WO2016068178A1 - 弁開閉時期制御装置 - Google Patents

弁開閉時期制御装置 Download PDF

Info

Publication number
WO2016068178A1
WO2016068178A1 PCT/JP2015/080360 JP2015080360W WO2016068178A1 WO 2016068178 A1 WO2016068178 A1 WO 2016068178A1 JP 2015080360 W JP2015080360 W JP 2015080360W WO 2016068178 A1 WO2016068178 A1 WO 2016068178A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
channel
bolt
working fluid
timing control
Prior art date
Application number
PCT/JP2015/080360
Other languages
English (en)
French (fr)
Inventor
山川芳明
小林昌樹
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to US15/501,954 priority Critical patent/US10337363B2/en
Priority to EP15855542.5A priority patent/EP3214279B1/en
Priority to CN201580046022.4A priority patent/CN106661972B/zh
Publication of WO2016068178A1 publication Critical patent/WO2016068178A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34463Locking position intermediate between most retarded and most advanced positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis

Definitions

  • the present invention relates to a valve opening / closing timing control device that controls a relative rotation phase of a driven side rotating body with respect to a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine.
  • valve opening / closing timing control device in which the relative rotational phase is constrained to an intermediate lock phase between the most advanced angle phase and the most retarded angle phase in order to improve engine startability (see, for example, Patent Document 1). ).
  • a driven rotating body is fixed to a camshaft of an internal combustion engine with a bolt, and a spool is arranged inside the bolt to constitute an electromagnetic valve.
  • the spool in which a plurality of annular grooves are formed moves in the axial direction of the drive side rotating body, whereby the working fluid is supplied to the intermediate lock mechanism via the lock flow path.
  • the lock channel is connected to a supply channel that circulates the working fluid supplied from the pump to the inside of the driven rotor along the axial direction, and a first channel that circulates the working fluid toward the spool, the spool, And a second flow path for allowing the working fluid to flow between the intermediate lock mechanism.
  • the first flow path and the second flow path are formed so as to penetrate along the radial direction of the bolt and are arranged at different positions with respect to the axial direction.
  • the first flow path and the second flow path are communicated with each other via the annular groove of the spool.
  • valve timing control device since the valve timing control device is connected to the end of the camshaft of the internal combustion engine, it is desired to reduce the dimension in the axial direction in order to make the internal combustion engine more compact.
  • the valve opening / closing timing control device disclosed in Patent Document 1 the first flow path for supplying the working fluid is arranged with respect to the second flow path for flowing the working fluid between the spool and the intermediate lock mechanism. They are provided at different positions. For this reason, the dimension of the axial direction of the apparatus becomes large, and there is room for improvement.
  • a characteristic configuration of the valve opening / closing timing control device includes: a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine; and a valve opening / closing of the internal combustion engine that is disposed coaxially with an axis of the driving side rotating body.
  • a driven-side rotating body that rotates integrally with the camshaft while being fixed to the camshaft with a bolt, a fluid pressure chamber that is defined between the driving-side rotating body and the driven-side rotating body, and operation A locked state in which the relative rotational phase of the driven rotor with respect to the driving rotor is constrained to an intermediate lock phase between the most advanced phase and the most retarded phase by supplying and discharging fluid;
  • An intermediate lock mechanism that is selectively switched between the unlocked state and the unlocked state; a lock passage that circulates a working fluid to the intermediate lock mechanism; and a spool that is disposed inside the bolt;
  • Pressure chamber and An electromagnetic valve that controls supply and discharge of the working fluid to and from the intermediate lock mechanism, and the lock flow path supplies the working fluid supplied from the pump along the axial direction inside the bolt.
  • a first passage that is arranged in a radial direction between the passage and the spool and connected to the supply passage; and is formed to penetrate in the radial direction inside the bolt; between the spool and the intermediate lock mechanism And at least a part of the first channel and at least a part of the second channel are located in the same plane perpendicular to the axis. In the point.
  • the driven side rotating body is fixed to the camshaft by screwing the bolt, so that the lock channel formed on the driven side rotating body and the lock channel formed on the bolt are connected. Positioning is difficult. For this reason, generally, an annular groove is formed at the boundary between the driven-side rotator and the bolt.
  • Patent Document 1 when the supply flow path is formed inside the driven-side rotating body along the axial direction, the working fluid is circulated toward the spool between the first flow path, the spool, and the intermediate lock mechanism. It is necessary to arrange the first flow path and the second flow path at different positions with respect to the axial direction so that the second flow path through which the working fluid flows is not joined by the annular groove.
  • the supply flow path through which the working fluid supplied from the pump flows is formed inside the bolt along the axial direction. That is, since the supply flow path is configured not to communicate with the annular groove at the boundary between the driven rotor and the bolt, at least a part of the first flow path disposed between the supply flow path and the spool, the spool, A configuration in which at least a part of the second flow path for allowing the working fluid to flow between the intermediate lock mechanism and the intermediate lock mechanism is provided in the same plane orthogonal to the shaft core can be employed. Therefore, the axial length of the device can be shortened and the device can be made compact.
  • the bolt in another characteristic configuration, includes a first member that is screwed to the camshaft, and a second member that is disposed along an outer surface of the first member. A partition is formed between the first member and the second member, and the first flow path is partitioned in the first member.
  • the supply channel can be formed on the mating surface of each member, for example, as compared with the case where the channel is formed by configuring the bolt with one member, and thus processing is easy. .
  • Another characteristic configuration is that the second member is press-fitted into the first member along the axial direction.
  • the second member is press-fitted into the first member as in this configuration, the two members are firmly coupled to each other, and the positional deviation between the two members accompanying the rotation of the driven side rotating body can be prevented.
  • At least an end portion of the second member opposite to the cam shaft in the axial direction is press-fitted with respect to the first member, and the first channel and the second channel are The camshaft is disposed on the opposite side in the axial direction from the flow path for supplying and discharging the working fluid to and from the fluid pressure chamber.
  • the intermediate lock mechanism is generally configured by engaging and disengaging the lock member with the lock recess, and foreign matter is likely to stay in the engaging portion of both members and the movable region of the lock member. As a result, the control accuracy of the intermediate lock mechanism is reduced.
  • the two members when the two members are configured by press-fitting the bolts together, the two members may come into sliding contact with each other during the press-fitting to generate foreign matter (shaving powder), and the foreign matter may enter the intermediate lock mechanism and stay there. is there.
  • the lock channel is arranged on the opposite side of the camshaft in the axial direction from the channel for supplying and discharging the working fluid to and from the fluid pressure chamber, so that the sliding of both members constituting the bolt is performed. Foreign matter generated by contact is discharged to the near side (camshaft side) in the press-fitting direction. As a result, entry of foreign matter into the intermediate lock mechanism is suppressed, and the controllability of the intermediate lock mechanism is not deteriorated.
  • Another feature of the second member is that the second member is press-fitted into the first member only in a portion opposite to the camshaft in the axial direction from the flow path for supplying and discharging the working fluid to and from the fluid pressure chamber. There is in point.
  • the generation of foreign matter can be suppressed by reducing the range of the press-fitting site.
  • the valve timing control device when the valve timing control device is in the relative rotation phase holding mode that shuts off the supply and discharge of the fluid pressure chamber, the working fluid leaks from the fluid pressure chamber to the outside through a minute gap between each component. easy. In this case, the relative rotational phase may flutter and cannot be appropriately maintained.
  • the first member and the second member where the flow path for supplying and discharging the fluid pressure chamber is located are not press-fitted, a minute gap is formed between the two members. As a result, the working fluid present in the supply flow path can enter the fluid pressure chamber through the gap. Therefore, the shortage of the working fluid in the fluid pressure chamber can be compensated and the flutter of the relative rotation phase can be suppressed.
  • Another characteristic configuration is that a fixing member that prevents movement of the second member with respect to the circumferential direction of the first member is provided across the first member and the second member.
  • the second member is prevented from being displaced by the fixing member with respect to the circumferential direction of the first member due to the rotation of the driven-side rotating body, the second member is first fitted by an intermediate fit or a loose fit. It can be attached to a member. Therefore, compared with the case where both members are press-fitted, generation of shavings accompanying sliding contact between both members can be suppressed.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a figure showing the distribution
  • It is an expanded sectional view showing the operation state of OCV in W1 of FIG. It is an expanded sectional view showing the operation state of OCV in W2 of FIG. It is an expanded sectional view showing the operation state of OCV in W3 of FIG. It is an expanded sectional view showing the operation state of OCV in W4 of FIG.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is a disassembled perspective view which shows the press fit state of a volt
  • valve timing control apparatus According to the present invention, an embodiment of a valve timing control apparatus according to the present invention will be described based on the drawings.
  • the first embodiment will be described as an example in which the valve opening / closing timing control device 10 is applied to the intake valve 103 side in an internal combustion engine (hereinafter referred to as “engine E”).
  • engine E an internal combustion engine
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.
  • the valve opening / closing timing control device 10 includes a housing 1 (an example of a drive side rotating body) that rotates synchronously with a crankshaft C of an engine E, and a shaft X that is coaxial with the axis X of the housing 1 inside the housing 1.
  • An internal rotor 2 (an example of a driven rotor) that is disposed above and rotates integrally with the camshaft 101 while being fixed to the camshaft 101 for opening and closing the valve of the engine E with a bolt B is provided.
  • the camshaft 101 is a rotating shaft of the cam 104 that controls opening and closing of the intake valve 103 of the engine E, and rotates in synchronization with the internal rotor 2 and the bolt B.
  • a male screw 5b is formed at the end of the bolt B on the side close to the camshaft 101.
  • the bolt B is inserted into the center, and the male screw 5b of the bolt B and the female screw 101a of the camshaft 101 are screwed together.
  • the bolt B is fixed to the camshaft 101, and the internal rotor 2 and the camshaft 101 are also fixed.
  • the bolt B includes a first member 5 screwed to the camshaft 101 and a cylindrical second member 6 arranged along the outer surface of the first member 5. Composed. In the present embodiment, the entire area along the circumferential direction of the inner surface of the second member 6 and the axial center X direction is press-fitted into the outer surface of the first member 5.
  • the second member 6 is inserted into the first member 5 from the male screw 5 b side of the first member 5 and press-fitted along the outer surface of the first member 5.
  • a convex portion is formed along the axis X direction between the first flow channel 5 g and the second flow channel 45 a of the lock flow channel 45 described later. May be press-fitted while being aligned with a groove formed along the axis X direction of the second member 6.
  • the groove portion may be formed on the first member 5 and the convex portion may be formed on the second member 6.
  • the second member 6 Since the second member 6 is press-fitted into the first member 5, both the members 5 and 6 are firmly fixed, and the positional deviation between the both members 5 and 6 accompanying the rotation of the internal rotor 2 can be prevented.
  • the entire area along the axis X direction of the inner surface of the second member 6 is press-fitted into the first member 5, but it extends along the axis X direction of the inner surface of the second member 6. A part may be press-fitted into the first member 5.
  • the housing 1 has a front plate 11 disposed on the side opposite to the side to which the camshaft 101 is connected, an external rotor 12 externally mounted on the internal rotor 2, and a timing sprocket 15.
  • the rear plate 13 disposed on the side to which the camshaft 101 is connected is assembled by the fastening bolts 16.
  • a fluid pressure chamber 4 defined between the inner rotor 2 and the outer rotor 12 is formed.
  • the inner rotor 2 and the outer rotor 12 are configured to be relatively rotatable about the axis X.
  • a return spring 70 is provided between the housing 1 and the camshaft 101 for applying an urging force in the rotation direction about the axis X.
  • the return spring 70 is attached until the relative rotational phase of the inner rotor 2 with respect to the housing 1 (hereinafter also simply referred to as “relative rotational phase”) reaches the predetermined relative rotational phase on the advance side from the most retarded state. Apply power.
  • the return spring 70 may be disposed between the housing 1 and the internal rotor 2.
  • the crankshaft C When the crankshaft C is rotationally driven, the rotational driving force is transmitted to the timing sprocket 15 via the power transmission member 102, and the housing 1 is rotationally driven in the rotational direction S shown in FIG.
  • the housing 1 As the housing 1 is driven to rotate, the internal rotor 2 is driven to rotate in the rotational direction S, the camshaft 101 rotates, and the cam 104 provided on the camshaft 101 pushes down the intake valve 103 of the engine E to open it.
  • three protrusions 14 that protrude radially inward are formed on the outer rotor 12 so as to be spaced apart from each other along the rotational direction S, so that the space between the inner rotor 2 and the outer rotor 12 is increased.
  • a fluid pressure chamber 4 is formed.
  • a protruding portion 21 that contacts the inner peripheral surface of the outer rotor 12 is formed in a portion of the outer peripheral surface of the inner rotor 2 facing the fluid pressure chamber 4.
  • the fluid pressure chamber 4 is divided into an advance chamber 41 and a retard chamber 42 by the protrusion 21.
  • the fluid pressure chamber 4 is configured to have three locations, but is not limited thereto.
  • Oil (an example of a working fluid) is supplied to and discharged from the advance chamber 41 and the retard chamber 42, or the supply / discharge thereof is shut off, thereby changing the relative rotational phase in the advance direction or the retard direction. Alternatively, it is held at an arbitrary phase.
  • the advance direction is a direction in which the volume of the advance chamber 41 is increased, and is a direction indicated by an arrow S1 in FIG.
  • the retardation direction is a direction in which the volume of the retardation chamber 42 is increased, and is a direction indicated by an arrow S2 in FIG.
  • the relative rotational phase in a state where the protruding portion 21 has reached the moving end in the advance direction S1 or in the vicinity thereof is referred to as the most advanced angle phase, and the protruding portion 21 has reached the moving end in the retard direction S2 or in the vicinity thereof. Is referred to as the most retarded phase.
  • the internal rotor 2 has an advance channel 43 communicating with the advance chamber 41, a retard channel 44 communicating with the retard chamber 42, and an intermediate lock mechanism 8 described later.
  • a lock passage 45 through which oil flows and a lock discharge passage 46 through which oil discharged from the intermediate lock mechanism 8 flows are formed.
  • oil stored in the oil pan 7 of the engine E is supplied to and discharged from the advance chamber 41, the retard chamber 42, and the intermediate lock mechanism 8.
  • the valve opening / closing timing control device 10 in this embodiment includes an intermediate lock mechanism 8 that restricts the relative rotation phase to an intermediate lock phase L that is between the most advanced angle phase and the most retarded angle phase. Stable rotation of the engine E can be realized by restricting the relative rotation phase to the intermediate lock phase L in a situation where the hydraulic pressure immediately after engine startup is not stable.
  • the intermediate lock mechanism 8 includes a first lock member 81, a first spring 82, a second lock member 83, a second spring 84, a first recess 85, and a second recess 86. Composed.
  • the lock members 81 and 83 are plate-like members, and are supported movably with respect to the external rotor 12 so as to be able to approach and separate in the direction of the internal rotor 2 in a posture parallel to the axis X.
  • the lock members 81 and 83 may be configured to approach and separate from the front plate 11 or the rear plate 13 in a posture perpendicular to the axis X.
  • middle lock mechanism 8 is not limited to two, You may provide one or three or more.
  • the recesses 85 and 86 are formed by continuously forming shallow grooves and deep grooves in the circumferential direction.
  • the first lock member 81 is moved in the advance direction S1 of the deep groove of the first recess 85 by the biasing force of the first spring 82. Abutting on the end portion restricts the change of the internal rotor 2 in the retarding direction S2.
  • the second locking member 83 abuts against the end portion of the deep groove of the second recess 86 in the retarding direction S2 by the urging force of the second spring 84, thereby restricting the change of the internal rotor 2 in the advancement direction S1. . This is the locked state.
  • the lock channel 45 is connected to the bottom surface of each of the deep groove of the first recess 85 and the deep groove of the second recess 86.
  • the lock discharge channel 46 is also connected to the bottom surfaces of the deep grooves of the recesses 85 and 86, respectively.
  • the lock discharge channel 46 is not a channel for supplying oil to the intermediate lock mechanism 8 but a channel for discharging oil to the outside.
  • an OCV 51 (oil control valve: an example of an electromagnetic valve) is disposed inside a bolt B and coaxially with the shaft core X.
  • the OCV 51 includes a spool 52, a first spring 53 a that biases the spool 52, and an electromagnetic solenoid 54 that drives the spool 52.
  • the electromagnetic solenoid 54 is a known technique and will not be described in detail.
  • the spool 52 is accommodated in the accommodating space 5a which is a hole having a circular cross section formed inside the bolt B, and can slide along the axis X in the accommodating space 5a.
  • the spool 52 has a main discharge channel 52b which is a bottomed hole having a circular cross section along the direction of the axis X.
  • the OCV 51 is configured such that the position of the spool 52 can be adjusted by changing the amount of power supplied to the electromagnetic solenoid 54 from 0 to the maximum.
  • the amount of power supplied to the electromagnetic solenoid 54 is controlled by an ECU (electronic control unit) (not shown).
  • the OCV 51 switches the supply, discharge, and holding of oil to the advance chamber 41 and the retard chamber 42 according to the position of the spool 52, and switches the supply and discharge of oil to the intermediate lock mechanism 8.
  • the oil stored in the oil pan 7 is pumped up by a mechanical pump P that is driven by transmission of the rotational driving force of the crankshaft C.
  • the supply channel 61 formed in a concave shape along the direction of the axis X is circulated on the inner surface of the second member 6 which is the inside of the bolt B.
  • the oil flowing through the supply flow path 61 is supplied to the advance flow path 43, the retard flow path 44, and the lock flow path 45.
  • the oil supplied from the pump P is a first through passage 47 a formed in the camshaft 101, and a first annular passage that is a space between the camshaft 101 and the bolt B.
  • the second through passage 47c is provided with a check valve 48, and this check valve 48 is urged by a second spring 53b in a direction to close the second through passage 47c.
  • the spool 52 includes a first annular groove 52 c that supplies oil flowing through the supply passage 61 to the lock passage 45 and a second annular groove 52 d that supplies the advance passage 43 or the retard passage 44. Is formed. Further, the spool 52 has a first through passage 52e that discharges oil flowing through the advance passage 43 to the main discharge passage 52b, and main oil that flows through the retard passage 44 or the lock discharge passage 46. A second through passage 52f that discharges to the flow path 52b is formed. Furthermore, a third through passage 52g is formed for discharging oil flowing through the main discharge passage 52b to the outside of the valve opening / closing timing control device 10.
  • the advance channel 43 connected to the advance chamber 41 is connected to the first through passage 43a formed in the radial direction of the first member 5 and the second member 6 of the bolt B and the first through passage 43a. And a second through passage 43 b formed in the rotor 2.
  • the retarding flow path 44 connected to the retarding chamber 42 includes a first through path 44a formed in a radial direction of the first member 5 and the second member 6 of the bolt B, and a first through path 44a. And a second through passage 44 b formed in the inner rotor 2.
  • the first through passages 43 a and 44 a are formed with annular grooves at the boundary with the internal rotor 2.
  • the advance channel 43 and the retard channel 44 are formed through the radial direction of the first member 5 of the bolt B, and have a common supply through channel 5 f connected to the supply channel 61. .
  • the lock channel 45 connected to the intermediate lock mechanism 8 is disposed in the radial direction between the supply channel 61 and the spool 52, and has a first channel 5 g connected to the supply channel 61.
  • the first flow path 5g is partitioned in the first member 5 of the bolt B.
  • the lock flow path 45 includes a second flow path 45a formed through the radial direction of the first member 5 and the second member 6 of the bolt B, and a second flow path 45a connected to the second flow path 45a. And three flow paths 45b.
  • the first flow path 5g allows oil flowing from the supply flow path 61 to flow toward the spool 52
  • the second flow path 45a serves as a path for flowing oil between the spool 52 and the intermediate lock mechanism 8. ing.
  • An annular groove is formed in the boundary with the internal rotor 2 in the second flow path 45a.
  • the lock discharge passage 46 connected to the intermediate lock mechanism 8 is connected to the first through passage 46a formed in the radial direction of the first member 5 and the second member 6 of the bolt B and the first through passage 46a.
  • the second through passage 46 b is formed in the rotor 2.
  • an annular groove is formed at the boundary with the internal rotor 2.
  • the lock channel 45 has a plurality of first channels 5g and second channels 45a arranged alternately at equal intervals in the circumferential direction. That is, at least a part of the first flow path 5g and at least a part of the second flow path 45a are located in the same plane orthogonal to the axis X.
  • the first flow line 5g passes through the first imaginary line extending along the direction perpendicular to the axis X direction and the second flow path 45a, and extends along the direction perpendicular to the axis X direction.
  • the two imaginary lines overlap in a direction perpendicular to the direction of the axis X.
  • the axial length of the valve opening / closing timing control device 10 can be shortened as compared with the case where the first flow path 5g and the second flow path 45a are arranged at different positions in the axis X direction.
  • the fact that at least a part of the first flow path 5g and at least a part of the second flow path 45a are located in the same plane orthogonal to the axis X means that the center of the first flow path 5g and the second flow path This is a concept including not only the case where the center of the path 45a is located in the same plane but also the case where the first flow path 5g and the second flow path 45a are slightly shifted in the direction of the axis X.
  • first flow paths 5g and second flow paths 45a to secure the flow area, oil can be discharged and supplied from the intermediate lock mechanism 8 quickly.
  • first flow paths 5g and the second flow paths 45a having different path lengths are alternately arranged at equal intervals in the same plane, the rotational balance of the internal rotor 2 can be stabilized.
  • FIG. 3 shows the operation configuration of the OCV 51 when the position of the spool 52 changes from W1 to W5 in accordance with the amount of power supplied to the electromagnetic solenoid 54.
  • the spool 52 abuts against the stopper 55 by the urging force of the first spring 53a and is located on the leftmost side (W1 in FIG. 3).
  • the supplied oil flows in the order of the first through passage 47a, the first annular passage 47b, and the second through passage 47c, and when the hydraulic pressure exceeds the urging force of the second spring 53b, the check valve 48 Opens.
  • the oil flows in the order of the third through passage 47d and the supply passage 61, and reaches the supply through passage 5f of the advance passage 43 and the retard passage 44, and the first passage 5g of the lock passage 45. .
  • the second annular groove 52 d communicates with the advance passage 43, oil is supplied to the advance chamber 41.
  • the retarding channel 44 is in communication with the second through passage 52f, so that the oil in the retarding chamber 42 is in a drain state.
  • the lock channel 45 does not communicate with the first annular groove 52c and the first through channel 52e, and the lock discharge channel 46 communicates with the accommodating space 5a, the oil in the intermediate lock mechanism 8 is in a drain state. Become. Therefore, the intermediate lock mechanism 8 is in a locked state.
  • the lock channel 45 has a back side (cam) in a direction in which the second member 6 is press-fitted into the first member 5 (hereinafter simply referred to as a press-fitting direction Y).
  • the shaft 101 is disposed on the opposite side in the axis X direction. That is, the lock channel 45 is arranged on the far side in the press-fitting direction Y with respect to the advance channel 43 and the retard channel 44. For this reason, the foreign material (shaving powder) generated by the sliding contact between the two members 5 and 6 when the second member 6 is press-fitted into the first member 5 is released to the near side in the press-fitting direction Y.
  • the inflow of foreign matter to the intermediate lock mechanism 8 can be reduced, the probability of erroneous locking (unlock failure) due to the retention of foreign matter can be reduced.
  • the foreign matter released to the near side in the press-fitting direction Y may flow into the fluid pressure chamber 4, but the fluid pressure chamber 4 is frequently supplied and discharged with oil and has a relatively large chamber area. The foreign matter is quickly discharged to the outside and the phase control response is not deteriorated.
  • a pin 63 (an example of a fixing member) that prevents movement of the second member 6 with respect to the circumferential direction of the first member 5 is connected to the first member 5 and the second member 6. A plurality are provided in the radial direction.
  • the pin 63 also has a function of preventing the movement of the second member 6 with respect to the direction of the axis X of the first member 5.
  • the pins 63 are formed between the supply flow paths 61 when viewed in the direction of the axis X so as not to interfere with the flow path formed in the bolt B.
  • the position of the pin 63 in the axis X direction may be a position between the lock channel 45 and the advance channel 43, or a position between the advance channel 43 and the retard channel 44. There is no particular limitation. Further, one pin may be provided without providing a plurality of pins 63.
  • the positional deviation between the first member 5 and the second member 6 accompanying the rotation of the internal rotor 2 can be prevented by the pin 63.
  • the positioning of the second member 6 with respect to the circumferential direction of the first member 5 can be easily performed because the hole positions formed in the first member 5 and the second member 6 can be aligned in order to insert the pin 63. It is.
  • the second member 6 since the relative rotation between the first member 5 and the second member 6 is prevented by the pin 63, the second member 6 may be attached to the first member 5 by an intermediate fit or a loose fit. In comparison, it is possible to prevent the generation of foreign matter due to the sliding contact between the members 5 and 6.
  • both the members 5 and 6 can be set to dimensions and shapes in which foreign matters are not easily generated during press-fitting, and the first member 5 expands from the second member 6 due to the temperature rise accompanying the operation of the engine E.
  • the degree of fitting of the members 5 and 6 can be increased.
  • the plurality of first flow paths 5g and the second flow paths 45a are alternately arranged at equal intervals in the circumferential direction when viewed in the axial direction X.
  • Each of the one flow path 5g and the second flow path 45a may be formed only at one place, or the plurality of first flow paths 5g and the second flow paths 45a may not be formed at equal intervals.
  • the supply flow path 61 is formed in a concave shape along the direction of the axis X with respect to the inner surface of the second member 6 inside the bolt B. You may form in the concave shape along the direction of the axis X with respect to the outer surface of a certain 1st member 5. As shown in FIG. Further, the supply channel 61 may be formed in a concave shape along the direction of the axis X with respect to the inner surface of the second member 6 and the outer surface of the first member 5. (5) In the above-described embodiment, the supply flow path 61 for the lock flow path 45, the advance flow path 43, and the retard flow path 44 has been described as being common.
  • the supply flow path 61 may be formed independently of the 43 and the retard flow path 44. Further, the number of pumps P is not particularly limited.
  • the pin 63 which comprises the fixing member of the above-mentioned 3rd Embodiment was formed in the radial direction over the 1st member 5 and the 2nd member 6, in the 1st member 5 and the 2nd member 6, It may be formed in the axial center X direction. In this case, since the length of the pin 63 in the axis X direction can be ensured, the first member 5 and the second member 6 are stably fixed. Further, the shape of the pin 63 is not particularly limited, such as a columnar shape or a prismatic shape, and may take any form such as a fixed bolt instead of the pin 63. (7)
  • the valve opening / closing timing control device 10 may be configured to control not only the intake valve but also the opening / closing timing of the exhaust valve.
  • the present invention can be used for a valve opening / closing timing control device that controls the relative rotation phase of a driven side rotating body with respect to a driving side rotating body that rotates synchronously with a crankshaft of an internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

中間ロック機構への作動流体の供給流路を合理的に構成して、コンパクトな弁開閉時期制御装置を提供する。弁開閉時期制御装置は、駆動側回転体と、カムシャフトにボルトで固定される従動側回転体と、流体圧室と、中間ロック機構と、中間ロック機構に対して作動流体を流通させるロック流路と、ボルトの内部に配置されるスプールを有する電磁弁と、を備え、ロック流路は、ボルトの内部の軸芯方向に沿って流通させる供給流路とスプールとの間の径方向に配置され、供給流路に接続される第一流路と、ボルトの内部の径方向に貫通形成され、スプールと中間ロック機構との間に作動流体を流通させる第二流路とを有し、第一流路の少なくとも一部と第二流路の少なくとも一部とが軸芯と直交する同一平面内に位置している。

Description

弁開閉時期制御装置
 本発明は、内燃機関のクランクシャフトと同期回転する駆動側回転体に対する従動側回転体の相対回転位相を制御する弁開閉時期制御装置に関する。
 従来、エンジンの始動性を高めるべく、相対回転位相を最進角位相と最遅角位相との間の中間ロック位相に拘束する弁開閉時期制御装置が知られている(例えば、特許文献1参照)。
 特許文献1の弁開閉時期制御装置は、従動側回転体を内燃機関のカムシャフトにボルトで固定し、該ボルトの内部にスプールを配置して電磁弁を構成している。複数の環状溝が形成されたスプールが駆動側回転体の軸芯方向に移動することで、ロック流路を介して中間ロック機構への作動流体の供給が行われる。
 ロック流路は、ポンプから供給された作動流体を軸芯方向に沿う従動側回転体の内部に流通させる供給流路と接続され、作動流体をスプールに向かって流通させる第一流路と、スプールと中間ロック機構との間に作動流体を流通させる第二流路とを有している。この第一流路と第二流路とは、ボルトの径方向に沿って貫通形成され、軸芯方向に対して異なる位置に配置されている。
 中間ロック機構に作動流体を供給する場合には、スプールの環状溝を介して第一流路と第二流路とを連通させる。
特開2012-149600号公報
 ところで、一般的に、弁開閉時期制御装置は内燃機関のカムシャフトの端部に接続されるため、内燃機関のコンパクト化を図る上で軸芯方向の寸法を小さくすることが望まれている。しかしながら、特許文献1の弁開閉時期制御装置にあっては、作動流体を供給する第一流路を、スプールと中間ロック機構との間で作動流体を流通させる第二流路に対して、軸芯方向の異なる位置に設けている。このため、装置の軸芯方向の寸法が大きくなってしまい改善の余地があった。
 そこで、中間ロック機構への作動流体の供給流路を合理的に構成して、コンパクトな弁開閉時期制御装置を提供することが望まれている。
 本発明に係る弁開閉時期制御装置の特徴構成は、内燃機関のクランクシャフトと同期回転する駆動側回転体と、前記駆動側回転体の軸芯と同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトにボルトで固定された状態で前記カムシャフトと一体回転する従動側回転体と、前記駆動側回転体と前記従動側回転体との間に区画形成される流体圧室と、 作動流体の給排により、前記駆動側回転体に対する前記従動側回転体の相対回転位相が、最進角位相と最遅角位相との間の中間ロック位相に拘束されるロック状態と、前記拘束が解除されたアンロック状態とが選択的に切替えられる中間ロック機構と、前記中間ロック機構に対して作動流体を流通させるロック流路と、前記ボルトの内部に配置されるスプールを有し、前記流体圧室及び前記中間ロック機構に対する作動流体の給排を制御する電磁弁と、を備え、前記ロック流路は、ポンプから供給される作動流体を前記ボルトの内部の前記軸芯方向に沿って流通させる供給流路と前記スプールとの間の径方向に配置され、前記供給流路に接続される第一流路と、前記ボルトの内部の前記径方向に貫通形成され、前記スプールと前記中間ロック機構との間に作動流体を流通させる第二流路とを有し、前記第一流路の少なくとも一部と前記第二流路の少なくとも一部とが、前記軸芯と直交する同一平面内に位置している点にある。
 本構成によると、従動側回転体は、ボルトを螺合してカムシャフトに固定されるので、従動側回転体に形成されるロック流路と、ボルトに形成されるロック流路との接続の位置決めが困難である。このため、一般的に、従動側回転体とボルトとの境界に環状溝が形成されている。特許文献1記載のように、供給流路を軸芯方向に沿う従動側回転体の内部に形成した場合、作動流体をスプールに向かって流通させる第一流路とスプールと中間ロック機構との間に作動流体を流通させる第二流路とが該環状溝で合流しないように、第一流路と第二流路とを軸芯方向に対して異なる位置に配置させる必要がある。
 一方、本構成では、ポンプから供給された作動流体が流通する供給流路を、ボルトの内部に軸芯方向に沿って形成している。つまり、供給流路を、従動側回転体とボルトとの境界の環状溝に連通させない構成としているので、供給流路とスプールとの間に配置される第一流路の少なくとも一部と、スプールと中間ロック機構との間に作動流体を流通させる第二流路の少なくとも一部とを、軸芯に直交する同一平面内に設ける構成を採用し得た。よって、装置の軸長を短縮することができ、コンパクト化が図られる。
 このように、中間ロック機構への作動流体の供給流路を合理的に構成して、コンパクトな弁開閉時期制御装置を提供することができた。
 他の特徴構成は、前記ボルトは、前記カムシャフトに螺合される第一部材と、当該第一部材の外表面に沿って配置される第二部材とで構成され、前記供給流路が、前記第一部材と前記第二部材との間に区画形成され、前記第一流路が、前記第一部材に区画形成されている点にある。
 本構成のようにボルトを少なくとも2部材で構成した場合、ボルトを1部材で構成して流路形成する場合に比べ、例えば各部材の合わせ面に供給流路を形成できるため加工が容易である。
 他の特徴構成は、前記第二部材は、前記第一部材に前記軸芯方向に沿って圧入される点にある。
 本構成のように第二部材を第一部材に圧入すれば、双方が強固に結合され、従動側回転体の回転に伴う両部材の位置ズレを防止することができる。
 他の特徴構成は、前記第一部材に対して、少なくとも前記第二部材の前記カムシャフトとは前記軸芯方向における反対側の端部が圧入され、前記第一流路および前記第二流路は、前記流体圧室に作動流体を給排する流路よりも前記カムシャフトとは前記軸芯方向における反対側に配置されている点にある。
 中間ロック機構は、ロック部材をロック凹部に係脱させて構成するのが一般的であり、両部材の係合部位やロック部材の可動領域に異物が滞留し易い。その結果、中間ロック機構の制御精度が低下してしまう。一方、ボルトを互いに圧入して構成される2部材とした場合、圧入の際に両部材が摺接して異物(削り粉)が発生し、この異物が中間ロック機構に侵入して滞留するおそれがある。しかしながら、本構成のように、流体圧室に作動流体を給排する流路よりもカムシャフトとは軸芯方向における反対側にロック流路を配置することで、ボルトを構成する両部材の摺接によって発生する異物が圧入方向の手前側(カムシャフト側)に放出される。その結果、中間ロック機構に対する異物の侵入を抑制し、中間ロック機構の制御性を低下させることがない。
 他の特徴構成は、前記第二部材のうち、前記流体圧室に作動流体を給排する流路よりも前記カムシャフトとは前記軸芯方向における反対側の部位のみ前記第一部材に圧入されている点にある。
 本構成のように、圧入部位の範囲を小さくすることで異物(削り粉)の発生を抑制することができる。
 ところで、弁開閉時期制御装置が流体圧室の給排を遮断する相対回転位相の保持モードであるとき、各構成部品間の微小な隙間を介して、流体圧室から外部に作動流体が漏れ出し易い。この場合、相対回転位相がバタついて適切に保持することができないおそれがある。しかしながら、本構成では、流体圧室に給排する流路が位置する第一部材と第二部材との間は圧入しないので、両部材の間には微小な隙間ができる。その結果、供給流路に存在する作動流体を、該隙間を介して流体圧室に侵入させることができる。よって、流体圧室の作動流体の不足を補い、相対回転位相のバタつきを抑制することができる。
 他の特徴構成は、前記第一部材の周方向に対する前記第二部材の移動を阻止する固定部材が、前記第一部材および前記第二部材に亘って設けられている点にある。
 本構成のように、従動側回転体の回転に伴う第一部材の周方向に対する第二部材の位置ズレを固定部材で防止する構成とすれば、第二部材を中間嵌めやゆるみ嵌めによって第一部材に装着することができる。よって、両部材を圧入する場合に比べ、両部材の摺接に伴う削り粉の発生を抑制することができる。
第1実施形態に係る弁開閉時期制御装置の縦断面図である。 図1のII-II線断面図である。 OCVの作動による、各流路におけるオイルの流通状態を表す図である。 図3のW1におけるOCVの作動状態を表す拡大断面図である。 図3のW2におけるOCVの作動状態を表す拡大断面図である。 図3のW3におけるOCVの作動状態を表す拡大断面図である。 図3のW4におけるOCVの作動状態を表す拡大断面図である。 図3のW5におけるOCVの作動状態を表す拡大断面図である。 ボルトの縦断面図である。 図9のX-X線断面図である。 ボルトの圧入状態を示す分解斜視図である。 第2実施形態に係るボルトの縦断面図である。 第3実施形態に係る軸芯方向から見たボルトの断面図である。
 以下に、本発明に係る弁開閉時期制御装置の実施形態について、図面に基づいて説明する。第1実施形態では、内燃機関(以下、「エンジンE」と言う。)における吸気弁103側に弁開閉時期制御装置10を適用した実施例として説明する。ただし、以下の実施形態に限定されることなく、その要旨を逸脱しない範囲内で種々の変形が可能である。
 〔全体構成〕
 図1に示すように、弁開閉時期制御装置10は、エンジンEのクランクシャフトCと同期回転するハウジング1(駆動側回転体の一例)と、ハウジング1の内側でハウジング1の軸芯Xと同軸上に配置され、エンジンEの弁開閉用のカムシャフト101にボルトBで固定された状態でカムシャフト101と一体回転する内部ロータ2(従動側回転体の一例)とを備えている。カムシャフト101は、エンジンEの吸気弁103の開閉を制御するカム104の回転軸であり、内部ロータ2およびボルトBと同期回転する。
 ボルトBのカムシャフト101に近い側の端部には雄ねじ5bが形成されている。ハウジング1と内部ロータ2を組み合わせた状態でボルトBを中心に挿通し、ボルトBの雄ねじ5bとカムシャフト101の雌ねじ101aとを螺合する。その結果、ボルトBがカムシャフト101に対して固定されると共に、内部ロータ2とカムシャフト101も固定される。
 図9~図11に示すように、ボルトBは、カムシャフト101に螺合される第一部材5と、第一部材5の外表面に沿って配置される筒状の第二部材6とで構成される。本実施形態では、第二部材6の内表面の周方向および軸芯X方向に沿った全域が、第一部材5の外表面に圧入されている。
 図11に示すように、第一部材5の雄ねじ5bの側から、第二部材6を第一部材5に挿入し、第一部材5の外表面に沿って圧入する。このとき、第一部材5の周方向において、後述するロック流路45の第一流路5gと第二流路45aとの間に、軸芯X方向に沿った凸部を形成し、この凸部を第二部材6の軸芯X方向に沿って形成された溝部と位置合わせしながら圧入しても良い。これによって、第一部材5に対する第二部材6の圧入作業が容易なものとなる。なお、第一部材5の凸部や第二部材6の溝部に代えて、第一部材5に溝部を形成し、第二部材6に凸部を形成しても良い。
 第一部材5に対して第二部材6が圧入されるので、両部材5,6が強固に固定され、内部ロータ2の回転に伴う両部材5,6の位置ズレを防止することができる。なお、本実施形態では、第二部材6の内表面の軸芯X方向に沿った全域を第一部材5に圧入しているが、第二部材6の内表面の軸芯X方向に沿った一部を、第一部材5に圧入しても良い。
 図1に示すように、ハウジング1は、カムシャフト101が接続される側とは反対側に配置されるフロントプレート11と、内部ロータ2に外装される外部ロータ12と、タイミングスプロケット15を有し、カムシャフト101が接続される側に配置されるリヤプレート13とを締結ボルト16により組み付けて構成される。また、図2に示すように、内部ロータ2と外部ロータ12との間に区画される流体圧室4が形成される。内部ロータ2と外部ロータ12とは、軸芯Xを中心にして相対回転自在に構成されている。
 ハウジング1とカムシャフト101との間に軸芯Xを中心とする回転方向に付勢力を作用させる戻しばね70を備えている。この戻しばね70は、ハウジング1に対する内部ロータ2の相対回転位相(以下、単に「相対回転位相」とも言う。)が最遅角にある状態から進角側の所定の相対回転位相に達するまで付勢力を作用させる。なお、戻しばね70は、ハウジング1と内部ロータ2との間に配置されていてもよい。
 クランクシャフトCが回転駆動すると、動力伝達部材102を介してタイミングスプロケット15にその回転駆動力が伝達され、ハウジング1が図2に示す回転方向Sに回転駆動する。ハウジング1の回転駆動に伴い、内部ロータ2が回転方向Sに回転駆動してカムシャフト101が回転し、カムシャフト101に設けられたカム104がエンジンEの吸気弁103を押し下げて開弁させる。
 図2に示すように、外部ロータ12に、径方向内側に突出する3個の突出部14を回転方向Sに沿って互いに離間させて形成することにより、内部ロータ2と外部ロータ12との間に流体圧室4が形成されている。また、内部ロータ2の外周面のうち流体圧室4に面する部分に、外部ロータ12の内周面に当接する突出部21が形成されている。突出部21によって、流体圧室4は進角室41と遅角室42とに分割されている。なお、本実施形態においては、流体圧室4が3箇所となるよう構成されているが、これに限られるものではない。
 進角室41及び遅角室42にはオイル(作動流体の一例)が供給、排出され、又はその給排が遮断されることにより、相対回転位相を進角方向又は遅角方向へ変化させ、あるいは、任意の位相に保持する。進角方向とは、進角室41の容積が大きくなる方向であり、図2に矢印S1で示す方向である。遅角方向とは、遅角室42の容積が大きくなる方向であり、図2に矢印S2で示す方向である。突出部21が進角方向S1の移動端又はその近傍に達した状態での相対回転位相を最進角位相と称し、突出部21が遅角方向S2の移動端又はその近傍に達した状態での相対回転位相を最遅角位相と称する。
 図2に示すように、内部ロータ2には、進角室41に連通する進角流路43と、遅角室42に連通する遅角流路44と、後述する中間ロック機構8に対してオイルを流通させるロック流路45と、中間ロック機構8から外部へ排出されるオイルが流通するロック排出流路46とが形成されている。図1に示すように、この弁開閉時期制御装置10では、エンジンEのオイルパン7に貯留されるオイルを用いて進角室41、遅角室42、中間ロック機構8に給排される。
〔中間ロック機構〕
 本実施形態における弁開閉時期制御装置10は、相対回転位相を最進角位相と最遅角位相との間にある中間ロック位相Lに拘束する中間ロック機構8を備えている。エンジン始動直後の油圧が安定しない状況で相対回転位相が中間ロック位相Lに拘束されることによって、エンジンEの安定的な回転を実現することができる。
 図2に示すように、中間ロック機構8は、第1ロック部材81と、第1スプリング82と、第2ロック部材83と、第2スプリング84と、第1凹部85と、第2凹部86により構成される。
 ロック部材81,83はプレート状の部材で構成され、軸芯Xに平行な姿勢で内部ロータ2の方向に向けて接近、離間できるように外部ロータ12に対し移動自在に支持されている。なお、ロック部材81,83は、軸芯Xに垂直な姿勢でフロントプレート11又はリヤプレート13に接近、離間する構成であっても良い。また、中間ロック機構8は2つに限定されず、1つ又は3つ以上設けても良い。
 凹部85,86は、周方向で浅い溝と深い溝とが連続して形成されている。図2に示すように、凹部85,86にオイルがない状態における中間ロック位相Lでは、第1スプリング82の付勢力により第1ロック部材81が第1凹部85の深い溝の進角方向S1の端部に当接して、内部ロータ2の遅角方向S2への変化を規制する。また、第2スプリング84の付勢力により第2ロック部材83が第2凹部86の深い溝の遅角方向S2の端部に当接して、内部ロータ2の進角方向S1への変化を規制する。これがロック状態である。
 ロック流路45は、第1凹部85の深い溝と第2凹部86の深い溝のそれぞれの底面に接続されている。ロック状態にあるときにオイルがロック流路45を流通して凹部85,86に供給されると、ロック部材81,83はオイルの油圧を受ける。この油圧がスプリング82,84の付勢力を上回るとロック部材81,83は凹部85,86から離間し、アンロック状態となる。
 ロック排出流路46も、凹部85,86の深い溝のそれぞれの底面に接続されている。ロック排出流路46は、中間ロック機構8にオイルを供給するための流路ではなく、外部へオイルを排出するための流路である。
〔電磁弁〕
 図1に示すように、本実施形態においては、OCV51(オイルコントロールバルブ:電磁弁の一例)が、ボルトBの内部で且つ軸芯Xと同軸上に配置されている。OCV51は、スプール52と、スプール52を付勢する第1スプリング53aと、スプール52を駆動する電磁ソレノイド54とを備えて構成される。なお、電磁ソレノイド54については、公知の技術であるので詳細な説明を省略する。
 スプール52は、ボルトBの内部に形成された断面円形の孔である収容空間5aに収容されており、収容空間5aの内部で軸芯Xの方向に沿って摺動可能である。スプール52は、軸芯Xの方向に沿った断面円形の有底穴である主排出流路52bを有している。
 電磁ソレノイド54に給電すると、電磁ソレノイド54に設けられたプッシュピン54aが、スプール52の端部52aを押圧する。その結果、スプール52は第1スプリング53aの付勢力に抗してカムシャフト101の方向に摺動する。OCV51は、電磁ソレノイド54への給電量を0から最大まで変化させることにより、スプール52の位置調節ができるよう構成されている。電磁ソレノイド54への給電量は、不図示のECU(電子制御ユニット)によって制御される。
 OCV51は、スプール52の位置に応じて進角室41及び遅角室42へのオイルの供給、排出、保持を切り換えると共に、中間ロック機構8へのオイルの供給、排出を切り換える。
〔油路構成〕
 図1に示すように、オイルパン7に貯留されているオイルは、クランクシャフトCの回転駆動力が伝達されることにより駆動する機械式のポンプPによって汲み上げられる。次いで、ボルトBの内部である第二部材6の内表面に、軸芯Xの方向に沿って凹状に形成される供給流路61を流通する。そして、供給流路61を流通したオイルは、進角流路43、遅角流路44、ロック流路45に供給される。
 図4~図8に示すように、ポンプPから供給されたオイルは、カムシャフト101に形成された第1貫通路47a、カムシャフト101とボルトBとの間の空間である第1環状流路47b、ボルトBに形成された第2貫通路47c、ボルトBに形成された第3貫通路47d、ボルトBの第二部材6に形成された供給流路61の順で流通する。第2貫通路47cにはチェックバルブ48が備えられており、このチェックバルブ48は、第2スプリング53bにより第2貫通路47cを閉じる方向に付勢されている。
 スプール52には、供給流路61を流通するオイルを、ロック流路45に供給する第1環状溝52cと、進角流路43または遅角流路44に供給する第2環状溝52dとが形成されている。また、スプール52には、進角流路43を流通するオイルを主排出流路52bに排出する第1貫通路52eと、遅角流路44またはロック排出流路46を流通するオイルを主排出流路52bに排出する第2貫通路52fとが形成されている。さらに、主排出流路52bを流通するオイルを弁開閉時期制御装置10の外部に排出する第3貫通路52gが形成されている。
 進角室41に接続される進角流路43は、ボルトBの第一部材5および第二部材6の径方向に貫通形成された第1貫通路43aと、第1貫通路43aに繋がり内部ロータ2に形成された第2貫通路43bと、を有している。同様に、遅角室42に接続される遅角流路44は、ボルトBの第一部材5および第二部材6の径方向に貫通形成された第1貫通路44aと、第1貫通路44aに繋がり内部ロータ2に形成された第2貫通路44bと、を有している。これら第1貫通路43a,44aは、内部ロータ2との境界部に環状溝が形成されている。また、進角流路43と遅角流路44とは、ボルトBの第一部材5の径方向に貫通形成され、供給流路61と接続される共通の供給貫通路5fを有している。
 中間ロック機構8に接続されるロック流路45は、供給流路61とスプール52との間の径方向に配置され、供給流路61に接続される第一流路5gを有している。この第一流路5gは、ボルトBの第一部材5に区画形成されている。本実施形態ではボルトBを2部材で構成しているため、ボルトBを1部材で構成して流路形成する場合に比べ、供給流路61や第一流路5gの加工が容易である。また、ロック流路45は、ボルトBの第一部材5および第二部材6の径方向に貫通形成された第二流路45aと、第二流路45aに繋がり内部ロータ2に形成された第三流路45bとを有している。つまり、第一流路5gは、供給流路61から流入するオイルをスプール52に向かって流通させ、第二流路45aは、スプール52と中間ロック機構8との間にオイルを流通させる経路となっている。この第二流路45aには、内部ロータ2との境界部に環状溝が形成されている。
 中間ロック機構8に接続されるロック排出流路46は、ボルトBの第一部材5および第二部材6の径方向に貫通形成された第1貫通路46aと、第1貫通路46aに繋がり内部ロータ2に形成された第2貫通路46bとにより構成されている。この第1貫通路46aには、内部ロータ2との境界部に環状溝が形成されている。
 図9~図10に示すように、軸芯X方向視において、ロック流路45は、複数の第一流路5gと第二流路45aとが周方向に等間隔で交互に配置されている。つまり、第一流路5gの少なくとも一部と第二流路45aの少なくとも一部とが、軸芯Xと直交する同一平面内に位置している。換言すると、第一流路5gを通過し、軸芯X方向に垂直な方向に沿って延びる第一仮想線と第二流路45aを通過し、軸芯X方向に垂直な方向に沿って延びる第二仮想線とが、軸芯X方向に垂直な方向視において重なっている。よって、第一流路5gと第二流路45aとを軸芯X方向で異なる位置に配置する場合に比べ、弁開閉時期制御装置10の軸長を短縮することができる。なお、第一流路5gの少なくとも一部と第二流路45aの少なくとも一部とが、軸芯Xと直交する同一平面内に位置しているとは、第一流路5gの中心と第二流路45aの中心とが同一平面内に位置している場合だけでなく、第一流路5gと第二流路45aとが軸芯X方向に若干ずれている場合も含む概念である。
 また、複数の第一流路5gや第二流路45aを設けて流路面積を確保することで、中間ロック機構8からのオイルの排出や供給を迅速に行うことができる。しかも、経路長の異なる第一流路5gと第二流路45aとを同一平面内において等間隔で交互に配置するので、内部ロータ2の回転バランスを安定させることができる。
 〔OCVの動作〕
 図3には、電磁ソレノイド54へ給電量に応じてスプール52の位置がW1~W5に変化したときのOCV51の作動構成が示される。図4に示すように、電磁ソレノイド54に給電を行わない場合、第1スプリング53aの付勢力によりスプール52はストッパ55に当接し、最も左方に位置している(図3のW1)。この状態において、供給されたオイルは、第1貫通路47a、第1環状流路47b、第2貫通路47cの順で流通し、油圧が第2スプリング53bの付勢力を上回ると、チェックバルブ48が開弁する。次いでこのオイルは、第3貫通路47d、供給流路61の順で流通し、進角流路43および遅角流路44の供給貫通路5f、ロック流路45の第一流路5gに到達する。第2環状溝52dは進角流路43に連通しているので、オイルが進角室41に供給される。一方、遅角流路44は第2貫通路52fと連通しているので、遅角室42のオイルはドレン状態となる。また、ロック流路45は、第1環状溝52cおよび第1貫通路52eに連通せず、ロック排出流路46は収容空間5aと連通しているので、中間ロック機構8のオイルはドレン状態となる。したがって、中間ロック機構8はロック状態である。
 図5に示すように、電磁ソレノイド54に給電を行った場合、スプール52はW1の状態よりも少し右方に移動している(図3のW2)。この状態において、ロック流路45は第1環状溝52cに連通しているので、中間ロック機構8にオイルが供給される。このとき、ロック排出流路46は収容空間5aに連通しないので、中間ロック機構8のオイルがロック排出流路46を介して外部に排出されることはない。よって、油圧がスプリング82,84の付勢力を上回ると、ロック部材81,83は凹部85,86からそれぞれ離間し、アンロック状態になる。また、進角流路43と遅角流路44とは、W1の状態と同様であり、オイルが進角室41に供給され、遅角室42のオイルはドレン状態となっている。
 図6に示すように、電磁ソレノイド54にさらに給電を行った場合、スプール52はW2の状態よりも少し右方に移動している(図3のW3)。このとき、W2の状態と異なるのは、進角流路43と遅角流路44とが、第2環状溝52d、第1貫通路52e、第2貫通路52fのいずれにも連通していない点である。したがって、進角室41および遅角室42に対してオイルの給排が遮断され、内部ロータ2はそのままの相対回転位相を保持し、進角方向S1にも遅角方向S2にも変化しない。これは、「位相保持モード」に相当する。
 図7に示すように、電磁ソレノイド54にさらに給電を行ってOCV51が図3のW4の状態になった場合、W3の状態と異なるのは、進角流路43が第1貫通路52eに連通し、遅角流路44が第2環状溝52dに連通している点である。その結果、オイルが遅角室42に供給され、進角室41のオイルはドレン状態となる。
 図8に示すように、電磁ソレノイド54にさらに給電を行ってOCV51が図3のW5の状態になった場合、W4の状態と異なるのは、ロック流路45が第1環状溝52cと非連通となり、ロック排出流路46が第2貫通路52fと連通する点である。つまり、ロック流路45にオイルが供給されることなく、ロック排出流路46からオイルがドレンされる。その結果、中間ロック機構8のオイルは、ロック排出流路46を介してドレン状態となる。つまり、中間ロック機構8は、ロック状態となる。
 本実施形態では、図11に示すように、ロック流路45が、第一部材5に対して第二部材6が圧入される方向(以下、単に圧入方向Yと言う。)の奥側(カムシャフト101とは軸芯X方向において反対側)に配置されている。つまり、ロック流路45を進角流路43および遅角流路44よりも圧入方向Yの奥側に配置している。このため、第二部材6を第一部材5に圧入する際の両部材5,6の摺接によって発生する異物(削り粉)が、圧入方向Yの手前側に放出される。その結果、中間ロック機構8に対する異物の流入を減少させることができるので、異物の滞留によって誤ロック(ロック解除不良)が発生する確率を低減させることができる。一方、圧入方向Yの手前側に放出された異物は流体圧室4に流入するおそれがあるが、流体圧室4はオイルの給排が頻繁に行われ、且つ室面積が比較的大きいので、異物が速やかに外部に排出され、位相制御の応答性を低下させることがない。
 以下、別実施形態について説明する。基本構成は、第1実施形態と同様であるため、異なる構成についてのみ図面を用いて説明する。なお、図面の理解を容易にするため、第1実施形態と同じ部材名称及び符号を用いて説明する。
[第2実施形態]
 図12に示すように、本実施形態では、第二部材6のうち、進角流路43および遅角流路44よりも圧入方向Yの奥側の部位のみ、第一部材5に圧入されている。これにより、圧入範囲を小さくすることで、異物の発生をより一層抑制することができる。なお、第一部材5に対して第二部材6が圧入される部位を、進角流路43および遅角流路44よりも圧入方向Yの手前側(カムシャフト101側)としても良い。
 ところで、図6に示すように、進角室41および遅角室42に対してオイルの給排が遮断される「位相保持モード」の場合、外部ロータ12とフロントプレート11やリヤプレート13との微小な隙間を介して、流体圧室4のオイルが外部に排出されるおそれがある。この場合、相対回転位相がバタついて、位相保持が適切に行われない。しかしながら、本実施形態では、進角流路43および遅角流路44の周辺における第一部材5と第二部材6との間には微少な隙間が形成されるので、該隙間を介して供給流路61のオイルを流体圧室4に侵入させることができる。よって、流体圧室4のオイルの不足分を補って、相対回転位相のバタつきを抑制することができる。
[第3実施形態]
 図13に示すように、本実施形態では、第一部材5の周方向に対する第二部材6の移動を阻止するピン63(固定部材の一例)を、第一部材5と第二部材6とに亘って径方向に複数設けている。また、ピン63は、第一部材5の軸芯X方向に対する第二部材6の移動を阻止する機能も有している。このピン63は、ボルトBに形成される流路を干渉しないように、軸芯X方向視において供給流路61どうしの間に形成されている。なお、ピン63の軸芯X方向の位置は、ロック流路45と進角流路43との間の位置でも良いし、進角流路43と遅角流路44との間の位置でも良く、特に限定されない。また、ピン63を複数設けずに、一つであっても良い。
 本実施形態では、内部ロータ2の回転に伴う第一部材5と第二部材6との位置ズレをピン63によって防止することができる。また、第一部材5の周方向に対する第二部材6の位置決めは、ピン63を挿入するために第一部材5および第二部材6に形成された孔位置を合わせればよいので、組付けが容易である。さらに、ピン63によって第一部材5と第二部材6との相対回転が防止されるので、第二部材6を第一部材5に中間嵌めやゆるみ嵌めによって装着すればよいので、圧入する場合に比べて両部材5,6の摺接に伴う異物の発生を防止することができる。
[その他の実施形態]
(1)上述した実施形態では、ボルトBを第一部材5および第二部材6の2部材で構成したが、単一部材や3部材以上に構成しても良い。ボルトBを単一部材で構成した場合、第一部材5の第一流路5gを形成する際、ボルトBの径方向に貫通孔を形成した後、該貫通孔に蓋部材を圧入する等すれば、袋小路の第一流路5gを形成することができる。
(2)第一部材5を構成する金属などの熱膨張係数を、第二部材6を構成する金属などの熱膨張係数よりも大きく構成してもよい。この場合、両部材5,6を、圧入時に異物が発生し難い寸法形状に設定することができると共に、エンジンEの稼働に伴う温度上昇によって第一部材5が第二部材6より膨張するので両部材5,6の嵌合度合いを高めることができる。
(3)上述した実施形態では、図10に示すように、軸芯X方向視において、複数の第一流路5gと第二流路45aとが周方向に等間隔で交互に配置したが、第一流路5gと第二流路45aとを夫々一箇所のみ形成しても良いし、複数の第一流路5gと第二流路45aとを等間隔に形成しなくても良い。
(4)上述した実施形態では、供給流路61を、ボルトBの内部である第二部材6の内表面に対して、軸芯Xの方向に沿う凹状に形成したが、ボルトBの内部である第一部材5の外表面に対して、軸芯Xの方向に沿う凹状に形成しても良い。また、供給流路61を、第二部材6の内表面および第一部材5の外表面に対して、軸芯Xの方向に沿う凹状に形成しても良い。
(5)上述した実施形態では、ロック流路45と進角流路43および遅角流路44とに対する供給流路61を共通のものとして説明したが、ロック流路45と、進角流路43および遅角流路44とに独立して供給流路61を形成しても良い。また、ポンプPの数量も特に限定されない。
(6)上述の第3実施形態の固定部材を構成するピン63を、第一部材5と第二部材6とに亘って径方向に形成したが、第一部材5と第二部材6とに亘って軸芯X方向に形成しても良い。この場合、ピン63の軸芯X方向の長さを大きく確保することができるので、第一部材5と第二部材6とが安定して固定される。また、ピン63の形状は円柱状や角柱状など特に限定されず、ピン63に代えて例えば固定ボルトで構成するなどどのような形態であっても良い。
(7)弁開閉時期制御装置10は、吸気弁だけでなく排気弁の開閉時期を制御するように構成されるものであっても良い。
 本発明は、内燃機関のクランクシャフトと同期回転する駆動側回転体に対する従動側回転体の相対回転位相を制御する弁開閉時期制御装置に利用可能である。
1   ハウジング(駆動側回転体)
2   内部ロータ(従動側回転体)
4   流体圧室
45a 第二流路
5   第一部材
5g  第一流路
52  スプール
6   第二部材
61  供給流路
63  ピン(固定部材)
8   中間ロック機構
10  弁開閉時期制御装置
45  ロック流路
51  OCV(電磁弁)
101 カムシャフト
B   ボルト
C   クランクシャフト
E   エンジン(内燃機関)
L   中間ロック位相
P   ポンプ
X   軸芯
Y   圧入方向

Claims (6)

  1.  内燃機関のクランクシャフトと同期回転する駆動側回転体と、
     前記駆動側回転体の軸芯と同軸上に配置され、前記内燃機関の弁開閉用のカムシャフトにボルトで固定された状態で前記カムシャフトと一体回転する従動側回転体と、
     前記駆動側回転体と前記従動側回転体との間に区画形成される流体圧室と、
     作動流体の給排により、前記駆動側回転体に対する前記従動側回転体の相対回転位相が、最進角位相と最遅角位相との間の中間ロック位相に拘束されるロック状態と、前記拘束が解除されたアンロック状態とが選択的に切替えられる中間ロック機構と、
     前記中間ロック機構に対して作動流体を流通させるロック流路と、
     前記ボルトの内部に配置されるスプールを有し、前記流体圧室及び前記中間ロック機構に対する作動流体の給排を制御する電磁弁と、を備え、
     前記ロック流路は、ポンプから供給される作動流体を前記ボルトの内部の前記軸芯方向に沿って流通させる供給流路と前記スプールとの間の径方向に配置され、前記供給流路に接続される第一流路と、前記ボルトの内部の前記径方向に貫通形成され、前記スプールと前記中間ロック機構との間に作動流体を流通させる第二流路とを有し、
     前記第一流路の少なくとも一部と前記第二流路の少なくとも一部とが、前記軸芯と直交する同一平面内に位置している弁開閉時期制御装置。
  2.  前記ボルトは、前記カムシャフトに螺合される第一部材と、当該第一部材の外表面に沿って配置される第二部材とで構成され、
     前記供給流路が、前記第一部材と前記第二部材との間に区画形成され、
     前記第一流路が、前記第一部材に区画形成されている請求項1に記載の弁開閉時期制御装置。
  3.  前記第二部材は、前記第一部材に前記軸芯方向に沿って圧入される請求項2に記載の弁開閉時期制御装置。
  4.  前記第二部材のうち、少なくとも前記カムシャフトとは前記軸芯方向における反対側の端部が前記第一部材に圧入され、
     前記第一流路および前記第二流路は、前記流体圧室に作動流体を給排する流路よりも前記カムシャフトとは前記軸芯方向における反対側に配置されている請求項3に記載の弁開閉時期制御装置。
  5.  前記第二部材のうち、前記流体圧室に作動流体を給排する流路よりも前記カムシャフトとは前記軸芯方向における反対側の部位のみ前記第一部材に圧入されている請求項4に記載の弁開閉時期制御装置。
  6.  前記第一部材の周方向に対する前記第二部材の移動を阻止する固定部材が、前記第一部材および前記第二部材に亘って設けられている請求項2に記載の弁開閉時期制御装置。
PCT/JP2015/080360 2014-10-31 2015-10-28 弁開閉時期制御装置 WO2016068178A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/501,954 US10337363B2 (en) 2014-10-31 2015-10-28 Valve opening and closing timing control apparatus
EP15855542.5A EP3214279B1 (en) 2014-10-31 2015-10-28 Valve-opening-closing-timing control device
CN201580046022.4A CN106661972B (zh) 2014-10-31 2015-10-28 阀正时控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-222260 2014-10-31
JP2014222260A JP6264260B2 (ja) 2014-10-31 2014-10-31 弁開閉時期制御装置

Publications (1)

Publication Number Publication Date
WO2016068178A1 true WO2016068178A1 (ja) 2016-05-06

Family

ID=55857513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080360 WO2016068178A1 (ja) 2014-10-31 2015-10-28 弁開閉時期制御装置

Country Status (5)

Country Link
US (1) US10337363B2 (ja)
EP (1) EP3214279B1 (ja)
JP (1) JP6264260B2 (ja)
CN (1) CN106661972B (ja)
WO (1) WO2016068178A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448253A (zh) * 2016-05-31 2017-12-08 通用汽车环球科技运作有限责任公司 控制阀

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6528539B2 (ja) 2015-05-27 2019-06-12 アイシン精機株式会社 流路仕切構造及び流体制御弁
JP6809176B2 (ja) 2016-12-02 2021-01-06 アイシン精機株式会社 弁開閉時期制御装置
JP6834658B2 (ja) 2017-03-23 2021-02-24 アイシン精機株式会社 弁開閉時期制御装置
JP6492201B2 (ja) * 2018-02-07 2019-03-27 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置に用いられる油圧制御弁

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346448A1 (de) * 2003-10-07 2005-06-09 Daimlerchrysler Ag Nockenwellenversteller für eine Brennkraftmaschine
US7025023B2 (en) * 2003-10-07 2006-04-11 Daimlerchrysler Ag Hydraulic camshaft adjuster for an internal combustion engine
JP2010249031A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 内燃機関の可変動弁装置
JP2012036768A (ja) * 2010-08-04 2012-02-23 Toyota Motor Corp ボルト一体型オイルコントロールバルブ
JP2012163050A (ja) * 2011-02-07 2012-08-30 Denso Corp バルブタイミング調整装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958541A1 (de) * 1999-12-04 2001-06-07 Schaeffler Waelzlager Ohg Vorrichtung zur Drehwinkelverstellung einer Nockenwelle
JP4224791B2 (ja) * 2005-03-09 2009-02-18 アイシン精機株式会社 弁開閉時期制御装置
JP2012149600A (ja) 2011-01-20 2012-08-09 Denso Corp バルブタイミング調整装置
DE102012201551B4 (de) * 2012-02-02 2022-05-12 Schaeffler Technologies AG & Co. KG Nockenwellenversteller und Verfahren zum Füllen eines Volumenspeichers in einem Nockenwellenversteller
JP5979115B2 (ja) 2013-10-16 2016-08-24 アイシン精機株式会社 弁開閉時期制御装置
EP3179143A4 (en) * 2014-08-04 2017-07-19 Hitachi Automotive Systems, Ltd. Hydraulic control valve and valve-timing control device for internal-combustion engine using hydraulic control valve
JP6528539B2 (ja) 2015-05-27 2019-06-12 アイシン精機株式会社 流路仕切構造及び流体制御弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346448A1 (de) * 2003-10-07 2005-06-09 Daimlerchrysler Ag Nockenwellenversteller für eine Brennkraftmaschine
US7025023B2 (en) * 2003-10-07 2006-04-11 Daimlerchrysler Ag Hydraulic camshaft adjuster for an internal combustion engine
JP2010249031A (ja) * 2009-04-15 2010-11-04 Toyota Motor Corp 内燃機関の可変動弁装置
JP2012036768A (ja) * 2010-08-04 2012-02-23 Toyota Motor Corp ボルト一体型オイルコントロールバルブ
JP2012163050A (ja) * 2011-02-07 2012-08-30 Denso Corp バルブタイミング調整装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107448253A (zh) * 2016-05-31 2017-12-08 通用汽车环球科技运作有限责任公司 控制阀
US10041384B2 (en) * 2016-05-31 2018-08-07 Gm Global Technology Operations Control valve

Also Published As

Publication number Publication date
JP6264260B2 (ja) 2018-01-24
JP2016089664A (ja) 2016-05-23
EP3214279B1 (en) 2020-04-08
CN106661972B (zh) 2020-02-28
US20170234174A1 (en) 2017-08-17
CN106661972A (zh) 2017-05-10
US10337363B2 (en) 2019-07-02
EP3214279A4 (en) 2017-11-15
EP3214279A1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP5585832B2 (ja) 弁開閉時期制御装置
WO2016068178A1 (ja) 弁開閉時期制御装置
JP5500350B2 (ja) 弁開閉時期制御装置
CN104919149B (zh) 配气正时改变装置及其组装方法
CN113614333B (zh) 工作油控制阀以及阀正时调整装置
JP6292083B2 (ja) 弁開閉時期制御装置
CN108474274B (zh) 阀定时变更装置
JP2020159200A (ja) 作動油制御弁およびバルブタイミング調整装置
JP2015028308A (ja) 弁開閉時期制御装置
US10371019B2 (en) Valve timing control device for internal combustion engine
JP5136852B2 (ja) 弁開閉時期制御装置
JP4697547B2 (ja) バルブタイミング調整装置
JP2018080591A (ja) 弁開閉時期制御装置
JP5979102B2 (ja) 弁開閉時期制御装置
JP2009180148A (ja) バルブタイミング調整装置
JP6674539B2 (ja) 内燃機関のバルブタイミング制御装置
CN108368755B (zh) 阀定时变更装置
JP2007138722A (ja) バルブタイミング調整装置
JP2017089518A (ja) 弁開閉時期制御装置
CN112096476A (zh) 气门正时调节装置
JP2019052569A (ja) 内燃機関の可変動弁装置及び可変動弁装置の組立方法
JP2009167810A (ja) バルブタイミング調整装置
JP2006090141A (ja) 内燃機関のバルブタイミング制御装置
JP2016061271A (ja) 内燃機関のバルブタイミング制御装置
JP2014173536A (ja) 弁開閉時期制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855542

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015855542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855542

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE