WO2017115720A1 - 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器 - Google Patents

電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器 Download PDF

Info

Publication number
WO2017115720A1
WO2017115720A1 PCT/JP2016/088396 JP2016088396W WO2017115720A1 WO 2017115720 A1 WO2017115720 A1 WO 2017115720A1 JP 2016088396 W JP2016088396 W JP 2016088396W WO 2017115720 A1 WO2017115720 A1 WO 2017115720A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
unit
voltage
power
supply device
Prior art date
Application number
PCT/JP2016/088396
Other languages
English (en)
French (fr)
Inventor
雄希 中島
淳也 三井
俊彰 佐藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP16881695.7A priority Critical patent/EP3399637B1/en
Priority to AU2016380319A priority patent/AU2016380319B2/en
Priority to BR112018011693-9A priority patent/BR112018011693B1/pt
Priority to ES16881695T priority patent/ES2919348T3/es
Priority to CN201680076535.4A priority patent/CN108475994B/zh
Priority to MYPI2018000998A priority patent/MY186872A/en
Publication of WO2017115720A1 publication Critical patent/WO2017115720A1/ja
Priority to US16/022,270 priority patent/US10985670B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor

Definitions

  • the present invention relates to a power supply device and a device using the power supply device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-257238
  • the power supply of the transmission circuit between is generated from an AC power supply.
  • Patent Document 2 JP 2005-20837 A
  • Patent Document 4 JP 2002-223599 A
  • Patent Document 5 JP 2006-34070 A
  • the rectifier circuit as in Patent Document 3 (Japanese Patent Laid-Open No. 2001-238451)
  • the phase angle of the AC voltage that is, the power supply phase
  • the zero cross timing at which the polarity of the AC voltage is inverted the power supply frequency
  • Any detection circuit for the power cycle is required.
  • An object of the present invention is to provide a power supply device that realizes a reduction in the number of components and mounting area on a control board.
  • the power supply device includes a power supply generation unit, a detection unit, and a calculation unit.
  • the power generation unit includes a charging unit that is charged by rectifying an AC power source.
  • the detection unit detects a charging current flowing to the charging unit.
  • the calculation unit calculates the voltage frequency, cycle, or power supply voltage phase of the AC power supply based on the detection signal of the detection unit.
  • the detection circuit for detecting the voltage frequency or cycle of the AC power supply or the power supply voltage phase has been provided independently, it has been necessary to provide a rectifying component in the detection circuit itself.
  • the detection circuit that also serves as a rectifying component that is already installed in the power generation unit can be provided, the number of components and the mounting area can be reduced on the control board on which the power supply device is mounted.
  • the detection of the zero-cross timing can also be referred to as detection of a specific power supply voltage phase (electrical angle 0 degree, 180 degrees), and is therefore considered to be included in the power supply voltage phase detection.
  • a power supply device is the power supply device according to the first aspect, wherein the power generation unit supplies power to a transmission circuit that transmits a signal via a transmission line.
  • the power generation unit supplies power to a transmission circuit that transmits a signal via a transmission line.
  • the voltage rating of the components of the detection unit can be set lower than the power supply voltage equivalent value based on the voltage. Cost reduction can be achieved in the control board on which the power supply device is mounted.
  • a power supply apparatus is the power supply apparatus according to the first aspect, wherein the power generation unit is a DC load power supply circuit that supplies power to the DC load, and the rectified power is connected to the DC power supply. Supply to the load.
  • the power generation unit is a DC load power supply circuit that supplies power to the DC load, and the rectified power is connected to the DC power supply. Supply to the load.
  • a power supply device is the power supply device according to the first aspect, wherein the power generation unit is a power supply circuit on the primary side of the switching power supply circuit, and the rectified power supply is connected to the switching power supply circuit. Supply to the primary side.
  • a power supply device is the power supply device according to any one of the first to fourth aspects, wherein the power generation unit limits a current flowing through the charging unit, And a rectifier diode connected in series with the current limiting resistor.
  • this power supply device for example, in the case of a circuit that detects the power supply cycle from the event of whether or not current is flowing through the charging unit, it is only necessary to detect the flowing timing with a photocoupler. In such a case, existing current limiting resistors and rectifier diodes can be used, and the number of components can be reduced.
  • An inverter device is an inverter device including a control unit and a power supply device according to any one of the first to fifth aspects, in which the control unit is configured with a voltage frequency, or The amplitude or frequency of the AC output voltage is controlled based on the period or the power supply voltage phase (including the timing of zero crossing).
  • an inverter device that uses a power supply frequency for control, it is not necessary to have an independent detection circuit by mounting a power supply device that includes a detection unit that detects a charging current flowing to the charging unit, and the number of components and mounting A reduction in area can be realized.
  • a converter device is a converter device that includes a control unit and a power supply device according to any one of the first to fifth aspects, and that generates a DC power from an AC power supply,
  • the control unit controls the DC output voltage or the AC current based on the voltage frequency, the cycle, or the power supply voltage phase (including the zero cross timing).
  • a converter device that uses a power supply voltage phase for control
  • the refrigeration apparatus according to the eighth aspect of the present invention is a refrigeration apparatus including the inverter device according to the sixth aspect.
  • the air cleaner according to the ninth aspect of the present invention is an air cleaner provided with the inverter device according to the sixth aspect.
  • the refrigeration apparatus according to the tenth aspect of the present invention is a refrigeration apparatus provided with the converter device according to the seventh aspect.
  • An air cleaner according to an eleventh aspect of the present invention is an air cleaner provided with the converter device according to the seventh aspect.
  • the refrigeration apparatus is the refrigeration apparatus according to the eighth aspect or the tenth aspect, and further includes a use side unit and a heat source side unit.
  • the heat source side unit is connected to the use side unit via an electric wiring including a transmission line for transmitting a signal, and AC power is supplied to the use side unit and the heat source side unit.
  • the power supply device is used as a power supply device for a transmission circuit between the use side unit and the heat source side unit.
  • the primary signal (that is, the charging current) of the detection unit is generated using the existing capacitor, current limiting resistor, and diode in the power supply device of the transmission circuit between the use side unit and the heat source side unit. Therefore, the number of components and the mounting area can be reduced on the control board on which the power supply device is mounted.
  • a detection circuit that also serves as a rectifying component that is already installed in the power generation unit can be provided. Therefore, in the control board on which the power supply device is mounted, the number of components and the mounting area are reduced. Reduction can be realized.
  • the voltage rating of the components of the detection unit is set lower than the power supply voltage equivalent value based on the voltage. The cost can be reduced in the control board on which the power supply device is mounted.
  • the power supply device for example, in the case of a circuit that detects the power supply cycle from the event of whether or not current is flowing through the charging unit, it is only necessary to detect the flowing timing with a photocoupler. Good. In such a case, existing current limiting resistors and rectifier diodes can be used, and the number of components can be reduced.
  • an independent detection circuit is provided by mounting a power supply device including a detection unit that detects a charging current flowing to the charging unit. This eliminates the need to have a component and reduces the number of components and the mounting area.
  • an independent detection circuit is provided by mounting a power supply device including a detection unit that detects a charging current flowing to the charging unit. Therefore, it is possible to reduce the number of parts and the mounting area.
  • the primary side signal of the detection unit using the existing capacitor, current limiting resistor, and diode in the power supply circuit of the transmission circuit between the use side unit and the heat source side unit ( That is, the charging current can be generated, and therefore, the number of components and the mounting area can be reduced in the control board on which the power supply device is mounted.
  • the block diagram of the air conditioner provided with the power supply device which concerns on 1st Embodiment of this invention The circuit block diagram of a power supply device.
  • the graph which shows an external input voltage waveform and a power supply period detection signal waveform.
  • the graph which shows an electric current detection waveform.
  • FIG. 1 is a block diagram of the air conditioner 1 provided with the power supply device 50 which concerns on 1st Embodiment of this invention.
  • the air conditioner 1 includes an indoor unit 10, an outdoor unit 20, a signal line S, a high-voltage side first power supply line ACL1, and a reference side first power supply line ACN1.
  • the signal line S is provided for transmitting and receiving transmission signals between the indoor unit 10 and the outdoor unit 20.
  • the high-voltage-side first power supply line ACL1 and the reference-side first power supply line ACN1 are connected to the indoor unit 10 and the outdoor unit 20, and supply the electric power received from the outside by the outdoor unit 20 to the indoor unit 10 and the outdoor unit 20. To do.
  • Outdoor unit 20 The outdoor unit 20 includes a main power supply unit 26, a main power supply line LAC, a signal line S, a high voltage side first power supply line ACL1, a high voltage side second power supply line ACL2, a high voltage side third power supply line ACL3, and a reference side first power supply.
  • Line ACN1, reference side second power supply line ACN2, reference side third power supply line ACN3, power supply device 50, starting power supply unit 22, outdoor driving power supply unit 23, outdoor microcomputer 21, make contact MRM10, make contact MRM20, make contact The MRM 11, the switching contact MR 30, the EMI filter LC 1, and the outdoor transmission / reception unit 25 are provided.
  • Main power supply unit 26 receives power supply from the outside (for example, commercial power supply) and supplies main power via the main power supply line LAC, the high-voltage side first power supply line ACL1, and the reference side first power supply line ACN1. .
  • Outdoor drive power supply unit 23 includes a main power supply line LAC, a high-voltage side first power supply line ACL1, a reference-side first power supply line ACN1, an EMI filter LC1, a high-voltage side second power supply line ACL2, and a reference-side second power supply line ACN2.
  • the main power is supplied through
  • the outdoor driving power supply unit 23 generates outdoor driving power and supplies the outdoor driving power via the high-voltage side second power supply line ACL2 and the reference side second power supply line ACN2.
  • the outdoor drive power is power for driving outdoor devices (for example, a motor, a compressor, an actuator, etc.).
  • Specific outdoor devices are disclosed in Patent Document 2, Patent Document 4, and Patent Document 5.
  • An inverter (multi-phase current supply circuit) as shown may be used, or a converter circuit (power supply circuit) as shown in Patent Document 3 may be included.
  • the EMI filter LC1 is connected to the high-voltage side first power supply line ACL1, the reference-side first power supply line ACN1, the high-voltage side second power supply line ACL2, and the reference-side second power supply line ACN2, and reduces the first noise.
  • the first noise is noise generated by the outdoor drive power supply unit 23 and the outdoor equipment.
  • the EMI filter LC1 noise transmitted from the high-voltage side second power supply line ACL2 and the reference-side second power supply line ACN2 to the high-voltage side first power supply line ACL1 and the reference-side first power supply line ACN1 is reduced.
  • the power supply device 50 includes the main power supply line LAC, the high-voltage side first power supply line ACL1, the reference-side first power supply line ACN1, the EMI filter LC1, the high-voltage side second power supply line ACL2, the switching contact MR30, and the high-voltage side first.
  • the main power is supplied through the three power supply lines ACL3, the transmission power is generated, and the transmission power is supplied through the signal line S.
  • the transmission power is DC power for transmitting / receiving a transmission signal to / from the indoor unit 10 via the signal line S.
  • Outdoor microcomputer 21 The outdoor microcomputer 21 controls outdoor equipment and the make contacts in the outdoor unit 20 described above. The outdoor microcomputer 21 releases the interruption by the make contact MRM10, the make contact MRM20, and the make contact MRM11, which will be described later, based on the activation.
  • the starting power supply unit 22 includes the main power supply line LAC, the high-voltage side first power supply line ACL1, the reference-side first power supply line ACN1, the EMI filter LC1, the high-voltage side second power supply line ACL2, and the reference-side second power supply.
  • Main power is supplied through line ACN2 and high-voltage side third power supply line ACL3.
  • the activation power supply unit 22 generates activation power for activating the outdoor microcomputer 21 from the standby state, and supplies the activation power to the outdoor microcomputer 21. Specifically, when the start-up power supply unit 22 is switched from the standby state to the operation state, the high-voltage side first power supply line ACL1, the MR 10 in the indoor unit 10 described later, the signal line S, the switching contact MR30, and the high-voltage side first Main power is supplied through the three power supply lines ACL3, the reference second power supply line ACN2, the EMI filter LC1, and the reference first power supply line ACN1. Thereby, the starting power supply unit 22 supplies the starting power to the outdoor microcomputer 21 to start the outdoor microcomputer 21.
  • the switching contact MR30 is provided between the signal line S and the high-voltage side second power supply line ACL2 and the high-voltage side third power supply line ACL3, and is connected to the signal line S side in the standby state. The main power supply to the supply unit 22 is cut off.
  • the switching contact MR30 is switched from the signal line S side to the high-voltage side second power supply line ACL2 side after switching from the standby state to the operation state, thereby blocking the supply of the main power from the main power supply unit 26 to the power supply device 50. To release.
  • the make contact MRM10, the make contact MRM20, and the make contact MRM11 block the supply of the main power from the main power supply unit 26 to the outdoor drive power supply unit 23 in the standby state.
  • the outdoor microcomputer 21 releases the blocking by the make contact MRM10, the make contact MRM20, and the make contact MRM11 based on the activation.
  • Outdoor transceiver unit 25 receives a signal transmitted from the indoor unit 10 via the signal line S in the operating state. Or the outdoor transmission / reception part 25 transmits a signal to the indoor unit 10 via the signal line S in the driving
  • the indoor unit 10 includes a command power supply unit 11, a signal line S, a high-voltage side first power supply line ACL1, a reference side first power supply line ACN1, an indoor microcomputer 12, a make contact MR10, and an indoor transmission / reception unit 15.
  • Command power supply unit 11 receives supply of main power from the main power supply unit 26 via the main power supply line LAC, the high-voltage side first power supply line ACL1, and the reference side first power supply line ACN1.
  • the command power supply unit 11 generates command power and supplies it to the indoor microcomputer 12.
  • the command power is power for receiving an external command such as a remote control command.
  • the indoor transmission / reception unit 15 receives a signal transmitted from the outdoor unit 20 via the signal line S in the operating state. Or the indoor transmission / reception part 15 transmits a signal to the outdoor unit 20 via the signal line S in the driving
  • the indoor microcomputer 12 controls indoor devices such as actuators and sensors and also controls the make contact MR10. It also accepts external commands such as remote control commands.
  • make contact MR10 The make contact MR10 is provided between the high-voltage side first power supply line ACL1 and the signal line.
  • the make contact MR10 is connected by the indoor microcomputer 12 when receiving an external command in the standby state, and is connected to the outdoor unit via the signal line to supply power to the outdoor unit.
  • the make contact MR10 is cut off by the indoor microcomputer 12.
  • the power supply device 50 is configured by a part of the transmission power supply unit 24, the power cycle detection circuit 33, and the outdoor microcomputer 21.
  • FIG. 2 is a circuit block diagram of the transmission power supply unit 24 and the power cycle detection circuit 33.
  • the transmission power supply unit 24 corresponds to the power generation unit described in [Claims].
  • the transmission power supply unit 24 includes at least a rectifying element D1, a constant voltage element ZD1, and a smoothing capacitor C1.
  • the main power supplied via the ACL 3 is converted from AC power to DC power by the rectifying element D1, and charges the smoothing capacitor C1.
  • the transmission power supply unit 24 further includes a current limiting resistor R1 that limits the current that flows when the smoothing capacitor C1 is charged.
  • the current limiting resistor R1 is connected in series with the rectifying element D1.
  • the DC power rectified by the rectifying element D1 is smoothed by the smoothing capacitor C1 in the charging unit 24a.
  • the constant voltage element ZD1 and the resistor R2 are connected in parallel with the smoothing capacitor C1, and the rectified and smoothed DC power is adjusted so as not to rise above a certain value by the constant voltage element ZD1.
  • the charging unit 24a is charged because the high-voltage-side first power supply line ACL1 is higher in voltage than the reference-side first power supply line ACN1, and the voltage of the smoothing capacitor C1 (that is, the breakdown of the constant voltage element ZD1). Voltage).
  • the adjusted DC power is supplied as transmission power to the outdoor transmission / reception unit 25 and the indoor transmission / reception unit 15 via the signal line S.
  • the reference side of the transmission power supply unit 24 bypasses the EMI filter LC1 and is connected to the reference side first power supply line ACN1.
  • the power supply period detection circuit 33 corresponds to the detection unit described in [Claims].
  • the power cycle detection circuit 33 detects a current (hereinafter, charging current) flowing into the capacitor C1 and the constant voltage element ZD1 of the charging unit 24a.
  • the power cycle detection circuit 33 includes a photocoupler IC1.
  • the primary side light emitting diode of the IC1 At the time of charging, when the charging current of the capacitor C1 is input to the primary side light emitting diode of the IC1, if the input current is equal to or greater than a predetermined threshold, the primary side light emitting diode emits light, and the photocoupler The phototransistor on the secondary side of IC1 receives this light, and the collector-emitter is made conductive (ON).
  • a resistor R3 is connected to the primary side light emitting diode of the photocoupler IC1 in parallel with the capacitor C2, and the voltage across the resistor R3 is clamped to Vf of the IC1.
  • the applied AC voltage is divided by the charging unit 24a (a parallel circuit of the capacitor C1, the constant voltage element ZD1, and the resistor R2) and the detection circuit 33, the current limiting resistor R1, and the rectifying element D1,
  • the voltage across the detection circuit 33 is low, and the voltage across the rectifier element D1 is also small, so that most of the voltage is actually divided between the charging unit 24a and the current limiting resistor R1. It will be. That is, since the power cycle detection circuit 33 is driven by a voltage lower than the voltage rectified by the rectifying element D1, the rating of the component can be set low based on the voltage.
  • FIG. 3 is a graph showing an external input voltage waveform and a power cycle detection signal waveform.
  • the horizontal axis represents time, and the vertical axis represents voltage.
  • the input current (i.e., charging current) of the light emitting diode on the primary side of IC1 changes according to the power supply cycle, and the secondary side phototransistor of IC1 in a section where the input current of the light emitting diode on the primary side of IC1 is equal to or greater than the threshold value.
  • the transistor Q1 is provided so that the output of the power cycle detection circuit (input of the outdoor microcomputer) becomes a high signal when the phototransistor is turned on.
  • Outdoor microcomputer 21 The outdoor microcomputer 21 has a calculation unit 21b that calculates a power cycle. As described above, since the photocoupler IC1 is repeatedly turned on / off once per power cycle, the outdoor microcomputer 21 captures the on / off signal and calculates the power cycle through the calculation unit 21b.
  • the calculation unit 21b calculates the AC power supply cycle by measuring the signal cycle based on the detection signal of the power supply cycle detection circuit 33, but can also calculate the voltage frequency or the power supply voltage phase.
  • the voltage frequency is obtained by calculating the reciprocal of the power cycle.
  • the power supply voltage phase can be estimated from the power supply cycle detection signal by estimating where the rising or falling timing corresponds to the electrical angle (power supply phase) and counting the elapsed time from that timing.
  • the zero cross timing at which the positive / negative of the power supply voltage is reversed can be calculated in the same manner because a specific power supply voltage phase (0 degree, 180 degrees) is obtained.
  • the power supply device 50 can be provided with the power supply cycle detection circuit 33 that also serves as the rectifying element D1 and the current limiting resistor R1 that are already installed in the transmission power supply unit 24, the number of components in the control board on which the power supply device 50 is mounted. In addition, a reduction in mounting area can be realized.
  • the charging unit 24a is charged to a voltage lower than the voltage rectified by the rectifying element D1, and the ratings of the components of the power cycle detection circuit 33 that uses the charging unit 24a are set low based on the voltage. Therefore, the cost can be reduced in the control board on which the power supply device 50 is mounted.
  • the first embodiment describes the power supply device 50 that supplies power to a transmission circuit that transmits and receives transmission signals between the indoor unit 10 and the outdoor unit 20 of the air conditioner.
  • a power supply apparatus that supplies power to a transmission circuit that transmits and receives transmission signals between a use-side unit and a heat-source-side unit of a heat pump water heater is also possible. Useful.
  • the AC power supply cycle / voltage frequency / power supply voltage phase / zero cross timing calculated by the outdoor microcomputer is an inverter device (multiphase current supply circuit) as shown in Patent Literature 2, Patent Literature 4, and Patent Literature 5, It is used for a converter circuit (power supply circuit) as shown in Patent Document 3.
  • an inverter device will be described as an example of a DC load device on which the power supply device according to the present invention is mounted.
  • the inverter device is used, for example, as a device that controls the rotational speed of a fan motor of an air conditioner to a target rotational speed.
  • the inverter apparatus of the motor for compressors which shares the same power supply is connected.
  • FIG. 4 is a circuit block diagram of the inverter device 100 on which the power supply device 150 according to the second embodiment of the present invention is mounted.
  • the inverter device 100 includes a power supply device 150, a fan motor inverter unit 135, a compressor motor inverter unit 137, and a control unit 121.
  • the power supply device 150 includes a fan motor inverter main circuit power supply circuit 124, a current detection unit 133, and a control unit 121.
  • the fan motor inverter main circuit power supply circuit 124 includes a rectification unit D101 and a smoothing capacitor 124a.
  • the fan motor inverter main circuit power supply circuit 124 generates a DC power supply from an AC power supply, and corresponds to the power generation section of [Claims].
  • the rectifying unit D101 is configured in a bridge shape by four diodes D1a, D1b, D2a, and D2b. Specifically, the diodes D1a and D1b and D2a and D2b are respectively connected in series. The cathode terminals of the diodes D1a and D2a are both connected to the plus side terminal of the smoothing capacitor 124a and function as the positive side output terminal of the rectifying unit D101. The anode terminals of the diodes D1b and D2b are both connected to the negative terminal of the smoothing capacitor 124a and function as the negative output terminal of the rectifier D101.
  • connection point of the diode D1a and the diode D1b is connected to one pole of the commercial power supply 90.
  • a connection point between the diode D2a and the diode D2b is connected to the other pole of the commercial power supply 90.
  • the rectifying unit D101 rectifies the AC voltage output from the commercial power supply 90, thereby charging the smoothing capacitor 124a.
  • the smoothing capacitor 124a corresponds to the charging unit described in [Claims], and has one end connected to the positive output terminal of the rectifying unit D101 and the other end connected to the negative output terminal of the rectifying unit D101. .
  • the smoothing capacitor 124a smoothes the voltage rectified by the rectifying unit D101.
  • the voltage after smoothing by the smoothing capacitor 124a is referred to as “smoothed voltage Vfl”.
  • the smoothed voltage Vfl is applied to the fan motor inverter unit 135 connected to the output side of the smoothing capacitor 124a.
  • the current detection unit 133 is connected between the rectification unit D101 and the smoothing capacitor 124a and connected to the positive output terminal side of the smoothing capacitor 124a.
  • the current detection unit 133 corresponds to the detection unit described in [Claims], and detects the charging current flowing into the smoothing capacitor 124a.
  • the current detection unit 133 may adopt the same configuration as that of the power supply cycle detection circuit 33 described in the first embodiment, but is not limited thereto. For example, a shunt resistor and a voltage at both ends of the resistor are used. An amplifier circuit using an operational amplifier to be amplified or a DCCT may be used. The charging current detected by the current detection unit 133 is input to the comparison unit 121a of the control unit 121.
  • a fan motor inverter unit 135 includes a plurality of insulated gate bipolar transistors (hereinafter simply referred to as transistors) Q3a, Q3b, Q4a, Q4b, Q5a, Q5b and a plurality of freewheeling diodes D3a, D3b, D4a, D4b. , D5a, D5b.
  • transistors insulated gate bipolar transistors
  • Transistors Q3a and Q3b, Q4a and Q4b, Q5a and Q5b are connected to each other in series.
  • the transistors are connected in parallel so that the emitter terminal of the transistor and the anode terminal of the diode are connected.
  • Control unit 121 includes a comparison unit 121a, a calculation unit 121b, a fan motor inverter control unit 121c, and a compressor motor inverter control unit 121d.
  • the comparison unit 121a compares the detection voltage output from the current detection unit 133 with the reference voltage, and outputs a signal only in a section higher than the reference voltage.
  • the calculation unit 121b calculates a frequency from the signal period output from the comparison unit 121a. This frequency is the power supply frequency. Similarly, the AC power supply voltage phase is calculated from the signal output from the comparison unit 121a.
  • the comparison unit 121a and the calculation unit 121b constitute a part of the power supply device 150.
  • the compressor motor inverter control unit 121d drives the compressor motor inverter unit 137 by the method described in Patent Document 5, for example, based on the power supply frequency and the power supply voltage phase output from the calculation unit 121b.
  • the operation of the fan motor inverter control unit 121c is not described in detail because it is not necessary in the present embodiment, but it is omitted by turning on and off the transistors Q3a to Q5b at appropriate timing.
  • the drive voltage SU, SV, SW for driving the motor 70 is generated in the unit 135.
  • the AC voltage supplied from the commercial power supply 90 is full-wave rectified by the rectifier D101 and smoothed by the smoothing capacitor C124a.
  • the smoothed voltage Vfl is applied to the fan motor inverter unit 135 connected to the output side of the smoothing capacitor 124a.
  • the current detection unit 133 detects a charging current flowing into the smoothing capacitor 124a.
  • the control unit 121 takes in the detection value output from the current detection unit 133.
  • FIG. 5 is a graph showing a current detection waveform and a waveform for period measurement obtained therefrom.
  • the horizontal axis represents time, and the vertical axis represents voltage.
  • the charging current to the smoothing capacitor 124a flows only during the period when the AC power supply voltage becomes larger than the smoothed voltage Vfl.
  • the current detection waveform in the middle stage of FIG. 5 is a waveform of a detection value acquired from the current detection unit 133.
  • the comparison unit 121a compares the detected value with the reference voltage and generates a signal only in a section higher than the reference voltage.
  • the signal waveform is a waveform after comparison in the lower part of FIG. 5, and this is a waveform for period measurement.
  • the calculation unit 121b measures the period from the interval between the compared waveforms and calculates the frequency from the period. In this case, since the waveform after comparison becomes a signal that repeats High / Low once in a half cycle of the power supply, the power cycle can be measured by measuring the time between every other waveform.
  • the calculation method of the power supply frequency and the power supply voltage phase is the same as in the first embodiment.
  • the current detecting unit 133 that also serves as the rectifying unit D101 that is already provided in the power circuit 124 for the inverter main circuit can be provided.
  • the control board the number of parts and the mounting area can be reduced.
  • the power supply device 150 that supplies power to the inverter unit 135 of the inverter device 100 has been described.
  • application is not limited to the inverter device, and other DC loads may be used. It is also applicable to the device.
  • the switching power supply circuit is used as a power supply circuit for supplying a drive signal (DC voltage) to a control terminal of a switching element of a power conversion device such as an inverter device.
  • FIG. 6 is a circuit block diagram of a switching power supply circuit 200 in which the power supply device according to the third embodiment of the present invention is mounted.
  • the switching power supply circuit 200 includes a power supply device 250, a switching transformer 210, a switching element 212 (for example, IGBT), a controller 213, a primary side smoothing capacitor 224a, secondary side smoothing capacitors C211, C212, C202, and a diode D211, D212 and D202 are connected.
  • the power supply apparatus 250 includes a primary power supply circuit 224 and a current detection unit 233.
  • the primary side power supply circuit 224 includes a primary side smoothing capacitor 224 a, a current detection unit 233, and a part of the control unit 221.
  • Primary side smoothing capacitor 224a One end of the primary side smoothing capacitor 224a is connected to the positive side output terminal of the rectifying unit D201, and the other end is connected to the negative side output terminal of the rectifying unit D201.
  • the primary side smoothing capacitor 224a smoothes the voltage rectified by the rectifying unit D201.
  • the primary side smoothing capacitor 224a corresponds to the charging unit described in [Claims].
  • the smoothed voltage is applied to the input side winding 220 of the switching transformer 210 connected to the output side of the primary side smoothing capacitor 224a.
  • the rectifying unit D201 and the primary side smoothing capacitor 224a constitute the primary side power supply circuit 224 for the input side winding L211 of the switching transformer 210, and correspond to the power generation unit of [Claims].
  • the current detection unit 233 is connected between the rectification unit D201 and the primary side smoothing capacitor 224a and to the positive output terminal side of the primary side smoothing capacitor 224a.
  • the current detection unit 233 corresponds to the detection unit described in [Claims] and detects a charging current flowing into the primary side smoothing capacitor 224a.
  • the current detection unit 233 may adopt the same configuration as that of the power cycle detection circuit 33 described in the first embodiment, but is not limited thereto.
  • the current detection unit 233 uses a shunt resistor and a voltage across the resistor.
  • An amplifier circuit using an operational amplifier to be amplified or a DCCT may be used.
  • the charging current detected by the current detection unit 233 is input to the comparison unit 221a of the control unit 221.
  • Control unit 221 includes a comparison unit 221a, a calculation unit 221b, and a device control unit 221c.
  • the comparison unit 221a compares the detection voltage output from the current detection unit 233 with the reference voltage, and outputs a signal only in a section higher than the reference voltage.
  • the calculating part 221b calculates a frequency from the signal period which the comparison part 221a outputs. This frequency is the power supply frequency.
  • the comparison unit 221a and the calculation unit 221b constitute a part of the power supply device 250.
  • the device control unit 221c drives the compressor motor 75 to the compressor motor inverter unit 137 based on the power supply frequency and the power supply voltage phase output from the calculation unit 221b. Drive voltage is generated (see FIG. 4).
  • This switching induces a voltage corresponding to the turn ratio in each of the plurality of windings L212 and L213 on the output side.
  • the induced voltages are rectified and smoothed through the diodes D211, D212, D202 and the smoothing capacitors C211, C212, C202, respectively, and supplied to the output circuits a, b.
  • the switching power supply circuit 200 can be provided with the current detection unit 233 that also serves as the rectification unit D201 already provided in the primary side power supply circuit 224, control for mounting the switching power supply circuit 200 is provided. In the substrate, the number of parts and the mounting area can be reduced.
  • the power supply device of the present invention is useful for an inverter device or a converter device, and the inverter device or converter device is also useful for a refrigeration device or an air purifier.
  • Air conditioner refrigeration equipment
  • 10 Indoor unit use side unit
  • 20 Outdoor unit outdoor unit (heat source side unit)
  • 21b Calculation unit
  • Transmission power supply unit power generation unit
  • 24a Charging unit 33 Power cycle detection unit (detection unit)
  • Power Supply Device 100
  • Inverter Device 121b Operation Unit
  • Fan Motor Inverter Main Circuit Power Supply Circuit Power Supply Generation Unit
  • 124a Smoothing capacitor Charging part
  • Current detector (detector) 150 power supply device 200 switching power supply circuit 221b arithmetic unit
  • 224 primary side power supply circuit power generation unit
  • 224a Primary side smoothing capacitor Charge part
  • Current detector detector
  • JP 2005-257238 A Japanese Patent Laid-Open No. 2005-20837 Japanese Patent Laid-Open No. 2001-238451 JP 2002-223599 A JP 2006-34070 A

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本発明の課題は、制御基板における部品点数及び実装面積の削減を実現した電源装置を提供することにある。電源装置(50)では、伝送電力供給部(24)に既設されている整流素子(D1)や電流制限抵抗(R1)を兼用した電源周期検出回路(33)を設けることができるので、電源装置(50)を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。また、電源装置(50)では、整流素子(D1)で整流後の電圧よりも低い電圧によって充電部(24a)が充電されるので、充電部(24a)を利用する電源周期検出回路(33)の構成部品の定格をその電圧に基づいて低く設定することができるので、電源装置(50)を搭載する制御基板において、低コスト化を図ることができる。

Description

電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器
 本発明は、電源装置、及びその電源装置を用いた装置に関する。
  従来、空調機のような室内機と室外機との間で通信しながら制御を行う機器においては、特許文献1(特開2005-257238号公報)に記載のように、室内機と室外機との間の伝送回路の電源はAC電源から生成されている。
 また、空調機に限らず、電源周期に同期した制御が必要な場合がある。例えば、モータを駆動するインバータでは、特許文献2(特開2005-20837号公報)、特許文献4(特開2002-223599号公報)、特許文献5(特開2006-34070号公報)に記載のように、また、整流回路では、特許文献3(特開2001-238452号公報)のように、交流電圧の位相角、すなわち電源位相や、交流電圧の正負が反転するゼロクロスのタイミング、電源周波数、電源周期のいずれかの検出回路が必要となる。
 特許文献1のような伝送用電源回路、及び特許文献3に例示されるような検出回路の双方が搭載されている場合、通常はそれぞれ独立したものが設けられており、半波整流を行なうという同一の手段で回路を実現しているにもかかわらず、電流制限抵抗及び整流ダイオードが2回路分実装されているのが実状であり、その分、制御基板における部品点数及び実装面積の増加を招いている。
 本発明の課題は、制御基板における部品点数及び実装面積の削減を実現した電源装置を提供することにある。
 本発明の第1観点に係る電源装置は、電源生成部と、検出部と、演算部とを備えている。電源生成部は、交流電源を整流して充電される充電部を有している。検出部は、充電部へ流れる充電電流を検出する。演算部は、検出部の検出信号に基づいて交流電源の電圧周波数、若しくは周期又は電源電圧位相を算出する。
 従来、交流電源の電圧周波数、若しくは周期又は電源電圧位相を検出する検出回路は独立して設けられていたので、検出回路自体に整流部品を持たせる必要があった。
 この電源装置では、電源生成部に既設されている整流部品を兼用した検出回路を設けることができるので、この電源装置を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。なお、ゼロクロスのタイミングの検出は、特定の電源電圧位相(電気角0度、180度)の検出と言うこともできるため、電源電圧位相検出に含めて考える。
 本発明の第2観点に係る電源装置は、第1観点に係る電源装置であって、電源生成部が、伝送線を介して信号を伝送する伝送用回路に電源を供給する伝送用電源回路であって、整流後の電圧を分圧することによって、整流後の電圧よりも低い電圧を生成する。
 この電源装置では、整流後の電圧よりも低い電圧に充電部が充電されるので、検出部の構成部品の電圧定格をその電圧に基づいて電源電圧相当値よりも低く設定することができ、この電源装置を搭載する制御基板において、低コスト化を図ることができる。
 本発明の第3観点に係る電源装置は、第1観点に係る電源装置であって、電源生成部が、直流負荷に電源を供給する直流負荷用電源回路であって、整流後の電源を直流負荷に供給する。
 本発明の第4観点に係る電源装置は、第1観点に係る電源装置であって、電源生成部が、スイッチング電源回路の一次側の電源回路であって、整流後の電源をスイッチング電源回路の一次側に供給する。
 本発明の第5観点に係る電源装置は、第1観点から第4観点のいずれか1つに係る電源装置であって、電源生成部が、充電部に流れる電流を制限する電流制限抵抗と、電流制限抵抗に直列に接続される整流ダイオードとをさらに有している。
 この電源装置では、例えば、充電部に電流が流れているか否かという事象から電源周期を検出するような回路の場合、流れているタイミングをフォトカプラで検出するだけでよい。かかる場合、既存の電流制限抵抗及び整流ダイオードを利用することができ、部品点数の削減を図ることができる。
 本発明の第6観点に係るインバータ装置は、制御部と、第1観点から第5観点のいずれか1つに係る電源装置とを備えたインバータ装置であって、制御部が、電圧周波数、若しくは周期又は電源電圧位相(ゼロクロスのタイミングを含む)に基づいて交流出力電圧の振幅又は周波数を制御する。
 例えば、電源周波数を制御に用いるようなインバータ装置では、充電部へ流れる充電電流を検出する検出部を備える電源装置を搭載することによって、独立した検出回路を持たせる必要がなくなり、部品点数及び実装面積の削減を実現することができる。
 本発明の第7観点に係るコンバータ装置は、制御部と、第1観点から第5観点のいずれか1つに係る電源装置とを備え、交流電源から直流電源を生成するコンバータ装置であって、制御部が、電圧周波数、若しくは周期又は電源電圧位相(ゼロクロスのタイミングを含む)に基づいて直流出力電圧又は交流電流を制御する。
 例えば、電源電圧位相を制御に用いるようなコンバータ装置では、充電部へ流れる充電電流を検出する検出部を備える電源装置を搭載することによって、独立した検出回路を持たせる必要がなくなり、部品点数及び実装面積の削減を実現することができる。
 本発明の第8観点に係る冷凍装置は、第6観点に係るインバータ装置を備えた冷凍装置である。
 本発明の第9観点に係る空気清浄器は、第6観点に係るインバータ装置を備えた空気清浄器である。
 本発明の第10観点に係る冷凍装置は、第7観点に係るコンバータ装置を備えた冷凍装置である。
 本発明の第11観点に係る空気清浄器は、第7観点に係るコンバータ装置を備えた空気清浄器である。
 本発明の第12観点に係る冷凍装置は、第8観点又は第10観点に係る冷凍装置であって、利用側ユニットと、熱源側ユニットとをさらに備えている。熱源側ユニットは、信号を伝送する伝送線を含む電気配線を介して利用側ユニットと繋がっており、利用側ユニット及び熱源側ユニットに交流電源が供給される。電源装置は、利用側ユニットと熱源側ユニットとの間の伝送用回路の電源装置として使用される。
 この冷凍装置では、利用側ユニットと熱源側ユニットとの間の伝送用回路の電源装置における、既存のコンデンサ、電流制限抵抗及びダイオードを用いて、検出部の一次側信号(すなわち充電電流)を生成することができるので、この電源装置を搭載する制御基板において部品点数及び実装面積の削減を実現することができる。
 本発明の第1観点に係る電源装置では、電源生成部に既設されている整流部品を兼用した検出回路を設けることができるので、この電源装置を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。
 本発明の第2観点に係る電源装置では、整流後の電圧よりも低い電圧に充電部が充電されるので、検出部の構成部品の電圧定格をその電圧に基づいて電源電圧相当値よりも低く設定することができ、この電源装置を搭載する制御基板において、低コスト化を図ることができる。
 本発明の第3観点及び第4観点に係る電源装置では、第1観点と同様の作用・効果が得られる。
 本発明の第5観点に係る電源装置では、例えば、充電部に電流が流れているか否かという事象から電源周期を検出するような回路の場合、流れているタイミングをフォトカプラで検出するだけでよい。かかる場合、既存の電流制限抵抗及び整流ダイオードを利用することができ、部品点数の削減を図ることができる。
 本発明の第6観点に係るインバータ装置では、例えば、電源周波数を制御に用いるような場合、充電部へ流れる充電電流を検出する検出部を備える電源装置を搭載することによって、独立した検出回路を持たせる必要がなくなり、部品点数及び実装面積の削減を実現することができる。
 本発明の第7観点に係るコンバータ装置では、例えば、電源電圧位相を制御に用いるような場合、充電部へ流れる充電電流を検出する検出部を備える電源装置を搭載することによって、独立した検出回路を持たせる必要がなくなり、部品点数及び実装面積の削減を実現することができる。
 本発明の第8観点に係る冷凍装置では、第6観点と同様の作用・効果が得られる。
 本発明の第9観点に係る空気清浄器では、第6観点と同様の作用・効果が得られる。
 本発明の第10観点に係る冷凍装置では、第7観点と同様の作用・効果が得られる。
 本発明の第11観点に係る空気清浄器では、第7観点と同様の作用・効果が得られる。
 本発明の第12観点に係る冷凍装置では、利用側ユニットと熱源側ユニットとの間の伝送用回路の電源回路における既存のコンデンサ、電流制限抵抗及びダイオードを用いて、検出部の一次側信号(すなわち充電電流)を生成することができるので、この電源装置を搭載する制御基板において部品点数及び実装面積の削減を実現することができる。
本発明の第1実施形態に係る電源装置を備えた空気調和機の構成図。 電源装置の回路ブロック図。 外部入力電圧波形と電源周期検出信号波形とを示すグラフ。 本発明の第2実施形態の電源装置が搭載されたインバータ装置の回路ブロック図。 電流検出波形を示すグラフ。 本発明の第3実施形態に係る電源装置が搭載されたスイッチング電源回路の回路ブロック図。
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 <第1実施形態>
 (1)空気調和機1の全体構成
 図1は、本発明の第1実施形態に係る電源装置50を備えた空気調和機1の構成図である。図1において、空気調和機1は室内機10、室外機20、信号ラインS、高圧側第1電源ラインACL1及び基準側第1電源ラインACN1を備えている。
 信号ラインSは、室内機10と室外機20との間で伝送信号を送受信するために設けられている。高圧側第1電源ラインACL1及び基準側第1電源ラインACN1は、室内機10と室外機20とに接続されており、室外機20で外部から受けた電力を室内機10及び室外機20に供給する。
 なお、以下の説明においては主に運転時の最小限の動作を示すにとどめ、電源投入時や待機時(待機状態からの復帰を含む)の動作については、特許文献1に示すものと同様なため、その詳細な記述は省略する。
 (2)室外機20
 室外機20は、主電力供給部26、主電力供給ラインLAC、信号ラインS、高圧側第1電源ラインACL1、高圧側第2電源ラインACL2、高圧側第3電源ラインACL3、基準側第1電源ラインACN1、基準側第2電源ラインACN2、基準側第3電源ラインACN3、電源装置50、起動電力供給部22、室外駆動電力供給部23、室外マイコン21、メーク接点MRM10、メーク接点MRM20、メーク接点MRM11、切換接点MR30、EMIフィルタLC1及び室外送受信部25を備えている。
 (2-1)主電力供給部26
 主電力供給部26は、電力供給を外部(例えば商用電源)から受けて、主電力供給ラインLACと高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とを介して主電力を供給する。
 (2-2)室外駆動電力供給部23
 室外駆動電力供給部23は、主電力供給ラインLACと高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とEMIフィルタLC1と高圧側第2電源ラインACL2及び基準側第2電源ラインACN2とを介して主電力の供給を受ける。
 室外駆動電力供給部23は、室外駆動電力を生成して、高圧側第2電源ラインACL2及び基準側第2電源ラインACN2を介して室外駆動電力を供給する。ここで、室外駆動電力は、室外機器(例えば、モータ、圧縮機、アクチュエータなど)を駆動させるための電力であり、具体的な室外機器としては、特許文献2、特許文献4、特許文献5に示すようなインバータ(多相電流供給回路)であっても良いし、特許文献3に示すようなコンバータ回路(電源回路)を含んでも良い。
 (2-3)EMIフィルタLC1
 EMIフィルタLC1は、高圧側第1電源ラインACL1及び基準側第1電源ラインACN1と高圧側第2電源ラインACL2及び基準側第2電源ラインACN2とに接続され、第1雑音を低減する。
 ここで、第1雑音は、室外駆動電力供給部23及び室外機器が発生した雑音である。EMIフィルタLC1を設けることにより、高圧側第2電源ラインACL2及び基準側第2電源ラインACN2から高圧側第1電源ラインACL1及び基準側第1電源ラインACN1へ伝達する雑音が低減される。
 (2-4)電源装置50
 電源装置50は、運転状態において、主電力供給ラインLACと高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とEMIフィルタLC1と高圧側第2電源ラインACL2と切換接点MR30と高圧側第3電源ラインACL3とを介して主電力の供給を受け、伝送電力を生成して、信号ラインSを介して伝送電力を供給する。ここで、伝送電力は、室内機10との間で信号ラインSを介して伝送信号を送受信するための直流電力である。
 (2-5)室外マイコン21
 室外マイコン21は、室外機器を制御すると共に、前述の室外機20内部にあるメーク接点を制御する。室外マイコン21は、起動されたことに基づいて、後述のメーク接点MRM10,メーク接点MRM20及びメーク接点MRM11による遮断を解除する。
 (2-6)起動電力供給部22
 起動電力供給部22は、運転状態において、主電力供給ラインLACと高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とEMIフィルタLC1と高圧側第2電源ラインACL2及び基準側第2電源ラインACN2と高圧側第3電源ラインACL3とを介して主電力の供給を受ける。
 起動電力供給部22は、室外マイコン21を待機状態から起動させるための起動電力を生成して、起動電力を室外マイコン21へ供給する。具体的には、起動電力供給部22は、待機状態から運転状態に切り替わる際に、高圧側第1電源ラインACL1と後述の室内機10内のMR10と信号ラインSと切換接点MR30と高圧側第3電源ラインACL3と基準側第2電源ラインACN2とEMIフィルタLC1と基準側第1電源ラインACN1とを介して主電力の供給を受ける。これにより、起動電力供給部22が、起動電力を室外マイコン21へ供給して室外マイコン21を起動する。
 (2-7)切換接点MR30
 切換接点MR30は、信号ラインS及び高圧側第2電源ラインACL2と高圧側第3電源ラインACL3との間に設けられ、待機状態において信号ラインS側に接続され、主電力供給部26から起動電力供給部22への主電力の供給を遮断する。
 切換接点MR30は、待機状態から運転状態に切り替わった後で信号ラインS側から高圧側第2電源ラインACL2側に切り換えられ、主電力供給部26から電源装置50への主電力の供給の遮断を解除する。
 (2-8)メーク接点MRM10、メーク接点MRM20、メーク接点MRM11
 メーク接点MRM10及びメーク接点MRM20は、高圧側第2電源ラインACL2上に設けられ、メーク接点MRM11は、基準側第2電源ラインACN2上に設けられている。
 メーク接点MRM10,メーク接点MRM20及びメーク接点MRM11は、待機状態において、主電力供給部26から室外駆動電力供給部23への主電力の供給を遮断する。
 室外マイコン21は、起動されたことに基づいて、メーク接点MRM10,メーク接点MRM20及びメーク接点MRM11による遮断を解除する。
 (2-9)室外送受信部25
 室外送受信部25は、運転状態において、信号ラインSを介して室内機10から送信された信号を受信する。あるいは、室外送受信部25は、運転状態において、信号ラインSを介して室内機10へ信号を送信する。
 (3)室内機10
 室内機10は、指令電力供給部11、信号ラインS、高圧側第1電源ラインACL1、基準側第1電源ラインACN1、室内マイコン12、メーク接点MR10及び室内送受信部15を備えている。
 (3-1)指令電力供給部11
 指令電力供給部11は、主電力供給部26から主電力供給ラインLACと高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とを介して主電力の供給を受ける。
 指令電力供給部11は、指令電力を生成して室内マイコン12に供給する。ここで、指令電力は、リモコンの指令など外部からの指令を受け付けるための電力である。
 (3-2)室内送受信部15
 室内送受信部15は、運転状態において、信号ラインSを介して室外機20から送信された信号を受信する。あるいは、室内送受信部15は、運転状態において、信号ラインSを介して室外機20へ信号を送信する。
 (3-3)室内マイコン12
 室内マイコン12は、アクチュエータやセンサなどの室内機器を制御すると共に、メーク接点MR10を制御する。また、リモコンの指令など外部からの指令を受け付ける。
 (3-4)メーク接点MR10
 メーク接点MR10は、高圧側第1電源ラインACL1と信号ラインの間に設けられる。
 メーク接点MR10は、待機状態において外部からの指令を受け付けた場合に、室内マイコン12によって接続状態とされ、信号ラインを介して室外機と接続されて室外機へ電源供給を行なう。室外機の電源装置50により伝送電力が生成されるようになったら、メーク接点MR10は室内マイコン12によって遮断状態とされる。
 (4)電源装置50の構成
 電源装置50は、伝送電力供給部24、電源周期検出回路33及び室外マイコン21の一部によって構成されている。
 (4-1)伝送電力供給部24の詳細構成
 図2は、伝送電力供給部24及び電源周期検出回路33の回路ブロック図である。図2において、伝送電力供給部24は、[特許請求の範囲]に記載の電源生成部に該当する。伝送電力供給部24は、少なくとも整流素子D1、定電圧素子ZD1及び平滑コンデンサC1を有している。
 前述のように高圧側第1電源ラインACL1及び基準側第1電源ラインACN1とEMIフィルタLC1と高圧側第2電源ラインACL2及び基準側第2電源ラインACN2と切換接点MR30と高圧側第3電源ラインACL3とを介して供給された主電力は、整流素子D1で交流電力から直流電力へ変換され、平滑コンデンサC1を充電する。
 また、伝送電力供給部24は、平滑コンデンサC1の充電時に流入する電流を制限する電流制限抵抗R1をさらに有している。電流制限抵抗R1は、整流素子D1と直列に接続されている。
 整流素子D1で整流された直流電力は、充電部24aにおいて平滑コンデンサC1により平滑化される。平滑コンデンサC1と並列に、定電圧素子ZD1と抵抗R2が並列に接続され、整流平滑化された直流電力は、定電圧素子ZD1で一定値以上に上昇しないように調整される。充電部24aへの充電が行なわれるのは、高圧側第1電源ラインACL1の方が基準側第1電源ラインACN1よりも電圧が高く、かつ、平滑コンデンサC1の電圧(すなわち定電圧素子ZD1の降伏電圧)よりも高い場合である。調整後の直流電力は、伝送電力として、信号ラインSを介して室外送受信部25及び室内送受信部15に供給される。
 伝送電力供給部24の基準側は、EMIフィルタLC1をバイパスして、基準側第1電源ラインACN1に接続されている。
 (4-2)電源周期検出回路33の詳細構成
 図2において、電源周期検出回路33は、[特許請求の範囲]に記載の検出部に該当する。電源周期検出回路33は、充電部24aのコンデンサC1及び定電圧素子ZD1に流入する電流(以下、充電電流)を検出する。電源周期検出回路33は、フォトカプラIC1を有している。
 充電時において、コンデンサC1の充電電流がIC1の1次側の発光ダイオードに入力されると、入力された電流が所定の閾値以上であれば、1次側の発光ダイオードが発光して、フォトカプラIC1の2次側のフォトトランジスタがこれを受光してそのコレクタ・エミッタ間が導通(オン)する。フォトカプラIC1の1次側発光ダイオードには、コンデンサC2と並列に抵抗R3が接続されており、抵抗R3の両端電圧はIC1のVfにクランプされる。充電時において、印加された交流電圧は、充電部24a(コンデンサC1、定電圧素子ZD1、抵抗R2の並列回路)と検出回路33、電流制限抵抗R1、整流素子D1とで分圧されるが、前述のように検出回路33の両端電圧は低く、また整流素子D1がオンしている際の両端電圧も小さいため、実際には充電部24aと電流制限抵抗R1にほとんどの電圧が分圧されることになる。つまり、整流素子D1で整流後の電圧よりも低い電圧によって電源周期検出回路33は駆動されるので、その構成部品の定格をその電圧に基づいて低く設定することができる。
 図3は、外部入力電圧波形と電源周期検出信号波形とを示すグラフである。図3において、横軸が時間、縦軸は電圧を示す。IC1の1次側の発光ダイオードの入力電流(すなわち充電電流)は電源周期に従って変化しており、IC1の1次側の発光ダイオードの入力電流が閾値以上となる区間でIC1の2次側フォトトランジスタのコレクタ・エミッタ間がオンする。それゆえ、1次側の発光ダイオードが発光してフォトトランジスタのコレクタ・エミッタ間がオンする周期は電源周期と一致する。なお、ここでは図2のようにトランジスタQ1を設け、フォトトランジスタのオン時に電源周期検出回路の出力(室外マイコンの入力)がHigh信号となるようにしている。
 (4-3)室外マイコン21
 室外マイコン21は、電源周期を算出する演算部21bを有している。上記の通り、フォトカプラIC1は電源の1周期に1回の割合でオン/オフを繰り返すので、そのオン/オフ信号を室外マイコン21が取り込んで、演算部21bを介して電源周期を算出する。
 演算部21bは、電源周期検出回路33の検出信号に基づいて、その信号周期を測定することで交流電源の周期を算出するが、電圧周波数、又は電源電圧位相を算出することも可能である。例えば電圧周波数は、電源周期の逆数を算出することで求められる。また、電源電圧位相は、電源周期検出信号から、その立ち上がりもしくは立ち下がりのタイミングが電気角(電源位相)のどこに相当するかを推測し、そのタイミングからの経過時間をカウントすることで推定できる。更に、電源電圧の正負が反転するゼロクロスのタイミングも、特定の電源電圧位相(0度、180度)を求めることになるため、同様に算出することが可能である。
 (5)第1実施形態の特徴
 (5-1)
 電源装置50では、伝送電力供給部24に既設されている整流素子D1や電流制限抵抗R1を兼用した電源周期検出回路33を設けることができるので、電源装置50を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。
 (5-2)
 電源装置50では、整流素子D1で整流後の電圧よりも低い電圧に充電部24aが充電され、充電部24aを利用する電源周期検出回路33の構成部品の定格をその電圧に基づいて低く設定することができるので、電源装置50を搭載する制御基板において、低コスト化を図ることができる。
 (6)その他
 第1実施形態では、空気調和機の室内機10と室外機20との間で伝送信号を送受信する伝送回路に電源を供給する電源装置50について説明しているが、空気調和機のみに適用が限定されるものではなく、他の冷凍装置、例えば、ヒートポンプ式給湯機の利用側ユニットと熱源側ユニットとの間で伝送信号を送受信する伝送回路に電源を供給する電源装置としても有用である。
 また、室外マイコンで算出した交流電源の周期/電圧周波数/電源電圧位相/ゼロクロスタイミングは、特許文献2、特許文献4、特許文献5で示されるようなインバータ装置(多相電流供給回路)や、特許文献3で示されるようなコンバータ回路(電源回路)などに用いられる。
 <第2実施形態>
 ここでは、本発明に係る電源装置が搭載された直流負荷装置の一例として、インバータ装置について説明する。インバータ装置は、例えば、空気調和機のファンモータの回転数を目標回転数に制御する装置として利用されている。また、同じ電源を共用する圧縮機用モータのインバータ装置が接続されている。
 (1)インバータ装置100
 図4は、本発明の第2実施形態の電源装置150が搭載されたインバータ装置100の回路ブロック図である。図4において、インバータ装置100は、電源装置150、ファンモータ用インバータ部135、圧縮機モータ用インバータ部137及び制御部121を備えている。
 (1-1)電源装置150
 電源装置150は、ファンモータ用インバータ主回路用電源回路124、電流検出部133及び制御部121の一部で構成されている。
 (1-1-1)インバータ主回路用電源回路124
 ファンモータ用インバータ主回路用電源回路124は、整流部D101、及び平滑コンデンサ124aを含んでいる。ファンモータ用インバータ主回路用電源回路124は、交流電源から直流電源を生成するものであり、[特許請求の範囲]の電源生成部に該当する。
 (1-1-1-1)整流部D101
 整流部D101は、4つのダイオードD1a,D1b,D2a,D2bによってブリッジ状に構成されている。具体的には、ダイオードD1aとD1b、D2aとD2bは、それぞれ互いに直列に接続されている。ダイオードD1a,D2aの各カソード端子は、共に平滑コンデンサ124aのプラス側端子に接続されており、整流部D101の正側出力端子として機能する。ダイオードD1b,D2bの各アノード端子は、共に平滑コンデンサ124aのマイナス側端子に接続されており、整流部D101の負側出力端子として機能する。
 ダイオードD1a及びダイオードD1bの接続点は、商用電源90の一方の極に接続されている。ダイオードD2a及びダイオードD2bの接続点は、商用電源90の他方の極に接続されている。整流部D101は、商用電源90から出力される交流電圧を整流し、これにより平滑コンデンサ124aが充電される。
 (1-1-1-2)平滑コンデンサ124a
 平滑コンデンサ124aは、[特許請求の範囲]に記載の充電部に該当し、一端が整流部D101の正側出力端子に接続され、他端が整流部D101の負側出力端子に接続されている。平滑コンデンサ124aは、整流部D101によって整流された電圧を平滑する。以下、説明の便宜上、平滑コンデンサ124aによる平滑後の電圧を“平滑後電圧Vfl”という。
 平滑後電圧Vflは、平滑コンデンサ124aの出力側に接続されるファンモータ用インバータ部135へ印加される。
 (1-1-2)電流検出部133
 電流検出部133は、整流部D101と平滑コンデンサ124aとの間であって、かつ平滑コンデンサ124aの正側出力端子側に接続されている。電流検出部133は、[特許請求の範囲]に記載の検出部に該当し、平滑コンデンサ124aに流入する充電電流を検出する。
 電流検出部133は、第1実施形態で説明した電源周期検出回路33の同様の構成を採用してもよいが、それに限定されるものではなく、例えば、シャント抵抗及び該抵抗の両端の電圧を増幅させるオペアンプを用いた増幅回路やDCCTで構成されてもよい。電流検出部133によって検出された充電電流は、制御部121の比較部121aに入力される。
 (1-2)ファンモータ用インバータ部135及び圧縮機モータ用インバータ部137
 ファンモータ用インバータ部135は、平滑コンデンサ124aの出力側に接続される。図1において、ファンモータ用インバータ部135は、複数の絶縁ゲート型バイポーラトランジスタ(以下、単にトランジスタという)Q3a,Q3b,Q4a,Q4b,Q5a,Q5b及び複数の還流用ダイオードD3a,D3b,D4a,D4b,D5a,D5bを含む。
 トランジスタQ3aとQ3b、Q4aとQ4b、Q5aとQ5bは、それぞれ互いに直列に接続されており、各ダイオードD3a~D5bは、各トランジスタQ3a~Q5bに、トランジスタのコレクタ端子とダイオードのカソード端子が、また、トランジスタのエミッタ端子とダイオードのアノード端子が接続されるよう、並列接続されている。
 圧縮機モータ用インバータ部137の基本構成はファンモータ用インバータ部135と同様であるので、ファンモータ用インバータ部135の構成要素と同じ符号で且つ右上に「´」を付した符号(例えば、Q3a´等)を付与して、詳細な説明を省略する。
 (1-3)制御部121
 制御部121は、比較部121a、演算部121b、ファンモータ用インバータ制御部121c、及び圧縮機モータ用インバータ制御部121dを有している。
 比較部121aは、電流検出部133が出力する検出電圧と基準電圧とを比較して、基準電圧より高い区間のみ信号を出力する。
 演算部121bは、比較部121aが出力する信号周期から周波数を算出する。この周波数が電源周波数である。また、同様に比較部121aが出力する信号から、交流電源電圧位相を算出する。
 比較部121a及び演算部121bは、電源装置150の一部を構成する。
 圧縮機モータ用インバータ制御部121dは、演算部121bが出力する電源周波数と電源電圧位相に基づき、例えば特許文献5に記載されている方法で圧縮機モータ用インバータ部137を駆動する。ファンモータ用インバータ制御部121cの動作については、本実施例での詳細な説明は不要なため省略するが、適切なタイミングで各トランジスタQ3a~Q5bがオン及びオフを行うことによって、ファンモータ用インバータ部135にモータ70を駆動する駆動電圧SU,SV,SWを生成させる。
 (2)動作
 商用電源90から供給される交流電圧は整流部D101で全波整流され、平滑コンデンサC124aで平滑される。平滑後電圧Vflは、平滑コンデンサ124aの出力側に接続されるファンモータ用インバータ部135へ印加される。電流検出部133は平滑コンデンサ124aに流入する充電電流を検出する。制御部121は、電流検出部133が出力する検出値を取り込む。
 図5は、電流検出波形と、それより求めた周期測定用波形を示すグラフである。図5において、横軸が時間、縦軸は電圧を示す。交流電源電圧が平滑後電圧Vflより大きくなる期間のみ、平滑コンデンサ124aへの充電電流が流れる。図5中段の電流検出波形は、電流検出部133から取り込んだ検出値の波形である。比較部121aは、検出値と基準電圧とを比較し基準電圧より高い区間でのみ信号を生成する。当該信号波形が、図5下段の比較後波形であり、これが周期測定用波形となる。
 演算部121bは、比較後波形間の間隔から周期を測定し、その周期から周波数を演算する。この場合、比較後波形は電源半周期に1回High/Lowを繰り返す信号となるため、1つおきの波形間の時間を測定することにより、電源周期の測定を行なうことができる。電源周波数や電源電圧位相の算出方法については、第1実施形態と同様である。
 (3)第2実施形態の特徴
 インバータ装置100では、インバータ主回路用電源回路124に既設されている整流部D101を兼用した電流検出部133を設けることができるので、このインバータ装置100を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。
 (4)その他
 第2実施形態では、インバータ装置100のインバータ部135に電源を供給する電源装置150について説明しているが、インバータ装置にのみに適用が限定されるものではなく、他の直流負荷装置にも適用可能である。
 <第3実施形態>
 ここでは、本発明に係る電源装置が搭載されたスイッチング電源回路について説明する。スイッチング電源回路は、例えばインバータ装置のような電力変換装置のスイッチング素子の制御端子に駆動信号(直流電圧)を与えるための電源回路として利用されている。
 (1)スイッチング電源回路200
 図6は、本発明の第3実施形態に係る電源装置が搭載されたスイッチング電源回路200の回路ブロック図である。図6において、スイッチング電源回路200は、電源装置250、スイッチングトランス210、スイッチング素子212(例えばIGBT)、コントローラ213、一次側平滑コンデンサ224a、二次側平滑コンデンサC211,C212,C202及び、ダイオードD211,D212,D202を接続して構成されている。
 (1-1)電源装置250
 電源装置250は、一次側電源回路224及び電流検出部233を含んでいる。
 (1-1-1)一次側電源回路224
 一次側電源回路224は、一次側平滑コンデンサ224a、電流検出部233、及び制御部221の一部で構成されている。
 (1-1-1-1)一次側平滑コンデンサ224a
 一次側平滑コンデンサ224aは、一端が整流部D201の正側出力端子に接続され、他端が整流部D201の負側出力端子に接続されている。一次側平滑コンデンサ224aは、整流部D201によって整流された電圧を平滑する。一次側平滑コンデンサ224aは、[特許請求の範囲]に記載の充電部に該当する。 平滑後電圧は、一次側平滑コンデンサ224aの出力側に接続されるスイッチングトランス210の入力側巻線220に印加される。
 言い換えれば、整流部D201、及び一次側平滑コンデンサ224aは、スイッチングトランス210の入力側巻線L211に対する一次側電源回路224を構成しており、[特許請求の範囲]の電源生成部に該当する。
 (1-1-1-2)電流検出部233
 電流検出部233は、整流部D201と一次側平滑コンデンサ224aとの間であって、かつ一次側平滑コンデンサ224aの正側出力端子側に接続されている。電流検出部233は、[特許請求の範囲]に記載の検出部に該当し、一次側平滑コンデンサ224aに流入する充電電流を検出する。
 電流検出部233は、第1実施形態で説明した電源周期検出回路33の同様の構成を採用してもよいが、それに限定されるものではなく、例えば、シャント抵抗及び該抵抗の両端の電圧を増幅させるオペアンプを用いた増幅回路やDCCTで構成されてもよい。電流検出部233によって検出された充電電流は、制御部221の比較部221aに入力される。
 (1-2)制御部221
 制御部221は、比較部221a、演算部221b及び機器制御部221cを有している。
 比較部221aは、電流検出部233が出力する検出電圧と基準電圧とを比較して、基準電圧より高い区間のみ信号を出力する。
 演算部221bは、比較部221aが出力する信号周期から周波数を算出する。この周波数が電源周波数である。
 比較部221a及び演算部221bは、電源装置250の一部を構成する。
 機器制御部221cは、例えば、機器が第2実施形態のインバータ装置100の場合、演算部221bが出力する電源周波数と電源電圧位相に基づき、圧縮機モータ用インバータ部137に圧縮機モータ75を駆動する駆動電圧を生成させる(図4参照)。
 (2)スイッチング電源回路200の動作
 商用電源90から供給される交流電圧は整流部D201で全波整流され、平滑コンデンサC224aで平滑される。平滑された電圧により、スイッチング素子212を介して、スイッチングトランス210の入力側巻線L211に電流が流れる。スイッチング素子212は、コントローラ213によってPWM制御され、高周波スイッチングを行う。
 このスイッチングによって出力側の複数の巻線L212,L213にそれぞれ巻数比に応じた電圧が誘起される。誘起された電圧は、それぞれ、ダイオードD211,D212,D202及び平滑コンデンサC211,C212,C202を介して整流・平滑され、出力回路a,bに供給される。
 (3)第3実施形態の特徴
 スイッチング電源回路200では、一次側電源回路224に既設されている整流部D201を兼用した電流検出部233を設けることができるので、スイッチング電源回路200を搭載する制御基板において、部品点数及び実装面積の削減を実現することができる。
 本発明の電源装置はインバータ装置又はコンバータ装置に有用であり、そのインバータ装置又はコンバータ装置はさらに冷凍装置又は空気清浄器にも有用である。
1      空気調和機(冷凍装置)
10     室内機(利用側ユニット)
20     室外機(熱源側ユニット)
21b    演算部
24     伝送電力供給部(電源生成部)
24a    充電部
33     電源周期検出部(検出部)
50     電源装置
100    インバータ装置
121b   演算部
124    ファンモータ用インバータ主回路用電源回路(電源生成部)
124a   平滑コンデンサ(充電部)
133    電流検出部(検出部)
150    電源装置
200    スイッチング電源回路
221b   演算部
224    一次側電源回路(電源生成部)
224a   一次側平滑コンデンサ(充電部)
233    電流検出部(検出部)
250    電源装置
特開2005-257238号公報 特開2005- 20837号公報 特開2001-238452号公報 特開2002-223599号公報 特開2006- 34070号公報

Claims (12)

  1.  交流電源を整流して充電される充電部(24a,124a,224a)を有する電源生成部(24,124,224)と、
     前記充電部(24a,124a,224a)へ流れる充電電流を検出する検出部(33,133,233)と、
     前記検出部(33,133,233)の検出信号に基づいて前記交流電源の電圧周波数、若しくは周期又は電源電圧位相を算出する演算部(21b,121b,221b)と、
    を備えた、
    電源装置。
  2.  前記電源生成部(24)は、伝送線を介して信号を伝送する伝送用回路に電源を供給する伝送用電源回路であって、整流後の電圧を分圧することによって、前記整流後の電圧よりも低い電圧を生成する、
    請求項1に記載の電源装置。
  3.  前記電源生成部(124)は、直流負荷に電源を供給する直流負荷用電源回路であって、整流後の電源を前記直流負荷に供給する、
    請求項1に記載の電源装置。
  4.  前記電源生成部(224)は、スイッチング電源回路の一次側の電源回路であって、整流後の電源を前記一次側に供給する、
    請求項1に記載の電源装置。
  5.  前記電源生成部(24)は、
     前記充電部(24a)に流れる電流を制限する電流制限抵抗(R1)と、
     前記電流制限抵抗(R1)と直列に接続される整流ダイオード(D1)と、
    をさらに有する、
    請求項1に記載の電源装置。
  6.  制御部と、請求項1から請求項5のいずれか1項に記載の電源装置とを備えたインバータ装置であって、
     前記制御部は、前記電圧周波数、若しくは前記周期又は前記電源電圧位相に基づいて交流出力電圧の振幅又は周波数を制御する、
    インバータ装置。
  7.  制御部と、請求項1から請求項5のいずれか1項に記載の電源装置とを備え、交流電源から直流電源を生成するコンバータ装置であって、
     前記制御部は、前記電圧周波数、若しくは前記周期又は前記電源電圧位相に基づいて直流出力電圧又は交流電流を制御する、
    コンバータ装置。
  8.  請求項6に記載のインバータ装置を備えた冷凍装置。
  9.  請求項6に記載のインバータ装置を備えた空気清浄器。
  10.  請求項7に記載のコンバータ装置を備えた冷凍装置。
  11.  請求項7に記載のコンバータ装置を備えた空気清浄器。
  12.  利用側ユニットと、
     信号を伝送する伝送線を含む電気配線を介して前記利用側ユニットと繋がる熱源側ユニットと、
    をさらに備え、
     前記利用側ユニット及び前記熱源側ユニットに交流電源が供給され、
     前記電源装置は、前記利用側ユニットと前記熱源側ユニットとの間の伝送用回路の電源装置として使用される、
    請求項8又は請求項10に記載の冷凍装置。
PCT/JP2016/088396 2015-12-28 2016-12-22 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器 WO2017115720A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP16881695.7A EP3399637B1 (en) 2015-12-28 2016-12-22 Power supply device, inverter device and converter device employing said power supply device, and refrigeration device and air cleaner employing said inverter device or converter device
AU2016380319A AU2016380319B2 (en) 2015-12-28 2016-12-22 Power supply device, inverter device and converter device using the power supply device, and refrigeration device and air cleaner using the inverter device or the converter device.
BR112018011693-9A BR112018011693B1 (pt) 2015-12-28 2016-12-22 Dispositivo de fornecimento de energia, dispositivo de inversão, dispositivo de conversão, dispositivo de refrigeração e purificador de ar
ES16881695T ES2919348T3 (es) 2015-12-28 2016-12-22 Dispositivo de suministro de potencia, dispositivo inversor y dispositivo convertidor que emplea dicho dispositivo de suministro de potencia, y dispositivo de refrigeración y filtro de aire que emplea dicho dispositivo inversor o dispositivo convertidor
CN201680076535.4A CN108475994B (zh) 2015-12-28 2016-12-22 电源装置、使用了该电源装置的逆变器装置和转换器装置、以及使用了该逆变器装置或转换器装置的冷冻装置和空气净化器
MYPI2018000998A MY186872A (en) 2015-12-28 2016-12-22 Power supply device, inverter device and converter device using the power supply device, and refrigeration device and air cleaner using the inverter device or the converter device
US16/022,270 US10985670B2 (en) 2015-12-28 2018-06-28 Power supply device having charging current detection, inverter device and converter device using the power supply device, and refrigeration device and air cleaner using the inverter device or the convertor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-257014 2015-12-28
JP2015257014A JP6128201B1 (ja) 2015-12-28 2015-12-28 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/022,270 Continuation US10985670B2 (en) 2015-12-28 2018-06-28 Power supply device having charging current detection, inverter device and converter device using the power supply device, and refrigeration device and air cleaner using the inverter device or the convertor device

Publications (1)

Publication Number Publication Date
WO2017115720A1 true WO2017115720A1 (ja) 2017-07-06

Family

ID=58714811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088396 WO2017115720A1 (ja) 2015-12-28 2016-12-22 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器

Country Status (9)

Country Link
US (1) US10985670B2 (ja)
EP (1) EP3399637B1 (ja)
JP (1) JP6128201B1 (ja)
CN (1) CN108475994B (ja)
AU (1) AU2016380319B2 (ja)
BR (1) BR112018011693B1 (ja)
ES (1) ES2919348T3 (ja)
MY (1) MY186872A (ja)
WO (1) WO2017115720A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305090B1 (ko) * 2020-04-09 2021-09-27 주식회사 천우이엔지 Ac dc 겸용 냉방장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033664A (ja) * 1989-05-30 1991-01-09 Mitsubishi Heavy Ind Ltd 電力変換器の制御装置
JP2005257238A (ja) * 2004-03-15 2005-09-22 Daikin Ind Ltd 空気調和機及び制御方法
US20140125247A1 (en) * 2011-04-29 2014-05-08 Tridonic Gmbh & Co Kg Operating device for a lamp having a power correction circuit

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA912109A (en) * 1970-04-14 1972-10-10 Canadian General Electric Company Limited Inverter starting circuit
JPS5680929A (en) * 1979-12-04 1981-07-02 Nippon Gakki Seizo Kk Triggering circuit for two-way thyristor such as triac
KR910005459B1 (ko) * 1987-04-10 1991-07-29 미쓰비시전기 주식회사 인버터의 이상검출장치
GB2219449B (en) * 1988-05-31 1992-12-09 Toshiba Kk Air conditioning system having voltage drop countermeasure battery
JPH04355673A (ja) * 1991-05-31 1992-12-09 Toshiba Corp 冷凍機のインバータの制御装置
DE69529710T2 (de) * 1994-07-01 2003-10-09 Sharp Kk Klimaanlage
US6101108A (en) * 1997-06-06 2000-08-08 Technical Witts, Inc. Regulated input current, regulated output voltage power converter
US6181583B1 (en) * 1999-01-19 2001-01-30 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
JP2001238452A (ja) 2000-02-23 2001-08-31 Matsushita Electric Ind Co Ltd コンバータ回路
AU753916C (en) * 2000-05-23 2005-12-22 Mitsubishi Denki Kabushiki Kaisha Control circuit for an air conditioner
JP4718041B2 (ja) 2000-11-22 2011-07-06 ダイキン工業株式会社 インバータ制御方法およびその装置
JP4439846B2 (ja) 2003-06-24 2010-03-24 高橋 祐子 多相電流供給回路
JP4029853B2 (ja) * 2004-03-23 2008-01-09 サンケン電気株式会社 スイッチング電源装置
JP4682551B2 (ja) 2004-07-21 2011-05-11 ダイキン工業株式会社 モータの制御方法及びモータの制御装置
EP1835593A4 (en) * 2005-01-06 2014-05-14 Nec Corp MOBILE TELEPHONE TERMINAL CHARGER AND CHARGER METHOD
US7940535B2 (en) * 2005-12-14 2011-05-10 Sharp Kabushiki Kaisha Discharge lamp lighting device for lighting discharge lamps
JP4210868B2 (ja) * 2007-06-15 2009-01-21 サンケン電気株式会社 スイッチング電源装置
US7791847B2 (en) * 2007-12-28 2010-09-07 Delta Electronics, Inc. Fault-sensing and protecting apparatus for soft start circuit of inverter and method for the same
JP2009177954A (ja) * 2008-01-24 2009-08-06 Sanken Electric Co Ltd 力率改善コンバータ
WO2010013344A1 (ja) * 2008-08-01 2010-02-04 三菱電機株式会社 交流直流変換装置、交流直流変換装置の制御方法、電動機駆動装置、圧縮機駆動装置、空気調和機、ヒートポンプ式給湯機
KR101527966B1 (ko) * 2008-09-02 2015-06-17 페어차일드코리아반도체 주식회사 스위치 모드 전력 공급 장치 및 그 구동 방법
US8218338B2 (en) * 2008-12-26 2012-07-10 Acbel Polytech Inc. High efficiency universal input switching power supply
GB201006395D0 (en) * 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
US10439508B2 (en) * 2010-07-27 2019-10-08 Stmicroelectronics S.R.L. Control device of a switching power supply
US9391521B2 (en) * 2010-07-28 2016-07-12 Mitsubishi Electric Corporation Chopper apparatus
JP5007764B2 (ja) * 2010-09-22 2012-08-22 ダイキン工業株式会社 モータ駆動システム及びモータシステム
JP5122622B2 (ja) * 2010-09-24 2013-01-16 シャープ株式会社 スイッチング電源装置
JP2012137914A (ja) * 2010-12-27 2012-07-19 Canon Inc ゼロクロス検知回路
JP5838554B2 (ja) * 2011-01-18 2016-01-06 ダイキン工業株式会社 電力変換装置
CN102255317B (zh) * 2011-06-28 2013-04-17 六安天时节能科技服务有限公司 地震报警家庭电子节电器
CN102346216A (zh) * 2011-08-17 2012-02-08 佛山市中格威电子有限公司 一种利用线性光耦实现交流电过零信号精确测量的电路
KR101276582B1 (ko) * 2011-12-27 2013-06-19 전자부품연구원 전원 공급 회로를 가지는 인버터 장치
JP5538656B2 (ja) * 2012-01-12 2014-07-02 オリジン電気株式会社 コンデンサ式溶接機及びその充電方法
JP5472333B2 (ja) * 2012-01-26 2014-04-16 ダイキン工業株式会社 空気調和機
US9302912B2 (en) * 2012-03-28 2016-04-05 Mks Instruments, Inc. Compact, configurable power supply for energizing ozone-producing cells
CN102662104B (zh) 2012-04-18 2015-06-17 华为技术有限公司 过零检测方法及电路
FR2990308B1 (fr) * 2012-05-03 2014-04-18 Schneider Toshiba Inverter Procede et systeme de detection d'un defaut sur le bus continu d'alimentation d'un convertisseur de puissance
JP6136173B2 (ja) * 2012-10-03 2017-05-31 サンケン電気株式会社 直流電源装置
US9509215B2 (en) * 2012-10-31 2016-11-29 Cree, Inc. Dual mode power supply controller with charge balance multipliers and charge balance multiplier circuits
US9401657B2 (en) * 2013-03-13 2016-07-26 Power Integrations, Inc. Input voltage sensor responsive to load conditions
EP2816289B1 (en) 2013-05-24 2020-10-07 Ansaldo Energia IP UK Limited Damper for gas turbine
EP3018808B1 (en) * 2013-07-02 2019-01-02 Mitsubishi Electric Corporation Power conversion device, and cooling air conditioning device
CN103424606B (zh) * 2013-07-26 2016-01-13 珠海钱龙载波系统有限公司 一种频率自适应的低压电力载波通信过零检测电路
JP6559970B2 (ja) * 2014-11-05 2019-08-14 三星電子株式会社Samsung Electronics Co.,Ltd. コンバータ装置、インバータ装置及び交流機駆動装置
JP6200457B2 (ja) * 2015-06-29 2017-09-20 ファナック株式会社 初期充電回路の異常発熱を検出する手段を有するモータ駆動装置
DE112015006875T5 (de) * 2015-09-03 2018-05-17 Mitsubishi Electric Corporation Leistungswandler
US9590615B1 (en) * 2015-09-18 2017-03-07 Sanken Electric Co., Ltd. Integrated circuit and switching power-supply device performing output control through switching operation
JP6430028B2 (ja) * 2015-10-01 2018-11-28 三菱電機株式会社 電力変換装置及びこれを用いた空気調和装置
KR102526874B1 (ko) * 2016-04-26 2023-04-27 엘에스일렉트릭(주) 전력 변환 장치의 동작 제어 장치
US9899953B2 (en) * 2016-06-27 2018-02-20 Rockwell Automation Technologies, Inc. Method and apparatus for detecting ground faults in inverter outputs on a shared DC bus
EP3534533B1 (en) * 2016-10-31 2023-04-19 Mitsubishi Electric Corporation Air conditioner
CN108663558B (zh) * 2017-03-29 2020-06-23 株式会社村田制作所 一种pfc设备及其电流检测方法和电流检测装置
JP6946878B2 (ja) * 2017-09-13 2021-10-13 富士電機株式会社 力率改善回路及びこれを使用したスイッチング電源装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033664A (ja) * 1989-05-30 1991-01-09 Mitsubishi Heavy Ind Ltd 電力変換器の制御装置
JP2005257238A (ja) * 2004-03-15 2005-09-22 Daikin Ind Ltd 空気調和機及び制御方法
US20140125247A1 (en) * 2011-04-29 2014-05-08 Tridonic Gmbh & Co Kg Operating device for a lamp having a power correction circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3399637A4 *

Also Published As

Publication number Publication date
AU2016380319B2 (en) 2019-01-24
AU2016380319A1 (en) 2018-08-16
CN108475994B (zh) 2022-02-08
EP3399637A1 (en) 2018-11-07
BR112018011693A2 (pt) 2018-12-04
JP2017121136A (ja) 2017-07-06
CN108475994A (zh) 2018-08-31
US20180309382A1 (en) 2018-10-25
JP6128201B1 (ja) 2017-05-17
MY186872A (en) 2021-08-26
US10985670B2 (en) 2021-04-20
ES2919348T3 (es) 2022-07-26
BR112018011693B1 (pt) 2022-11-29
EP3399637A4 (en) 2019-05-15
EP3399637B1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
TWI501533B (zh) 一種離線電壓調節器、離線調節器積體電路及其電壓轉換方法
JP4893251B2 (ja) マトリクスコンバータおよびそれを備えた装置
US9490705B2 (en) Inverter device and air conditioner
EA019602B1 (ru) Основанные на биполярных транзисторах с изолированным затвором/полевых транзисторах устройство, система и способ энергосбережения
CN102324857B (zh) 相位控制装置
JP2015122946A (ja) 同期整流器及びそれを制御する方法
JP4889674B2 (ja) 交流直流変換装置および圧縮機駆動装置並びに空気調和機
US8217618B2 (en) Energy-saving controller for three-phase induction motors
JP4892920B2 (ja) インバータ装置
JP6128201B1 (ja) 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器
JP6543872B2 (ja) 制御装置、制御方法及びプログラム
US9178445B2 (en) Power conversion apparatus
JP6146316B2 (ja) 空気調和機
JP6160354B2 (ja) 電源装置
KR20180013150A (ko) 인버터 제어장치
US10041984B1 (en) Input voltage sense circuit for boost power factor correction in isolated power supplies
WO2018079299A1 (ja) 電力変換装置
KR101946373B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
KR102466785B1 (ko) 인버터 시스템에서 역률 모니터링 장치
KR102183348B1 (ko) 전력 변환 장치 및 이를 포함하는 공기 조화기
JP2736059B2 (ja) インバータ装置
KR102464546B1 (ko) 인버터의 직류링크 커패시터의 열화 판단장치
CN115956335A (zh) 电力转换装置以及空调机
JP6121919B6 (ja) 電力変換装置
JP6121919B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881695

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018011693

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881695

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881695

Country of ref document: EP

Effective date: 20180730

ENP Entry into the national phase

Ref document number: 2016380319

Country of ref document: AU

Date of ref document: 20161222

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112018011693

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180608