WO2018079299A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018079299A1
WO2018079299A1 PCT/JP2017/037124 JP2017037124W WO2018079299A1 WO 2018079299 A1 WO2018079299 A1 WO 2018079299A1 JP 2017037124 W JP2017037124 W JP 2017037124W WO 2018079299 A1 WO2018079299 A1 WO 2018079299A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching
transistor
input
circuit
Prior art date
Application number
PCT/JP2017/037124
Other languages
English (en)
French (fr)
Inventor
広之 山井
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018547557A priority Critical patent/JPWO2018079299A1/ja
Publication of WO2018079299A1 publication Critical patent/WO2018079299A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a power conversion device.
  • a voltage source inverter (hereinafter referred to as an inverter in the present invention) is a power converter that converts a DC voltage into an AC voltage, and is widely used for variable speed driving of AC motors. It is also one of the core components of hybrid electric vehicles and electric vehicles that are expanding the market scale against the backdrop of heightened environmental awareness.
  • a switching control element that constitutes the inverter in response to the result of detecting a three-phase current flowing between the inverter and the motor and performing a predetermined control calculation by a microprocessor or the like so that the detected value follows the current command. Is controlled on and off.
  • Patent Document 1 describes a method of comparing detection values of voltage detectors mounted on inverters and battery units that supply a DC voltage thereto individually.
  • a power converter includes a control circuit unit that drives an inverter circuit and a switching circuit, converts an input voltage of the inverter circuit, and outputs an applied voltage to the control circuit unit.
  • a power supply circuit ; and a diagnosis unit that diagnoses a voltage detection unit that detects the input voltage based on a switching period and an ON time of a switching signal input to the switching circuit.
  • the voltage detector can be diagnosed at low cost.
  • FIG. 1 is a diagram showing a configuration of an AC motor drive system for automobile use.
  • FIG. 2 is a diagram illustrating an example of a DC input voltage detector.
  • FIG. 3 is a diagram illustrating the switching power supply according to the first embodiment.
  • FIG. 4 is a diagram illustrating waveforms of respective parts during the switching controller operation according to the first embodiment.
  • FIG. 5 is a diagram illustrating the calculation results of the on-time Ton, the switching cycle Ts, and the on-duty in the first embodiment.
  • FIG. 6 is a diagram illustrating a switching power supply according to the second embodiment.
  • FIG. 7 is a diagram illustrating waveforms at various parts during the switching controller operation according to the second embodiment.
  • FIG. 8 is a diagram illustrating the calculation results of the on-time Ton, the switching period Ts, and the on-duty in the second embodiment.
  • FIG. 1 is a diagram showing a configuration of an AC motor drive system for automobile use.
  • the AC motor drive system includes a battery 1, an AC motor 3 including a rotational position detector 8 such as a resolver, and a power converter 100.
  • the power conversion device 100 includes an inverter 2, a DC input voltage detector 4, a U-phase current detector 5, a V-phase current detector 6, a W-phase current detector 7, a control circuit 9, a gate drive circuit 10, control and gate drive. Are provided with necessary power supply circuits 11a, 11b and the like.
  • a capacitor 12 that absorbs a switching ripple current and capacitors 13 and 14 connected in series are connected in parallel to the battery 1 and the inverter 2.
  • the capacitors 13 and 14 are provided to absorb the common mode noise current, and the connection point between the capacitor 13 and the capacitor 14 is connected to the ground.
  • the inverter 2 includes transistors Tu +, Tv +, Tw +, Tu ⁇ , Tv ⁇ , and Tw ⁇ as switching elements. In the vicinity of the switching element of the inverter 2, a temperature detector 15 for the purpose of element protection is mounted.
  • a rectifier circuit that uses a commercial power supply instead of the battery 1 as an input DC power supply of the inverter is adopted and output from the rectifier circuit.
  • DC voltage smooth voltage
  • FIG. 2 is a diagram illustrating an example of the DC input voltage detector 4.
  • the input voltage VPN which is the difference between the P part potential and the N part potential, is divided by the resistors RD1 to RD4.
  • the potential between the resistors RD1 and RD2 and the potential between the resistors RD3 and RD4 are input to the differential amplifier 41 via a buffer amplifier composed of operational amplifiers OP1 and OP2 for increasing the input voltage impedance of the divided voltage.
  • the differential amplifier 41 includes an operational amplifier OP0, resistors Ri0 to Ri2, and RFB.
  • the divided voltage value of the input voltage VPN output from the differential amplifier 41 is input to the AD conversion unit of the microcontroller 9a of the control circuit 9 through a low-pass filter including a resistor RF0 and a capacitor CF0.
  • the offset voltage is added to the PN voltage detection value by the resistors ROF1, ROF2 and the DC voltage VOF.
  • the resistance values RD1 + RD2 and RD3 + RD4 are each set to at least 5 M ⁇ .
  • FIG. 3 is a diagram showing an example of the power supply circuit 11b for the gate drive circuit.
  • the power supply circuit 11b includes a transformer having a primary winding PR and secondary windings SE0 to SE3, a transistor S0 connected in series to the primary winding PR, and a switching controller IC1 that controls on / off of the transistor S0. .
  • the switching controller IC1 that controls the switching operation of the transistor S0, the power supply voltage is input to the FB terminal.
  • the switching controller IC1 obtains a difference voltage between the power supply voltage inputted to the FB terminal and the internal reference voltage by a built-in error amplifier, and outputs an on / off signal based on the result from the OUT terminal to the gate terminal of the transistor S0.
  • the on / off cycle (that is, the PWM cycle) is determined by the values of the resistor RT and the capacitor CT connected between the RTCT terminal and the GND0 terminal.
  • the voltage VRS of the shunt resistor RS connected in series with the drain and source of the transistor S0 is input to the current detection terminal CS of the switching controller IC1.
  • the switching controller IC1 stops the switching operation and protects the transistor S0 when an overcurrent flows through the transistor S0 due to some trouble and the voltage VRS exceeds a predetermined threshold.
  • the drain of the transistor S0 is connected to one end of the primary winding PR of the transformer T0.
  • the other end of the primary winding PR is connected to a P terminal of DC input.
  • the source of the transistor S0 is connected to one end of the shunt resistor RS.
  • the other end of the shunt resistor RS is connected to a DC input N terminal.
  • each secondary winding SE0 to SE3 is formed with a current loop that flows from one end of the winding to the other end of the winding through diodes DS0 to DS3 and capacitors CS0 to CS3. As a result, the capacitors CS0 to CS3 are charged and voltages VS0 to VS3 are output.
  • the potential of the emitter terminals of the transistors Tu +, Tv +, and Tw + of the inverter 2 changes depending on the on / off state of the transistors Tu ⁇ , Tv ⁇ , and Tw ⁇ connected to the collectors. Therefore, it is necessary to insulate the power supply ground for the gate drive circuits of the transistors Tu +, Tv +, and Tw +.
  • the switching power supply outputs VS1 to VS3 are used for the gate drive circuits of the transistors Tu +, Tv + and Tw +, respectively.
  • the switching power supply output (output voltage of the secondary winding SE0) VS0 can be used in common. That is, as shown in FIG. 3, one end of the secondary winding SE0 is connected to the input N terminal.
  • the GND0 terminal of the switching controller IC1 is also connected to the input N terminal, the output voltage VS0 of the secondary winding SE0 is divided by the resistors VFB0 and VFB1, and the divided voltage is used as an output detection voltage to FB of the switching controller IC1. Can be input to the terminal.
  • the output voltage VS0 of the secondary winding SE0 output under the control of the switching controller IC1 is input to the anode of the diode D0 in the circuit in which the cathode of the diode D0 and the cathode of the Zener diode Z0 are connected via the resistor R0. .
  • the anode of the Zener diode Z0 is connected to the input N terminal.
  • the switching controller IC1 obtains the Zener voltage of the Zener diode Z0 as the drive power supply VCC.
  • the capacitor C0 connected in parallel to the Zener diode Z0 plays a role of suppressing the ripple voltage.
  • the circuit composed of the resistor R1, the Zener diode Z1 and the transistor S1 is a switch circuit for supplying the drive power supply VCC to the switching controller IC1 immediately after the input voltage VPN is applied to the input terminals P and N.
  • One end of the resistor R1 is connected to the P terminal, and the other end is connected to the cathode of the Zener diode Z1 and the gate of the transistor S1.
  • the anode of the Zener diode Z1 is connected to the N terminal.
  • the drain of the transistor S1 is connected to the P terminal, and the source of the transistor S1 is connected to the N terminal via a series circuit of a diode D1 and a capacitor C1. Since the anode of the diode D1 is connected to the source of the transistor S1, the capacitor C1 is charged when the transistor S1 is turned on.
  • the voltage of the capacitor C1 is supplied to the connection point between the diode D0 and the resistor R0, and is used as the power supply VCC for the switching controller IC1.
  • the diodes D0 and D1 serve to select the larger voltage depending on the magnitudes of the output voltage VS0 and the PN input voltage (the upper limit is approximately the voltage of the Zener diode Z1 as described above).
  • the switching controller IC1 controls the on / off time of the transistor S0 so that the output voltage SV0 becomes a constant value. Therefore, when the input voltage VPN decreases, the switching controller IC1 operates to keep the output voltage SV0 at a constant value by increasing the ON time of the transistor S0 than before the decrease of the input voltage.
  • the input voltage VPN is detected based on the ratio (duty) of the ON time to the switching period in the transistor S0, and the detected value and the DC input voltage detection circuit 4 in FIG. By comparing with the detected value, the abnormality of the DC input voltage detection circuit 4 is determined.
  • the switching information acquisition circuit 110 is provided to detect the switching period and on-time of the transistor S0, and the detection result is input to the microcontroller 9a.
  • the microcontroller 9a that is mounted on the control circuit 9 of FIG. 1 and executes motor control processing is generally configured to be insulated from the high-voltage battery in order to communicate with a host controller (not shown).
  • the gate voltage VGS of the switching controller IC1 may be insulated using an insulating element such as an optocoupler or a magnetic coupler.
  • the switching information acquisition circuit 110 in FIG. 3 includes an optocoupler PH, a resistor RL, and a resistor RP.
  • the light-emitting diode of the optocoupler PH has a cathode connected to the ground GND0 of the switching controller IC1, and an anode connected to the gate voltage output of the switching controller IC1 via the resistor RP.
  • the collector of the light receiving transistor of the optocoupler PH is connected to the power supply VS of the control circuit 9 via the resistor RL.
  • the emitter of the light receiving transistor is connected to the ground GND.
  • the gate voltage VGS becomes a non-zero positive value and becomes equal to or higher than the forward voltage VF of the light emitting diode
  • the light emitting diode in the optocoupler PH emits light and the secondary side light receiving transistor is turned on.
  • the collector voltage of the light receiving transistor becomes substantially zero (because there is a saturation voltage of the transistor, it is not completely zero).
  • the gate voltage VGS becomes a voltage that turns off the transistor S0
  • the light emitting diode in the optocoupler PH is extinguished, and the light receiving transistor on the secondary side is turned off.
  • the collector voltage of the light receiving transistor becomes VS.
  • VTH is preferably set to VTH ⁇ VF.
  • the resistor RP may be set so that the forward current of the light emitting diode falls within the recommended driving current range of the optocoupler.
  • FIG. 4 is a diagram showing the waveforms of each part when the switching controller IC1 operates.
  • 4A shows the waveforms of VS0, VAC0, VGS, and input voltage VPN
  • FIG. 4B shows the waveform of the signal VOS output from the switching information acquisition circuit 110.
  • VAC0 is a voltage at a connection point between the secondary winding SE0 and the diode DS0.
  • each electric circuit constant is set so that the switching period of the gate voltage VGS of the transistor S0 is 5 ⁇ s (frequency 200 kHz), the output voltage VS0 of the secondary winding SE0 is 15 V, and the power supply VS of the control circuit 9 is 5 V. is doing.
  • FIG. 4 shows a waveform when the input voltage VPN is 400V.
  • the signal VOS is input to a port that can select the period measurement timer function of the microcontroller 9a.
  • the microcontroller 9a measures the on-time Ton of the transistor S0 by counting the time from the falling edge to the rising edge of the signal VOS. Further, the switching period Ts of the transistor S0 is measured by counting the time from the rise of the signal VOS to the next rise. Further, the on-duty (Ton / Ts) is calculated by the calculation process of the microcontroller 9a.
  • FIG. 5 shows the calculation results of the on-time Ton, the switching cycle Ts, and the on-duty (curve indicated by the symbol Duty) when the voltage of the input voltage VPN is changed in the range of 250 to 450 VDC. . If the characteristic information shown in FIG. 5 is stored in the microcontroller 9a, the value of the input voltage VPN is calculated from the value of the on-duty (Ton / Ts) obtained based on the signal VOS from the switching information acquisition circuit 110. be able to.
  • the DC input voltage detector 4 is diagnosed by using a signal of a circuit that is already mounted, the cost is lower than the configuration in which two voltage detectors are provided as in the prior art. Reduction can be achieved. Moreover, since it is not necessary to transmit and receive the voltage detection value by communication between individually arranged units as in the case of Patent Document 1, it is possible to avoid the problem of long determination time due to communication.
  • the diagnosis of the DC input voltage detector 4 is performed based on the AD conversion of the microcontroller 9a and the pulse rise / fall count results, it is avoided that the monitored system and the monitoring system fall into the same functional failure. And the probability of misdiagnosis accompanying the same factor failure can be reduced.
  • the switching information acquisition circuit 110 may be provided in the power supply circuit 11b or may be provided on the control circuit 9 side.
  • the change information of the gate voltage VGS is input to the microcontroller 9a via the optocoupler PH.
  • a transformer may be used instead of the optocoupler PH. By inputting the gate voltage VGS to the primary side of the transformer, a signal that is electrically isolated from the secondary side can be acquired.
  • FIG. 6 is a diagram illustrating the power supply circuit 11b according to the second embodiment.
  • the switching information acquisition circuit 110 in the first embodiment the switching information is acquired by inputting a signal input to the gate of the transistor S0 to the microcontroller 9a via the optocoupler PH which is an insulating element.
  • the switching information acquisition circuit 120 uses the secondary winding SE4 already provided in the transformer T0, the switching information acquisition circuit 120 detects the voltage VAC4 of the secondary winding SE4 to obtain the switching information. I tried to get it.
  • the voltage VAC4 is a voltage at a connection point between the secondary winding SE4 and the diode DS4.
  • One end of the secondary winding SE4 is connected to the switching power supply ground GND of the control circuit 9.
  • the other end of the secondary winding SE4 (a connection point with the diode DS4) is connected to one end of the resistor RL.
  • the other end of the resistor RL is connected to the anode of the diode DC1, the cathode of the diode DC0, and the microcontroller 9a.
  • the cathode of the diode DC1 is connected to the power supply VS, and the anode of the diode DC0 is connected to the ground GND.
  • the output voltage of the secondary winding SE4 changes according to the switching operation of the transistor S0.
  • the diode DC0 becomes conductive, and a current flows from the ground GND to the secondary winding SE4 through the resistor RL.
  • the signal VTS at the input port of the microcontroller 9a becomes approximately 0V.
  • the diode DC1 becomes conductive, and a current flows from the secondary winding SE4 to the power source VS through the resistor RL.
  • the voltage of the signal VTS becomes the voltage of the power supply VS.
  • FIG. 7 shows the waveform of each part of the circuit shown in FIG. 7A shows the waveforms of VSB, VAC4, VGS, and input voltage VPN
  • FIG. 7B shows the waveform of the signal VTS output from the switching information acquisition circuit 120.
  • VSB is the output voltage of the secondary winding SE4.
  • each electric circuit constant is set so that the switching period of the gate voltage VGS of the transistor S0 is 5 ⁇ s (frequency 200 kHz), the output voltage VS0 of the secondary winding SE0 is 15 V, and the power supply VS of the control circuit 9 is 5 V. is doing.
  • FIG. 7 shows a waveform when the input voltage VPN is 400V.
  • the signal VTS is input to the selectable port of the period measurement timer function of the microcontroller 9a, and the on time Ton of the transistor S0 is measured by counting the time from the falling edge to the rising edge of the signal VTS. Also, the switching period Ts of the transistor S0 is measured by counting the time from the rising edge of the signal VTS to the next rising edge. Then, the on-duty (Ton / Ts) is calculated by the calculation process of the microcontroller 9a.
  • FIG. 8 shows calculation results of the on-time Ton, the switching cycle Ts, and the on-duty (curve indicated by Duty) when the voltage of the input voltage VPN is changed in the range of 250 to 450 VDC. If the characteristic information of FIG. 8 is stored in the microcontroller 9a, the value of the input voltage VPN can be calculated from the on-duty (Ton / Ts) obtained based on the signal VTS from the switching information acquisition circuit 120. .
  • the input voltage VPN calculated based on the signal VTS is compared with the detected value of the DC input voltage detector 4 obtained by AD conversion of the microcontroller 9a, and when the difference value is equal to or larger than a predetermined threshold value. Is determined as an abnormality of the DC input voltage detector 4.
  • the configuration of the first embodiment can calculate the input voltage VPN with higher accuracy.
  • the power supply VSB can be used as a backup power supply when the power supply circuit 11a of the control circuit 9 becomes abnormal.
  • the power conversion device 100 includes a control circuit 9 that drives the inverter 2, a transistor S0, a power supply circuit 11b that converts an input voltage of the inverter 2 and outputs an applied voltage to the control circuit 9, and And a microcontroller 9a that functions as a diagnostic unit that diagnoses the DC input voltage detector 4 that detects the input voltage.
  • the microcontroller 9a diagnoses the DC input voltage detector 4 based on the switching period and the ON time of the switching signal input to the transistor S0.
  • the diagnosis is performed based on the signal of the circuit already mounted, that is, the switching signal output from the switching controller IC1 to the gate of the transistor S0, the cost can be reduced as compared with the conventional case. It is possible to avoid the problem that the determination time is prolonged due to the conventional communication.
  • the diagnosis of the DC input voltage detector 4 is performed based on the switching period and on-time of the switching signal (that is, the AD conversion of the microcontroller 9a and the pulse rise / fall count result),
  • the monitoring system can be prevented from falling into the same functional failure, and the probability of misdiagnosis accompanying the same factor failure can be reduced.
  • insulating element (optocoupler PH) that electrically insulates the switching signal and inputs it to the microcontroller 9a, electrical insulation from the microcontroller 9a is achieved.
  • the insulating element is not limited to the optocoupler PH, and a magnetic coupler or the like may be used.
  • the switching signal may be insulated by a transformer, and diagnosis may be performed based on the secondary output of the transformer.
  • the transformer T0 of the power supply circuit 11b may be used as a transformer for insulating the switching signal, and the same effect as in the configuration shown in FIG. 3 can be obtained. Further, cost reduction can be achieved. Furthermore, in this configuration, the output voltage VSB of the secondary winding SE4 used for signal detection can be used as a backup power source for the microcontroller 9a.
  • the gate voltage VGS is input to the primary side of the transformer, and the signal on the secondary side of the transformer is switched to the switching information acquisition circuit 120 in FIG. May be input to the microcontroller 9a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

本発明の課題は、電圧検出器の診断を低コストで実施することができる電力変換装置の提供することである。 電力変換装置は、インバータを駆動する制御回路と、トランジスタS0を有し、インバータの入力電圧を変換して制御回路への印加電圧を出力する電源回路11bと、電源回路11bのトランジスタS0に入力されるスイッチング信号のスイッチング周期およびオン時間に基づいて、入力電圧を検出する直流入力電圧検出器4の診断を行うマイクロコントローラ9aとを備える。

Description

電力変換装置
 本発明は、電力変換装置に関する。
 電圧形インバータ(以降、本発明ではインバータと称する)は直流電圧を交流電圧に変換する電力変換器で、広く、交流モータの可変速駆動用途に使われている。環境意識の高まりを背景に市場規模を拡大するハイブリッド電気自動車や電気自動車の中核部品のひとつでもある。インバータとモータ間に流れる3相電流を検出し、この検出値が電流指令に追従するように、マイクロプロセッサなどにより所定の制御演算が行われ、その結果に応答して、インバータを構成するスイチング素子がオンオフ制御される。
 インバータにおいては、その出力電圧を演算するために、インバータの入力電圧の検出が必要である。その場合、電圧検出器の故障に起因した予期しないモータトルクにより、自動車の挙動が不安定になることを防止する事を目的に、電圧検出器を2重化し、2つの検出値を比較して電圧検出器の診断を行うことが必要である(例えば、特許文献1参照)。特許文献1には、インバータ並びに、それに直流電圧を供給するバッテリーユニットが個別に配置される場合において、それぞれに搭載された電圧検出器の検出値を比較する方法が記載されている。
特開2006-81341号公報
 しかしながら、同じ電圧検出器を2組用意し、両者の検出値の比較により診断を行う方法では、回路部品のコストアップや、追加部品実装のために基板面積が増加し、小型化の阻害要因になるという問題がある。また、特許文献1に記載の構成では、個別配置されるユニット間の通信により電圧検出値を送受信する必要があるが、車両の場合、一般に通信はCAN(Controller Area Network)により行われ、その送受信インターバルは10ms~100msで行われる。そのため、判定にかかる時間が長いという課題がある。
 本発明の一態様によると、電力変換装置は、インバータ回路を駆動する制御回路部と、スイッチング回路を有し、前記インバータ回路の入力電圧を変換して前記制御回路部への印加電圧を出力する電源回路と、前記スイッチング回路に入力されるスイッチング信号のスイッチング周期およびオン時間に基づいて、前記入力電圧を検出する電圧検出部の診断を行う診断部とを備える。
 本発明によれば、電圧検出器の診断を低コストで実施することができる。
図1は、自動車用途の交流モータ駆動系の構成を示す図である。 図2は、直流入力電圧検出器の一例を示す図である。 図3は、第1の実施の形態におけるスイッチング電源を示す図である。 図4は、第1の実施の形態におけるスイッチングコントローラ動作時の各部波形を示す図である。 図5は、第1の実施の形態における、オン時間Ton、スイッチング周期Ts、並びに、オンデューティの演算結果を示す図である。 図6は、第2の実施の形態におけるスイッチング電源を示す図である。 図7は、第2の実施の形態におけるスイッチングコントローラ動作時の各部波形を示す図である。 図8は、第2の実施の形態における、オン時間Ton、スイッチング周期Ts、並びに、オンデューティの演算結果を示す図である。
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1は、自動車用途の交流モータ駆動系の構成を示す図である。交流モータ駆動系は、バッテリー1と、レゾルバ等の回転位置検出器8を備える交流モータ3と、電力変換装置100とを備えている。電力変換装置100は、インバータ2、直流入力電圧検出器4、U相電流検出器5、V相電流検出器6、W相電流検出器7、制御回路9、ゲート駆動回路10、制御やゲート駆動に必要な電源回路11a,11b等を備えている。
 正極ラインPと負極ラインNとの間には、スイッチングリプル電流を吸収するコンデンサ12と、直列接続されたコンデンサ13,14とが、バッテリー1及びインバータ2に対して並列接続されている。コンデンサ13,14はコモンモードノイズ電流を吸収するために設けられたものであり、コンデンサ13とコンデンサ14との接続点はグラウンドに接続されている。インバータ2にはスイッチング素子としてトランジスタTu+、Tv+、Tw+、Tu-、Tv-、Tw-を備えている。インバータ2のスイッチング素子近傍には素子保護を目的とする温度検出器15が実装されている。
 なお、産業用途や民生用途の交流モータの可変速駆動系の場合には、インバータの入力DC電源として、バッテリー1の代わりに商用電源を入力とした整流回路を採用し、整流回路から出力される平滑電圧(DC電圧)を供給する点が異なるが、その他は同様に構成できる。
 図2は、直流入力電圧検出器4の一例を示す図である。P部電位とN部電位との差である入力電圧VPNは、抵抗RD1~RD4により分圧される。抵抗RD1,RD2間の電位および抵抗RD3,RD4間の電位は、分圧電圧の入力部インピーダンスを高めるためのオペアンプOP1,OP2で構成されたバッファアンプを介して、差動アンプ41に入力される。差動アンプ41はオペアンプOP0、抵抗Ri0~Ri2およびRFBで構成される。差動アンプ41から出力された入力電圧VPNの分圧値は、抵抗RF0およびコンデンサCF0で構成されるローパスフィルタを経て、制御回路9のマイクロコントローラ9aのAD変換部に入力される。
 ここで、抵抗ROF1、ROF2、直流電圧VOFにより、PN電圧検出値にオフセット電圧を加算している。また、車両の場合P-GND、N-GND間の絶縁抵抗を2.5MΩ以上にする必要があるため、抵抗値RD1+RD2、RD3+RD4はそれぞれ、少なくとも5MΩに設定される。
 図3は、ゲート駆動回路用の電源回路11bの一例を示す図である。電源回路11bは、一次巻線PRおよび二次巻線SE0~SE3を有するトランスと、一次巻線PRに直列接続されたトランジスタS0と、トランジスタS0のオンオフをコントロールするスイッチングコントローラIC1とを備えている。トランジスタS0のスイッチング動作を制御するスイッチングコントローラIC1は、電源電圧がFB端子に入力される。スイッチングコントローラIC1は、FB端子に入力された電源電圧と内部の基準電圧との差電圧を内蔵されたエラーアンプにて求め、その結果に基づくオンオフ信号をOUT端子からトランジスタS0のゲート端子へ出力する。なお、オンオフ周期(すなわちPWM周期)は、RTCT端子とGND0端子との間に接続した抵抗RTおよびコンデンサCTの値により決まる。
 スイッチングコントローラIC1の電流検出端子CSには、トランジスタS0のドレイン、ソースと直列に接続したシャント抵抗RSの電圧VRSが入力される。スイッチングコントローラIC1は、何らかの不具合によりトランジスタS0に過電流が流れて電圧VRSが所定の閾値を超えた場合に、スイッチング動作を停止し、トランジスタS0を保護する。
 トランジスタS0のドレインは、トランスT0の一次巻線PRの一端に接続されている。一次巻線PRの他端は、直流入力のP端子に接続されている。トランジスタS0のソースはシャント抵抗RSの一端に接続されている。シャント抵抗RSの他端は、直流入力のN端子に接続されている。
 トランジスタS0がオンすると、トランスT0の一次巻線PRに直流入力電圧が印加され、入力P端子から一次巻線PRを通って入力N端子に向かって電流が流れ、一次巻線PRに磁気エネルギーが蓄積される。次いで、トランジスタS0をオフすると、トランスT0に蓄積されたエネルギーは、各二次巻線SE0~SE3に伝達される。各二次巻線SE0~SE3には、巻線の一端からダイオードDS0~DS3、コンデンサCS0~CS3を経て巻線の他端へと流れる電流ループが形成される。その結果、各コンデンサCS0~CS3は充電され、電圧VS0~VS3が出力される。
 図3に示す構成では、トランスT0の二次巻線SE0~SE3と一次巻線PRとの間の結合極性を逆極性にしているので、トランジスタS0のオン期間には、ダイオードDS0~DS3の作用によって二次巻線には電流が流れず、一次巻線PRに磁気エネルギーを溜めることができる。また、コンデンサCS0~CS3充電期間、トランスT0の漏れインダクタンスが電流の平滑機能を担うことができるので、電源回路にコイルを別途追加する必要がなく、部品点数が少ないという特徴がある。このような回路方式は、一般にRCC(Ringing Choke Converter)と呼ばれ、小容量スイッチング電源として、広く使われている。なお、トランスT0の漏れインダクタンスに起因してトランスT0のドレインに発生するサージ電圧を低減する目的で、一次巻線PRの両端に接続されるコンデンサCFを設けている。
 インバータ2のトランジスタTu+、Tv+、Tw+のエミッタ端子の電位は、それぞれのコレクタに接続されるトランジスタTu-、Tv-、Tw-のオンオフ状態により変化する。そのため、トランジスタTu+、Tv+、Tw+の各ゲート駆動回路用の電源グランドは、絶縁する必要がある。スイッチング電源出力VS1~VS3がトランジスタTu+、Tv+、Tw+の各ゲート駆動回路用として、それぞれ使われる。一方、トランジスタTu-、Tv-、Tw-のエミッタは入力N端子に接続されるので、エミッタの電位は変化しない。そのため、スイッチング電源出力(二次巻線SE0の出力電圧)VS0を共通に使用することができる。すなわち、図3に示すように、二次巻線SE0の一端は入力N端子に接続される。
 また、スイッチングコントローラIC1のGND0端子も入力N端子に接続されるので、二次巻線SE0の出力電圧VS0を抵抗VFB0およびVFB1で分圧し、その分圧電圧を出力検出電圧としてスイッチングコントローラIC1のFB端子に入力することができる。
 スイッチングコントローラIC1のコントロールにより出力される二次巻線SE0の出力電圧VS0は、ダイオードD0のカソードとツェナダイオードZ0のカソードとを抵抗R0を介して接続した回路の、ダイオードD0のアノードに入力される。ツェナダイオードZ0のアノードは入力N端子に接続されている。スイッチングコントローラIC1は、ツェナダイオードZ0のツェナ電圧を駆動電源VCCとして得ている。ツェナダイオードZ0に並列接続されたコンデンサC0は、リプル電圧を抑制する役割を果たしている。
 抵抗R1、ツェナダイオードZ1およびトランジスタS1で構成される回路は、入力端子P,Nに入力電圧VPNが印加された直後に、スイッチングコントローラIC1に駆動電源VCCを供給するためのスイッチ回路である。抵抗R1の一端はP端子に接続され、他端はツェナダイオードZ1のカソードとトランジスタS1のゲートとに接続されている。ツェナダイオードZ1のアノードは、N端子に接続されている。入力端子P,Nに電圧が印加されると、抵抗R1とツェナダイオードZ1との直列回路に電流が流れ、ツェナダイオードZ1の電圧が所定値に上昇するとトランジスタS1がオンする。
 トランジスタS1のドレインはP端子に接続され、トランジスタS1のソースはダイオードD1とコンデンサC1との直列回路を介して、N端子に接続されている。ダイオードD1のアノードがトランジスタS1のソースに接続されているので、トランジスタS1がオンになるとコンデンサC1は充電される。
 コンデンサC1の電圧が充電により上昇してツェナダイオードZ1の電圧(ツェナ電圧VZ1)に近づくと、トランジスタS1は非能動状態になり、その抵抗はコンデンサC1の電圧上昇と共に増加する。そして、「(ツェナ電圧VZ1)-(コンデンサC1の電圧)」がトランジスタS1のゲートスレッシュホールド電圧を下回ると、トランジスタS1はオフ状態になる。これにより、コンデンサC1の電圧は、ツェナ電圧VZ1近傍に収斂する。
 コンデンサC1の電圧はダイオードD0と抵抗R0の接続点に供給され、スイッチングコントローラIC1の電源VCCとされる。ここで、ダイオードD0,D1は出力電圧VS0、PN入力電圧(上限は前記のとおりツェナダイオードZ1の電圧程度)のそれぞれの電圧の大小により、大きいほうの電圧を選択する役割を果たしている。
 トランジスタS0のオン時間を長くするほど一次巻線PRに流れる電流は大きくなり、トランジスタS0をオフした際に二次巻線SE0~SE3に流れる電流も大きくなる。その結果、トランジスタS0のオン時間を長くするほど、二次巻線SE0~SE3の出力電圧VS0~VS3は多くなる。また、トランジスタS0がオンの時に流れる電流は入力電圧VPNの増減に伴って増加・減少する。
 スイッチングコントローラIC1は、出力電圧SV0が一定値となるようにトランジスタS0のオンオフ時間を制御する。そのため、入力電圧VPNが減少すると、スイッチングコントローラIC1はトランジスタS0のオン時間を入力電圧減少前よりも長くして、出力電圧SV0を一定値に保持しようと動作する。
 本実施の形態では、このような特徴を利用し、トランジスタS0におけるスイッチング周期に対するオン時間の割合(デューティ)に基づいて入力電圧VPNを検出し、その検出値と図2の直流入力電圧検出回路4の検出値と比較することで、直流入力電圧検出回路4の異常を判定するようにした。図3に示す構成では、スイッチング情報取得回路110を設けてトランジスタS0のスイッチング周期、オン時間を検出し、その検出結果をマイクロコントローラ9aに入力するようにした。
(スイッチング情報取得回路110の説明)
 図1の制御回路9に実装されてモータ制御処理を実行するマイクロコントローラ9aは、図示しない車両の上位コントローラと通信するため、高圧バッテリーと絶縁する構成とするのが一般的である。その場合は、スイッチングコントローラIC1のゲート電圧VGSをオプトカプラや磁気カプラ等の絶縁素子を用いて、絶縁を図ればよい。
 図3のスイッチング情報取得回路110は、オプトカプラPH、抵抗RLおよび抵抗RPを備えている。オプトカプラPHの発光ダイオードは、カソードがスイッチングコントローラIC1のグラウンドGND0と接続され、アノードが抵抗RPを介してスイッチングコントローラIC1のゲート電圧出力に接続される。また、オプトカプラPHの受光トランジスタのコレクタは、抵抗RLを介して制御回路9の電源VSに接続されている。受光トランジスタのエミッタはグラウンドGNDに接続されている。
 ゲート電圧VGSが非0正の値となって発光ダイオードの順方向電圧VF以上になると、オプトカプラPH内の発光ダイオードが発光し、2次側の受光トランジスタがオン状態となる。その結果、受光トランジスタのコレクタ電圧は略0(トランジスタの飽和電圧があるため、完全な0とはならない)になる。一方、ゲート電圧VGSがトランジスタS0をオフにする電圧になると、オプトカプラPH内の発光ダイオードが消光し、2次側の受光トランジスタはオフ状態になる。その結果、受光トランジスタのコレクタ電圧はVSになる。
 ここで、トランジスタS0をオンにするゲート電圧VGSをVTHとした場合、VTHはVTH≧VFに設定すると良い。加えて、発光ダイオードの順方向電流がオプトカプラの駆動推奨電流範囲となるように、抵抗RPを設定すると良い。
 図4は、スイッチングコントローラIC1動作時の各部波形を示す図である。図4(a)にはVS0、VAC0、VGS、入力電圧VPNの波形を示し、図4(b)にはスイッチング情報取得回路110から出力される信号VOSの波形を示す。なお、VAC0は、二次巻線SE0とダイオードDS0との接続点の電圧である。ここでは、トランジスタS0のゲート電圧VGSのスイッチング周期が5μs(周波数200kHz)、二次巻線SE0の出力電圧VS0が15V、制御回路9の電源VSが5Vとなるように各電気回路定数をそれぞれ設定している。図4では、入力電圧VPNを400Vとした場合の波形を示した。
 トランジスタS0のゲート電圧VGSをオプトカプラPHに入力し、そのときに得られる絶縁後の信号VOSは、ゲート電圧VGSが0の期間はVS(=5V)となり、ゲート電圧VGSが非0正の値の期間は略0Vとなっていることがわかる。信号VOSは、マイクロコントローラ9aの周期測定タイマ機能を選択できるポートに入力されている。マイクロコントローラ9aは、信号VOSの立ち下がりから立ち上がりまでの時間を計数することで、トランジスタS0のオン時間Tonを測定する。さらに、信号VOSの立ち上がりから次の立ち上がりまでの時間を計数することで、トランジスタS0のスイッチング周期Tsを測定する。また、マイクロコントローラ9aの演算処理により、オンデューティ(Ton/Ts)を演算する。
 図5は、入力電圧VPNの電圧を250~450VDCの範囲で変化させた場合の、オン時間Ton、スイッチング周期Ts、並びに、オンデューティ(符号Dutyで示す曲線)の演算結果を示したものである。図5に示す特性情報をマイクロコントローラ9aに記憶しておけば、スイッチング情報取得回路110からの信号VOSに基づいて得られるオンデューティ(Ton/Ts)の値から、入力電圧VPNの値を算出することができる。
 そして、信号VOSに基づき算出された入力電圧VPNと、マイクロコントローラ9aのAD変換により得られる直流入力電圧検出器4の検出値とを比較し、それらの差分値が所定の閾値以上である場合には直流入力電圧検出器4の異常と判定する。
 本実施の形態では、既に実装されている回路の信号を利用して直流入力電圧検出器4の診断を行うようにしているので、従来のように電圧検出器を2つ設ける構成に比べてコスト低減を図ることができる。また、特許文献1の場合のように個別配置されるユニット間の通信により電圧検出値を送受信する必要がないので、通信に起因する判定時間の長時間化という問題を、避けることができる。
 さらに、直流入力電圧検出器4の診断を、マイクロコントローラ9aのAD変換とパルス立ち上がり/立ち下がり計数結果とにより行っているので、被監視システムと監視システムが同一の機能障害に陥るのを避けることができ、同一因子故障に伴う誤診断の確率を低減することができる。
 なお、スイッチング情報取得回路110は、電源回路11bに設けても良いし、制御回路9側に設けても良い。
(変形例)
 図3に示す例では、ゲート電圧VGSの変化情報をオプトカプラPHを介してマイクロコントローラ9aに入力するようにしたが、オプトカプラPHに代えてトランスを用いるようにしても良い。トランスの一次側にゲート電圧VGSを入力することで、二次側から電気的に絶縁された信号を取得することができる。
-第2の実施の形態-
 図6は、第2の実施の形態における電源回路11bを示す図である。第1の実施の形態におけるスイッチング情報取得回路110では、トランジスタS0のゲートに入力される信号を絶縁素子であるオプトカプラPHを介してマイクロコントローラ9aに入力することで、スイッチング情報を取得した。一方、第2の実施の形態では、トランスT0に既に設けられている二次巻線SE4を利用し、スイッチング情報取得回路120は、二次巻線SE4の電圧VAC4を検出することでスイッチング情報を取得するようにした。電圧VAC4は、二次巻線SE4とダイオードDS4との接続点の電圧である。
 二次巻線SE4の一端は、制御回路9のスイッチング電源グラウンドGNDに接続されている。一方、二次巻線SE4の他端(ダイオードDS4との接続点)は、抵抗RLの一端に接続されている。抵抗RLの他端は、ダイオードDC1のアノード、ダイオードDC0のカソード、そしてマイクロコントローラ9aのそれぞれに接続されている。そして、ダイオードDC1のカソードは電源VSに接続され、ダイオードDC0のアノードはグラウンドGNDに接続されている。
 トランジスタS0のスイッチング動作に応じて、二次巻線SE4の出力電圧が変化する。二次巻線SE4の電圧が負の場合は、ダイオードDC0が導通状態になり、抵抗RLを通してグラウンドGNDから二次巻線SE4方向へと電流が流れる。その結果、マイクロコントローラ9aの入力ポートの信号VTSは略0Vとなる。なお、ダイオードの順方向電圧があるため、完全な0Vとはならない。逆に、二次巻線SE4の電圧が正の場合は、ダイオードDC1が導通状態になり、抵抗RLを通して二次巻線SE4から電源VS方向へと電流が流れる。その結果、信号VTSの電圧は電源VSの電圧となる。
 図7は、図6に示す回路の各部波形を示したものである。図7(a)にはVSB、VAC4、VGS、入力電圧VPNの波形を示し、図7(b)にはスイッチング情報取得回路120から出力される信号VTSの波形を示す。なお、VSBは二次巻線SE4の出力電圧である。ここでは、トランジスタS0のゲート電圧VGSのスイッチング周期が5μs(周波数200kHz)、二次巻線SE0の出力電圧VS0が15V、制御回路9の電源VSが5Vとなるように各電気回路定数をそれぞれ設定している。図7では、入力電圧VPNを400Vとした場合の波形を示した。
 図7(b)から分かるように、二次巻線SE4の電圧VAC4をダイオードDC0、DC1の直列回路の中点に抵抗RLを通し入力すると、マイクロコントローラ9aに入力される信号VTSは、ゲート電圧VGSが0の期間はVS(=5V)となり、ゲート電圧VGSが非0の期間は略0Vとなっていることがわかる。
 信号VTSはマイクロコントローラ9aの周期測定タイマ機能の選択できるポートに入力されており、信号VTSの立ち下がりから立ち上がりまでの時間を計数することで、トランジスタS0のオン時間Tonを測定する。また、信号VTSの立ち上がりから次の立ち上がりまでの時間を計数することで、トランジスタS0のスイッチング周期Tsを測定する。そして、マイクロコントローラ9aの演算処理により、オンデューティ(Ton/Ts)を演算する。
 図8は、入力電圧VPNの電圧を250~450VDCの範囲で変化させた場合の、オン時間Ton、スイッチング周期Ts、並びに、オンデューティ(Dutyで示す曲線)の演算結果を示したものである。図8の特性情報をマイクロコントローラ9aに記憶しておけば、スイッチング情報取得回路120からの信号VTSに基づいて得られるオンデューティ(Ton/Ts)から、入力電圧VPNの値を算出することができる。
 そして、信号VTSに基づき算出された入力電圧VPNと、マイクロコントローラ9aのAD変換により得られる直流入力電圧検出器4の検出値とを比較し、それらの差分値が所定の閾値以上である場合には直流入力電圧検出器4の異常と判定する。なお、図5のDuty曲線と図8のDuty曲線とを比較すると、図5の場合の方が曲線の傾きが大きくなっている。そのため、第1の実施の形態の構成の方が、入力電圧VPNをより精度良く算出することができる。
 本実施の形態においても、第1の実施の形態の場合と同様に、既に設けられている構成(トランスT0の二次巻線SE4)を利用することで、コスト低減、および判定時間の長時間化の回避を行うことができる。また、直流入力電圧検出器4の診断を、マイクロコントローラ9aのAD変換とパルス立ち上がり/立ち下がり計数結果により行っているので、被監視システムと監視システムが同一の機能障害に陥るのを避けることができ、同一因子故障に伴う誤診断の確率を低減することができる。
 さらに、電源VSBを、制御回路9の電源回路11aが異常となった場合のバックアップ電源として用いることができる。
 上述した実施の形態によれば、次の作用効果が得られる。
(C1)電力変換装置100は、インバータ2を駆動する制御回路9と、トランジスタS0を有し、インバータ2の入力電圧を変換して制御回路9への印加電圧を出力する電源回路11bと、前記入力電圧を検出する直流入力電圧検出器4の診断を行う診断部として機能するマイクロコントローラ9aとを備える。マイクロコントローラ9aは、トランジスタS0に入力されるスイッチング信号のスイッチング周期およびオン時間に基づいて、直流入力電圧検出器4の診断を行う。
 このように、既に実装されている回路の信号、すなわち、スイッチングコントローラIC1からトランジスタS0のゲートに出力されるスイッチング信号に基づいて診断を行う構成としているので、従来に比べてコスト低減が図れると共に、従来のような通信に起因する判定時間の長時間化という問題を回避することができる。
 さらに、直流入力電圧検出器4の診断を、スイッチング信号のスイッチング周期およびオン時間(すなわち、マイクロコントローラ9aのAD変換とパルス立ち上がり/立ち下がり計数結果)に基づいて行っているので、被監視システムと監視システムが同一の機能障害に陥るのを避けることができ、同一因子故障に伴う誤診断の確率を低減することができる。
(C2)また、図3に示すように、スイッチング信号を電気的に絶縁してマイクロコントローラ9aに入力する絶縁素子(オプトカプラPH)を備えることで、マイクロコントローラ9aとの間の電気的絶縁を図ることができる。絶縁素子としては、オプトカプラPHに限らず磁気カプラ等を使用しても良い。
(C3)また、スイッチング信号をトランスにより絶縁し、そのトランスの二次出力に基づいて診断を行うようにしても良い。
(C4)例えば、図6に示すように、電源回路11bのトランスT0を、スイッチング信号を絶縁するトランスとして兼用しても良く、図3に示す構成の場合と同様の効果を奏することができると共に、さらにコスト低減を図ることができる。さらに、この構成の場合には、信号検出に用いる二次巻線SE4の出力電圧VSBを、マイクロコントローラ9aのバックアップ電源として用いることが可能である。
 また、トランスT0を兼用する代わりに、スイッチング信号検出用のトランスを個別に設け、そのトランスの一次側にゲート電圧VGSを入力し、トランスの二次側の信号を図6のスイッチング情報取得回路120を介してマイクロコントローラ9aに入力するようにしても良い。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1…バッテリー、2…インバータ、3…交流モータ、4…直流入力電圧検出器、9…制御回路、10…ゲート駆動回路、11a,11b…電源回路、100…電力変換装置、110,120…スイッチング情報取得回路、IC1…スイッチングコントローラ、PH…オプトカプラ、S0…トランジスタ、SE0~SE4…二次巻線、T0…トランス

Claims (4)

  1.  インバータ回路を駆動する制御回路部と、
     スイッチング回路を有し、前記インバータ回路の入力電圧を変換して前記制御回路部への印加電圧を出力する電源回路と、
     前記スイッチング回路に入力されるスイッチング信号のスイッチング周期およびオン時間に基づいて、前記入力電圧を検出する電圧検出部の診断を行う診断部とを備える、電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記スイッチング信号を電気的に絶縁して前記診断部に入力する絶縁素子を備える、電力変換装置。
  3.  請求項1に記載の電力変換装置において、
     前記スイッチング信号をトランスにより絶縁し、前記トランスの二次出力に基づいて前記診断を行う、電力変換装置。
  4.  請求項3に記載の電力変換装置において、
     前記電源回路のトランスを、前記スイッチング信号を絶縁するトランスとして兼用する、電力変換装置。
PCT/JP2017/037124 2016-10-26 2017-10-13 電力変換装置 WO2018079299A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547557A JPWO2018079299A1 (ja) 2016-10-26 2017-10-13 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209668 2016-10-26
JP2016209668 2016-10-26

Publications (1)

Publication Number Publication Date
WO2018079299A1 true WO2018079299A1 (ja) 2018-05-03

Family

ID=62023405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037124 WO2018079299A1 (ja) 2016-10-26 2017-10-13 電力変換装置

Country Status (2)

Country Link
JP (1) JPWO2018079299A1 (ja)
WO (1) WO2018079299A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230024063A1 (en) * 2019-11-22 2023-01-26 Lenze Swiss Ag Frequency Converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135574A (ja) * 1995-11-06 1997-05-20 Sanyo Electric Co Ltd インバータ装置の制御回路
JP2006174569A (ja) * 2004-12-14 2006-06-29 Toyota Industries Corp インバータ装置
JP2015192578A (ja) * 2014-03-28 2015-11-02 日本特殊陶業株式会社 電圧検出装置及び電圧電流検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135574A (ja) * 1995-11-06 1997-05-20 Sanyo Electric Co Ltd インバータ装置の制御回路
JP2006174569A (ja) * 2004-12-14 2006-06-29 Toyota Industries Corp インバータ装置
JP2015192578A (ja) * 2014-03-28 2015-11-02 日本特殊陶業株式会社 電圧検出装置及び電圧電流検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230024063A1 (en) * 2019-11-22 2023-01-26 Lenze Swiss Ag Frequency Converter

Also Published As

Publication number Publication date
JPWO2018079299A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
US9124189B2 (en) Converter with galvanic isolation
US9350179B2 (en) Charging device
JP5341842B2 (ja) 電源回路及び電力変換装置
JP5433608B2 (ja) 電力変換装置
US20110234176A1 (en) Discharge control apparatus
US8963515B2 (en) Current sensing circuit and control circuit thereof and power converter circuit
TWI404287B (zh) 可減少電源損耗之電容能量洩放電路及其電源供應電路
JP3961505B2 (ja) 電圧検出回路、電源装置及び半導体装置
JP6563729B2 (ja) 絶縁同期整流型dc/dcコンバータ、それを用いた電源装置、電源アダプタおよび電子機器
US9490705B2 (en) Inverter device and air conditioner
US20140240873A1 (en) Switching Power Supply Circuit with Protective Function
JP2013021831A (ja) 力率改善回路
JP5548809B2 (ja) 電源回路及び電力変換装置
JP2012257415A (ja) スイッチング電源回路および電動機の制御装置
WO2018079299A1 (ja) 電力変換装置
WO2011018835A1 (ja) 半導体駆動装置と電力変換装置
JP6951631B2 (ja) 同期整流回路及びスイッチング電源装置
CN115085532B (zh) 一种高功率因数低压电机直流风扇灯驱动器
JP2016189666A (ja) 沿面放電素子駆動用電源回路
CN210602156U (zh) 一种变频空调的检测电路
JP6128201B1 (ja) 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器
CN107819398B (zh) 过电压保护电路
JP2020002936A (ja) 触媒温度算出装置
CN108123429B (zh) 过电压保护电路
CN219760858U (zh) 一种电源监控与掉电控制复用电路及驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864868

Country of ref document: EP

Kind code of ref document: A1