JP2020002936A - 触媒温度算出装置 - Google Patents

触媒温度算出装置 Download PDF

Info

Publication number
JP2020002936A
JP2020002936A JP2018126020A JP2018126020A JP2020002936A JP 2020002936 A JP2020002936 A JP 2020002936A JP 2018126020 A JP2018126020 A JP 2018126020A JP 2018126020 A JP2018126020 A JP 2018126020A JP 2020002936 A JP2020002936 A JP 2020002936A
Authority
JP
Japan
Prior art keywords
voltage
catalyst
unit
detection
ehc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018126020A
Other languages
English (en)
Inventor
慧 高千穂
Satoshi Takachiho
慧 高千穂
渡辺 博
Hiroshi Watanabe
博 渡辺
翔平 藤田
Shohei Fujita
翔平 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018126020A priority Critical patent/JP2020002936A/ja
Priority to DE102019208523.7A priority patent/DE102019208523A1/de
Publication of JP2020002936A publication Critical patent/JP2020002936A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • F02D41/1447Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0404Methods of control or diagnosing using a data filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0602Electrical exhaust heater signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】電気加熱式の触媒の温度を高精度で算出可能としつつ、その応答性を高める。【解決手段】電気加熱式の触媒2の温度を算出する触媒温度算出装置6は、信号生成部8、触媒2に印加される電圧を検出する電圧検出部9、触媒2に流れる電流を検出する電流検出部10および温度推定部11を備える。信号生成部8は、車両のボディアースを基準とした低圧電源13から電力供給を受け、触媒2への通電を行う通電部3の出力電圧より低い電圧を有する検出用信号を生成し、その検出用信号を触媒2に与えることができる。温度推定部11は、検出用信号が触媒2に与えられる検出期間における電圧検出信号Sbと電流検出信号Scとに基づいて触媒2の直流抵抗および交流インピーダンスの一方または双方を検出し、その検出結果に基づいて触媒2の温度を推定する。信号生成部8は、検出用信号の出力ノードと低圧電源13との間を絶縁する絶縁部8aを備える。【選択図】図1

Description

本発明は、車両に設けられる内燃機関の排気を浄化する電気加熱式の触媒の温度を算出する触媒温度算出装置に関する。
従来、内燃機関の排気を浄化する電気加熱式の触媒が設けられる車両は、その触媒の温度をフィードバック制御するためのシステムであるEHCシステムを備えている。なお、以下では、電気加熱式の触媒のことをEHCとも呼ぶこととする。EHCシステムには、EHCの温度を速やかに所望する目標温度まで上昇させる制御を実現するため、例えば特許文献1に開示されるようなEHCの温度を算出する触媒温度算出装置が設けられる。
EHCの温度は、その直流抵抗および交流インピーダンスの一方または双方と相関があることが知られている。なお、以下では、直流抵抗および交流インピーダンスのことを、まとめて電気特性とも呼ぶこととする。そこで、従来の触媒温度算出装置では、EHCに対して高電圧が通電される期間にEHCに流れる電流およびEHCに印加される電圧が計測される。そして、従来の触媒温度算出装置では、電流および電圧の計測値からEHCの電気特性が算出され、その電気特性に基づいてEHCの温度が推定される。
特開2011−231709号公報
例えばハイブリッド車などの電動車両は、高電圧バッテリを備えており、その高電圧バッテリによりEHCへの通電が行われる。この場合、高電圧バッテリから電力供給を受けるインバータおよびインバータにより駆動されるモータの動作に伴って生じる高電圧ノイズが高電圧バッテリの出力に重畳する。そのため、このような環境下では、高電圧ノイズの影響により、触媒温度算出装置による電流および電圧の計測誤差が大きくなり、その結果、温度の算出精度が低下するおそれがある。
そこで、このような高電圧ノイズが触媒温度算出装置による電流および電圧の計測結果に及ぼす影響を排除するため、例えば電池監視ICなどで実施されている数秒程度の平均化処理を実施することが考えられる。しかし、EHCシステムにおいて、このような平均化処理を実施すると、EHCの温度を算出するまでに要する時間が長期化して温度フィードバック制御が破綻する可能性があり、システムの安全性の担保が困難となる。
本発明は上記事情に鑑みてなされたものであり、その目的は、電気加熱式の触媒の温度を高精度で算出可能としつつ、その応答性を高めることができる触媒温度算出装置を提供することにある。
請求項1に記載の触媒温度算出装置は、車両に設けられる内燃機関の排気を浄化するものであり且つ通電されて発熱する電気加熱式の触媒の温度を算出する。触媒温度算出装置は、信号生成部(8、72、102、112、132)、触媒に印加される電圧を検出する電圧検出部(9、62、92)、触媒に流れる電流を検出する電流検出部(10)および温度推定部(11)を備える。信号生成部は、車両のボディアースを基準とした電源から電力供給を受け、触媒への通電を行う通電部の出力電圧より低い電圧を有する検出用信号を生成し、その検出用信号を触媒に与えることができる。温度推定部は、検出用信号が触媒に与えられる検出期間における電圧検出部による電圧の検出値および電流検出部による電流の検出値に基づいて触媒の直流抵抗および交流インピーダンスの一方または双方を検出し、その検出結果に基づいて触媒の温度を推定する。
上記構成では、触媒への通電を行う通電部の出力電圧より低い電圧を有する検出用信号が触媒に与えられる検出期間に、触媒に印加される電圧および触媒に流れる電流が検出される。そのため、上記構成によれば、従来技術において説明した高電圧ノイズが通電部の出力電圧に重畳するような場合でも、その影響により、電圧および電流の検出誤差が大きくなることがない。そのため、上記構成では、数秒程度の平均化処理などを実施することなく、温度の推定精度を良好に維持することができる。
したがって、上記構成によれば、電気加熱式の触媒の温度を高精度で算出可能としつつ、その応答性を高めることができるという優れた効果が得られる。そして、このような効果を奏する触媒温度算出装置を用いた触媒の温度を制御するEHCシステムによれば、運転条件または始動条件に関わらず温度のフィードバック制御が成立することになり、車両の排気エミッションの改善に寄与することができる。特に、ゼロエミッション達成のために触媒の温度を短時間で目標温度まで昇温する必要があるEHCシステムほど、高応答の温度フィードバック制御が必要となることから、上記構成の触媒温度算出装置を用いるメリットが大きくなる。
車両絶縁の法規対応の観点から、比較的高い電圧により触媒への通電を行う通電部は、車両のボディアースとの間で絶縁されている必要がある。そこで、上記構成の触媒温度算出装置において、信号生成部は、検出用信号の出力ノードと車両のボディアースを基準とした電源との間を絶縁する絶縁部(8a、18、105)を備えている。このような構成によれば、検出用信号の出力ノードに接続される触媒、ひいては通電部と、車両のボディアースとの間の絶縁を確保することができる。
上記構成において、触媒に流れる電流を検出するためには、検出用信号の出力ノードから触媒へと至る信号ラインに直列に介在する検出抵抗が設けられるのが一般的である。ここで、仮に、信号生成部が絶縁部を備えていない構成であるとすると、上記検出抵抗として、絶縁法規を満足できる程度に高い抵抗値のものを用いる必要が生じる。比較的高い抵抗値の検出抵抗を用いると、次のような問題が生じる。
すなわち、検出期間に触媒に印加される電圧は、検出用信号の電圧を、検出抵抗と触媒の直流抵抗または交流インピーダンスとにより分圧した電圧となる。そのため、検出抵抗の抵抗値が高いほど、検出期間における触媒への印加電圧および触媒に流れる電流が小さくなり、電圧検出部による電圧の検出精度および電流検出部による電流の検出精度が低下するおそれがある。これに対し、上記構成のように信号生成部が絶縁部を備えた構成である場合、検出抵抗の抵抗値を低く抑えることができるため、電圧および電流の検出精度を高めることができる。
上記構成において、信号生成部は、通電部の出力電圧より低い電圧を有する検出用信号を生成する構成である。そのため、通電部により触媒への通電が行われる期間、通電部から信号生成部へと流れる電流、つまり逆流が生じる可能性があり、このような逆流が流れると信号生成部が故障するおそれがある。そこで、請求項2に記載の触媒温度算出装置は、さらに、通電部により触媒への通電が行われている期間において通電部から信号生成部へと流れる電流を阻止する逆流阻止部(12、24、52、82、103)を備える。このような構成によれば、通電部により触媒への通電が行われている期間における逆流の発生を確実に防止することができる。
上記構成において、触媒は、その直流抵抗または交流インピーダンスが低いほど、その温度を速やかに上昇させることができる。ただし、触媒の直流抵抗または交流インピーダンスが低くなると、触媒に流れる電流を検出するための検出抵抗の抵抗値によっては、電圧および電流の検出精度が低下するおそれがある。しかし、上記構成では、信号生成部が絶縁部を備えていることから、検出抵抗の抵抗値を低く抑えることができるため、触媒として、直流抵抗または交流インピーダンスの低いものを採用することができる。例えば、請求項5に記載の触媒温度算出装置のように、通電部と車両のボディアースとの間の絶縁抵抗より小さい直流抵抗または交流インピーダンスを有する触媒を採用することができる。そして、上記構成の触媒温度算出装置と、直流抵抗または交流インピーダンスの低い触媒とを採用したEHCシステムによれば、触媒の温度を素早く上昇させることが可能となり、排気エミッションを一層改善することができる。
請求項8に記載の触媒温度算出装置では、通電部は、車両に搭載されるバッテリから電力供給を受けるようになっている。また、この場合、電圧検出部は、バッテリで発生するノイズ成分を除去するための低域通過フィルタ(26)を備える。車両に搭載されるバッテリで発生するノイズ成分は、比較的低い周波数(例えば数百Hz)から比較的高い周波数(例えば数MHz)までの幅広い周波数のものとなる。
低域通過フィルタにより、このようなノイズ成分の全てを除去しようとすると、そのカットオフ周波数は、バッテリで発生するノイズ成分の周波数の下限値付近に設定しなければならない。しかし、このような低いカットオフ周波数の低域通過フィルタを備えた電圧検出部は、時定数の関係から、電圧の検出に多大な時間を要することになる。ただし、バッテリで発生するノイズ成分の全てが、通電部を通過して触媒側へと到達するわけではなく、比較的低いノイズ成分については通電部で大きく減衰されると考えられる。
そこで、この場合、低域通過フィルタのカットオフ周波数は、通電部による触媒への通電が停止されている期間にバッテリから通電部を通過して触媒側へと到達するノイズ成分の下限周波数より低いという条件を満たす周波数に設定されている。このようにすれば、バッテリで発生するノイズ成分に起因した電圧検出部の検出精度の低下を抑制しつつ、電圧検出部による電圧の検出時間が長引くことを防止することができる。つまり、上記構成によれば、触媒の温度の算出精度を一層高めるとともに、その応答性を一層高めることができる。
第1実施形態に係るEHCシステムの構成を模式的に示す図 第1実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第1実施形態に係るEHCに印加される電圧およびEHCに流れる電流の波形を模式的に示す図 第1実施形態に係る電圧検出部および電流検出部の具体的な構成例を示す図 第1実施形態に係る検出時間およびLPFのカットオフ周波数の関係を示す図 第1実施形態に係る高電圧ノイズの影響を除去するためのLPFのカットオフ周波数の設定手法を説明するための図 第1実施形態に係る高電圧ノイズおよびスイッチングノイズの影響を除去するためのLPFのカットオフ周波数の設定手法を説明するための図 第1実施形態に係るEHCシステムにおいて実行される制御の内容を模式的に示す図 第1実施形態に係る各部の動作状態およびEHCの温度を示すタイミングチャート 比較例に係る触媒温度算出装置の構成を模式的に示す図 絶縁電源の変形例を示す図その1 絶縁電源の変形例を示す図その2 第2実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第3実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第4実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第4実施形態に係るEHCに印加される電圧およびEHCに流れる電流の波形を模式的に示す図 第4実施形態に係る高電圧ノイズおよびスイッチングノイズの影響を除去するためのLPFのカットオフ周波数の設定手法を説明するための図 第5実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第6実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第7実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第7実施形態に係るEHCに印加される電圧およびEHCに流れる電流の波形を模式的に示す図 第7実施形態に係る高電圧ノイズの影響を除去するためのLPFのカットオフ周波数の設定手法を説明するための図 第8実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第9実施形態に係る触媒温度算出装置の具体的な構成例を示す図 第10実施形態に係る触媒温度算出装置の具体的な構成例を示す図
以下、本発明の複数の実施形態について図面を参照して説明する。なお、各実施形態において実質的に同一の構成には同一の符号を付して説明を省略する。
(第1実施形態)
以下、第1実施形態について図1〜図12を参照して説明する。
<EHCシステム1について>
図1に示すEHCシステム1は、例えばハイブリッド車などの車両に設けられるものであり、EHC2を加熱するとともにEHC2の温度が所望する目標温度となるように温度フィードバック制御を行う。EHC2は、車両に設けられる内燃機関の排気を浄化するものであり且つ通電されて発熱する電気加熱式の触媒である。EHCシステム1は、通電部3、通電制御部4、ECU5、触媒温度算出装置6などを備えている。通電部3は、高圧電源7から電力供給を受け、高圧電源7の電圧に応じた電圧を出力し、その出力電圧をEHC2に印加することができる。
高圧電源7は、車両に搭載されるバッテリのうち、比較的高い電圧(例えば数百V)を出力する高電圧バッテリである。なお、以下では、EHC2に対して通電部3が印加する電圧のことを高電圧とも呼ぶこととする。通電部3は、高電圧の給電経路に直列に介在する例えばIGBTなどのスイッチング素子を備えた電源回路として構成されている。このような構成により、通電部3は、EHC2に対する高電圧の印加、つまりEHC2への通電を実行および停止することができる。
通電部3の動作、具体的には通電部3によるEHC2への通電の実行および停止は、通電制御部4により制御される。通電制御部4には、触媒温度算出装置6から出力されるEHC2の温度推定値を表す温度検出信号Saが与えられている。また、通電制御部4には、ECU5からEHC2への通電の実行および停止のタイミングなどを指令する指令信号が与えられている。
通電制御部4は、温度検出信号Saが表すEHC2の温度推定値およびECU5から与えられる指令信号に基づいて通電部3の動作を制御する。また、通電制御部4は、EHC2の温度推定値などをECU5へと送信する。ECU5は、電池ECUおよびエンジンECUである。電池ECUは、高圧電源7を監視する機能などを有する電子制御装置である。エンジンECUは、車両の様々な運転状態における各種センサ信号に基づいて各種アクチュエータを統合的に制御し、最適なエンジン状態での動作を実現する電子制御装置である。
触媒温度算出装置6は、EHC2の温度を算出するものであり、信号生成部8、電圧検出部9、電流検出部10、温度推定部11、逆流阻止部12などを備えている。信号生成部8は、低圧電源13から電力供給を受け、通電部3の出力電圧より低い電圧を有する検出用信号を生成し、その検出用信号をEHC2に与えることができる。信号生成部8の動作、具体的には検出用信号をEHC2に与えるか否かは、通電制御部4により制御される。
信号生成部8は、検出用信号の出力ノードと低圧電源13との間を絶縁する絶縁部8aを備えている。低圧電源13は、車両に搭載されるバッテリのうち、比較的低い電圧(例えば12V、24Vなど)を出力する低電圧バッテリである。このような低電圧バッテリである低圧電源13は、車両のボディアースを基準とした電源となっている。
電圧検出部9は、EHC2に印加される電圧を検出する。電圧検出部9から出力される電圧の検出値を表す電圧検出信号Sbは、温度推定部11に与えられる。電流検出部10は、EHC2に流れる電流を検出する。電流検出部10から出力される電流の検出値を表す電流検出信号Scは、温度推定部11に与えられる。温度推定部11は、電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の温度を推定する。
具体的には、温度推定部11は、検出用信号がEHC2に与えられる検出期間における電圧検出信号Sbが表す電圧の検出値および電流検出信号Scが表す電流の検出値に基づいて、EHC2の直流抵抗Rおよび交流インピーダンスZacのうち少なくとも一方を算出する。なお、以下では、直流抵抗Rおよび交流インピーダンスZacを区別する必要がない場合、それらを電気特性と総称することとする。
EHC2の温度は、EHC2の仕様などに依存するが、その電気特性と相関がある。温度推定部11には、使用されるEHC2の温度と電気特性との相関を表すテーブルが記憶されている。温度推定部11は、上述したようにして算出した電気特性および上記テーブルに基づいてEHC2の温度を推定する。温度推定部11から出力される温度の推定値を表す温度検出信号Saは、前述したように通電制御部4に与えられる。
上記構成では、高圧電源7から電力供給を受ける通電部3と、低圧電源13から電力供給を受ける信号生成部8との両方が、EHC2に対して電圧を印加することができるようになっている。そのため、通電部3によりEHC2への通電が行われている期間、通電部3から信号生成部8へと電流が流れるおそれがある。逆流阻止部12は、このような電流である逆流を阻止するために設けられている。
<触媒温度算出装置6について>
上記したような機能を有する触媒温度算出装置6の具体的な構成としては、例えば図2に示すような構成を採用することができる。図2に示す構成において、信号生成部8は、検出用信号として直流電圧を生成し、その直流電圧をEHC2に印加することができる構成となっている。この場合、信号生成部8による直流電圧の印加の実行および停止は、通電制御部4により制御される。
信号生成部8は、絶縁電源14、抵抗15、16およびOPアンプ17を備えている。絶縁電源14は、絶縁型のDC/DCコンバータであり、低圧電源13から電源線L1、L2を介して供給される直流電圧VBを任意の電圧値を有する直流電圧Vdに変換し、電源線L3、L4を介して出力する。なお、電源線L2は、車両のボディアースに接続されている。また、電源線L3の電位は、触媒温度算出装置6を含むEHCシステム1の基準電位となる。絶縁電源14は、トランス18、例えばNチャネル型MOSFETであるスイッチング素子19、ダイオード20およびコンデンサ22を備えている。
トランス18は、前述した絶縁部8aとして機能するもので、一次巻線18aおよび二次巻線18bを備えている。一次巻線18aの一方の端子は電源線L1に接続され、その他方の端子はスイッチング素子19のドレインに接続されている。スイッチング素子19のソースは、電源線L2に接続されている。
スイッチング素子19のゲートには、通電制御部4により生成されるゲート駆動信号が与えられている。スイッチング素子19は、そのゲート駆動信号に応じて、所定の周波数でオンオフされる、つまりスイッチング動作される。
二次巻線18bの一方の端子はダイオード20を順方向に介して電源線L3に接続され、その他方の端子は電源線L4に接続されている。コンデンサ22は、電源線L3、L4間に接続されている。上記構成の絶縁電源14では、スイッチング素子19のスイッチング動作により、直流電圧Vdが生成される。
抵抗15、16は、電源線L3、L4間に直列接続されており、絶縁電源14から出力される直流電圧Vdを、それらの抵抗比に応じた分圧比で分圧する。OPアンプ17は、電源線L3、L4を介して直流電圧Vdの供給を受けて動作する。OPアンプ17は、その反転入力端子と出力端子が接続されており、ボルテージフォロアとして機能する。OPアンプ17の非反転入力端子には、抵抗15、16の相互接続ノードであるノードN1の電圧、つまり直流電圧Vdが分圧された分圧電圧が与えられている。
OPアンプ17の出力端子は、信号生成部8における検出用信号の出力ノードとなるノードN2に接続されている。したがって、上記構成の信号生成部8では、OPアンプ17から出力される直流電圧が検出用信号に相当する。この場合、検出用信号となる直流電圧の電圧値は、抵抗15、16の抵抗比により定まる分圧比に応じて、所望する値に設定されている。上記構成の信号生成部8は、絶縁部8aとして機能するトランス18により、車両のボディアースを基準とした低圧電源13との絶縁が確保されている。
図2に示す構成では、EHC2に流れる電流iを検出するため、信号生成部8のノードN2からEHC2へと至る信号ラインに直列に介在する検出抵抗23が設けられている。具体的には、検出抵抗23の一方の端子はノードN2に接続され、その他方の端子はノードN3に接続されている。ノードN3には、前述した逆流阻止部12として機能するダイオード24のアノードが接続されている。ダイオード24のカソードは、ノードN4に接続されている。ノードN4と、出力電源線L4に接続されるノードN5との間には、EHC2が接続されている。
電圧検出部9には、信号生成部8とダイオード24との相互接続ノードに相当するノードN3の電圧が与えられている。電圧検出部9は、ノードN3の電圧に基づいてEHC2に印加される電圧を検出する。より詳細には、電圧検出部9は、電源線L4の電位を基準としたノードN3の電圧、つまりノードN3およびノードN5間の電圧に基づいてEHC2に印加される電圧を検出する。電流検出部10には、検出抵抗23の各端子電圧が与えられている。電流検出部10は、検出抵抗23の各端子電圧の差に基づいてEHC2に流れる電流を検出する。
上記構成では、絶縁電源14のスイッチング素子19の動作が制御されることにより、通電部3によるEHC2への通電が停止されている期間にOPアンプ17の出力電圧がEHC2に印加されるようになっている。したがって、本実施形態では、検出用信号がEHC2に与えられる検出期間は、通電部3によるEHC2への通電が停止されている期間となる。
図3に示すように、このような検出期間におけるノードN3およびノードN5間の電圧は、ダイオード24の順方向電圧Vfよりも高い一定の直流電圧となる。なお、この電圧の値は、前述したように、抵抗15、16による分圧比に応じて所望する値に設定することができる。また、このような検出期間にEHC2に流れる電流iは、EHC2に一定の電圧が印加されていることから、その一定の電圧に応じた一定の電流となる。
なお、この場合、EHC2としては、その直流抵抗Rと温度とに相関があるものが用いられる。温度推定部11は、EHC2に一定の直流電圧が印加されるとともに一定の電流が流れる検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の直流抵抗Rを検出し、その検出結果に基づいてEHC2の温度を推定する。
<電圧検出部9および電流検出部10について>
電圧検出部9および電流検出部10の具体的な構成としては、例えば図4に示すような構成を採用することができる。図4に示すように、電圧検出部9は、増幅回路25、低域通過フィルタ26およびA/D変換器27を備えている。なお、以下では、低域通過フィルタのことをLPFと省略するとともに、A/D変換器のことをADCと省略することとする。
増幅回路25は、OPアンプ28および抵抗29、30により構成されている。OPアンプ28は、電源線L3、L4を介して直流電圧Vdの供給を受けて動作する。OPアンプ28の非反転入力端子には、抵抗29を介して検出対象の電圧であるノードN3の電圧が与えられる。OPアンプ28の非反転入力端子は、抵抗30を介して、その出力端子に接続されている。このような構成により、増幅回路25は、OPアンプ28の出力端子から、検出対象の電圧を増幅した電圧を出力する。
LPF26は、抵抗31およびコンデンサ32からなるRCフィルタである。抵抗31は、OPアンプ28の出力端子およびコンデンサ32の一方の端子の間に接続されている。コンデンサ32の他方の端子は、電源線L4に接続されている。抵抗31およびコンデンサ32の相互接続ノードであるノードN6は、ADC27の入力端子に接続されている。ADC27は、ノードN6の電圧、つまりLPF26の出力電圧をデジタル信号に変換して出力する。ADC27から出力されるデジタル信号は、電圧検出信号Sbとして温度推定部11に与えられる。
また、図4に示すように、電流検出部10は、増幅回路33、LPF34およびADC35を備えている。増幅回路33は、OPアンプ36および抵抗37〜40により構成されている。OPアンプ36は、電源線L3、L4を介して直流電圧Vdの供給を受けて動作する。OPアンプ36の非反転入力端子および反転入力端子には、それぞれ抵抗37および抵抗38を介して検出抵抗23の各端子電圧が与えられる。
OPアンプ28の非反転入力端子は、抵抗39を介して電源線L4に接続されている。OPアンプ28の反転入力端子は、抵抗40を介して、その出力端子に接続されている。このような構成により、増幅回路33は、OPアンプ36の出力端子から、検出抵抗23の各端子電圧の差電圧を増幅した電圧を出力する。
LPF34は、抵抗41およびコンデンサ42からなるRCフィルタである。抵抗41は、OPアンプ36の出力端子およびコンデンサ42の一方の端子の間に接続されている。コンデンサ42の他方の端子は、電源線L4に接続されている。抵抗41およびコンデンサ42の相互接続ノードであるノードN7は、ADC35の入力端子に接続されている。ADC35は、ノードN7の電圧、つまりLPF34の出力電圧をデジタル信号に変換して出力する。ADC35から出力されるデジタル信号は、電流検出信号Scとして温度推定部11に与えられる。
車両に搭載される高電圧バッテリである高圧電源7の出力には、高圧電源7から電力供給を受ける図示しないインバータおよびインバータにより駆動される図示しないモータの動作に伴って生じる高電圧ノイズが重畳する。電圧検出部9および電流検出部10は、このような高電圧ノイズが重畳した電圧に基づいて、電圧および電流を検出する構成となっている。そこで、電圧検出部9および電流検出部10には、このような高電圧ノイズの影響を除去するためのLPF26および34が設けられている。なお、以下では、LPF26および34を区別する必要がない場合、それらをLPFと総称することとする。
高圧電源7で発生するノイズ成分は、例えば数百Hz〜数MHzといった、比較的低い周波数から比較的高い周波数までの幅広い周波数のものとなる。LPFにより、このようなノイズ成分の全てを除去しようとすると、そのカットオフ周波数は、高圧電源7で発生するノイズ成分の周波数の下限値、例えば数百Hz付近に設定しなければならない。
しかし、図5に示すように、LPFのカットオフ周波数は、電圧検出部9および電流検出部10の検出時間、ひいては温度推定部11による温度の推定時間に反比例するようになっている。そのため、LPFのカットオフ周波数が低くなるほど、電圧および電流の検出時間、ひいては温度の推定時間が長くなる。したがって、LPFのカットオフ周波数を、高圧電源7で発生するノイズ成分の周波数の下限値に設定した場合、温度の推定に多大な時間を要することになる。
ただし、高圧電源7で発生するノイズ成分は、その全てが通電部3を通過してEHC2側へと到達するわけではなく、比較的低いノイズ成分については通電部3で大きく減衰されると考えられる。そこで、この場合、LPFのカットオフ周波数は、次のような条件を満たす周波数に設定されている。
すなわち、図6に示すように、高圧電源7で発生するノイズ成分の下限値が周波数fminであるとともに上限値が周波数fmaxであるとすると、通電部3によるEHC2への通電が停止されている期間に高圧電源7から通電部3を通過してEHC2側へと到達するノイズ成分の下限周波数faは、周波数fminよりも高い周波数となる。
本実施形態では、LPFのカットオフ周波数は、周波数fminより高く且つ下限周波数faより低いという条件を満たす周波数に設定される。なお、下限周波数faは、通電部3を構成する電源回路の特性、具体的にはIGBTおよびIGBTに逆並列接続される還流ダイオードであるFWDの接合容量成分などにより定まる。
LPFのカットオフ周波数を、このような条件を満たす周波数に設定すれば、高電圧ノイズの影響を確実に除去しつつ、検出時間がむやみに増大することを防止することができる。ただし、上記構成では、絶縁電源14を構成するスイッチング素子19のスイッチング動作に伴って発生するスイッチングノイズが、電圧検出部9および電流検出部10による検出動作に影響を及ぼす可能性もある。
そこで、このようなスイッチングノイズの影響をも除去するためには、LPFのカットオフ周波数は、下限周波数faよりも低いという条件だけでなく、スイッチング素子19によるスイッチング動作の周波数であるスイッチング周波数よりも低いという条件をも満たす周波数に設定すればよい。例えば、図7に示すように、スイッチング素子19のスイッチング周波数fbが周波数fminより高く且つ下限周波数faより低い周波数である場合、LPFのカットオフ周波数は、周波数fminより高く且つスイッチング周波数fbより低いという条件を満たす周波数に設定すればよい。
次に、上記構成のEHCシステム1の全体的な動作について説明する。
EHCシステム1では、車両が始動されると、図8に示すような内容の制御が実行される。なお、図8に示す各処理のうち、ステップS101〜S104は、触媒温度算出装置6を主体として実行されるものであり、EHC2の温度を算出するための処理である。また、ステップS105〜S108は、通電制御部4を主体として実行されるものであり、EHC2の温度が目標温度Tgとなるようにフィードバック制御するための処理である。
まず、ステップS101では、信号生成部8からEHC2への検出用信号の出力が開始される。ステップS102では、EHC2に印加される電圧の検出およびEHC2に流れる電流の検出が実行される。ステップS103では、ステップS102で検出された電圧および電流の検出値に基づいてEHC2の電気特性が算出される。ステップS104では、ステップS103で算出された電気特性などに基づいてEHC2の温度が推定される。
ステップS105では、EHC2の目標温度Tgと、ステップS103で推定された推定温度Teとの差ΔT(=Tg−Te)が閾値Tth未満であるか否かが判断される。閾値Tthは、EHC2の温度が目標温度Tgに達したか否かを判断するためのものであり、本実施形態では、ゼロに設定されている。なお、閾値Tthは、種々の誤差を考慮したうえで上記判断ができるような任意の値に設定すればよい。
ここで、EHC2の温度が目標温度Tgに達している場合、差ΔTがゼロ未満、つまり「ΔT<0」となる。この場合、ステップS105で「YES」となり、本制御が終了となる。一方、EHC2の温度が目標温度Tgに達していない場合、差ΔTがゼロ以上、つまり「ΔT≧0」となる。この場合、ステップS105で「NO」となり、ステップS106に進む。ステップS106では、信号生成部8からEHCへの検出用信号の出力が停止されるとともに、通電部3によるEHC2への通電が開始される。これにより、EHC2の加熱が開始される。
ステップS107は、EHC2の加熱が開始された開始時点から所定時間が経過するまで待機するために設けられている。したがって、ステップS107では、所定時間が経過したか否かが判断される。ここで、開始時点から所定時間が経過すると、ステップS107で「YES」となり、ステップS108に進む。ステップS108では、通電部3によるEHC2への通電が停止される。これにより、EHC2の加熱が停止される。ステップS108の実行後は、ステップS101へ戻り、再びEHC2の温度を算出するための各処理から順に実行される。
上述した制御において、信号生成部8から検出用信号がEHC2に与えられる検出期間は、電圧検出部9が電圧検出に要する時間、電流検出部10が電流検出に要する時間、温度推定部11が温度の推定に要する時間などに応じた期間となる。詳細は後述するが、本実施形態では、これらの時間を短く抑えることができるようになっているため、検出期間を短くすることができる。
また、上述した制御において、通電部3によるEHC2への通電が行われる通電期間は、ステップS107で用いられる所定時間に応じた期間となる。そして、その所定時間は、差ΔTに基づいて決定されるようになっている。すなわち、図9に示すように、差ΔTが大きいほど所定時間が長い時間に設定されて通電期間が長くなり、差ΔTが小さいほど所定時間が短い時間に設定されて通電期間が短くなる。
EHCシステム1において上述したような制御が実行されることにより、車両の始動後、EHC2の温度が短時間で目標温度Tgまで昇温されることになる。なお、この場合、通電部3によるEHC2への通電が行われる期間と、信号生成部8により検出用信号がEHC2に与えられる期間とが重複しないようになっている。すなわち、この場合、通電部3によるEHC2への通電が停止されている期間に、検出用信号がEHC2に与えられることによりEHC2の電気特性、ひいては温度が求められるようになっている。
以上説明したように、本実施形態の触媒温度算出装置6は、通電部3の出力電圧より低い電圧を有する検出用信号を生成し、その検出用信号をEHC2に与えることができる信号生成部8を備えている。そして、この場合、検出用信号がEHC2に与えられる検出期間に、EHC2に印加される電圧およびEHC2に流れる電流が検出される。そのため、上記構成によれば、高圧電源7で発生する高電圧ノイズが通電部3の出力電圧に重畳するような場合でも、その影響により、電圧および電流の検出誤差が大きくなることがない。そのため、本実施形態の触媒温度算出装置6では、数秒程度の平均化処理などを実施することなく、温度の推定精度を良好に維持することができる。
したがって、本実施形態の触媒温度算出装置6によれば、EHC2の温度を高精度で算出可能としつつ、その応答性を高めることができるという優れた効果が得られる。そして、このような効果を奏する触媒温度算出装置6を用いたEHCシステム1によれば、運転条件または始動条件に関わらず温度のフィードバック制御が成立することになり、車両の排気エミッションの改善に寄与することができる。特に、ゼロエミッション達成のためにEHC2の温度を短時間で目標温度まで昇温する必要があるシステムほど、高応答の温度フィードバック制御が必要となることから、上記構成の触媒温度算出装置6を用いるメリットが大きくなる。
車両絶縁の法規対応の観点から、例えば数百Vといった比較的高い電圧によりEHC2への通電を行う通電部3は、車両のボディアースとの間で絶縁されている必要がある。そこで、本実施形態の信号生成部8は、検出用信号の出力ノードと車両のボディアースを基準とした低圧電源13との間を絶縁する絶縁部8aを備えている。このような構成によれば、検出用信号の出力ノードに接続されるEHC2、ひいては通電部3と、車両のボディアースとの間の絶縁を確保することができる。
一般に、EHCの温度を算出する触媒温度算出装置において、EHCに流れる電流を検出するためには、検出用信号の出力ノードからEHCへと至る信号ラインに直列に介在する検出抵抗が設けられる。例えば、図10に示す触媒温度算出装置のように、検出用信号として交流電圧を生成する信号生成部43を備え、その交流電圧をカップリングコンデンサC1、C2を介してEHC44に印加する構成の場合、交流電圧の出力ノードからEHC44へと至る信号ラインに直列に介在するように検出抵抗R1、R2が設けられる。なお、以下では、図10に示す触媒温度算出装置のことを比較例と呼ぶ。
比較例のように、信号生成部43が絶縁部を備えていない構成である場合、検出抵抗R1、R2としては、絶縁法規を満足できる程度に高い抵抗値のものを用いる必要が生じる。比較的高い抵抗値の検出抵抗を用いると、次のような問題が生じる。すなわち、検出期間にEHCに印加される電圧は、検出用信号の電圧を、検出抵抗とEHCの直流抵抗または交流インピーダンスとにより分圧した電圧となる。
そのため、検出抵抗の抵抗値が高いほど、検出期間におけるEHCへの印加電圧およびEHCに流れる電流が小さくなり、EHCに印加される電圧の検出精度およびEHCに流れる電流の検出精度が低下するおそれがある。これに対し、本実施形態のように、信号生成部8が絶縁部8aを備えた構成である場合、検出抵抗23の抵抗値を低く抑えることができるため、絶縁法規を満足しつつ、電圧検出部9による電圧の検出精度および電流検出部10による電流の検出精度を高めることができる。
本実施形態では、信号生成部8は、通電部3の出力電圧より低い電圧を有する検出用信号を生成する構成である。そのため、通電部3によりEHC2への通電が行われる期間、通電部3から信号生成部8へと流れる電流、つまり逆流が生じる可能性があり、このような逆流が流れると信号生成部8が故障するおそれがある。そこで、触媒温度算出装置6は、通電部3によりEHC2への通電が行われている期間において通電部3から信号生成部8へと流れる電流を阻止する逆流阻止部12を備えている。このような構成によれば、通電部3によりEHC2への通電が行われている期間における逆流の発生を確実に防止することができる。
EHC2は、その直流抵抗Rまたは交流インピーダンスZacが低いほど、その温度を速やかに上昇させることができる。ただし、EHC2の直流抵抗Rまたは交流インピーダンスZacが低くなると、検出抵抗23の抵抗値によっては、電圧および電流の検出精度が低下するおそれがある。これは、前述したように、検出期間にEHC2に印加される電圧が、検出用信号の電圧を検出抵抗23とEHC2の直流抵抗Rまたは交流インピーダンスZacとにより分圧した電圧となることに起因している。
しかし、本実施形態では、信号生成部8が絶縁部8aを備えていることから、検出抵抗23の抵抗値を低く抑えることができるため、EHC2として、直流抵抗Rの低いものを採用することができる。本実施形態では、例えば、通電部3と車両のボディアースとの間の絶縁抵抗より小さい直流抵抗Rを有するEHCを採用することができる。そして、上記構成の触媒温度算出装置6と、直流抵抗Rの低いEHC2とを採用したEHCシステム1によれば、EHC2の温度を素早く上昇させることが可能となり、排気エミッションを一層改善することができる。
また、本実施形態の触媒温度算出装置6では、信号生成部8は、検出用信号として直流電圧を生成し、その直流電圧をEHC2に印加することができる構成となっている。そのため、温度推定部11は、検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の直流抵抗Rを検出し、その検出結果に基づいてEHC2の温度を推定することができる。したがって、本実施形態の触媒温度算出装置6は、直流抵抗Rと温度とに相関がある仕様のEHCを用いるEHCシステムに好適なものとなる。
本実施形態では、検出用信号がEHC2に与えられる検出期間には、通電部3によるEHC2への通電が停止されるようになっている。このような構成によれば、高圧電源7において発生する高電圧ノイズが電圧検出部9および電流検出部10の検出動作に与える影響を一層低減することができ、その結果、電圧および電流の検出誤差を一層小さく抑えることができる。
電圧検出部9は、信号生成部8と逆流阻止部12として機能するダイオード24との相互接続ノードであるノードN3の電圧、つまりダイオード24のアノード側の電圧からEHC2に印加される電圧を検出する構成となっている。このような構成によれば、電圧検出部9には、通電部3から出力される高電圧が印加されることがない。そのため、電圧検出部9に対し、高電圧から回路素子を保護するための構成、つまり過電圧保護のための構成などを付与する必要がなく、電圧検出部9の回路規模を小さく抑えることができる。
本実施形態において、通電部3は、車両に搭載される高圧電源7から電力供給を受けるようになっている。また、この場合、電圧検出部9および電流検出部10は、高圧電源7で発生するノイズ成分を除去するためのLPFを備えている。そして、車両に搭載される高圧電源7で発生するノイズ成分は幅広い周波数のものとなっている。LPFにより、このようなノイズ成分の全てを除去しようとすると、そのカットオフ周波数は、高圧電源7で発生するノイズ成分の周波数の下限値付近に設定しなければならない。しかし、このような低いカットオフ周波数のLPFを備えた構成では、電圧または電流の検出に多大な時間を要することになる。
ただし、高圧電源7で発生するノイズ成分の全てが、通電部3を通過してEHC2側へと到達するわけではなく、比較的低いノイズ成分については通電部3で大きく減衰されると考えられる。そこで、この場合、LPFのカットオフ周波数は、通電部3によるEHC2への通電が停止されている期間に高圧電源7から通電部3を通過してEHC2側へと到達するノイズ成分の下限周波数faより低いという条件を満たす周波数に設定されている。
このようにすれば、高圧電源7で発生するノイズ成分に起因した電圧検出部9および電流検出部10の検出精度の低下を抑制しつつ、電圧検出部9および電流検出部10における検出時間、ひいては温度推定部11による温度の推定時間が長引くことを防止することができる。つまり、本実施形態によれば、EHC2の温度の算出精度を一層高めるとともに、その応答性を一層高めることができる。
本実施形態の構成では、絶縁電源14を構成するスイッチング素子19のスイッチング動作に伴い発生するスイッチングノイズが、電圧検出部9および電流検出部10による検出動作に影響を及ぼす可能性もある。そこで、LPFのカットオフ周波数は、下限周波数faより低いという条件に加え、スイッチング素子19によるスイッチングの周波数fbより低いという条件をも満たす周波数に設定すればよい。このようにすれば、高圧電源7で発生するノイズ成分および絶縁電源14で発生するスイッチングノイズに起因した電圧検出部9および電流検出部10の検出精度の低下を抑制しつつ、電圧および電流の検出時間および温度の推定時間が長引くことを防止することができる。
なお、電流検出部10では、検出抵抗23の各端子電圧の差電圧に基づいてEHC2の電流を検出する差動検出の構成であることから、高電圧ノイズやスイッチングノイズによるコモンモードノイズの影響を受けて検出誤差が生じる可能性は低い。電圧検出部9についても、同様に差動検出の構成とすれば、コモンモードノイズの影響を受け難くすることが可能である。ただし、本実施形態では、電流検出部10だけが差動検出の構成とされている。このように、電流検出部10だけが差動検出の構成とされる場合、電流検出部10のLPF34のカットオフ周波数は、必ずしも、電圧検出部9のLPF26のカットオフ周波数と同様の考え方で設定しなくともよい。
ただし、LPF26およびLPF34のカットオフ周波数が互いに異なる値となる場合、それらによる遅延時間が異なる時間となる。そうすると、EHC2に印加される電圧の検出タイミングと、EHC2に流れる電流の検出タイミングとにずれが生じることになり、その結果、温度推定部11による温度の推定精度が低下するおそれがある。そこで、本実施形態では、電流検出部10のLPF34のカットオフ周波数は、上述したような考え方で設定される電圧検出部9のLPF26のカットオフ周波数と同様の周波数としている。このようにすれば、電圧および電流の検出タイミングにずれが生じることがなくなり、その結果、温度推定部11による温度の推定精度を良好に維持することができる。
<絶縁電源の変形例>
本実施形態のように、検出用信号を生成する信号生成部に絶縁電源が含まれるような構成とする場合、その絶縁電源としては、種々の構成を採用することができる。例えば、信号生成部に用いられる絶縁電源として、図11および図12に示すような構成を採用することができる。
図11に示す絶縁電源14Aは、一般的なフライバック方式の絶縁電源14に対し、ダイオード21が追加された構成となっている。ダイオード21は、電源線L3、L4間に、電源線L4側をアノードとして接続されている。また、図12に示す絶縁電源14Bは、絶縁電源14Aに対し、インダクタ45が追加されている。インダクタ45は、ダイオード20、21の共通のカソードと、電源線L3との間に接続されている。つまり、絶縁電源14Bは、一般的なフォワード方式の絶縁電源の構成となっている。これらの構成によっても、絶縁電源14と同様、トランス18を絶縁部8aとして機能させることができる。
(第2実施形態)
以下、第1実施形態に対し触媒温度算出装置の具体的な構成が変更された第2実施形態について図13を参照して説明する。
図13に示すように、本実施形態の触媒温度算出装置51は、図2に示した第1実施形態の触媒温度算出装置6に対し、ダイオード24に代えて例えばNチャネル型MOSFETであるスイッチング素子52を備えている点などが異なる。
スイッチング素子52のソースは、ノードN3に接続され、そのドレインはノードN4に接続されている。スイッチング素子52のゲートには、通電制御部4から出力されるゲート駆動信号が与えられている。スイッチング素子52は、そのゲート駆動信号に応じてオンオフされる。つまり、スイッチング素子52のオンオフは、通電制御部4により制御される。
具体的には、通電制御部4は、通電部3によるEHC2への通電が実行されている期間にはスイッチング素子52がオフされるとともに、通電部3によるEHC2への通電が停止されている期間にはスイッチング素子52がオンされるようにスイッチング素子52のオンオフを制御する。
上記構成によれば、スイッチング素子52は、通電部3によりEHC2への通電が行われている期間において通電部3から信号生成部8へと流れる電流を阻止する逆流阻止部12として機能する。このような本実施形態によっても、第1実施形態と同様の作用および効果を得ることができる。
(第3実施形態)
以下、第1実施形態に対し触媒温度算出装置の具体的な構成が変更された第3実施形態について図14を参照して説明する。
図14に示すように、本実施形態の触媒温度算出装置61は、図2に示した第1実施形態の触媒温度算出装置6に対し、電圧検出部9に代えて電圧検出部62を備えている点などが異なる。電圧検出部62は、電圧検出部9と同様の構成となっている。
ただし、電圧検出部62には、ダイオード24とEHC2との相互接続ノードに相当するノードN4の電圧が与えられている。電圧検出部62は、ノードN4の電圧に基づいてEHC2に印加される電圧を検出する。より詳細には、電圧検出部62は、電源線L4の電位を基準としたノードN4の電圧、つまりノードN4およびノードN5間の電圧に基づいてEHC2に印加される電圧を検出する。
以上説明した本実施形態によっても、第1実施形態と同様の作用および効果を得ることができる。さらに、本実施形態によれば、次のような効果が得られる。すなわち、第1実施形態の電圧検出部9は、ダイオード24のアノード側の電圧からEHC2に印加される電圧を検出する構成となっている。このような構成では、ダイオード24の順方向電圧Vfが温度により変動すると、その変動に応じて電圧検出部9による電圧の検出値も変動するため、電圧の検出精度が低下するおそれがある。
これに対し、本実施形態の電圧検出部62は、ダイオード24のカソード側の電圧からEHC2に印加される電圧を検出する構成となっている。このような構成によれば、ダイオード24の順方向電圧Vfが温度により変動したとしても、その変動に応じて電圧検出部62による電圧の検出値が変動することがないため、電圧の検出精度を良好に維持することができる。
(第4実施形態)
以下、第1実施形態に対し触媒温度算出装置の具体的な構成が変更された第4実施形態について図15〜図17を参照して説明する。
図15に示すように、本実施形態の触媒温度算出装置71は、図2に示した第1実施形態の触媒温度算出装置6に対し、信号生成部8に代えて信号生成部72を備えている点などが異なる。信号生成部72は、検出用信号として直流成分に交流成分が重畳した脈動電圧を生成し、その脈動電圧をEHC2に印加することができる構成となっている。
信号生成部72は、信号生成部8が備える構成に加え、発振回路73を備えている。発振回路73には、ノードN1の電圧、つまり直流電圧Vdが分圧された分圧電圧が与えられている。発振回路73は、その分圧電圧を中心として上下に振幅する正弦波状の脈動電圧を生成し、ボルテージフォロアとして機能するOPアンプ17へと出力する。
そのため、上記構成の信号生成部72では、OPアンプ17から分圧電圧を中心として上下に振幅する正弦波状の脈動電圧が出力されることになり、このOPアンプ17の出力電圧が検出用信号に相当する。この場合、OPアンプ17から出力される脈動電圧の直流成分の電圧値は、抵抗15、16の抵抗比により定まる分圧比に応じて、所望する値に設定されている。また、この場合、OPアンプ17から出力される脈動電圧の交流成分の振幅および周波数は、発振回路73の仕様に応じて、所望する値に設定されている。
図16に示すように、上記構成では、検出期間におけるノードN3およびノードN5間の電圧は、ダイオード24の順方向電圧Vfよりも高い一定の電圧を中心として上下に振幅する正弦波状の脈動電圧となる。なお、上記一定の電圧の値は、前述したように、抵抗15、16による分圧比に応じて所望する値に設定することができる。また、このような検出期間にEHC2に流れる電流iは、EHC2に上述したような脈動電圧が印加されていることから、一定の電流を中心として上下に振幅する正弦波状の脈動電流となる。
なお、この場合、EHC2としては、直流抵抗Rおよび交流インピーダンスZacの少なくとも一方と温度とに相関があるものが用いられる。温度推定部11は、EHC2に脈動電圧が印加されるとともに脈動電流が流れる検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の直流抵抗Rおよび交流インピーダンスZacを検出し、その検出結果に基づいてEHC2の温度を推定する。
本実施形態の電圧検出部9および電流検出部10の具体的な構成としては、第1実施形態と同様、図4に示すような構成を採用することができる。ただし、この場合、LPFのカットオフ周波数の設定については、次のように変更する必要がある。すなわち、本実施形態では、検出用信号として脈動電圧が用いられている。そのため、LPFは、その脈動電圧における交流成分については通過させる必要がある。
そこで、本実施形態では、LPFのカットオフ周波数は、下限周波数faより低いという条件およびスイッチング周波数より低いという条件だけでなく、脈動電圧の交流成分の周波数より高いという条件をも満たす周波数に設定される。例えば、図17に示すように、交流成分の周波数fcが周波数fminより高く且つスイッチング周波数fbより低い周波数である場合、LPFのカットオフ周波数は、周波数fcより高く且つスイッチング周波数fbより低いという条件を満たす周波数に設定すればよい。
以上説明した本実施形態によっても、第1実施形態と同様の作用および効果を得ることができる。また、本実施形態の触媒温度算出装置71では、信号生成部72は、検出用信号として脈動電圧を生成し、その脈動電圧をEHC2に印加することができる構成となっている。そのため、温度推定部11は、検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の直流抵抗Rおよび交流インピーダンスZacを検出し、その検出結果に基づいてEHC2の温度を推定することができる。したがって、本実施形態の触媒温度算出装置71は、直流抵抗Rと温度に相関がある仕様のEHCを用いるEHCシステムおよび交流インピーダンスZacと温度に相関がある仕様のEHCを用いるEHCシステムの双方に好適なものとなる。
(第5実施形態)
以下、第4実施形態に対し触媒温度算出装置の具体的な構成が変更された第5実施形態について図18を参照して説明する。
図18に示すように、本実施形態の触媒温度算出装置81は、図15に示した第4実施形態の触媒温度算出装置71に対し、ダイオード24に代えて例えばNチャネル型MOSFETであるスイッチング素子82を備えている点などが異なる。
スイッチング素子82のソースは、ノードN3に接続され、そのドレインはノードN4に接続されている。スイッチング素子82のゲートには、通電制御部4から出力されるゲート駆動信号が与えられている。スイッチング素子82は、そのゲート駆動信号に応じてオンオフされる。つまり、スイッチング素子82のオンオフは、通電制御部4により制御される。
具体的には、通電制御部4は、通電部3によるEHC2への通電が実行されている期間にはスイッチング素子82がオフされるとともに、通電部3によるEHC2への通電が停止されている期間にはスイッチング素子82がオンされるようにスイッチング素子82のオンオフを制御する。
上記構成によれば、スイッチング素子82は、通電部3によりEHC2への通電が行われている期間において通電部3から信号生成部72へと流れる電流を阻止する逆流阻止部12として機能する。このような本実施形態によっても、第4実施形態と同様の作用および効果を得ることができる。
(第6実施形態)
以下、第4実施形態に対し触媒温度算出装置の具体的な構成が変更された第6実施形態について図19を参照して説明する。
図19に示すように、本実施形態の触媒温度算出装置91は、図15に示した第4実施形態の触媒温度算出装置71に対し、電圧検出部9に代えて電圧検出部92を備えている点などが異なる。電圧検出部92は、電圧検出部9と同様の構成となっている。
ただし、電圧検出部92には、ダイオード24とEHC2との相互接続ノードに相当するノードN4の電圧が与えられている。電圧検出部92は、ノードN4の電圧に基づいてEHC2に印加される電圧を検出する。より詳細には、電圧検出部92は、電源線L4の電位を基準としたノードN4の電圧、つまりノードN4およびノードN5間の電圧に基づいてEHC2に印加される電圧を検出する。
以上説明した本実施形態によっても、第4実施形態と同様の作用および効果を得ることができる。さらに、本実施形態の電圧検出部92は、ダイオード24のカソード側の電圧からEHC2に印加される電圧を検出する構成となっている。このような構成によれば、ダイオード24の順方向電圧Vfが温度により変動したとしても、その変動に応じて電圧検出部92による電圧の検出値が変動することがないため、電圧の検出精度を良好に維持することができる。
(第7実施形態)
以下、第1実施形態に対し触媒温度算出装置の具体的な構成が変更された第7実施形態について図20〜図22を参照して説明する。
図20に示すように、本実施形態の触媒温度算出装置101は、図2に示した第1実施形態の触媒温度算出装置6に対し、信号生成部8に代えて信号生成部102を備えている点、ダイオード24に代えて例えばNチャネル型MOSFETであるスイッチング素子103を備えている点などが異なる。信号生成部102は、検出用信号として正弦波状の交流電圧を生成し、その交流電圧をEHC2に印加することができる構成となっている。この場合、信号生成部102による交流電圧の印加の実行および停止は、通電制御部4により制御される。
信号生成部102は、発振回路104およびトランス105を備えている。図示は省略しているが、発振回路104には、低圧電源13から電源線L1、L2を介して直流電圧VBが供給されている。発振回路104は、直流電圧VBから所定の周波数および振幅を有する正弦波状の交流電圧を生成する。トランス105は、絶縁部8aとして機能するもので、一次巻線105aおよび二次巻線105bを備えている。
一次巻線105aには、発振回路104から出力される交流電圧が印加されている。二次巻線105bの一方の端子は電源線L3に接続され、その他方の端子は電源線L4に接続されている。上記構成の信号生成部102では、トランス105の二次巻線105bの両端子から正弦波状の交流電圧が出力されることになり、その交流電圧が検出用信号に相当する。この場合、トランス105の二次巻線105bから出力される交流電圧の振幅および周波数は、発振回路104の仕様に応じて、所望する値に設定されている。
スイッチング素子103のソースは、ノードN3に接続され、そのドレインはノードN4に接続されている。スイッチング素子103のゲートには、通電制御部4から出力されるゲート駆動信号が与えられている。スイッチング素子103は、そのゲート駆動信号に応じてオンオフされる。つまり、スイッチング素子103のオンオフは、通電制御部4により制御される。
具体的には、通電制御部4は、通電部3によるEHC2への通電が実行されている期間にはスイッチング素子103がオフされるとともに、通電部3によるEHC2への通電が停止されている期間にはスイッチング素子103がオンされるようにスイッチング素子103のオンオフを制御する。上記構成によれば、スイッチング素子103は、通電部3によりEHC2への通電が行われている期間において通電部3から信号生成部102へと流れる電流を阻止する逆流阻止部12として機能する。
図21に示すように、上記構成では、検出期間におけるノードN3およびノードN5間の電圧は、回路の基準電位である0Vを中心として上下に振幅する正弦波状の交流電圧となる。また、このような検出期間にEHC2に流れる電流iは、EHC2に上述したような交流電圧が印加されていることから、0Aを中心として上下に振幅する正弦波状の交流電流となる。
なお、この場合、EHC2としては、交流インピーダンスZacと温度とに相関があるものが用いられる。温度推定部11は、EHC2に交流電圧が印加されるとともに交流電流が流れる検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の交流インピーダンスZacを検出し、その検出結果に基づいてEHC2の温度を推定する。
本実施形態の電圧検出部9および電流検出部10の具体的な構成としては、第1実施形態と同様、図4に示すような構成を採用することができる。ただし、この場合、LPFのカットオフ周波数の設定については、次のように変更する必要がある。すなわち、本実施形態では、信号生成部102は、スイッチング動作を行う構成を有していない。そのため、LPFのカットオフ周波数の設定において、第1実施形態のように、スイッチング周波数を考慮する必要がない。しかし、本実施形態では、検出用信号として交流電圧が用いられている。そのため、LPFは、その交流電圧の周波数成分については通過させる必要がある。
そこで、本実施形態では、LPFのカットオフ周波数は、下限周波数faより低いという条件だけでなく、交流電圧の周波数より高いという条件をも満たす周波数に設定される。例えば、図22に示すように、交流電圧の周波数fdが周波数fminより高く且つ下限周波数faより低い周波数である場合、LPFのカットオフ周波数は、周波数fdより高く且つ下限周波数faより低いという条件を満たす周波数に設定すればよい。
以上説明した本実施形態によっても、第1実施形態と同様の作用および効果を得ることができる。また、本実施形態の触媒温度算出装置101では、信号生成部102は、検出用信号として交流電圧を生成し、その交流電圧をEHC2に印加することができる構成となっている。そのため、温度推定部11は、検出期間における電圧検出信号Sbおよび電流検出信号Scに基づいてEHC2の交流インピーダンスZacを検出し、その検出結果に基づいてEHC2の温度を推定することができる。したがって、本実施形態の触媒温度算出装置101は、交流インピーダンスZacと温度に相関がある仕様のEHCを用いるEHCシステムに好適なものとなる。
(第8実施形態)
以下、第7実施形態に対し触媒温度算出装置の具体的な構成が変更された第8実施形態について図23を参照して説明する。
図23に示すように、本実施形態の触媒温度算出装置111は、図20に示した第7実施形態の触媒温度算出装置101に対し、信号生成部102に代えて信号生成部112を備えている点、スイッチング素子103に代えてコンデンサ113を備えている点などが異なる。
信号生成部112は、信号生成部102と同様の構成となっている。ただし、信号生成部112は、交流電圧を常時出力するように構成されている。この場合、ノードN3およびノードN4の間には、コンデンサ113が接続されている。そのため、上記構成では、信号生成部112により生成される交流電圧が、コンデンサ113を介してEHC2に常時印加されるようになっている。
したがって、上記構成では、検出用信号である交流電圧がEHC2に与えられる検出期間に、通電部3によるEHC2への通電が行われることがある。すなわち、本実施形態では、検出用信号がEHC2に与えられる検出期間は、通電部3によるEHC2への通電が行われている期間も含む。
上記構成では、検出期間におけるノードN3およびノードN5間の電圧は、0Vを中心として上下に振幅する正弦波状の交流電圧となる。また、このような検出期間にEHC2に流れる電流iは、EHC2に上述したような交流電圧が印加されていることから、0Aを中心として上下に振幅する正弦波状の交流電流となる。
以上説明した本実施形態では、検出用信号がEHC2に与えられる検出期間に通電部3によるEHC2への通電が実行されることがある。したがって、本実施形態によれば、高圧電源7において発生する高電圧ノイズが電圧検出部9および電流検出部10の検出動作に与える影響の低減効果は若干低くなるものの、概ね第7実施形態と同様の作用および効果を得ることができる。
(第9実施形態)
以下、第8実施形態に対し触媒温度算出装置の具体的な構成が変更された第9実施形態について図24を参照して説明する。
図24に示すように、本実施形態の触媒温度算出装置121は、図23に示した第8実施形態の触媒温度算出装置111に対し、例えばNチャネル型MOSFETであるスイッチング素子122が追加されている点などが異なる。
スイッチング素子122のソースは、ノードN3に接続され、そのドレインは、コンデンサ113を介してノードN4に接続されている。スイッチング素子122のゲートには、通電制御部4から出力されるゲート駆動信号が与えられている。スイッチング素子122は、そのゲート駆動信号に応じてオンオフされる。つまり、スイッチング素子122のオンオフは、通電制御部4により制御される。
上記構成では、スイッチング素子122がオンのとき、信号生成部112により生成される交流電圧がコンデンサ113を介してEHC2に印加される。また、上記構成では、スイッチング素子122がオフのとき、信号生成部112により生成される交流電圧がEHC2に印加されることはない。
以上説明した本実施形態によっても、第8実施形態と同様の作用および効果が得られる。なお、第8実施形態の構成では、通電部3によるEHC2への通電が停止されている状態から通電が実行された状態へと切り替わる過渡時に、信号生成部112へと電流が流れるようになっていた。このような構成では、検出抵抗23の抵抗値を大きくするなどして過渡時に流れる電流を抑制する必要がある。しかし、検出抵抗23の抵抗値を大きくすると、前述した理由から検出精度が低下するおそれがある。
これに対し、本実施形態では、通電部3によるEHC2への通電の実行または停止に応じて、スイッチング素子122のオンオフを制御することができる構成となっている。そのため、例えば通電部3によるEHC2への通電が停止されている状態から通電が実行された状態へと切り替わる期間にスイッチング素子122がオフとなるようにすれば、信号生成部112へと電流が流れることがなくなる。また、このようにすれば、検出抵抗23の抵抗値を大きくする必要がないことから、検出精度を良好に維持することができる。
(第10実施形態)
以下、第1実施形態に対し触媒温度算出装置の具体的な構成が変更された第10実施形態について図25を参照して説明する。
図25に示すように、本実施形態の触媒温度算出装置131は、図2に示した第1実施形態の触媒温度算出装置6に対し、信号生成部8に代えて信号生成部132を備えている点などが異なる。
信号生成部132は、信号生成部8に対し、トランジスタ133および抵抗134が追加されている点などが異なる。トランジスタ133は、PNP形バイポーラトランジスタであり、そのエミッタは抵抗134を介して電源線L3に接続されている。この場合、OPアンプ17の反転入力端子は、トランジスタ133のエミッタに接続され、その出力端子はトランジスタ133のベースに接続されている。
上記構成によれば、OPアンプ17の作用により、トランジスタ133のコレクタ電流が一定の電流となるように、トランジスタ133の導通状態が制御される。したがって、上記構成の信号生成部132では、トランジスタ133のコレクタ電流、つまりトランジスタ133のコレクタから検出抵抗23側へと流れる直流電流が検出用信号に相当する。この場合、検出用信号となる直流電流の電流値は、抵抗15、16の抵抗比により定まる分圧比および抵抗134の抵抗値に応じて、所望する値に設定されている。
以上説明した本実施形態の構成によれば、検出期間においてEHC2に流れる電流iは、一定の電流となる。また、この場合、検出期間においてEHC2に印加される電圧は、EHC2に一定の電流iが流れていることから、その一定の電流に応じた一定の直流電圧となる。つまり、本実施形態によっても、第1実施形態と同様、検出期間に、EHC2に一定の直流電圧を印加するとともに、EHC2に一定の電流を流すことができる。したがって、本実施形態によっても、第1実施形態と同様の作用および効果が得られる。
(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で任意に変形、組み合わせ、あるいは拡張することができる。
上記各実施形態で示した数値などは例示であり、それに限定されるものではない。
本発明は、EHCシステム1に設けられる触媒温度算出装置に限らず、車両に設けられる内燃機関の排気を浄化するEHCの温度を算出する触媒温度算出装置全般に適用することができる。
電圧検出部の具体的な構成としては、図4に示した構成に限らずともよく、EHCに印加される電圧を検出することができる構成であればよい。電流検出部の具体的な構成としては、上記各実施形態で示したものに限らずともよく、EHCに流れる電流を検出することができる構成であればよい。
絶縁部は、絶縁電源14などのトランス18を用いた構成に限らずともよく、検出用信号の出力ノードと低圧電源13との間を絶縁する構成であればよい。例えば、低圧電源13から信号生成部8などへの電力供給ラインをフォトカプラなどにより接続することで、上記絶縁を実現する構成でもよい。
第1〜第7実施形態および第10実施形態において、信号生成部が、通電部3によりEHC2への通電が行われている期間において通電部3から信号生成部へと電流が流れても故障などの問題が生じないような構成となっていれば、逆流阻止部12を省いてもよい。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
2…EHC、3…通電部、6、51、61、71、81、91、101、111、121、131…触媒温度算出装置、7…高圧電源、8、72、102、112、132…信号生成部、8a…絶縁部、9、62、92…電圧検出部、10…電流検出部、11…温度推定部、12…逆流阻止部、13…低圧電源、18、105…トランス、24…ダイオード、52、82、103…スイッチング素子、26…LPF、N3、N4…ノード。

Claims (15)

  1. 車両に設けられる内燃機関の排気を浄化するものであり且つ通電されて発熱する電気加熱式の触媒の温度を算出する触媒温度算出装置であって、
    前記車両のボディアースを基準とした電源から電力供給を受け、前記触媒への通電を行う通電部の出力電圧より低い電圧を有する検出用信号を生成し、その検出用信号を前記触媒に与えることができる信号生成部(8、72、102、112、132)と、
    前記触媒に印加される電圧を検出する電圧検出部(9、62、92)と、
    前記触媒に流れる電流を検出する電流検出部(10)と、
    前記検出用信号が前記触媒に与えられる検出期間における前記電圧検出部による電圧の検出値および前記電流検出部による電流の検出値に基づいて前記触媒の直流抵抗および交流インピーダンスの一方または双方を検出し、その検出結果に基づいて前記触媒の温度を推定する温度推定部(11)と、
    を備え、
    前記信号生成部は、前記検出用信号の出力ノードと前記電源との間を絶縁する絶縁部(8a、18、105)を備える触媒温度算出装置。
  2. さらに、前記通電部により前記触媒への通電が行われている期間において前記通電部から前記信号生成部へと流れる電流を阻止する逆流阻止部(12、24、52、82、103)を備える請求項1に記載の触媒温度算出装置。
  3. 前記電圧検出部は、前記逆流阻止部と前記触媒との相互接続ノード(N4)の電圧から前記触媒に印加される電圧を検出する請求項2に記載の触媒温度算出装置。
  4. 前記電圧検出部は、前記信号生成部と前記逆流阻止部との相互接続ノード(N3)の電圧から前記触媒に印加される電圧を検出する請求項2に記載の触媒温度算出装置。
  5. 前記触媒は、前記通電部と前記車両のボディアースとの間の絶縁抵抗より小さい直流抵抗または交流インピーダンスを有する請求項1から4のいずれか一項に記載の触媒温度算出装置。
  6. 前記検出期間は、前記通電部による前記触媒への通電が停止されている期間である請求項1から5のいずれか一項に記載の触媒温度算出装置。
  7. 前記検出期間は、前記通電部による前記触媒への通電が行われている期間である請求項1から5のいずれか一項に記載の触媒温度算出装置。
  8. 前記通電部は、車両に搭載されるバッテリから電力供給を受けるようになっており、
    前記電圧検出部は、前記バッテリで発生するノイズ成分を除去するための低域通過フィルタ(26)を備え、
    前記低域通過フィルタのカットオフ周波数は、前記通電部による前記触媒への通電が停止されている期間に前記バッテリから前記通電部を通過して前記触媒側へと到達するノイズ成分の下限周波数より低いという条件を満たす周波数に設定されている請求項1から6のいずれか一項に記載の触媒温度算出装置。
  9. 前記信号生成部(8)は、前記検出用信号として直流電圧を生成し、その直流電圧を前記触媒に印加することができる請求項1から6のいずれか一項に記載の触媒温度算出装置。
  10. 前記通電部は、車両に搭載されるバッテリから電力供給を受けるようになっており、
    前記信号生成部は、スイッチング動作によって前記直流電圧を生成する構成であり、
    前記電圧検出部は、前記バッテリで発生するノイズ成分を除去するための低域通過フィルタ(26)を備え、
    前記低域通過フィルタのカットオフ周波数は、前記通電部による前記触媒への通電が停止されている期間に前記バッテリから前記通電部を通過して前記触媒側へと到達するノイズ成分の下限周波数より低いという条件および前記スイッチングの周波数より低いという条件を満たす周波数に設定されている請求項9に記載の触媒温度算出装置。
  11. 前記信号生成部(102)は、前記検出用信号として交流電圧を生成し、その交流電圧を前記触媒に印加することができる請求項1から6のいずれか一項に記載の触媒温度算出装置。
  12. 前記通電部は、車両に搭載されるバッテリから電力供給を受けるようになっており、
    前記電圧検出部は、前記バッテリで発生するノイズ成分を除去するための低域通過フィルタ(26)を備え、
    前記低域通過フィルタのカットオフ周波数は、前記通電部による前記触媒への通電が停止されている期間に前記バッテリから前記通電部を通過して前記触媒側へと到達するノイズ成分の下限周波数より低いという条件および前記交流電圧の周波数より高いという条件を満たす周波数に設定されている請求項11に記載の触媒温度算出装置。
  13. 前記信号生成部(72)は、前記検出用信号として直流成分に交流成分が重畳した脈動電圧を生成し、その脈動電圧を前記触媒に印加することができる請求項1から6のいずれか一項に記載の触媒温度算出装置。
  14. 前記通電部は、車両に搭載されるバッテリから電力供給を受けるようになっており、
    前記信号生成部は、スイッチング動作によって前記直流成分を生成する構成であり、
    前記電圧検出部は、前記バッテリで発生するノイズ成分を除去するための低域通過フィルタ(26)を備え、
    前記低域通過フィルタのカットオフ周波数は、前記通電部による前記触媒への通電が停止されている期間に前記バッテリから前記通電部を通過して前記触媒側へと到達するノイズ成分の下限周波数より低いという条件、前記スイッチングの周波数より低いという条件および前記交流成分の周波数より高いという条件を満たす周波数に設定されている請求項13に記載の触媒温度算出装置。
  15. 前記信号生成部(112)は、前記検出用信号として交流電圧を生成し、その交流電圧を前記触媒に印加することができる請求項7に記載の触媒温度算出装置。
JP2018126020A 2018-07-02 2018-07-02 触媒温度算出装置 Pending JP2020002936A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018126020A JP2020002936A (ja) 2018-07-02 2018-07-02 触媒温度算出装置
DE102019208523.7A DE102019208523A1 (de) 2018-07-02 2019-06-12 Katalysatortemperaturberechnungsvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126020A JP2020002936A (ja) 2018-07-02 2018-07-02 触媒温度算出装置

Publications (1)

Publication Number Publication Date
JP2020002936A true JP2020002936A (ja) 2020-01-09

Family

ID=68886366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126020A Pending JP2020002936A (ja) 2018-07-02 2018-07-02 触媒温度算出装置

Country Status (2)

Country Link
JP (1) JP2020002936A (ja)
DE (1) DE102019208523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604229B2 (en) 2020-12-28 2023-03-14 Analog Devices International Unlimited Company Techniques for determining energy storage device state of health

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056895B2 (ja) 2010-04-28 2012-10-24 株式会社デンソー 触媒温度算出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604229B2 (en) 2020-12-28 2023-03-14 Analog Devices International Unlimited Company Techniques for determining energy storage device state of health

Also Published As

Publication number Publication date
DE102019208523A1 (de) 2020-01-02

Similar Documents

Publication Publication Date Title
US9166499B2 (en) Electronic circuit operating based on isolated switching power source
JP5306306B2 (ja) スイッチング電源装置
US9240739B2 (en) Driving system for driving switching element
US9350179B2 (en) Charging device
US8830699B2 (en) Control circuit of switching power supply system and switching power supply system
US10024898B2 (en) System and method for determining inductance in a power converter
JP2017022836A (ja) 駆動装置
JP2017200418A (ja) リレーの誤作動検出装置
JPWO2016157307A1 (ja) コンバータ装置
US20190243715A1 (en) Drive apparatus for switch
JP2010032395A (ja) 接触不良検出装置およびスイッチング電源
JP2011027625A (ja) スイッチング素子の温度検出装置
JP2012257415A (ja) スイッチング電源回路および電動機の制御装置
US9660541B2 (en) Switching power supply device
JP5427633B2 (ja) ゲート駆動装置
JP2020002936A (ja) 触媒温度算出装置
JP7326440B2 (ja) コンバータ装置、産業機械
JP2009296846A (ja) 車両用インバータ装置
JP6178676B2 (ja) インバータ回路の制御回路、この制御回路を備えたインバータ装置、このインバータ装置を備えた誘導加熱装置、および、制御方法
JP2015173539A (ja) 制御装置
JP2020063712A (ja) 触媒温度算出装置
JP2018098836A (ja) 電気回路およびその制御装置
JP6479607B2 (ja) 直流安定化電源装置
WO2007116481A1 (ja) 電源装置
JP2015100158A (ja) Dc−dcコンバータ