chamber 10b through the oil passage 45 ⁇ the oil passage 62d ⁇ the oil passage 61d ⁇ the oil passage 47 ⁇ the retarded oil passage 35 ⁇ the retarded oil passage 36 ⁇ the retarded oil passage 26.
  • the vane rotor 20 counterclockwise with respect to the housing rotor 10 from the state shown in FIG. 13 or FIG. 14 to the most retarded position shown in FIG. 12 by hydraulic pressure while resisting the biasing force of the biasing spring 50. Rotate around (lagging side).
  • the spool 62 is pushed by a predetermined amount by the electromagnetic actuator A against the urging force of the urging spring 63. Then, the retardation chamber 10b, the retardation oil passage 26, the retardation oil passage 36, the retardation oil passage 35, the oil passage 47, the oil passage 61d, the oil passage 62e, the oil passage 62g, the oil passage 62i, and the retardation chamber.
  • the oil in 10b is discharged to the outside through, for example, the chain cover and into the oil pan.
  • the oil is supplied into the advance chamber 10a through the oil passage 45 ⁇ the oil passage 62d ⁇ the oil passage 61c ⁇ the oil passage 46 ⁇ the advance oil passage 23a ⁇ the advance oil passage 25.
  • the vane rotor (20, 30) is moved relative to the housing rotor 10 from the state shown in FIG. 12 or FIG. 13 to the most advanced angle position shown in FIG. 14 by hydraulic pressure in addition to the urging force of the urging spring 50. Rotate clockwise (advance side).
  • the electromagnetic actuator A is appropriately controlled so that the spool 62 is pushed in a predetermined amount.
  • the first valve portion 62a blocks communication between the oil passages 61a and 62d and the oil passages 61c and 46, and also blocks communication between the oil passages 46 and 61c and the oil passage 62g, and the second valve portion 62b serves as the oil passage.
  • the communication between the oil passages 61a and 62d and the oil passages 61d and 47 is cut off, and the communication between the oil passages 47 and 61d and the oil passages 62e and 62g is cut off to prevent the inflow and outflow of oil into the advance chamber 10a and the retard chamber 10b. It becomes a state.
  • the vane rotor (20, 30) is held at a desired intermediate position between the most retarded angle position ⁇ r and the most advanced angle position ⁇ a, as shown in FIG.
  • valve timing changing device configured as described above, it is possible to assemble while achieving simplification of the structure, size reduction, weight reduction, cost reduction, simplification of assembly work, and the like. Oil leakage from gaps due to thermal deformation between parts can be prevented, and the expected function can be guaranteed. In particular, even if the fastening bolt 40 and the vane rotor are thermally expanded, the fastening bolt 40 and the outer circumferential surface 41a of the fastening bolt 40 are in close contact with each other and at least the advance oil passage 23a and the retard oil passage 35 are blocked from each other.
  • the rotor sleeve 30 is in non-contact with the camshaft S and contacts only the outer peripheral surface 41a of the fastening bolt 40, for example, a fitting relationship that is a concern when the rotor sleeve is in contact with the camshaft. And it is not affected by assembly variation. Therefore, a reliable contact state between the inner peripheral surface 32a of the rotor sleeve 30 and the outer peripheral surface 41a of the fastening bolt 40 can be obtained. That is, the advance oil passage 23a and the retard oil passage 35 do not communicate with each other through the clearance on the outer peripheral surface 41a of the fastening bolt 40, and oil leakage is prevented and oil can be guided to a desired oil passage. Therefore, the opening / closing timing can be changed with high accuracy.
  • FIG. 15 shows another embodiment of the rotor sleeve incorporated in the rotor body of the vane rotor that forms part of the valve timing changing device of the present invention.
  • the same reference numerals are used for the same components as those in the previous embodiment. A description thereof will be omitted.
  • the rotor base 30 ′ according to this embodiment includes an annular end surface 31, a cylindrical portion 32, a flange portion 33, a positioning hole 34, a retarded oil passage 35, three retarded oil passages 36, a latching portion 37, and a tubular portion. 32 is provided with an annular recess 38 and an annular relief 39 formed on the outer peripheral surface of 32.
  • FIG. 16 shows still another embodiment of the rotor sleeve incorporated in the rotor body of the vane rotor forming a part of the valve timing changing device of the present invention.
  • the same reference numerals are used for the same components as those in the above-described embodiment. The description is omitted.
  • the rotor base 30 ′′ according to this embodiment includes an annular end surface 31, a cylindrical portion 32, a flange portion 33, a positioning hole 34, a retarded oil passage 35, three retarded oil passages 36, and a latching portion 37.
  • the cylindrical portion 32 is formed by a first cylindrical portion 32 ′ and a second cylindrical portion 32 ′′ that are formed in two so as to cooperatively define a retarded oil passage 35 that forms an annular groove. It is configured.
  • the cylindrical portion 32 of the rotor sleeve 30 ′′ is divided into two parts, and the retarded oil passage 35 that forms an annular groove in cooperation with the assembly of both is defined. Therefore, it is not necessary to perform the boring process to form the annular groove in the rotor sleeve 30 ′′, and further, the labor of the process can be reduced and the productivity as a whole can be increased.
  • the rotor sleeve 30 that defines the retarded oil passage 35 forming an annular groove is shown as the rotor sleeve, but the present invention is not limited to this.
  • a simple annular rotor sleeve embedded between the advance oil passage and the retard oil passage is employed. May be.
  • the rotor body 20 defines the advance oil passage 23a as one of the advance oil passage and the retard oil passage, and the rotor sleeve 30 serves as the other of the advance oil oil passage and the retard oil passage.
  • the configuration for defining the path 35 is shown, the present invention is not limited to this.
  • a configuration is adopted in which the rotor body defines a retarded oil path as one of the advanced oil path and retarded oil path, and the rotor sleeve defines the advanced oil path as the other of the advanced oil path and the retarded oil path. May be.
  • the housing rotor 10 including the sprocket 11a for transmitting the rotational force of the crankshaft is shown, but the present invention is not limited to this.
  • the means for transmitting the rotational driving force of the crankshaft has another structure (for example, a toothed timing belt)
  • a housing rotor having a structure (such as a toothed pulley) suitable for the structure is provided. Can be adopted.
  • the lock mechanism includes the lock pin 71, the urging spring 72, and the cylindrical holder 73 as the lock mechanism, and is configured to be locked at the most retarded position, but is not limited thereto.
  • the lock position is not limited to the most retarded position and is necessary. Other positions may be used depending on the situation.
  • valve timing changing device of the present invention can prevent an oil leak from a gap between parts and guarantee an expected function, so that an internal combustion engine mounted on an automobile or the like can be used. Needless to say, the present invention is also applicable to a small engine mounted on a motorcycle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

本発明のバルブタイミング変更装置は、ハウジングロータ(10)、ベーンロータ、締結ボルト(40)、締結ボルトの外周面に離隔して開口する油路をそれぞれ経由して進角室に連通する進角油路及び遅角室に連通する遅角油路を備え、ベーンロータは、締結ボルトよりも大きい熱膨張係数をなす材料により形成されたロータ本体(20)と、少なくとも進角油路(23a)と遅角油路(35)とを互いに遮断する領域において締結ボルトと同等の熱膨張係数をなす材料により形成されカムシャフトと非接触でかつ締結ボルトの外周面(41a)と密接するように一体的に組み込まれたロータスリーブ(30)を含む。これによれば、油路を画定する部品相互間での隙間の発生を防止して油漏れを防止できる。

Description

バルブタイミング変更装置
 本発明は、内燃エンジンの吸気バルブ又は排気バルブの開閉時期(バルブタイミング)を運転状況に応じて変更するバルブタイミング変更装置に関する。
 従来のバルブタイミング変更装置としては、クランクシャフトと同期してカムシャフトの軸線上で回転するケース及びカムスプロケット(ハウジングロータ)、ケースと協働して進角室及び遅角室を画定すると共に上記軸線上で回転する可動部材(ベーンロータ)、可動部材をカムシャフトに締結すると共に油路(ポート)を有するボルト、ボルトの中心を通るように肉抜きれた挿入部に嵌め込まれると共に油路(貫通部)を有するスリーブ及びスリーブ内に往復動自在に挿入されて油路(ポート及び貫通部)の開閉を行うスプール等により構成される流量制御弁、ボルトの外周面が嵌合される可動部材の内周面に形成された環状溝をなす進角油路及び遅角油路等を備えたものが知られている(例えば、特許文献1等参照)。
 この装置においては、流量制御弁を適宜駆動制御することにより、進角油路及び遅角油路をそれぞれ経由して進角室及び遅角室に対し導入及び導出される油量を調整するようになっている。
 ここで、流量制御弁のスリーブとボルトとの嵌合界面において、熱膨張により生じる隙間からの油漏れ等を抑制するべく、スリーブをボルトよりも熱膨張係数の高い材料により形成することが示されている。
 しかしながら、ボルトと可動部材との嵌合界面における隙間については何ら言及されておらず、仮にボルトを鉄系材料及び可動部材をアルミニウム系材料で形成した場合、両者の熱膨張差等により嵌合界面に隙間を生じる。
 その結果、可動部材の内周面にそれぞれ環状溝として形成された進角油路と遅角油路とが連通して、所望の油路に油を導くことができなくなる虞がある。
 また、可動部材の内周面に設けられた環状溝をなす進角油路及び遅角油路は、一般的には中ぐり盤等を用いて軸線方向及び径方向に送る中ぐり加工を施すことにより形成される。それ故に、上記構成での加工は、単に軸線方向にのみ送り円筒面を形成する中ぐり加工あるいは座ぐり加工に比べて面倒である。
特開2011-256786号公報
 本発明は、上記従来技術の問題点を解消し、部品同士の隙間からの油漏れ防止等を図れるバルブタイミング変更装置を提供することにある。
 本発明のバルブタイミング変更装置は、カムシャフトにより駆動される吸気バルブ又は排気バルブの開閉タイミングを変更するバブルタイミング変更装置であって、カムシャフトの軸線上で回転するハウジングロータと、ハウジングロータと協働して進角室及び遅角室を画定すると共に上記軸線上で回転するベーンロータと、ベーンロータをカムシャフトと一体的に回転させるべく締結すると共に油路を有する締結ボルトと、締結ボルトの外周面に離隔して開口する油路をそれぞれ経由して進角室に連通する進角油路及び遅角室に連通する遅角油路を備え、上記ベーンロータは、締結ボルトよりも大きい熱膨張係数をなす材料により形成されたロータ本体と、少なくとも進角油路と遅角油路とを互いに遮断する領域において、締結ボルトと同等の熱膨張係数をなす材料により形成されカムシャフトと非接触でかつ締結ボルトの外周面と密接するように一体的に組み込まれたロータスリーブを含む、構成となっている。
 上記構成において、ロータスリーブは、ロータ本体に圧入されている、構成を採用してもよい。
 上記構成において、締結ボルトは、ロータスリーブに直接当接して締結されている、構成を採用してもよい。
 上記構成において、ロータ本体は、締結ボルトの外周面に密接する小径内周部と、小径内周部よりも大径に形成された大径内周部を含み、ロータスリーブは、大径内周部に圧入された状態で、小径内周部と協働して進角油路及び遅角油路の一方を画定する環状端面と、締結ボルトの外周面と密接すると共に進角油路及び遅角油路の他方を画定する筒状部と、大径内周部の開口端面に当接すると共に締結ボルトが直接当接して軸線方向に押圧される鍔部を有する、構成を採用してもよい。
 上記構成において、ロータスリーブは、ロータ本体に対して軸線回りの角度位置を位置決めする位置決め部を有する、構成を採用してもよい。
 上記構成において、ベーンロータをハウジングロータに対して軸線回りの一方向に回転付勢する付勢スプリングを含み、ロータスリーブは、その鍔部において、付勢スプリングの一端部を掛止する掛止部を有する、構成を採用してもよい。
 上記構成において、締結ボルト及びロータスリーブは、鉄系材料により形成され、ロータ本体は、アルミニウム系材料により形成されている、構成を採用してもよい。
 上記構成において、締結ボルトには、油の流量を制御する流量制御弁が組み込まれている、構成を採用してもよい。
 上記構成をなすバルブタイミング変更装置によれば、上記従来技術の問題点を解消して、部品同士の隙間からの油漏れ防止等を達成でき、所期の機能を保証し得る。
本発明のバルブタイミング変更装置、カムシャフト及び電磁アクチュエータを示す分解斜視図である。 本発明のバルブタイミング変更装置を示す分解斜視図である。 本発明のバルブタイミング変更装置、カムシャフト及び電磁アクチュエータを示す断面図である。 本発明のバルブタイミング変更装置の一部をなす締結ボルト及び流量制御弁の分解斜視図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示す正面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示す側面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示す背面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示すものであり、図5B中のE1-E1における断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示すものであり、図5B中のE2-E2における断面図である 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示すものであり、図5A中のE3-E3における断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体を示すものであり、図5B中のE4-E4における部分断面図である 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブを示す正面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブを示す側面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブを示す背面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブを示すものであり、図8A中のE5-E5における断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブを示すものであり、図8B中のE6-E6における断面図である。 本発明のバルブタイミング変更装置の一部をなすロック機構を示す断面図である。 本発明のバルブタイミング変更装置の一部をなす流量制御弁と締結ボルトの油路の遅角モードの状態での位置関係を示す断面図である。 本発明のバルブタイミング変更装置の一部をなす流量制御弁と締結ボルトの油路の保持モードの状態での位置関係を示す断面図である。 本発明のバルブタイミング変更装置の一部をなす流量制御弁と締結ボルトの油路の進角モードの状態での位置関係を示す断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータが、最遅角位置にある状態を示す断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータが、最進角位置にある状態を示す断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータが、最遅角位置と最進角位置の間の中間位置にある状態を示す断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブの他の実施形態を示す断面図である。 本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に一体的に組み込まれるロータスリーブのさらに他の実施形態を示す断面図である。
 以下、本発明の実施の形態について、添付図面の図1ないし図14を参照しつつ説明する。
 このバルブタイミング変更装置は、カムシャフトSの軸線L上で回転するハウジングロータ10、カムシャフトSと一体的に回転するベーンロータとしてのロータ本体20及びロータスリーブ30、ベーンロータをカムシャフトSと一体的に回転させるように締結する締結ボルト40、付勢スプリング50、油の流量を制御する流量制御弁60、ベーンロータをハウジングロータ10に対してロックし得るロック機構70を備えている。
 尚、流量制御弁60は、当該装置とは別個に例えばチェーンカバー(不図示)等に取り付けられる電磁アクチュエータAにより駆動制御されるようになっている。
 カムシャフトSは、エンジンのシリンダヘッド(不図示)に形成された軸受(不図示)により軸線L回りに回転可能に支持され、図1に示すように一方向CWに回転して、エンジンの吸気バルブ又は排気バルブをカム作用により開閉駆動するものである。
 カムシャフトSは、その端部領域において、ハウジングロータ10を回動自在に支持する円筒部S1、オイルパン(不図示)から導かれる油を締結ボルト40の油路45に供給する油路S2、締結ボルト40を締結する雌ネジ部S3、位置決めピンPを嵌合させる嵌合穴S4を備えている。
 ハウジングロータ10は、カムシャフトSの軸線L上で回転可能に支持され、チェーン等を介してクランクシャフトの回転に連動し、ベーンロータ(20,30)を介してクランクシャフトの回転駆動力をカムシャフトSに伝達するものである。
 ハウジングロータ10は、略円盤状の第1ハウジング部材11と、第1ハウジング部材11の前面側に結合される有底円筒状の第2ハウジング部材12とからなる二分割構造をなすものである。
 そして、ハウジングロータ10は、ベーンロータを所定角度範囲Δθ(最進角位置θaと最遅角位置θrの間の角度範囲)において相対的に回転可能に収容する収容室Rを画定すると共にロック機構70を収容し、収容されたベーンロータのベーン部21により、収容室Rが進角室10a及び遅角室10bに二分されるようになっている。
 第1ハウジング部材11は、クランクシャフトの回転駆動力を伝達するチェーンが巻回されるスプロケット11a、内周面11b、壁面11c、嵌合穴11d、油路11e、ネジ穴11fを備えている。
 内周面11bは、カムシャフトSの円筒部S1に回動自在に嵌合されるように形成されている。
 壁面11cは、ロータ本体20の背面が摺動自在に接触するように形成されている。
 嵌合穴11dは、ロック機構70に含まれるロックピン71を嵌合させるように形成されている。
 油路11eは、嵌合穴11dに対する油の供給及び排出を行うように形成されている。
 ネジ穴11fは、第2ハウジング部材12を締結するボルトBを捩じ込むように形成されている。
 第2ハウジング部材12は、円筒壁12a及び前壁12bを有する有底円筒状に形成されている。
 また、第2ハウジング部材12は、円筒壁12a及び前壁12bの他に、開口部12c、ボルトBを通す3つの貫通孔12d、3つのシュー部12e、掛止溝部12f、収容凹部12g、環状結合部12hを備えている。
 開口部12cは、締結ボルト40を通すべく、軸線L上に中心をもつように形成されている。
 3つのシュー部12eは、前壁12bの背面側において、円筒壁12aから中心(軸線L)に向かって突出すると共に周方向において等間隔に配置して形成されている。
 掛止溝部12fは、付勢スプリング50の第1端部52を嵌め込んで掛止するべく、開口部12cの一部を切り欠いて形成されている。
 収容凹部12gは、付勢スプリング50のコイル部51を収容するように形成されている。
 環状結合部12hは、第1ハウジング部材11の壁面11cの外周縁領域に、嵌め込んで結合されるように形成されている。
 ベーンロータ(ロータ本体20及びロータスリーブ30)は、ハウジングロータ10と協働して進角室10a及び遅角室10bを画定するべく、ハウジングロータ10の収容室Rに収容されて収容室Rを進角室10a及び遅角室10bに二分すると共に、カムシャフトSと一体的に回転する。
 ロータ本体20は、締結ボルト40よりも熱膨張係数の大きい材料、例えばアルミニウム系材料等の軽金属材料を用いて形成されている。
 また、ロータ本体20は、3つのベーン部21、3つのベーン部21を略等間隔で一体的に保持するハブ部22、小径内周部23、ロータスリーブ30を圧入する大径内周部24、3つの進角油路25、3つの遅角油路26、開口端面27、位置決め部としての位置決め孔28、ロック機構70を嵌め込む凹部29及び凹部29に連通する圧力調整孔29a,29b、ベーン部21の先端に形成された溝部に嵌め込まれるシール部材を備えている。
 小径内周部23は、圧入されるロータスリーブ30の環状端面31と協働して環状溝をなす進角油路23aを画定するように形成され、又、締結ボルト40の外周面41aと密接した状態で組み付けられる内径寸法に形成されている。
 大径内周部24は、小径内周部23よりも大径に形成され、鉄系材料により形成されたロータスリーブ30の筒状部32が圧入された状態において、当該装置が使用される際に受ける温度の変化範囲全域において隙間を生じない内径寸法に形成されている。
 進角油路25は、ハブ部22において放射状に伸長し、進角油路23aと連通するように形成されている。
 遅角油路26は、ハブ部22において放射状に伸長し、大径内周部24と連通するように形成されている。
 開口端面27は、大径内周部24の端部において、座ぐり状に形成されている。
 位置決め孔28は、カムシャフトSに取り付けられた位置決めピンPを嵌合させるように形成されている。
 ロータスリーブ30は、締結ボルト40と同等の熱膨張係数をもつ鉄系材料により形成されて、ロータ本体20に圧入されている。
 また、ロータスリーブ30は、環状端面31、筒状部32、鍔部33、位置決め部としての位置決め孔34、環状をなす遅角油路35、3つの遅角油路36、掛止部37を備えている。
 環状端面31は、ロータ本体20の小径内周部23と協働して進角油路23aを画定するように形成されている。
 筒状部32は、ロータ本体20の大径内周部24に圧入されるように形成されている。
 鍔部33は、大径内周部24の開口端面27にその内側面が当接すると共に、その外側面に締結ボルト40が直接当接して、軸線L方向に押圧されるように形成されている。
 位置決め孔34は、ロータ本体20及びカムシャフトSに対して軸線L回りの角度位置を位置決めする位置決めピンPを嵌合させるように形成されている。
 遅角油路35は、筒状部32の内周面32aに形成されている。
 遅角油路36は、筒状部32において放射状に伸長して貫通し遅角油路35と連通するように形成されている。
 掛止部37は、付勢スプリング50の第2端部53を掛止するべく、鍔部33の一部を切り欠いて形成されている。
 ここで、筒状部32の軸線L方向における長さ寸法は、ロータ本体20の大径内周部24の軸線L方向における長さ寸法より若干短く形成されている。
 また、筒状部32の外径寸法は、遅角油路36が開口する近傍を含む3つの領域が、他の領域よりも外径寸法が大きく形成されている。
 そして、筒状部32は、アルミニウム系材料により形成されたロータ本体20の大径内周部24に圧入された状態で、当該装置が使用される際に受ける温度の変化範囲全域において隙間を生じないように形成されている。
 すなわち、ロータスリーブ30は、ロータ本体20の大径内周部24に対して部分的に圧入されている。
 また、筒状部32の内周面32aは、締結ボルト40の外周面41aと密接した状態で組み付けられる内径寸法に形成されている。
 締結ボルト40は、ベーンロータのロータスリーブ30に直接当接して、軸線L方向の押圧力を及ぼしつつベーンロータ(20,30)をカムシャフトSと一体的に回転させるように締結するものであり、機械的強度の高い鉄系材料により形成されている。
 締結ボルト40は、外周面41aをもつ円筒部41、円筒部41の先端側に位置する雄ネジ部42、鍔付頭部43、挿入部44、油路45、油路46、油路47、環状溝48、位置決め部49を備えている。
 円筒部41の外周面41aは、ロータスリーブ30の筒状部32の内周面32a及びロータ本体20の小径内周部23の内周面に対して、軸線L方向に嵌合可能でありかつ隙間なく密接する外径寸法に形成されている。
 鍔付頭部43は、雄ネジ部42とは反対側において、ロータスリーブ30の鍔部33に直接当接して、鍔部33を軸線L方向に押圧するように形成されている。
 挿入部44は、円筒部41の内部を肉抜きして、流量制御弁60を嵌め込む有底状に形成されている。
 油路45は、円筒部41と雄ネジ部42の接続領域に形成されている。
 油路46は、円筒部41の外周面41aにおいて開口し進角油路23aに連通するように形成されている。
 油路47は、円筒部41の外周面41aにおいて開口し遅角油路35に連通するように形成されている。
 環状溝48は、挿入部44の開口端側において、ワッシャ64及びスナップリング65を嵌め込むように形成されている。
 位置決め部49は、流量制御弁60のスリーブ61を軸線L回りにおいて位置決めするべく、位置決め部61eを受け入れる凹状に形成されている。
 そして、締結ボルト40は、第2ハウジング部材12の開口部12cを通して、ロータ本体20に圧入されたロータスリーブ30の筒状部32及びロータ本体20の小径内周部23に挿入され、雄ネジ部42がカムシャフトSの雌ネジ部S3に捩じ込まれる。
 これにより、締結ボルト40は、ロータスリーブ30に直接当接して軸線L方向に押圧力(締結力)を及ぼし、ベーンロータ(20,30)をカムシャフトSと一体的に回転するように締結する。
 また、この締結状態において、締結ボルト40の外周面41aが、ロータ20本体の環状溝をなす進角油路23aと遅角油路35とを互いに連通しないように遮断するようになっている。
 すなわち、ロータスリーブ30がロータ本体20に圧入され、又、締結ボルト40がロータスリーブ30を介してベーンロータ(20,30)をカムシャフトSと一体的に回転するように締結する。
 これによれば、ベーンロータとしては、締結ボルト40よりも大きい熱膨張係数をなす材料により形成されたロータ本体20と、少なくとも進角油路23aと遅角油路35とを互いに遮断する領域において、締結ボルト40と同等の熱膨張係数をなす材料により形成されカムシャフトSと非接触でかつ締結ボルト40の外周面41aと密接するように一体的に組み込まれたロータスリーブ30を含む構成が得られる。
 また、ロータスリーブ30がロータ本体20に圧入されて一体的に組み込まれるが故に、締結ボルト40の外周面41aにより互いに遮断されて進角室10aに連通する進角油路23a,25及び遅角室10bに連通する遅角油路35,36,26を備えたベーンロータが得られる。
 上記構成をなすロータ本体20及びロータスリーブ30を含むベーンロータ及び締結ボルト40の関係によれば、締結ボルト40及びベーンロータが熱膨張を生じても、締結ボルト40の外周面41aと密接しかつ少なくとも進角油路23aと遅角油路45を互いに遮断する領域において、締結ボルト40と同等の熱膨張係数をなす材料により形成されたロータスリーブ30が一体的に組み込まれているため、締結ボルト40の外周面41aとロータスリーブ30の内周面32aの間に隙間を生じることはない。
 特に、ロータスリーブ30は、カムシャフトSと非接触で締結ボルト40の外周面41aにだけ接触するため、例えばロータスリーブがカムシャフトに嵌合されて接触状態にある場合に懸念される嵌合関係及び組付けバラツキ等の影響を受けることはない。
 それ故に、ロータスリーブ30の内周面32aと締結ボルト40の外周面41aとの確実な接触状態を得ることができる。
 すなわち、進角油路23aと遅角油路45とが、締結ボルト40の外周面41a上における隙間により連通することはなく、油漏れが防止されて所望の油路に油を導くことができる。それ故に、開閉タイミングの変更を高精度に行うことができる。
 また、ロータスリーブ30は、ロータ本体20に圧入により一体的に組み込まれているため、熱変形の範囲において圧入代を常に隙間を生じない嵌め合いの状態にすることで、両者が熱膨張しても隙間を生じることなく、又、圧入作業も容易に行うことができる。
 さらに、締結ボルト40は、同等の熱膨張係数をなすロータスリーブ30に直接当接して締結されているため、熱変形を生じる環境下でも、締結ボルト40とロータスリーブ30との間には熱変形による相対的なずれを生じない。
 したがって、締結ボルト40が熱膨張係数の異なるロータ本体20に直接当接する場合に比べて、締結ボルト40の緩み等を防止でき、それ故に進角油路23aと遅角油路45の間での油漏れ等を防止できる。
 特に、締結ボルト40及びロータスリーブ30を鉄系材料により形成することで、締結ボルト40の強度を確保しつつ、締結ボルト40とロータスリーブ30の間に熱膨張差が生じないようにして隙間の発生を防止することができる。
 また、ロータ本体20をアルミニウム系材料により形成することで、軽量化を達成でき、応答性を高めることができる。
 さらに、ロータスリーブ30及びロータ本体20は、カムシャフトSに対して軸線L回りの角度位置を位置決めする共通の位置決めピンPに対して、ロータスリーブ30の位置決め孔34及びロータ本体20の位置決め孔28を適合させることで、三つの部品を一度に位置決めすることができる。
 それ故に、ロータスリーブ30に設けられた遅角油路36及びロータ本体20に設けられた遅角油路26等の相互の位置ずれを確実に防止することができる。
 また、ロータスリーブ30をロータ本体20に圧入して組み込んだベーンロータによれば、ロータスリーブ30が、環状端面31、筒状部32を含むことにより、ロータスリーブ30の筒状部32がロータ本体20の大径内周部24に圧入されると、環状端面31が小径内周部23と協働して環状溝をなす進角油路23aを画定し、又、圧入されたロータスリーブ30の筒状部32が環状溝をなす遅角油路35を画定する。
 これにより、ロータ本体20に対して環状溝をなす中ぐり加工を施す必要がないため、全体としての加工の手間を減らしつつ、ベーンロータの生産性を高めることができる。
 さらに、ロータスリーブ30が鍔部33を含む構成故に、締結ボルト40を捩じ込んで鍔部33をロータ本体20の開口端面27に向けて軸線L方向に押圧することにより、ロータスリーブ30の圧入を軽圧入としつつ、軸線L方向の押圧力により、ベーンロータ(20,30)をカムシャフトSと一体的に回転するように確実に締結することができる。
 付勢スプリング50は、ベーンロータ(20,30)をハウジングロータ10に対して一方向に回転付勢するものである。
 付勢スプリング50は、コイル部51、第1端部52、及び第2端部53を有する捩りコイル状のスプリングであり、ハウジングロータ10の内部において、ロータ本体20の開口端面27と第2ハウジング部材12の収容凹部12gとの間に配置されている。
 第1端部52は、軸線Lに対して垂直な方向に伸長すると共にコイル部51からコイル部51の径方向外向きに伸長するように形成されている。
 第2端部53は、軸線Lに対して垂直な方向に伸長すると共にコイル部51からコイル部51の中心に向けて伸長するように形成されている。
 そして、コイル部51は、ロータ本体20の開口端面27に当接するように嵌め込まれて収容される。第2端部53は、ロータベース30の掛止部37に嵌め込まれて掛止される。第1端部52は、第2ハウジング部材12の掛止溝部12fに嵌め込まれて掛止される。これにより、付勢スプリング50は、ベーンロータ(20,30)をハウジングロータ10に対して進角方向に回転付勢するようになっている。
 このように、進角方向に付勢する付勢スプリング50を採用することにより、ベーンロータ(20,30)のガタツキを防止できると共に、進角させる際の必要油圧を低減でき、又、応答性を向上させることができる。
 さらに、作動トルクと負荷トルクとの差が、進角時と遅角時とで略同等となるように付勢スプリング50の荷重を設定することにより、制御性を向上させることができる。
 また、付勢スプリング50の第2端部53は、ロータ本体20ではなくロータスリーブ30の鍔部33に設けられた掛止部37に掛止されるため、コイル部51の端面を鍔部33の周りの開口端面27で受けることで、付勢スプリング50の倒れ及びロータ本体20の摩耗等を防止することができる。
 流量制御弁60は、締結ボルト40内に組み込まれて油(作動油)の流量を制御するものである。
 ここで、流量制御弁60は、締結ボルト40の挿入部44に嵌め込まれるスリーブ61、スリーブ61内において軸線L方向に往復動自在に嵌め込まれるスプール62、スプール62をスリーブ61から突出する向きに付勢する付勢スプリング63、スリーブ61の抜け止め及びスプール62の脱落を防止するワッシャ64、ワッシャ64を固定するC型のスナップリング65を備えている。
 スリーブ61は、締結ボルト40よりも熱膨張係数の大きい材料、例えばアルミニウム系材料等を用いて、締結ボルト40の挿入部44に密接して嵌合されるように形成されている。
 ここで、スリーブ61は、油路61a、内周面61b、油路61c,61d、位置決め部61e、受け部61fを備えている。
 油路61aは、締結ボルト40の油路45を経て供給される油を内部に導くべく凹状溝から内部へ連通する貫通孔まで形成されている。
 内周面61bは、スプール62を摺動自在に嵌め込むように形成されている。
 油路61c,61dは、内周面61bから径方向外側に貫通して形成されている。
 位置決め部61eは、締結ボルト40の位置決め部49に嵌め込まれて位置決めされるべく凸状に形成されている。
 受け部61fは、付勢バネ63の一端部を受けるように形成されている。
 スプール62は、例えばアルミニウム系材料等を用いて、有底の略円筒状に形成されている。
 ここで、スプール62は、スリーブ61の内周面61bに密接してそれぞれ摺動する第1弁部62a,第2弁部62b,及び摺動部62c、油路62d、油路62e、縮径部62f、油路62g、油路62h、油路62i、受け部62jを備えている。
 油路62dは、第1弁部62aと第2弁部62bの間において環状溝をなすように形成されている。
 油路62eは、第2弁部62aと摺動部62cの間において環状溝をなすように形成されている。
 縮径部62fは、摺動部62cから端部に向けて縮径して形成されている。
 油路62gは、内部において軸線方向に伸長するように形成されている。
 油路62hは、油路62eにおいて油路62gに連通する貫通孔をなすように形成されている。
 油路62iは、縮径部62fにおいて油路62gに連通する貫通孔をなすように形成されている。
 受け部62jは、付勢バネ63の他端部を受けるように形成されている。
 付勢スプリング63は、圧縮型のコイルスプリングであり、スリーブ61の受け部61fとスプール62の受け部62jの間に配置されて、スプール62をスリーブ61から押し出す方向に付勢力を及ぼすように形成されている。
 流量制御弁60の締結ボルト40への組付けに際しては、先ず、スリーブ61が締結ボルト40の挿入部44に位置決めしつつ嵌め込まれて固定される。ここで、スリーブ61は、その先端側が部分的に挿入部44に軽圧入されて固定される。
 また、この状態において、図11Aないし図11Cに示すように、油路45と油路61aが連通し、油路46と油路61cが連通し、油路47と油路61dが連通する。
 続いて、付勢スプリング63がスリーブ61内に挿入され、その外側からスプール62が挿入され、付勢スプリング63の付勢力に抗してスプール62を押し込みつつ、ワッシャ64及びスナップリング65が締結ボルト40の環状溝48に嵌め込まれる。
 この状態において、スプール62は、図11Aの遅角モードで示すように、付勢スプリング63の付勢力により外側に押し出されつつ摺動部62cの外側端面がワッシャ64に当接して停止した状態となり、第1弁部62aが油路61aと油路61c,46の連通を遮断すると共に進角油路25,23a→油路46→油路61c→油路62g→油路62iを経て進角室10a内の油が外部に排出される状態となる。
 また、第2弁部62bが油路61aと油路61d,47を連通させて、油路45→油路61a→油路62d→油路61d→油路47→遅角油路35,36,26を経て遅角室10b内に油が導入される状態となる。
 図11Bの保持モードで示すように、スプール62が電磁アクチュエータAにより所定量だけ押し込まれると、第1弁部62aが油路61aと油路61c,46の連通を遮断すると共に油路46,61cと油路62gの連通を遮断する。
 また、第2弁部62bが油路61aと油路61d,47の連通を遮断すると共に油路47,61dと油路62h,62gの連通を遮断する。そして、進角室10a及び遅角室10bに対する油の流入及び流出を阻止した状態となる。
 さらに、図11Cの進角モードで示すように、スプール62が電磁アクチュエータAによりさらに所定量だけ押し込まれると、第1弁部62aが油路61aと油路61c,46を連通させて、油路45→油路61a→油路62d→油路61c→油路46→進角油路23a,25を経て進角室10a内に油が導入される状態となる。
 また、第2弁部62bが油路61aと油路61d,47の連通を遮断すると共に遅角油路26,36,35→油路47→油路61d→油路62e→油路62g→油路62iを経て遅角室10b内の油が外部に排出される状態となる。
 このように、流量制御弁60が締結ボルト40に組み込まれる構成であるため、油圧システムとしての集約化、流動媒体としての油の圧力損失等を低減でき、バルブタイミングを変更する際の応答性を高めることができる。
 さらに、流量制御弁60が予め締結ボルト40に組み込まれてモジュール品として取り扱われることで、部品の管理工数等を低減することができる。
 ロック機構70は、ベーンロータ(20,30)をハウジングロータ10に対して所定角度範囲Δθの所定位置(ここでは、最遅角位置θr)にロックすると共に油圧によりロックが解除されるものである。
 ここで、ロック機構70は、ロックピン71、付勢スプリング72、円筒ホルダ73により構成されている。
 ロックピン71は、軸線Lの方向に往復動自在で、かつ、ロータ本体20の後端面から突出し得るように形成されている。
 付勢スプリング72は、ロックピン71を突出する向きに付勢力を及ぼすように形成されている。
 円筒ホルダ73は、付勢スプリング72により付勢されたロックピン71を往復動自在に保持するべく、ロータ本体20の凹部29に嵌め込まれるように形成されている。
 そして、進角油路25及び油路11eを経て供給されロックピン71を押圧する油圧が低下した状態で、ロックピン71が付勢スプリング72により付勢されてハウジングロータ10(第1ハウジング部材11)の嵌合穴11dに嵌合することにより、ベーンロータ(20,30)をハウジングロータ10に対して所定角度範囲Δθ内の所定位置(ここでは、最遅角位置θr)にロックする。
 一方、進角油路25→油路11eを経て導かれる油により、ロックピン71に加わる油圧が上昇すると、ロックピン71がロータ本体20の後端面から没入してロックを解除するようになっている。
 電磁アクチュエータAは、エンジンのチェーンカバー(不図示)等に固定されるものであり、軸線L方向に往復動してスプール62の端部に当接しつつ押し込み力を及ぼすプランジャA1、プランジャA1の周りに配置された励磁用のコイルA2を備えている。
 そして、電磁アクチュエータAにおいては、適宜通電制御されて、プランジャA1の突出量が調整されると、付勢スプリング63の付勢力に抗してスプール62を押し込む量が適宜調整されて、図11Aで示す遅角モード、図11Bで示す保持モード、図11Cで示す進角モードが選択されるようになっている。
 次に、上記バルブタイミング変更装置の動作について、図11Aないし図14を参照しつつ説明する。
 エンジンが停止した状態においては、図12に示すように、進角室10a内の油が排出されて、ベーンロータ(20,30)は付勢スプリング50の付勢力に抗して最遅角位置θrに位置付けられる。
 また、ロック機構70のロックピン71が嵌合穴11dに嵌合して、ベーンロータ(20,30)がハウジングロータ10に対してロックされた状態にある。
 これにより、エンジン始動時には、ベーンロータ(20,30)のバタツキ等を防止しつつ、エンジンを始動させることができる。
 続いて、エンジンの始動により、例えば、図11Cに示すような進角モードが選択されると、油路45→油路61a→油路62d→油路61c→油路46→進角油路23a→進角油路25→油路11eを経て、油がロックピン71の受圧部に供給される。
 そして、ロックピン71がその油圧により押圧されて嵌合穴11dから外れてロック状態が解除され、又、進角室10a内の油圧が上昇して、ベーンロータ(20,30)はハウジングロータ10に対して進角側に回転する。
 エンジンの始動後は、流量制御弁60が適宜切り替えられて、ベーンロータ(20,30)及びカムシャフトSが遅角側へ(遅角モード)又は進角側へ(進角モード)、さらには所定の中間角度位置に保持される(保持モード)ように位相制御が行われる。
 例えば、遅角モードの場合には、図11Aに示すように、スプール62が付勢スプリング63の付勢力により突出した状態とされる。
 そして、進角室10a→進角油路25→進角油路23a→油路46→油路61c→油路62g→油路62iを経て、進角室10a内の油が、外部に例えばチェーンカバー内を通じてオイルパン内に排出される。
 一方、油路45→油路62d→油路61d→油路47→遅角油路35→遅角油路36→遅角油路26を経て、油が遅角室10b内に供給される。
 これにより、ベーンロータ20は、付勢スプリング50の付勢力に抗しつつ油圧により、図13又は図14に示すような状態から図12に示す最遅角位置まで、ハウジングロータ10に対して反時計回りに(遅角側に)回転する。
 一方、進角モードの場合は、図11Cに示すように、スプール62が付勢スプリング63の付勢力に抗して電磁アクチュエータAにより所定量だけ押し込まれた状態とされる。
 そして、遅角室10b→遅角油路26→遅角油路36→遅角油路35→油路47→油路61d→油路62e→油路62g→油路62iを経て、遅角室10b内の油が、外部に例えばチェーンカバー内を通じてオイルパン内に排出される。
 一方、油路45→油路62d→油路61c→油路46→進角油路23a→進角油路25を経て、油が進角室10a内に供給される。
 これにより、ベーンロータ(20,30)は、付勢スプリング50の付勢力に加えて油圧により、図12又は図13に示すような状態から図14に示す最進角位置まで、ハウジングロータ10に対して時計回りに(進角側に)回転する。
 一方、保持モードの場合は、図11Bに示すように、電磁アクチュエータAが適宜制御されてスプール62が所定量だけ押し込まれた状態とされる。
 そして、第1弁部62aが油路61a,62dと油路61c,46の連通を遮断すると共に油路46,61cと油路62gの連通を遮断し、又、第2弁部62bが油路61a,62dと油路61d,47の連通を遮断すると共に油路47,61dと油路62e,62gの連通を遮断し、進角室10a及び遅角室10bに対する油の流入及び流出を阻止した状態となる。
 これにより、ベーンロータ(20,30)は、図13に示すように、最遅角位置θrと最進角位置θaの間の所望の中間位置に保持される。
 以上述べたように、上記構成をなすバルブタイミング変更装置によれば、構造の簡素化、装置の小型化、軽量化、低コスト化、組付け作業の簡素化等を達成しつつ、組付けられた部品同士の熱変形等による隙間からの油漏れを防止して、所期の機能を保証することができる。
 特に、締結ボルト40及びベーンロータが熱膨張を生じても、締結ボルト40の外周面41aと密接しかつ少なくとも進角油路23aと遅角油路35を互いに遮断する領域には、締結ボルト40と同等の熱膨張係数をなす材料により形成されたロータスリーブ30が一体的に組み込まれているため、締結ボルト40の外周面41aとロータスリーブ30の内周面32aの間に隙間を生じることはない。
 特に、ロータスリーブ30は、カムシャフトSと非接触で締結ボルト40の外周面41aにだけ接触するため、例えばロータスリーブがカムシャフトに嵌合されて接触状態にある場合に懸念される嵌合関係及び組付けバラツキ等の影響を受けることはない。
 それ故に、ロータスリーブ30の内周面32aと締結ボルト40の外周面41aとの確実な接触状態を得ることができる。
 すなわち、進角油路23aと遅角油路35とが締結ボルト40の外周面41a上における隙間により連通することはなく、油漏れが防止されて所望の油路に油を導くことができる。それ故に、開閉タイミングの変更を高精度に行うことができる。
 図15は、本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に組み込まれるロータスリーブの他の実施形態を示すものであり、前述の実施形態と同一の構成については同一の符号を付して説明を省略する。
 この実施形態に係るロータベース30´は、環状端面31、筒状部32、鍔部33、位置決め孔34、遅角油路35、3つ遅角油路36、掛止部37、筒状部32の外周面に形成された環状凹部38及び環状逃げ部39を備えている。
 これによれば、ロータスリーブ30´の筒状部32をロータ本体20の大径内周部24に圧入する際に、削り取られて発生した切り屑等を環状凹部38又は環状逃げ部29に留めて捕獲することで、摺動界面等に飛散するのを防止することができる。
 図16は、本発明のバルブタイミング変更装置の一部をなすベーンロータのロータ本体に組み込まれるロータスリーブのさらに他の実施形態を示すものであり、前述の実施形態と同一の構成については同一の符号を付して説明を省略する。
 この実施形態に係るロータベース30´´は、環状端面31、筒状部32、鍔部33、位置決め孔34、遅角油路35、3つ遅角油路36、掛止部37を備えている。
 ここで、筒状部32は、環状溝をなす遅角油路35を協働して画定するように二分割に形成された第1筒状部32´及び第2筒状部32´´により構成されている。
 これによれば、ロータスリーブ30´´の筒状部32を二分割構成として、両者の組付けにより協働して環状溝をなす遅角油路35が画定されるようになっている。
 それ故に、ロータスリーブ30´´においても環状溝をなす中ぐり加工を施す必要がなく、さらに加工の手間を減らして、全体としての生産性を高めることができる。
 上記実施形態においては、ロータスリーブとして、環状溝をなす遅角油路35を画定するロータスリーブ30を示したが、これに限定されるものではない。例えば、ロータ本体が環状溝をなす進角油路と環状溝をなす遅角油路を備える構成において、進角油路と遅角油路の間に埋設された単なる環状のロータスリーブを採用してもよい。
 上記実施形態においては、ロータ本体20が進角油路及び遅角油路の一方として進角油路23aを画定し、ロータスリーブ30が進角油路及び遅角油路の他方として遅角油路35を画定する構成を示したが、これに限定されるものではない。例えば、ロータ本体が進角油路及び遅角油路の一方として遅角油路を画定し、ロータスリーブが進角油路及び遅角油路の他方として進角油路を画定する構成を採用してもよい。
 上記実施形態においては、クランクシャフトの回転力を伝達するスプロケット11aを備えたハウジングロータ10を示したが、これに限定されるものではない。例えば、クランクシャフトの回転駆動力を伝達する手段がその他の構造をなすもの(例えば、歯付きタイミングベルト等)であれば、その構造に合ったもの(歯付きプーリ等)を備えたハウジングロータを採用することができる。
 上記実施形態においては、ロック機構として、ロックピン71、付勢スプリング72、円筒ホルダ73を含むと共に最遅角位置にロックする構成を示したが、これに限定されるものではない。例えば、ベーンロータ(20,30)をハウジングロータ10に対してロックし得る構成であれば、その他のロック機構を採用してもよく、又、ロック位置としては、最遅角位置に限らず、必要に応じてその他の位置であってもよい。
 以上述べたように、本発明のバルブタイミング変更装置は、部品同士の隙間からの油漏れ等を防止して、所期の機能を保証し得るため、自動車等に搭載された内燃式のエンジンに適用できるのは勿論のこと、二輪車等に搭載された小型のエンジン等においても有用である。
S カムシャフト
L 軸線
10 ハウジングロータ
10a 進角室
10b 遅角室
20 ロータ本体(ベーンロータ)
23 小径内周部
23a 進角油路(環状溝)
24 大径内周部
25 進角油路
26 遅角油路
27 開口端面
28 位置決め孔
30,30´,30´´ ロータスリーブ(ベーンロータ)
31 環状端面
32 筒状部
33 鍔部
34 位置決め孔(位置決め部)
35 遅角油路(環状溝)
36 遅角油路
37 掛止部
49 位置決め部
50 付勢スプリング
60 流量制御弁
 

Claims (8)

  1.  カムシャフトにより駆動される吸気バルブ又は排気バルブの開閉タイミングを変更するバブルタイミング変更装置であって、
     カムシャフトの軸線上で回転するハウジングロータと、
     前記ハウジングロータと協働して進角室及び遅角室を画定すると共に前記軸線上で回転するベーンロータと、
     前記ベーンロータをカムシャフトと一体的に回転させるべく締結すると共に油路を有する締結ボルトと、
     前記締結ボルトの外周面に離隔して開口する油路をそれぞれ経由して前記進角室に連通する進角油路及び前記遅角室に連通する遅角油路を備え、
     前記ベーンロータは、前記締結ボルトよりも大きい熱膨張係数をなす材料により形成されたロータ本体と、少なくとも前記進角油路と前記遅角油路とを互いに遮断する領域において、前記締結ボルトと同等の熱膨張係数をなす材料により形成されカムシャフトと非接触でかつ前記締結ボルトの外周面と密接するように一体的に組み込まれたロータスリーブを含む、
    ことを特徴とするバルブタイミング変更装置。
  2.  前記ロータスリーブは、前記ロータ本体に圧入されている、
    ことを特徴とする請求項1に記載のバルブタイミング変更装置。
  3.  前記締結ボルトは、前記ロータスリーブに直接当接して締結されている、
    ことを特徴とする請求項1又は2に記載のバルブタイミング変更装置。
  4.  前記ロータ本体は、前記締結ボルトの外周面に密接する小径内周部と、前記小径内周部よりも大径に形成された大径内周部を含み、
     前記ロータスリーブは、前記大径内周部に圧入された状態で、前記小径内周部と協働して前記進角油路及び遅角油路の一方を画定する環状端面と、前記締結ボルトの外周面と密接すると共に前記進角油路及び遅角油路の他方を画定する筒状部と、前記大径内周部の開口端面に当接すると共に前記締結ボルトが直接当接して前記軸線方向に押圧される鍔部を有する、
    ことを特徴とする請求項2又は3に記載のバルブタイミング変更装置。
  5.  前記ロータスリーブは、前記ロータ本体に対して前記軸線回りの角度位置を位置決めする位置決め部を有する、
    ことを特徴とする請求項2ないし4いずれか一つに記載のバルブタイミング変更装置。
  6.  前記ベーンロータを前記ハウジングロータに対して前記軸線回りの一方向に回転付勢する付勢スプリングを含み、
     前記ロータスリーブは、前記鍔部において、前記付勢スプリングの一端部を掛止する掛止部を有する、
    ことを特徴とする請求項3又は4に記載のバルブタイミング変更装置。
  7.  前記締結ボルト及びロータスリーブは、鉄系材料により形成され、
     前記ロータ本体は、アルミニウム系材料により形成されている、
    ことを特徴とする請求項1ないし6いずれか一つに記載のバルブタイミング変更装置。
  8.  前記締結ボルトには、油の流量を制御する流量制御弁が組み込まれている、
    ことを特徴とする請求項1ないし7いずれか一つに記載のバルブタイミング変更装置。
PCT/JP2016/088624 2015-12-28 2016-12-26 バルブタイミング変更装置 WO2017115738A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/060,027 US10533462B2 (en) 2015-12-28 2016-12-26 Valve timing change device
CN201680070338.1A CN108474274B (zh) 2015-12-28 2016-12-26 阀定时变更装置
EP16881713.8A EP3399162B1 (en) 2015-12-28 2016-12-26 Valve timing change device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-255746 2015-12-28
JP2015255746A JP6721334B2 (ja) 2015-12-28 2015-12-28 バルブタイミング変更装置

Publications (1)

Publication Number Publication Date
WO2017115738A1 true WO2017115738A1 (ja) 2017-07-06

Family

ID=59225163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088624 WO2017115738A1 (ja) 2015-12-28 2016-12-26 バルブタイミング変更装置

Country Status (5)

Country Link
US (1) US10533462B2 (ja)
EP (1) EP3399162B1 (ja)
JP (1) JP6721334B2 (ja)
CN (1) CN108474274B (ja)
WO (1) WO2017115738A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6767293B2 (ja) 2017-03-23 2020-10-14 株式会社ニフコ フィルター装置
JP2019039542A (ja) * 2017-08-29 2019-03-14 日本電産トーソク株式会社 油圧制御装置
JP7226001B2 (ja) * 2019-03-25 2023-02-21 株式会社デンソー 作動油制御弁およびバルブタイミング調整装置
US11131221B1 (en) * 2020-08-19 2021-09-28 Schaeffler Technologies AG & Co. KG Central valve for camshaft phaser
WO2023042527A1 (ja) * 2021-09-14 2023-03-23 日立Astemo株式会社 内燃機関のバルブタイミング制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080149056A1 (en) * 2005-07-22 2008-06-26 Lutz Grunow Camshaft adjuster control valve arrangement
JP2011140929A (ja) * 2010-01-08 2011-07-21 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2012057578A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd 弁開閉時期制御装置
CN103573319A (zh) * 2012-07-24 2014-02-12 斯瓦本冶炼厂汽车股份有限公司 带有密封套的凸轮轴相位调节器
JP2015161232A (ja) * 2014-02-27 2015-09-07 アイシン精機株式会社 弁開閉時期制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182326B2 (ja) 2010-06-09 2013-04-17 トヨタ自動車株式会社 流量制御弁
JP5615114B2 (ja) * 2010-09-22 2014-10-29 株式会社ミクニ バルブタイミング変更装置
US8662039B2 (en) * 2011-03-16 2014-03-04 Delphi Technologies, Inc. Camshaft phaser with coaxial control valves
US8534246B2 (en) * 2011-04-08 2013-09-17 Delphi Technologies, Inc. Camshaft phaser with independent phasing and lock pin control
JP5447543B2 (ja) 2012-01-26 2014-03-19 株式会社デンソー バルブタイミング調整装置、およびその組付方法
DE102012209534A1 (de) 2012-06-06 2013-12-12 Schaeffler Technologies AG & Co. KG Steuerventil mit einer Zentralschraube
JP6091115B2 (ja) * 2012-09-07 2017-03-08 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置及びその製造方法
JP5978080B2 (ja) * 2012-09-19 2016-08-24 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置及び該バルブタイミング制御装置のコントローラ
DE102012112059A1 (de) 2012-12-11 2014-06-26 Hilite Germany Gmbh Schwenkmotorversteller
JP6063267B2 (ja) * 2013-01-18 2017-01-18 株式会社ミクニ バルブタイミング変更装置及びその組付け方法
JP2015045282A (ja) * 2013-08-28 2015-03-12 アイシン精機株式会社 弁開閉時期制御装置
JP6225750B2 (ja) * 2014-02-27 2017-11-08 アイシン精機株式会社 弁開閉時期制御装置
JP6128025B2 (ja) 2014-03-17 2017-05-17 株式会社デンソー バルブタイミング調整装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080149056A1 (en) * 2005-07-22 2008-06-26 Lutz Grunow Camshaft adjuster control valve arrangement
JP2011140929A (ja) * 2010-01-08 2011-07-21 Aisin Seiki Co Ltd 弁開閉時期制御装置
JP2012057578A (ja) * 2010-09-10 2012-03-22 Aisin Seiki Co Ltd 弁開閉時期制御装置
CN103573319A (zh) * 2012-07-24 2014-02-12 斯瓦本冶炼厂汽车股份有限公司 带有密封套的凸轮轴相位调节器
JP2015161232A (ja) * 2014-02-27 2015-09-07 アイシン精機株式会社 弁開閉時期制御装置

Also Published As

Publication number Publication date
US20180363512A1 (en) 2018-12-20
EP3399162A4 (en) 2019-08-07
CN108474274A (zh) 2018-08-31
CN108474274B (zh) 2020-09-22
EP3399162B1 (en) 2020-11-18
EP3399162A1 (en) 2018-11-07
JP6721334B2 (ja) 2020-07-15
JP2017120030A (ja) 2017-07-06
US10533462B2 (en) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2017115738A1 (ja) バルブタイミング変更装置
US7421989B2 (en) Vane-type cam phaser having increased rotational authority, intermediate position locking, and dedicated oil supply
JP5585832B2 (ja) 弁開閉時期制御装置
JP5500350B2 (ja) 弁開閉時期制御装置
US20070062474A1 (en) Locking pin mechanism for a vane-type cam phaser
EP2947286B1 (en) Variable valve timing device and method of assembling same
JP2009185766A (ja) バルブタイミング調整装置
JP6292083B2 (ja) 弁開閉時期制御装置
CN113614430B (zh) 工作油控制阀和阀正时调整装置
WO2021106890A1 (ja) バルブタイミング調整装置
WO2021106893A1 (ja) バルブタイミング調整装置
JP2005325758A (ja) バルブタイミング調整装置
WO2016068178A1 (ja) 弁開閉時期制御装置
WO2021106892A1 (ja) バルブタイミング調整装置
WO2017115739A1 (ja) バルブタイミング変更装置
JP2010065593A (ja) 弁開閉時期制御装置
JP5057232B2 (ja) バルブタイミング調整装置、および、その製造方法
JP4389259B2 (ja) バルブタイミング調整装置
JP2009180148A (ja) バルブタイミング調整装置
JP5179406B2 (ja) 内燃機関のバルブタイミング制御装置
JP6273801B2 (ja) 弁開閉時期制御装置
JP2009185762A (ja) バルブタイミング調整装置
JP2004300930A (ja) バルブタイミング調整装置
JP5960395B2 (ja) 電磁油圧制御弁
JP2017089518A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881713

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881713

Country of ref document: EP

Effective date: 20180730