WO2017113031A1 - Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes - Google Patents

Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes Download PDF

Info

Publication number
WO2017113031A1
WO2017113031A1 PCT/CL2016/050080 CL2016050080W WO2017113031A1 WO 2017113031 A1 WO2017113031 A1 WO 2017113031A1 CL 2016050080 W CL2016050080 W CL 2016050080W WO 2017113031 A1 WO2017113031 A1 WO 2017113031A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
isoquinolin
ethyl
tetraone
group
Prior art date
Application number
PCT/CL2016/050080
Other languages
English (en)
French (fr)
Inventor
David Reinaldo VÁSQUEZ VELÁSQUEZ
Juan Andrés ANDRADES LAGOS
Javier Andrés CAMPANINI SALINAS
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to MX2018008192A priority Critical patent/MX383627B/es
Priority to EP16880235.3A priority patent/EP3404026B1/en
Priority to ES16880235T priority patent/ES2951489T3/es
Priority to US16/067,033 priority patent/US11390622B2/en
Priority to CN201680081761.1A priority patent/CN109121411B/zh
Publication of WO2017113031A1 publication Critical patent/WO2017113031A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to antibacterial compounds derived from a pyrimido-isoquinolinquinone nucleus, processes for its preparation, and methods for its use.
  • cephalosporins were also a breakthrough in antibiotic therapy. Near the mouth of the drain on the Sardinian Coast, the Italian Giuseppe Brotzu of the University of Cagliari isolated the new beta-lactam of "Cephalosporium acremonium", the first source of these drugs.
  • the subsequent discovery of the active nucleus of cephalosporin C and the possibility of adding side chains made it possible to develop new semi-synthetic compounds with a much greater antibacterial activity. Macrolides, effective against Gram positive, an alternative in patients allergic to penicicillin, they started their itinerary with erythromycin; This "effective oral” antibiotic is produced by the "S. Erythreus” strain obtained from the soil of the Philippine archipelago [5]. Subsequently, other types of antibiotics were developed, until reaching the arsenal with which medicine currently has.
  • antibiotic was only used to refer to organic compounds of biological origin, which could be obtained from cultures of bacteria (Bacillus r Streptomyces) or fungi (Penicillium,
  • Cephalosporium which are toxic to other microorganisms.
  • this term is also used to refer to synthetic compounds, that is, produced exclusively by chemical synthesis, or semi-synthetic ones, these being the ones obtained from a basic nucleus of an antibiotic produced by a microorganism, which is modifies its chemical structure to improve its pharmacokinetic properties, its spectrum, or even, to decrease its toxicity [6].
  • an antibiotic is a chemical produced by a living being or manufactured by synthesis, capable of paralyzing the development of certain pathogenic microorganisms, by their bacteriostatic action, or causing their death, by their bactericidal action [ 7]. Almost simultaneously with the discovery and use of antibiotics, bacterial resistance appeared.
  • a resistant strain or bacteria is defined as one that is capable of multiplying in the presence of concentrations greater than those reached with therapeutic doses [8]. Bacteria can develop resistance to antibiotics by spontaneous mutation or by the exchange of genes between strains and bacterial species [9]. Alexander Fleming was the first to warn about the potential importance of the emergence of resistance [10] and shortly thereafter alarming results were obtained, since in 1946, a UK hospital reported that 14% of Staphylococcus aureus infections were resistant to penicillin. Already in 1950, that proportion had increased to 59%. In the 1990s, the rate of resistance of S. aureus to penicillin had reached levels above 80% both in hospitals and in the community [11].
  • Antimicrobial resistance is referred in clinical settings mainly to measures for infection control and selective pressure of antimicrobial agents on a pathogen. Antimicrobial resistance is a problem that has transcended over time and is currently a public health problem [8], concrete examples of this is that currently multiresistant tuberculosis has been reported in 64 countries and every year they produce about 440,000 new cases that cause at least 150,000 deaths.
  • MRSA methicillin-resistant Staphylococcus aureus
  • VRE Vancomycin resistant
  • Methicillin-resistant Staphylococcus aureus or MRSA is a mutant of the Staphylococcus aureus bacteria that has become resistant to several antibiotics, first to penicillin in 1947, and then to methicillin.
  • MRSA is acquired primarily in a hospital. Its most serious manifestations are sepsis, cellulitis and nosocomial pneumonia, a disease that can be fatal and is acquired mainly in patients with mechanical or assisted breathing. Pharmacologically, MRSA, like VRE, has responded to tartar with linezolid to help fight infection. On the other hand, VRE, to become a vancomycin-resistant bacterium, must typically obtain new DNA in the form of plasmids or transposons that encode genes that confer resistance to it. This acquired resistance is distinguished and is different from the natural vancomycin resistance of certain enterococcal species, including E. gallinarum and E. casseliflavus.
  • Van-A Van-B
  • Van-C Van-D
  • Van-E Van-G
  • Van-A VRE is resistant to both vancomycin and teicoplanin antibiotics
  • Van-B VRE is resistant to vancomycin but susceptible to teicoplanin
  • Van-C is only partially resistant to vancomycin, and susceptible to teicoplanin.
  • Biochemically the mechanism of vancomycin resistance for Enterococcus found involves the alteration of the peptidoglycan synthesis pathway.
  • the resulting D-alanyl-D-lactate decreases the interaction by the loss of a hydrogen bridge (four, as opposed to five for D-alanyl D-alanine) between vancomycin and the peptide.
  • the variation in D-alanyl-D-serine causes a six-fold loss of affinity between vancomycin and the peptide, thereby preventing the antibiotic from performing its function.
  • cephalosporins that would help colonization and VRE infection is considered a risk factor, and its restriction is associated with a decrease in VRE infections and their transmission in the hospitals
  • Bacteria such as Lactobacillus rhamnosus GG (LGG), a strain of L. rhamnosus, have been used to treat VRE infections.
  • Linezolid is usually used to treat VRE.
  • PBP 2a penicillin-binding protein
  • mee A a new gene called mee A and retains its action of transpeptidase in the synthesis of the bacterial wall even when the other PBPs of S. Aureus are inhibited by ⁇ -lactam drugs.
  • Stafiloccocus Aureus with intermediate vancomycin resistance mediated by Stafiloccocus Aureus with intermediate vancomycin resistance (VISA), or emerging strains with linezolid resistance of Stafiloccocus Aureus, or emerging strains with resistance to linezolid of emerging Enterococcus Faecalis with resistance and / or non-susceptible strains to daptomycin.
  • VSA vancomycin resistance
  • antimicrobial resistance is affecting even the latest generation of oral cephalosporins and its prevalence is increasing worldwide, so some treatments are being complemented, such as gonorrhea, so intractable gonococcal infections could increase the morbidity and mortality rates and if so, would nullify the advances made in the control of this sexually transmitted infection.
  • hydrolytic enzymes such as NDM-1 Metallobetalactamase
  • This may render several potent antibiotics ineffective, such as carbapenemic derived compounds, which are often used as a last defense against multiresistant bacterial strains [12].
  • the causes that have This hostile context has been facilitated and, in turn, they provide favorable conditions for the emergence and spread of resistant microorganisms are mainly the prescription of drugs both excessive (when an antibiotic is not required to prevent or in supraterapeutic doses) and insufficient (subtherapeutic doses) ; non-observance of the recommended doses; the lack of regulation of the sale [13]; inappropriate and irrational use of antibiotics, especially in livestock [14,15]; poor practices in the prevention and control of infections and, last but not least, the poor adherence to antibiotic treatments by patients, which in turn is the cause of the poor education provided to them regarding topic.
  • the mechanisms through which bacterial resistance operates are diverse, among which are: destruction or enzymatic inactivation of the antibiotic, modification of the pharmacological target, restriction of the entry of the antibiotic into the cell and active expulsion of the antibiotic before I acted [17].
  • the pressure of a certain antibiotic in a medium favors that the populations of bacteria with a resistance characteristic multiply and prevail in the environment since once the resistance is acquired, it can be passed vertically from mother to daughter bacteria, which originates clones with said resistance or horizontally to other bacteria by mechanisms of transformation, transduction, transposition or conjugation [16].
  • Examples of types of bacteria representative of the resistance generation process (ESKAPE pathogens, with current treatment but with a rapid loss of effectiveness of the same treatments) and bacteria that currently do not have antibiotic treatment are: Eschericha coli r Pseudomona aeruginosa r Staphylococcus aureus, Enterococcus faecalis r Enterobacter Spp. r Klebsiella Spp. and Acinetobacter baumannii, among new ones that appear year by year.
  • the unit to attack must be a common structure in multiple bacterial types, thus managing to cover a broad spectrum.
  • an antibacterial biological objective is the electron transport chain (CTe), with ubiquinone (UBQ) being essential for its operation, which allows the flow of electrons from complex I to complex III and from complex II to complex III [19].
  • Ce electron transport chain
  • UBQ ubiquinone
  • the functional blockage of this unit could produce a fall in the generation of ATP and progressive damage to bacterial viability [20].
  • ubiquinone corresponds to 2,3-dimethoxy-5-methyl-6-polyisoprenyl-1, 4-benzoquinone [21], so it is inferred that quinonic compounds could interfere with the electron transport chain by emulating the UBQ .
  • quinoid molecules have interesting electrochemical properties, being able to be reversibly reduced first to semiquinone and then to hydroquinone because of their ability to accept electrons [21], being compounds with the ability to capture and generate free radicals, and can generate an inappropriate redox medium for bacterial survival [22].
  • ROS reactive oxygen species
  • quinones that have excellent antibiotic properties, among which are: a) 7-methyl uglone, this compound has been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis [26]. b) Lapachol and its analogues have been used in the treatment of ringworm, diarrhea, gonorrhea, parasitic infections and as antifungals [27, 28]. c) Plumbagin shows activity against Staphylococcus aureus [29]. d) Juglone and 7-methyl uglone have activity against Streptococcus mutans and S. sanguis responsible for dental caries, and on Porphyromonas gingivalis and Prevotella intermedia causing gingivitis [30].
  • the present invention relates to quinonic derivative compounds of formula I, their isomers, their tautomers and / or their pharmaceutically acceptable salts, which are useful in the treatment of bacterial infections:
  • R is a C1-C15 alkyl group, a substituted C1-C15 alkyl group, phenyl, substituted phenyl, aryl, substituted aryl, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, where substitutions of C1-C15 alkyl groups, aryl , phenyl, heterocycle and heteroaryl are: - CO-Z-C1-C15 alkyl, -Z-CO-C
  • R 3 is H, C1-C15 alkyl, -NH 2 , -OH, -SH, -NH-R 6 , -N- (R 6 ) 2 , -OR 6 , - SR 6 ; where heterocycle is defined as a monocyclic ring, containing from about 3 to 7 atoms in the ring, with 1 to 5 heteroatoms selected from N, O, and S, in the ring; wherein heteroaryl is defined as an aromatic cyclic or polycyclic ring system of 3 to 7 ring atoms, which has between 1 to 4 heteroatoms selected from N, O, and S; where aryl means a cyclic or polycyclic aromatic ring having 5 to 12 carbon atoms; where R 4 and R 5 are H, a C1-C15 alkyl group; where R 8 , R 9 , R 10 and R 11 independently correspond to: -H, - C1-C15 alkyl, C1-C15 substituted alkyl with R 7 ,
  • the present invention relates to the use of antibacterial agents derived from the pyrimido-isoquinolinquinone nucleus.
  • the compounds used in accordance with the present invention are comprised by the following structural formula I:
  • R is -H, -NH 2 , -OH, -SH, -NH-R, -N- (R) 2 , -0-R,
  • R is a C 1 -C 15 alkyl group, a substituted C 1 -C 15 alkyl group, phenyl, substituted phenyl, aryl, substituted aryl, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, where substitutions of C 1 - alkyl groups C15, aryl, phenyl, heterocycle and heteroaryl are: - CO-Z-C1-C15 alkyl, -Z-CO-C1-C15 alkyl, -H, -ter-butyl, - iso-propyl, -C1-C15 alkyl, -CF 3 , halogen from the group of Cl, Br, F and I, -NH 2 , -N0 2 , -NH-R 7
  • R 2 is -H, -NH 2 , -OH, -SH, -NH-R 6 , -N- (R 6 ) 2 , -OR 6 , -SR 6 and halogen of the group Cl, Br, F and I ;
  • R 3 is H, C1-C15 alkyl, -NH 2 , -OH, -SH, -NH-R 6 , -N- (R 6 ) 2 , -OR 6 , - SR 6 ; where heterocycle is defined as a monocyclic ring, containing from about 3 to 7 atoms in the ring, with 1 to 5 heteroatoms selected from N, O, and S, in the ring; wherein heteroaryl is defined as an aromatic cyclic or polycyclic ring system of 3 to 7 ring atoms, which has between 1 to 4 heteroatoms selected from N, O, and S; where aryl means a cyclic or polycyclic aromatic ring having 6 to 12 carbon atoms; where R 4 and R 5 are H, a C1-C15 alkyl group; where R 8 , R 9 , R 10 and R 11 independently correspond to: -H, - C1-C15 alkyl, C1-C15 substituted alkyl with R 7 ,
  • a second preferred group of the compounds of the present invention includes compounds possessing formula I, wherein R is -NH- (CH 2 ) n-, -O- (CH 2 ) n -R, -S- (CH 2 ) n -R; where R is a substituted phenyl group, where the substitutions of the phenyl group are independently: -Z-CO-Ci - C15 alkyl, -CO-Z-C1-C15 alkyl, -H, -ter-butyl, -iso-propyl, -C1-C15 alkyl, -CF 3 , halogen of the group Cl, Br, F and I, -NH 2 , -N0 2 , - NH-R 7 , -N (R 7 ) 2, -COOH, -COO- R 7 , -OCO-R 7 , -0-R 7 , -CN, -SR 7 , -S
  • R is H; R 3 is H and C1-C15 alkyl, where R 4 and R 5 are H, a C1-C15 alkyl group.
  • R 2 is -H, -NH-R 6 , -N- (R 6 ) 2 , -OR 6 , -SR 6 ;
  • R 3 is H, C 1 -C 15 alkyl; where R 4 and R 5 are H, a C 1 -C 15 alkyl group; where the R 6 substitutions of the phenyl group are in ortho and para positions.
  • a fourth preferred group of the compounds of the present invention includes compounds possessing formula I, wherein
  • R 3 is H, Ci-Ci 5 alkyl; where R 4 and R 5 are H, a C1-C15 alkyl group.
  • a fifth preferred group of the compounds of the present invention includes compounds possessing formula I, wherein
  • n 0-8; where w is independently: O, N, SO 2 , SO, S, C or Si; where y, z and j are C or N; R z is -H;
  • R 3 is H, C 1 -C 15 alkyl; where R 4 and R 5 are H, a C 1 -C 15 alkyl group; where R 8, R 9, R 10 and R 11 are independently -H, - C1-C15 alkyl, substituted C1-C15 with R 7, halogen group Cl, Br, F and I, -NH 2 , -N0 2 , -NH-R 7 , -N (R 7 ) 2 , -COOH, -COO- R 7 , -OCO-R 7 , -0-R 7 , -CN, -SR 7 , -S -CF 3 , -ter-butyl, -iso-propyl and -CF 3 ; where R 7 is a group -H, C 1 -C 15 alkyl, -OH.
  • a sixth preferred group of the compounds of the present invention includes compounds possessing the formula where
  • R 3 is H, C 1 -C 15 alkyl; where R 4 and R 5 are -H, a C 1 -C 15 alkyl group;
  • a seventh preferred group of the compounds of the present invention includes compounds possessing formula I, wherein
  • n 0-8; where Z is independently: O, N, SO 2 , SO, S, C or Si; where Y is C or N; R 2 is -H;
  • R 3 is H, C 1 -C 15 alkyl; where R 4 and R 5 are H, a C 1 -C 15 alkyl group.
  • an eighth preferred group of the compounds of the present invention includes compounds possessing formula I, wherein
  • n 0-8; where K, Z are independently: O, N, SO 2, SO, S, C or Si; where G, I, Y, J and W are independently: N or C; R is -H;
  • R 3 is -H, C 1 -C 15 alkyl; where R 4 and R 5 are H, a C 1 -C 15 alkyl group; where R 9, R 10 and R 11 are independently -H, - C1-C15 alkyl, substituted alkyl C 1-C15 with R 7, halogen group Cl, Br, F and I, -NH 2, - N0 2 , -NH-R 7 , -N (R 7 ) 2 , -COOH, -COO- R 7 , -OCO-R 7 , -0-R 7 , -CN, -SR 7 , -S-CF 3 , -ter-butyl, -iso-propyl and -CF 3 ; where R 7 is a group -H, C 1 -C 15 alkyl, -OH.
  • halogen refers to fluorine, chlorine, bromine or iodine, unless otherwise indicated.
  • Alkyl refers to a linear, cyclic or branched hydrocarbon residue, preferably an alkyl group of 1 to 15 carbon atoms, unless otherwise indicated.
  • > cycloalkyl 'as used herein refers to a cyclic alkyl, for e. , cyclopropyl, unless otherwise indicated.
  • rile refers to a monocyclic or bicyclic aromatic group, in which each ring of the individual or fused ring system contains 6-12, preferably 6-10 cyclic atoms [sic], by e . , includes phenyl, naphthyl, biphenyl and indenyl, but is not always limited to these.
  • heterocycloalkyl refers to a cyclic alkyl, eg. , monocyclic or bicyclic alkyl, containing one or more heteroatoms, preferably one to four heteroatoms, selected from O, N and S, unless otherwise indicated.
  • monoheterocycloalkyl include piperidinyl, morpholinyl, thiamorpholinyl, pyrrolidinyl, imidazolidinyl, tetrahydrofuranyl, piperazinyl and similar groups of the foregoing, although not limited thereto.
  • heterocycle within the > heterocycloalkyl ', is defined as a monocyclic ring, containing from about 3 to 7 atoms in the ring, with 1 to 5 heteroatoms selected from N, O, and S, in the ring.
  • monocyclic heteroaryl examples include thiazolyl, oxazolyl, thiophenyl, furanyl, pyrrolyl, imidazolyl, isooxazolyl, pyrazolyl, triazolyl, thiadiazolyl, tetrazolyl, oxadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, and similar groups thereof, although these are not limited thereto, .
  • bicyclic heteroaryl examples include indolyl, benzothiophenyl, benzofuranyl, benzimidazolyl, benzoxazolyl, bencisoxazolyl, benzthiazolyl, benzothiadiazolyl, benztriazolyl, quinolinyl, isoquinolinyl, furyl, furopyridinyl, oxyindole, similar to these, although they are similar to these.
  • heteroaryl is defined as an aromatic cyclic or polycyclic ring system of 3 to 7 ring atoms, which has between 1 to 4 heteroatoms selected from N, O, and S.
  • the compounds of the present invention can also form a pharmaceutically acceptable salt.
  • Said salt may be an pharmaceutically acceptable non-toxic acid addition salt containing anion, although not limited thereto.
  • the salt may include addition salts with acids formed by inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrobromic acid, hydric acid, and others; organic carbonic acids such as tartaric acid, formic acid, citric acid, acetic acid, trichloroacetic acid, trifluoroacetic acid, gluconic acid, benzoic acid, lactic acid, fumaric acid, maleic acid, and others; and sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, and others.
  • the compound of the present invention may have an asymmetric carbon center, and thus may be present in the form of an R or S isomer, racemic compounds, diasteromeric mixture, or individual diasteromer, said whole isomers and mixtures. included within the scope of the present invention
  • 6-ethyl-2, 4-dimethylpyrimido [4,5-c] isoquinolin-1, 3,7,10 (2H, 4JJ) - tetraone 6-ethyl-2,4-dimethyl-8- (phenylthio) pyrimido [4 , 5-c] and soquinolin- 1,3,7,10 (2H, 4JJ) -tetraone
  • 6-ethyl-8- ((3-methoxyphenyl) thio) -2,4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone
  • 6-ethyl-8- ( (3-fluorophenyl) thio) -2,4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone
  • 6-ethyl-8- ((4-methoxyphenyl) thio) -2,4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone
  • 6-ethyl-8- ((4-fluorophenyl) thio) -2,4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone
  • 6-ethyl-8- ((4-fluorophenyl) amino) -2,4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone 8- ((4-chlorophenyl) amino) -6-ethyl-2, 4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone 8- ((4-bromophenyl) ) amino) -6-ethyl-2, 4-dimethylpyrimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraone methyl 4- ((6-ethyl-2, 4-dimethyl -l, 3,7, 10-tetraoxo-l, 2, 3,4,7,10-hexahydropyrimido [4,5-c] isoquinolin-8-yl) amino
  • the effective dose of the pyrimido-isoquinolinquinone derivatives represented by the formula I, its hydrates, its solvates or its salts accepted for pharmaceutical use can be determined considering the specific compounds used, the method of administration, the chosen individual, the chosen disease, etc., to carry out the
  • the daily dose can be administered once a day (at a time) or several times a day when properly divided into an effective daily dose.
  • oral administration parenteral administration is possible (injection) or local administration.
  • the pharmaceutical composition of the present invention can be formulated for oral administration as tablets, powders, dried syrups, chewable tablets, granules, capsules, soft capsules, pills, beverages, sublinguals, etc.
  • the composition of the invention formulated as tablets may be administered to an individual by any method or route that delivers the effective dose of the tablet with bioavailability, which may be the oral route. Also the method or route of administration can be determined according to the characteristics, stages of the target disease or other conditions.
  • the composition of the invention is formed as tablets, they may also include excipients accepted for use.
  • excipient can be determined by the solubility and chemical properties of the chosen tablet, the route of
  • compositions can be prepared by combining a therapeutically effective amount of at least one compound according to the present invention, or a pharmaceutically acceptable acid addition salt thereof, as an active ingredient, with conventional pharmaceutical excipients and / or additives, and by preparing unit dosage forms suitable for use as an antibiotic.
  • pharmaceutically acceptable additives may include a diluent, a binder, a disintegrant, and the like.
  • the diluent may include microcrystalline cellulose, lactose, mannitol, calcium phosphate, and the like;
  • the binder may include povidone, hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), sodium carboxymethyl cellulose, and the like; and some examples of the disintegrant may include crospovidone, croscarmellose sodium, sodium starch glycolate, and the like.
  • additives or vehicles for oral formulations include cellulose, calcium silicate, corn starch, sucrose, dextrose, stearic acid, magnesium stearate, calcium stearate, gelatin, talc, surfactants, suspending agents, emulsifying agents and others.
  • the diluent can be used in an amount ranging from 20 to 95% by weight
  • the binder can be used in an amount ranging from 1 to 10% by weight
  • the disintegrant can be used in an amount ranging from 1 to 30% in weight. weight, based on the total weight of the composition.
  • additives or vehicles such as water, saline solution, glucose solution, glucose solution analogues, alcohols, glycols, ethers (eg, polyethylene glycol 400), oils, fatty acids, fatty acid esters, glycerides, surfactants, suspending agents, emulsifying agents, and others, preferably, physiological saline solutions can be used as a major carrier.
  • the pH of said solutions should preferably be maintained between 6.5 and 7.2 with a suitable buffer system.
  • the formulations may also contain conventional pharmaceutically acceptable preservatives, stabilizers and surfactants.
  • Preferred preservatives that can be used in the pharmaceutical compositions of the present invention include, but are not limited to, benzyl alcohol, propylparaben, methylparaben, benzalkonium chloride, chlorobutanol, thimerosal, phenylmercuric acetate and phenylmecuric nitrate.
  • a preferred surfactant is, for example, Tween 80, without being limited thereto only.
  • various preferred vehicles may be used in the preparations herein. invention.
  • These vehicles include, but are not limited to, propylene glycol, sodium hydroxide solutions, polyvinyl alcohol, povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl cellulose and purified water.
  • Tonicity adjusters can be added as necessary or convenient. They include, without limitation, salts, particularly sodium chloride, potassium chloride, mannitol and glycerin, or any other suitable and acceptable tonicity adjuster.
  • the buffers include acetate buffers, citrate buffers, phosphate buffers and borate buffers.
  • the acids or bases can be used to adjust the pH of these formulations as necessary.
  • an antioxidant acceptable for use in the present invention includes, without limitation, sodium metabisulphite, sodium thiosulfate, acetylcysteine, butylated hydroxyanisole and butylated hydroxytoluene.
  • Other excipient components in both liquid solution and oral composition, which can be included in the preparations are chelating agents.
  • chelating agents to be used can be mentioned ethylenediaminetetraacetate calcium and disodium (CaNa2EDTA), triethylenetetraminehexaacetic acid (TTHA), dihydroxyethylenediamine diacetic acid (hydroxyethylenediaminetriacetic acid (HEDTA), oxalate 1, its derivatives, oxalato (2) bis (diphenylphosphino) ethylene (DPPE) dimercaprol (BAL), diethylenetriaminepentaacetic acid (DTPA), preferably ethylenediaminetetraacetic acid (EDTA) is used, although other chelating agents may also be used instead or with said agent alone.
  • EDTA has a double function in this invention, on the one hand it is a chelating agent that tends to trap metal particles.On the other hand, EDTA has not been recognized as an antimicrobial agent, in general, it is considered as an "enhancer" of the activity of other antimicrobial agents (Brown and Richards 1965) As such, the literature has written about it an effect synergistic or common reinforcement to action with preservatives, antibiotics and cationic surfactants, for example, quaternary ammonium compounds (Weiser et al. 1969; Sheikh and Parker 1972; Hart 1984; Vaara 1992). Mechanically, one of the recognized modes of action of EDTA is the disruption of the lipopolysaccharide structure in the outer membrane of Gram-negative bacteria.
  • Microcrystalline cellulose (Avicel pH 10.1) 0-3, 0
  • reaction crude is purified with 50-90 g of 0.063-0.2 mm Silica gel using a suitable proportion of petroleum ether, dichloromethane and ethyl acetate as the mobile phase.
  • An orange solid, 288.7 mg, 0.66 mmol, is obtained in 66% yield.
  • reaction crude is purified with 50-90 g of Silica gel 0.063-0.2 rom using a suitable proportion of petroleum ether, dichloromethane and ethyl acetate as the mobile phase.
  • reaction crude is purified with 75 g of silica gel (0.040-0.063 mm) using mobile phase 4.0: 0.5: 0.5 petroleum ether: dichloromethane: ethyl acetate. An orange solid, 201.7 mg, 0.41 mmol, is obtained in 68.1% yield. Melting point 197.9 - 198.7 ° C.
  • a yellow-orange solid, 47.3 mg, 0.11 mmol, is obtained in 66% yield.
  • Example 36 Obtaining 8,9-bis (4-chlorothiophenyl) -6-ethyl-2, 4-dimethylpyrimido [4,5-c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraone (36) .
  • a colored solid is obtained yellow, 70.3 mg (0.1 mmol) with 26% yield.
  • R 3 is -H, C1-C15 alkyl, -NH 2 , -OH, -SH, -NH-R 6 , -N- (R 6 ) 2, -OR 6 , -SR 6 ; where R 4 and R 5 are H, a C1-C15 alkyl group; where R 6 is a C1-C15 alkyl group, a substituted C1-C15 alkyl group, phenyl, substituted phenyl, aryl, substituted aryl, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, where substitutions of C1-C15 alkyl groups, aryl, phenyl, heterocycle and heteroaryl are: - CO-Z-C1-C15 alkyl, -Z-CO-C1-C15 alkyl, -H, -ter-butyl, - iso-propyl, -C1-C15 alkyl, -CF 3 , halogen
  • This figure represents the electron transport chain (CTe).
  • A It is a representation of the normal flow of electrons through the CTe complexes, where the energy released from this flow of electrons is used for the translocation of protons against the gradient, which is an energetically unfavorable process.
  • the electrochemical gradient generated is used for the formation of ATP through an energy-efficient process.
  • This figure presents a graph showing the increase in resistance rates of three bacteria that are cause for concern for public health authorities: (MRSA), (VRE) and (FQRP).
  • MRSA Methicillin-resistant Staphylococcus aureus
  • VRE Vancomycin Resistant Enterococci
  • FQRP Pseudomonas aeruginosa resistant to fluoroquinolones Figure 3/3
  • This figure shows a diagram above where the activity of the compound of example 16 of formula I against Gram (-) bacteria of the Echerichia Coli ATCC ⁇ 25922 type was verified.
  • the diagram below shows the activity of the compound of example 16 of formula I against Gram (-) bacteria of the Pseudomona Aeruginosa ATCC ⁇ 27853 type.
  • Bacteria used For the screening of antibacterial activity of the compound compounds a panel of prototype strains was used:
  • the compounds that were most active were tested on a panel of 89 clinical isolates of Gram-positive cocacceae isolated from different Chilean hospitals during 2014.
  • the isolates used were methicillin-resistant Staphylococcus aureus and Enterococcus spp. Vancomycin resistant that met a multi-resistance susceptibility profile defined by those isolates that presented resistance to at least one representative of 2 or more families of antibacterials.
  • the sites of origin of isolation were aspirated tracheal, wound and blood for Staphylococcus aureus, while the sites for Enterococcus spp were urine, peritoneal fluid, blood and wound.
  • the strains were sown from the cepary (where 50% v / v glycerol and Brain Heart Infusion culture broth, at -20 ° C) were stored in Mueller-Hinton agar (Oxoid, England).
  • the microdilution technique in culture broth was used according to the protocol suggested by the CLSI, briefly: In sterile 96-well culture plates (8 rows and 12 columns) (Ultracruz TM Polystyrene Microplates, 96 well, U bottom Santa Cruz biotechnology, inc.) 100 uL of Müeller Hinton broth was added in all wells, then added 100 uL of control or compound antibiotic to be tested in the 8 rows of the first column, to continue making serial dilutions with a dilution factor of 0.5. The concentrations to be tested range from 32 to 0.0625 g / mL. The wells of columns 11 and 12 were used for control Positive growth and sterility control respectively.
  • the plate was prepared, 100 uL of the bacterial suspension to be evaluated was previously adjusted to 0.5 Me Farland, in each of the wells excluding the wells in column 12. Finally, the plates were covered and incubated. at 36 ° C for 18 to 24 hours, after the time elapsed, the plates were observed using contrast light in order to determine the concentration at which bacterial growth is inhibited (indicated by the disappearance of turbidity).
  • the compounds of this invention are useful for the treatment of infectious diseases, preferably multiresistant to antibiotics in mammals, for example, humans.
  • the results obtained indicate that EDTA allows the antibiotic of formula I to act on Gram (-) strains in a concentration range between 10 to 800 g / ml, preferably in the range of 64 to 128 g / ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

La presente invención provee derivados pirimido-isoquinolin-quinonas de formula (I), sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas resistentes, tales como Staphylococcus aureus resistente a la meticilina (MRSA o SARM), Staphylococcus aureus con resistencia intermedia a la vancomicina(VISA), Staphylococcus aureus con resistencia a la vancomicina(VRSA), Enterococcus spp. resistentes a la vancomicina(VRE), Enterococcus faecalis, Staphylococcus aureus emergentes con resistencia a linezolid y/o cepas bacterianas no susceptibles a daptomicina. Donde los radicales R1, R2, R3, R4 y R5, son tal como se definen en la memoria descriptiva de la presente invención.

Description

COMPUESTOS DERIVADOS PIRIMIDO-ISOQUINOLIN-QUINONAS , SUS SALES, ISOMEROS, TAUTOMEROS FARMACÉUTICAMENTE ACEPTABLES; COMPOSICIÓN FARMACÉUTICA; PROCEDIMIENTO DE PREPARACIÓN; Y SU USO EN EL TRATAMIENTO DE ENFERMEDADES BACTERIANAS Y BACTERIANAS MULTIRRESISTENTES.
Ambito de la invención.
La presente invención se refiere a compuestos antibacterianos derivados un núcleo pirimido-isoquinolin- quinonas, procesos para su preparación, y los métodos para su uso .
Antecedentes de la invención. -
Descripción del arte relacionado.
Antes del siglo XX, la medicina no contaba con las herramientas para combatir las enfermedades infecciosas, ya que ni siquiera se descubría una de las principales etiologías de estas dolencias, las bacterias. Antes del descubrimiento de los antibióticos una simple infección podía ser la razón de muerte de muchas personas. En efecto, por esta causa la mortalidad infantil era altísima, al igual que la mortalidad materna antes y después del parto. En el siglo XVII la mitad de la población de Europa murió por infecciones bacterianas [1] . La esperanza de vida en 1930 era de 35 a 40 años, actualmente este número ha aumentado considerablemente [2], y esto se debe en gran parte a la disponibilidad de antibióticos. Es por esto, que el descubrimiento de los antibióticos puede describirse como un hecho extraordinario que tiene sus inicios ligados a un gran investigador en microbiología, llamado Paul Ehrlich, quien tuvo una idea que para ese momento fue toda una revolución, la llamada "bala mágica" que tenía como objeto matar microorganismos dentro del individuo, pero sin causarle daño, allí estaba lo mágico. Este concepto nació a principios del siglo XX, cuando recientemente se había conocido la existencia de los microorganismos. Se cuentan más de 606 experimentos antes de que naciera la "bala mágica" llamada Salvarsan. Así, desde 1910 el Salvarsan apareció como el primer producto capaz de matar bacterias dentro del organismo humano, y se utilizaba para la sífilis, la buba y el pian, la cuales son enfermedades bacterianas. En 1914 se obtiene un producto más eficiente que el Salvarsan, el Neosalvarsan . Posteriormente se abre una nueva etapa con la obtención de las sulfonamidas, resultado de las investigaciones de Domagk [3] .
En 1929, Alexander Fleming observa que un hongo llamado Penicillium notatum, inhibe el crecimiento de las bacterias. No obstante, el investigador no termina su descubrimiento, al no demostrar la eficiencia de este hongo como "bala mágica". Dicho producto recibió el nombre de Penicilina y en 1940 se consolidó como el primer antibiótico gracias a la labor de Chain y Florey quienes finalmente consiguen aislar y confirmar los efectos de este agente [4] . Es por esto que la penicilina descubierta en 1929, tiene su nacimiento como antibiótico en 1940, fecha en la que se incorpora formalmente a la terapéutica humana. Posteriormente, durante la segunda guerra mundial surge el mejor laboratorio de experimentación para la penicilina y las sulfas, dado que es en ese contexto en donde se comenzaron a utilizar en cantidades importantes, quedando demostradas las bondades de estos agentes [3]. El advenimiento de las cefalosporinas fue también un gran avance en la terapia antibiótica. Cerca de la boca del desagüe en la Costa de Cerdeña, el italiano Giuseppe Brotzu de la Universidad de Cagliari aisló el nuevo beta-lactamico del "Cephalosporium acremonium", primera fuente de estos medicamentos. El descubrimiento posterior del núcleo activo de la cefalosporina C y la posibilidad de agregarle cadenas laterales hizo factible desarrollar nuevos compuestos semisintéticos con una actividad antibacteriana mucho mayor. Los macrólidos, efectivos contra Gram positivos, una alternativa en los pacientes alérgicos a la penicicilina, iniciaron su itinerario con la eritromicina; este antibiótico "efectivo por vía oral" es producido por el "S. Erythreus", cepa obtenida del suelo del archipiélago filipino [5] . Posteriormente se fueron desarrollando otros tipos de antibióticos, hasta llegar al arsenal con el que la medicina dispone actualmente.
En un principio, el término antibiótico sólo se empleaba para referirse a los compuestos orgánicos de origen biológico, los cuales se podían obtener desde cultivos de bacterias (Bacillus r Streptomyces) u hongos ( Penicillium,
Cephalosporium) , que resultan tóxicos para otros microorganismos. En la actualidad también se emplea este término para denominar a compuestos sintéticos, es decir, producidos exclusivamente por síntesis química, o semisintéticos , siendo estos los que se obtienen a partir de un núcleo básico de un antibiótico producido por un microorganismo, al cual se le modifica su estructura química para mejorar sus propiedades farmacocinéticas , su espectro, o incluso, para disminuir su toxicidad [6] . Según la Real Academia Española, un antibiótico es una sustancia química producida por un ser vivo o fabricada por síntesis, capaz de paralizar el desarrollo de ciertos microorganismos patógenos, por su acción bacteriostática, o de causar la muerte de ellos, por su acción bactericida [7] . Casi simultáneamente al descubrimiento y uso de los antibióticos, apareció la resistencia bacteriana. Una cepa o bacteria resistente se define como aquella que es capaz de multiplicarse en presencia de concentraciones mayores que las alcanzadas con dosis terapéuticas [8]. Las bacterias pueden desarrollar resistencia a los antibióticos por mutación espontánea o por el intercambio de genes entre cepas y especies bacterianas [9] . Alexander Fleming fue el primero en advertir sobre la importancia potencial de la aparición de resistencia [10] y poco tiempo después se obtuvieron resultados alarmantes, ya que en 1946, un hospital del Reino Unido informó que el 14% de las infecciones por Staphylococcus aureus eran resistentes a la penicilina. Ya en 1950, esa proporción había aumentado a un 59%. En los años noventa, la tasa de resistencia de S. aureus a la penicilina había alcanzado niveles superiores al 80% tanto en los hospitales como en la comunidad [11] . La resistencia a antimicrobianos es referida en el ámbito clínico principalmente a las medidas para el control de la infección y la presión selectiva de los agentes antimicrobianos sobre un patógeno. La resistencia antimicrobiana es un problema que ha trascendido en el tiempo y en el presente es un problema de salud pública [8], ejemplos concretos de esto es que en la actualidad se ha notificado en 64 países la tuberculosis multirresistente y cada año se producen unos 440.000 casos nuevos que causan como mínimo 150.000 defunciones.
Otras infecciones multirresistentes de origen intrahospitalario se da por patógenos, tales como, el Staphylococcus aureus resistentea la meticilina (SARM) o Enterococcus spp. resistente a la vancomicina (VRE) .
El Staphylococcus aureus resistente a la meticilina o SARM es una mutante de la bacteria Staphylococcus aureus que se ha vuelto resistente a varios antibióticos, primero a la penicilina en 1947, y luego a la meticilina.
Si bien una colonización de SARM en un individuo por lo demás sano generalmente no es grave, la infección de esta bacteria puede amenazar la vida del paciente hospitalario, con heridas profundas o con su sistema inmunitario debilitado.
El SARM se adquiere principalmente en un hospital. Sus manifestaciones más graves son la sepsis, celulitis y la neumonía nosocomial, enfermedad que puede son mortales y que se adquiere principalmente en los pacientes con respiración asistida o mecánica. Farmacológicamente, el SARM al igual que el VRE, han respondido al tartamiento con linezolid para ayudan a combatir la infección. Por otro lado, el VRE, para llegar a ser una bacteria resistente a la vancomicina debe obtener típicamente nuevo ADN en forma de plásmidos o transposones que codifican genes que confieren resistencia a la misma. Esta resistencia adquirida se distingue y es diferente de la resistencia a la vancomicina natural de ciertas especies de enterococos, incluyendo E. gallinarum y E. casseliflavus.
La primera documentación sobre resistencia a la vancomicina E. faecalis y E. faecium con aislamientos clínicos de las cepas, se realizo en la década de 1980, en los Estados Unidos .
Mecanisticamente la resistencia adquirida a la vancomicina se clasifica en seis tipos diferentes de resistencia para Enterococcus spp . : Van-A, Van-B, Van-C, Van-D, Van-E y Van-G [9] El significado es que Van-A VRE es resistente a ambos antibióticos vancomicina y teicoplanina, Van-B VRE es resistente a la vancomicina pero susceptible a la teicoplanina y Van-C es sólo parcialmente resistente a la vancomicina, y susceptible a la teicoplanina. Bioquímicamente el mecanismo de resistencia a la vancomicina para Enterococcus encontrado implica la alteración de la vía de síntesis peptidoglicano . El D-alanil-D-lactato resultante hace disminuir la interacción por la pérdida de un puente de hidrógeno (cuatro, en contraposición a cinco para D- alanil D-alanina) entre la vancomicina y el péptido. La variación en la D-alanil-D-serina causa una pérdida de seis veces de la afinidad entre la vancomicina y el péptido, con lo cual se evita que el antibiótico realice su función.
En general para el tratamiento de la infección por VRE, se considera como un factor de riesgo el uso de cefalosporinas que ayudarían en la colonización e infección por VRE, y su restricción se asocia con una disminución de las infecciones por VRE y su transmisión en los hospitales. Se han utilizado bacterias como el Lactobacillus rhamnosus GG (LGG) , una cepa de L. rhamnosus, para tratar infecciones VRE. Normalmente se utiliza linezolid para tratar VRE.
Por otro lado, el mecanismo de resistencia del SARM involucra la síntesis de una nueva proteína fijadora de penicilina (PBP) , denominada PBP 2a (o PBP) con afinidad baja para los fármacos β-lactámicos . Esta es codificada por un nuevo gen denominado mee A y conserva su acción de transpeptidasa en la síntesis de la pared bacteriana aún cuando las otras PBP del S . aureus estén inhibidas por fármacos β-lactámicos . Otras infecciones bacterianas con multirresistencia son mediadas por Stafiloccocus Aureus con intermedia resistencia a la vancomicina (VISA) , o cepas emergentes con resistencia a linezolid de Stafiloccocus Aureus, o cepas emergentes con resistencia a linezolid de Enterococcus Faecalis emergentes con resitencia y/o cepas no susceptibles a daptomicina.
Adicionalmente, la resistencia antimicrobiana está afectando incluso a la última generación de cefalosporinas orales y su prevalencia está en aumento en todo el mundo por lo que algunos tratamientos se están comple izando, como el de la gonorrea, por lo que las infecciones gonocócicas intratables podrían aumentar las tasas de morbilidad y mortalidad y de ser así, anularían los avances realizados en el control de esta infección de transmisión sexual. Además, ha aparecido resistencia a travéz de enzimas hidrolíticas , como la Metalobetalactamasa NDM-1, en varios bacilos Gram negativos. Esto puede volver ineficaces varios antibióticos potentes, tales como los compuestos derivados carbapenémicos , que a menudo se utilizan como última defensa frente a cepas bacterianas multirresistentes [12] . Las causas que han facilitado este hostil contexto y, que a su vez, proporcionan condiciones favorables para la aparición y propagación de microorganismos resistentes son principalmente la prescripción de fármacos tanto excesiva (cuando no es requerido un antibiótico para prevenir o en dosis supraterapéuticas ) como insuficiente (dosis subterapéuticas ) ; la inobservancia de las dosis recomendadas; la falta de regulación de la venta [13]; el uso inadecuado e irracional de los antibióticos, especialmente en la ganadería [14, 15]; las prácticas deficientes en materia de prevención y control de las infecciones y por último, pero muy importante, la escasa adherencia a los tratamientos antibióticos por parte de los pacientes, que es causa a su vez de la poca educación que se les proporciona con respecto al tema. El impacto de la resistencia antimicrobiana es descomunal para la salud de la población, ya que conlleva a que se aumente la duración de las infecciones y aumenta el riesgo de muerte, poniendo en peligro el control de las enfermedades infecciosas al reducir la eficacia de los tratamientos, es decir, amenaza a retroceder a la época anterior al descubrimiento de los antimicrobianos. Pese a todos estos antecedentes, cada vez son menos los antibióticos nuevos que se crean [13] complicando aún más la situación . La resistencia de las bacterias a los antibióticos es una consecuencia previsible de la variación genética; al administrar un antibiótico se ejerce una presión selectiva sobre las bacterias de manera tal que éstas se ven, por supervivencia, forzadas a adaptarse [16] . En consecuencia, los mecanismos a través de los cuales opera la resistencia bacteriana son diversos, entre los que destacan: destrucción o inactivación enzimática del antibiótico, modificación del blanco farmacológico, la restricción de la entrada del antibiótico a la célula y la expulsión activa del antibiótico antes de que actué [17] . Finalmente, la presión de un determinado antibiótico en un medio favorece que las poblaciones de bacterias con una característica de resistencia se multipliquen y prevalezcan en el ambiente ya que una vez adquirida la resistencia, ésta puede pasarse verticalmente de bacteria madre a hija, lo cual origina clones con dicha resistencia u horizontalmente a otras bacterias por mecanismos de transformación, transducción, transposición o conjugación [16] .
Ejemplos de tipos de bacterias representativas del proceso de generación de resistencias (patógenos ESKAPE, con tratamiento actual pero con una rápida perdida de efectividad de los mismos tartamientos ) y de bacterias que en este momento no tienen tratamiento antibiótico son: Eschericha coli r Pseudomona aeruginosa r Staphylococcus aureus, Enterococcus faecalis r Enterobacter Spp. r Klebsiella Spp. y Acinetobacter baumannii, entre otras nuevas que aparecen año por año. En la actualidad, los antibióticos disponibles poseen blancos tradicionales que apuntan fundamentalmente a la síntesis de la pared celular bacteriana, a la síntesis de proteínas o la replicación del ADN, permitiendo que antibióticos que no están relacionados estructuralmente, en ocasiones posean objetivos comunes, siendo justamente las mutaciones en estos objetivos comunes las que se dan con mayor frecuencia en las bacterias que son resistentes a múltiples antibióticos [18]. Por consiguiente, es trascendental desarrollar nuevos antibióticos que puedan evadir las resistencias conocidas actualmente y/o que ataquen nuevos blancos. En cuanto a este último punto, para evitar la resistencia bacteriana, la elección de estos nuevos targets debe hacerse en función de tres parámetros: 1. El blanco antimicrobiano debe ser esencial para la sobrevida de la bacteria, por lo que al dejar no funcional esta unidad, sea altamente probable la muerte del microorganismo . 2. El objetivo o target debe ser conservado en el tiempo, es decir, con baja tasa de mutagenisidad, resultando más complejo para la bacteria desarrollar cambios que conduzcan a evadir el agente antimicrobiano.
3. La unidad a atacar debe ser una estructura común en múltiples tipos bacterianos, logrando asi abarcar un amplio espectro . A la luz de estos parámetros, un objetivo biológico antibacteriano es la cadena transportadora de electrones (CTe) , siendo esencial para su funcionamiento la ubiquinona (UBQ) , la cual permite el flujo de electrones del complejo I al complejo III y del complejo II al complejo III [19] . El bloqueo funcional de esta unidad podría producir una caída en la generación de ATP y un daño progresivo en la viabilidad bacteriana [20].
Químicamente, la ubiquinona corresponde a la 2 , 3-dimetoxi- 5-metil-6-poliisoprenil-l, 4-benzoquinona [21], por lo que se infiere que compuestos quinónicos podrían interferir con la cadena transportadora de electrones al emular la UBQ.
Figure imgf000016_0001
Estructura general de la ubiquinona
Cabe señalar, además, que las moléculas quinoides cuentan con interesantes propiedades electroquímicas, pudiendo reducirse en forma reversible primero a semiquinona y luego a hidroquinona por su capacidad de aceptar electrones [21], siendo compuestos con capacidad de capturar y generar radicales libres, pudiendo generar un medio redox inadecuado para la sobrevida bacteriana [22] .
Es interesante señalar que existe un equilibrio entre las tres especies quinoides (quinona, semiquinona e hidroquinona) , prevaleciendo la más estable, tal como se presenta a continuación :
Figure imgf000017_0001
Bajo este ángulo, se podría especular que si se introduce en el sistema de la cadena transportadora de electrones, otra molécula, similar a la UBQ, que tenga la capacidad de aceptar electrones y a su vez también de cederlos eficientemente, no al complejo III, sino que a otro aceptor que se encuentre en el sistema, como lo es el oxígeno molecular (O2) , se podría inducir la generación de especies reactivas de oxigeno (ROS del inglés Reactive Oxigen Species) . Esto, sumado al ROS que se producen de manera natural en la cadena transportadora de electrones bacteriana, puede llevar a daño progresivo de estructuras de soporte, sustratos, proteínas, enzimas o material genético de la bacteria perdiendo su viabilidad y muriendo [22, 23, dado que está ampliamente documentado que las especies reactivas de oxígeno tienen un papel clave en la génesis de la apoptosis [24] . Sin embargo, dado que tanto células bacterianas como humanas utilizan la cadena transportadora de electrones (CTe) para obtener energía en forma de ATP, podríamos estar en frente de un problema de toxicidad, no obstante, existen diferencias morfológicas entre células humanas y bacterianas que podrían otorgar selectividad por bacterias ya que, en el caso de éstas, la cadena de transporte de electrones se encuentran en la membrana plasmática. En cambio, en los seres humanos, se encuentra en la membrana interna de la mitocondria [19] . Por lo tanto, al variar la lipofilicidad de una molécula antibiótica que tenga como target la cadena trasportadora de electrones, se puede, a su vez, manipular que ésta quede atrapada en la primera barrera con la que se encuentre, siendo en el caso de bacterias el lugar en donde está ubicada la cadena trasportadora de electrones, en células humanas, en contraste, no lograría llegar a ella, dado que para esto deberá atravesar más barreras hasta llegar a la mitocondria.
Considerando que para el funcionamiento de la CTe es esencial la ubiquinona y esta a su vez cumple con los tres parámetros ya mencionados de un blanco antibiótico eficiente, se infiere que usar esta unidad como objetivo o target antibacteriano, a través de moléculas que la imiten, podría ser una buena solución para combatir cepas resistentes. Las quinonas son un segundo grupo químico de compuestos que se encuentran en etapa de investigación preclinica y clínica debido a la gran diversidad de propiedades biológicas descritas, destacándose como antiparasitarios, antibacterianos, anticancerígenos y antifúngicos . [25]
Existen ciertas quinonas que poseen excelentes propiedades antibióticas , entre las que destacan: a) La 7-metil uglona, este compuesto ha demostrado tener un potencial terapéutico, en particular contra Mycobacterium tuberculosis [26]. b) El lapachol y sus análogos se han utilizado en el tratamiento de la tiña, diarrea, gonorrea, infecciones parasitarias y como antifúngicos [27, 28] . c) La plumbagina muestra actividad contra Staphylococcus aureus [29] . d) La juglona y 7-metil uglona presentan actividad contra Streptococcus mutans y S. sanguis responsables de caries dental, y sobre Porphyromonas gingivalis y Prevotella intermedia causantes de gingivitis [30]. e) La 5-amino-8-hidroxi-l , 4-naftoquinona posee actividad frente a S. aureus, S. intermedius y S. epidermidis [31] . f) La 5, 8-dihidroxi-l , 4-naftoquinona es activa frente a especies de micobacterias [32]. g) Los derivados azufrados de la naftoquinona con sustitución p-anisidilo muestran actividad contra Streptococcus faecalis y Klebsiella pneumoniae y los compuestos con sustitución o-anisidilo, fenilo y metilo, presentan actividad antimicrobiana contra Escherichia coli [32] . h) y i) La 8-hidroxi-2- ( 1-hidroxietil ) nafto [ 2 , 3-b] furano- 4,9-diona, análogo cíclico del lapachol, se ha reportado como agente antibacteriano, mostrando actividad contra Helicobacter pilori, Staphylococcus , Enterococcus, Bacillus y Clostridium [33, 34] . Estructuralmente se ven a continuación las estructuras de los fármacos mencionados previamente:
Figure imgf000021_0001
Otros antibacterianos descritos en el estado del arte son los presentados en las patentes WO 02/102793, WO2005/049605, WO2005/026104 donde se declaran compuestos antibióticos derivados de pirido pirimidinas .
Situándonos en un contexto global, la propagación de las cepas resistentes en los últimos 30 años, según el Centro de Control y Prevención de las Enfermedades, ha tenido un crecimiento constante, tal como puede observarse en la figura 2/3. Resumen de la invención
La presente invención se refiere a compuestos derivados quinónicos de formula I, sus isómeros, sus tautómeros y/o sus sales farmacéuticamente aceptables, que són útiles en el tratamiento de infeciones bacterianas:
Figure imgf000022_0001
donde :
Figure imgf000022_0002
Figure imgf000023_0001
-S-R , -SO-R , -S02-R , -alquilo C1-C15, -Si-R , -SiO-R , -NH- (CH2)n-R6, -N( (CH2)n-R6)2' -0- (CH2)n-R6, -S- (CH2) n-R6' -Si- (CH2) n-R6; donde R es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: - CO-Z-alquilo C1-C15, -Z-CO-alquilo C1-C15, -H, -ter-butilo, - iso-propilo, -alquilo C1-C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -C00H, -C00-R7, -0C0-R7, - 0-R7,-CN, -S-R7, -S-CF3 y fenilo sustituido a su vez con -H, - alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R es un grupo -H, alquilo C1-C15, -OH; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde 0= 1-14; donde K, Z, P, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si; R2 es -H, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6 y halógeno del grupo de Cl, Br, F y I;
R3 es H, alquilo C1-C15, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, - S-R6; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo ; donde heteroarilo se define como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: -H, - alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO- R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, -ter-butilo, -iso-propilo y -CF3.
Descripción detallada de la invención.
La presente invención se refiere al uso de agentes antibacterianos derivados del núcleo pirimido-isoquinolin- quinona. Los compuestos utilizados de acuerdo con la presente invención están comprendidos por la siguiente fórmula estructural I :
Figure imgf000026_0001
donde :
R es -H, -NH2, -OH, -SH, -NH-R , -N-(R )2, -0-R ,
Figure imgf000026_0002
-SO-R , -S02-R , -Si-R , -SiO-R , -NH- (CH2) n- , -N( (CH2)
0-(CH2)n-R6, -S- (CH2)n-R6' -Si- (CH2)n-R6; donde R es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: - CO-Z-alquilo C1-C15, -Z-CO-alquilo C1-C15, -H, -ter-butilo, - iso-propilo, -alquilo C1-C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, - 0-R7,-CN, -S-R7, -S-CF3 y fenilo sustituido a su vez con -H, - alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde 0= 1-14; donde K, Z, P, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si;
R2 es -H, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6 y halógeno del grupo de Cl, Br, F y I;
R3 es H, alquilo C1-C15, -NH2 , -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, - S-R6; donde heterociclo se define como un anillo monocíclico , que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo; donde heteroarilo se define como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 6 a 12 átomos de carbono; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: -H, - alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO- R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, -ter-butilo, -iso-propilo y -CF3.
Por otro lado, un segundo grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde R es -NH- (CH2) n- , -O- ( CH2 ) n-R , -S-(CH2)n-R ; donde R es un grupo fenilo sustituido, donde las sustituciones del grupo fenilo son independientemente: —Z—CO—alquilo Ci C15, -CO-Z-alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo C1-C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, - NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3y fenilo sustituido con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, - OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde n= 0-2; donde z es independientemente: O, N, S02, SO, S, C o Si;
R es H; R3 es H y alquilo C1-C15, donde R4 y R5 son H, un grupo alquilo C1-C15. Por otro lado, un tercer grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde R es -NH- (CH2) n- , -0-(CH2)n- , -S-(CH2)n-R ; donde R6 es un grupo alquilo C1-C15 o un grupo fenilo sustituido, donde las sustituciones del grupo fenilo son independientemente: -H, -alquilo C1-C15 y halógeno del grupo de Cl, Br, F y I ; donde n= 0-2;
R2 es -H, -NH-R6, -N- (R6) 2, -O-R6, -S-R6;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15; donde las sustituciones R6 del grupo fenilo están en posiciones orto y para.
Por otro lado, un cuarto grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde
Figure imgf000031_0001
donde X es O, N o S; Rz es -H;
R3 es H, alquilo Ci-Ci5; donde R4 y R5 son H, un grupo alquilo C1-C15.
Por otro lado, un quinto grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde
Figure imgf000031_0002
donde n= 0-8; donde w es independientemente: O, N, SO2, SO, S, C o Si; donde y, z y j son C o N; Rz es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: -H, - alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO- R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, -ter-butilo, -iso-propilo y -CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH.
Por otro lado, un sexto grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula donde
Figure imgf000032_0001
R es donde n= 0-8; donde m= 0-6; donde o= 1-6; donde Z, J son independientemente: O, N, SO2, SO, S, C o Si; donde Y es C o N; R2 es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son -H, un grupo alquilo C1-C15;
Por otro lado, un séptimo grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde
Figure imgf000033_0001
donde n= 0-8; donde Z es independientemente: O, N, SO2, SO, S, C o Si; donde Y es C o N; R2 es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15.
Por otro lado, un octavo grupo preferido de los compuestos de la presente invención incluye compuestos que poseen la formula I, donde
Figure imgf000034_0001
donde n= 0-8; donde K, Z son independientemente: O, N, SO2, SO, S, C o Si; donde G, I, Y, J y W son independientemente: N o C; R es -H;
R3 es -H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R9, R10 y R11 corresponden independientemente a: -H, - alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO- R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, -ter-butilo, -iso-propilo y -CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH. El término halógeno' como se usa en este documento se refiere a flúor, cloro, bromo o yodo, salvo que se indique de otro modo.
El término Alquilo' como se usa en este documento se refiere a un residuo de hidrocarburo lineal, cíclico o ramificado, de preferencia un grupo alquilo de entre 1 a 15 átomos de carbono, salvo que se indique de otro modo. El término >cicloalquilo' como se usa en este documento se refiere a un alquilo cíclico, por e . , ciclopropilo, salvo que se indique de otro modo. El término ^rilo' como se usa en este documento se refiere a un grupo aromático monocíclico o bicíclico, en el cual cada anillo del sistema de anillos individual o fusionados contiene 6-12, preferentemente 6-10 átomos cíclicos [sic], por e . , incluye fenilo, naftilo, bifenilo e indenilo, pero no siempre se limita a éstos.
El término >heterocicloalquilo' o "hetertociclo" como se usa en este documento se refiere a un alquilo cíclico, por ej . , alquilo monocíclico o bicíclico, que contiene uno o más heteroátomos , con preferencia uno a cuatro heteroátomos , seleccionados de O, N y S, salvo que se indique de otro modo. Algunos ejemplos de monoheterocicloalquilo incluyen piperidinilo, morfolinilo, tiamorfolinilo, pirrolidinilo, imidazolidinilo, tetrahidrofuranilo, piperazinilo y grupos similares de los anteriores, aunque no se limitan a éstos. Donde "heterociclo", dentro de los >heterocicloalquilo' , se define como un anillo monocíclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo. El término heteroarilo' como se usa en este documento se refiere a un grupo aromático, por e . , grupo monociclico o biciclico, que contiene uno a cuatro heteroátomos seleccionados de O, N y S, y uno o más de carbonos como miembros del anillo están sustituidos con C=0, salvo que se indique de otro modo. Algunos ejemplos de heteroarilo monociclico incluyen tiazolilo, oxazolilo, tiofenilo, furanilo, pirrolilo, imidazolilo, isooxazolilo, pirazolilo, triazolilo, tiadiazolilo, tetrazolilo, oxadiazolilo, piridinilo, piridazinilo, pirimidinilo, pirazinilo y grupos similares de los anteriores, aunque no se limitan a éstos. Algunos ejemplos de heteroarilo biciclico incluyen indolilo, benzotiofenilo, benzofuranilo, benzimidazolilo, benzoxazolilo, bencisoxazolilo, benztiazolilo, benzotiadiazolilo, benztriazolilo, quinolinilo, isoquinolinilo, furinilo, furopiridinilo, oxocromeno, dioxoisoindolina y grupos similares de los anteriores, aunque no se limitan a éstos. Donde en una definición especifica, "heteroarilo" se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S.
Los compuestos de la presente invención también pueden formar una sal aceptable desde el punto de vista farmacéutico. Dicha sal puede ser una sal de adición con ácido no tóxica aceptable desde el punto de vista farmacéutico que contiene anión, aunque no se limitan a éstos. Por ejemplo, la sal puede incluir sales de adición con ácidos formadas por ácidos inorgánicos tales como ácido clorhídrico, ácido sulfúrico, ácido nítrico, ácido fosfórico, ácido bromhídrico, ácido hidriódico, y otros; ácidos carbónicos orgánicos tales como ácido tartárico, ácido fórmico, ácido cítrico, ácido acético, ácido tricloroacético, ácido trifluoroacético, ácido glucónico, ácido benzoico, ácido láctico, ácido fumárico, ácido maleico, y otros; y ácidos sulfónicos tales como ácido metansulfónico, ácido bencensulfónico, ácido p- toluensulfónico, ácido naftalensulfónico, y otros. En forma adicional, el compuesto de la presente invención puede tener un centro de carbono asimétrico, y de este modo puede estar presente en la forma de isómero R o S, compuestos racémicos, mezcla diasteromérica, o diasterómero individual, dichos isómeros enteros y mezclas se incluyen dentro del alcance de la presente invención
Además, los solvatos e hidratos del compuesto de la fórmula (I) se abarcan dentro del alcance de la presente invención . Los compuestos anteriores de la presente invención pueden prepararse mediante métodos que son conocidos en el arte o de acuerdo con los siguientes ejemplos de trabajo. Los compuestos a continuación, son especialmente representativos de los compuestos de la presente invención.
6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin-1 , 3,7,10 (2H, 4JJ) - tetraona 6-etil-2, 4-dimetil-8- ( feniltio ) pirimido [4, 5-c] i soquinolin- 1,3,7,10 (2H, 4JJ) -tetraona
6-etil-2, 4-dimetil-8- (o-toliltio) pirimido [4, 5-c] i soquinolin- 1,3,7,10 (2H, 4JJ) -tetraona
6-etil-8- ( (2-metoxifenil) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraona
6-etil-8- ( (2-fluorofenil) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 2-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraona 8- ( ( 2-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
6-etil-2, 4-dimetil-8- (m-toliltio) pirimido [4, 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona
6-etil-8- ( ( 3-metoxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona 6-etil-8- ( ( 3-fluorofenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 3-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 3-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
6-etil-2, 4-dimetil-8- (p-toliltio) pirimido [4, 5-c] isoquinolin- 1,3,7,10 (2fí, 4fí) -tetraona
6-etil-8- ( ( 4-metoxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona 6-etil-8- ( ( 4-fluorofenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 4-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 4-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona 6-etil-8- ( ( 4-hidroxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
6-etil-2, 4-dimetil-8- ( (4-nitrofenil)tio) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 4-aminofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( (2, 6-dimetoxifenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 5-bromo-2-metoxifenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona 8- ( (3, 5-diclorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- (benciltio) -6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona
8- ( ( 4-clorobencil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona 6-etil-2, 4-dimetil-8- ( fenetiltio ) pirimido [4, 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona
8-(benzo[d]oxazol-2-iltio)-6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 2-bromo-4-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
8- ( ( 4-aminofenil ) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona
6-etil-2, 4-dimetil-8- ( feni lamino ) pirimido [4, 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona
6-etil-8- ( ( 4-fluorofenil ) amino) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraona 8- ( ( 4-clorofenil ) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona 8- ( ( 4-bromofenil ) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4JJ) -tetraona metil 4- ( ( 6-etil-2, 4-dimetil-l, 3,7, 10-tetraoxo-l, 2, 3,4,7,10- hexahidropirimido [4, 5-c] isoquinolin-8-il) amino) benzoato .
La dosis eficaz de los derivados de pirimido-isoquinolin- quinonas representados por la fórmula I, sus hidratos, sus solvatos o sus sales aceptadas para uso farmacéutico, puede determinarse considerando los compuestos específicos que se utilicen, el método de administración, el individuo elegido, la enfermedad elegida, etc., para llevar a efecto el
tratamiento, no obstante 5-40 mg/kg de peso corporal por día es el rango de dosis preferida del compuesto derivado
pirimido-isoquinolin-quinonas representado por la fórmula I, teniendo en cuenta que los compuestos de la presente invención poseen un alto porcentaje de unión a albúmina. La dosis diaria puede ser administrada una vez al día (en un tiempo) o varias veces al día cuando se divide apropiadamente dentro de una dosis diaria eficaz. De acuerdo con la formulación, es posible la administración oral, la administración parenteral (inyección) o la administración local. La composición farmacéutica de la presente invención puede ser formulada para administración oral como tabletas, polvos, jarabes secos, tabletas masticables, gránulos, cápsulas, cápsulas suaves, pildoras, bebidas, sublinguales, etc. La composición de la invención formulada como tabletas puede administrarse a un individuo por cualquier método o vía que entregue la dosis eficaz de la tableta con la biodisponibilidad, la cual puede ser la vía oral. También el método o la vía de administración pueden ser determinados de acuerdo con las características, etapas de la enfermedad objetivo u otros estados. Cuando la composición de la invención se forma como tabletas, estas pueden incluir además excipientes aceptados para uso
farmacéutico. El contenido y las características del
excipiente pueden ser determinados por las propiedades de solubilidad y químicas de la tableta elegida, la vía de
administración y la práctica farmacéutica normal.
Las composiciones farmacéuticas pueden prepararse combinando una cantidad terapéuticamente efectiva de por lo menos un compuesto de acuerdo con la presente invención, o una sal de adición de ácido farmacéuticamente aceptable del mismo, como un ingrediente activo, con excipientes farmacéuticos convencionales y/o aditivos, y mediante la preparación de formas de dosis de unidad adecuadas para uso como antibiótico. En la presente invención, los aditivos aceptables desde el punto de vista farmacéutico pueden incluir un diluyente, un aglutinante, un desintegrante, y similares.
Algunos ejemplos del diluyente pueden incluir celulosa microcristalina, lactosa, manitol, fosfato de calcio, y similares; algunos ejemplos del aglutinante pueden incluir povidona, hidroxipropil celulosa (HPC) , hidroxipropil metil celulosa (HPMC) , alcohol polivinilico (PVA) , carboximetil celulosa de sodio, y similares; y algunos ejemplos del desintegrante pueden incluir crospovidona, croscarmelosa de sodio, almidón glicolato de sodio, y similares. Otros, aditivos o vehículos para formulaciones orales comprenden celulosa, silicato de calcio, almidón de maíz, sacarosa, dextrosa, ácido esteárico, estearato de magnesio, estearato de calcio, gelatina, talco, tensioactivos , agentes de suspensión, agentes emulsionantes y otros.
El diluyente puede usarse en una cantidad que varía desde 20 hasta 95% en peso, el aglutinante puede usarse en una cantidad que varía desde 1 hasta 10% en peso, y el desintegrante puede usarse en una cantidad que varía desde 1 hasta 30% en peso, en base al peso total de la composición. Para las formulaciones parenterales tales como administración intramuscular, intravenosa, o subcutánea, los aditivos o vehículos tales como agua, solución salina, solución de glucosa, análogos a la solución de glucosa, alcoholes, glicoles, éteres (por e . , polietilenglicol 400), aceites, ácidos grasos, ésteres del ácido graso, glicéridos, tensioactivos , agentes de suspensión, agentes emulsionantes, y otros pueden usarse, de preferencia, las soluciones salinas fisiológicas como un portador principal.
El pH de dichas soluciones debería en forma preferida mantenerse entre 6,5 y 7,2 con un sistema de amortiguación adecuada. Las formulaciones puede también contener conservantes, estabilizantes y surfactantes convencionales farmacéuticamente aceptables.
Los conservantes preferidos que pueden utilizarse en las composiciones farmacéuticas de la presente invención incluyen, sin limitarse a ello, alcohol bencílico, propilparabeno, metilparabeno, cloruro de benzalconio, clorobutanol , timerosal, acetato fenilmercúrico y nitrato fenilmecúrico . Un surfactante preferido es por ejemplo Tween 80, sin limitarse a este únicamente. Del mismo modo, pueden utilizarse diversos vehículos preferidos en las preparaciones de la presente invención. Estos vehículos incluyen, sin limitarse a ello, propilenglicol , soluciones de hidroxido de sodio, alcohol polivinilo, povidona, celulosa de metilo hidroxipropilo, poloxámeros, celulosa carboximetilo, celulosa hidroxietilo y agua purificada.
Los ajustadores de tonicidad pueden agregarse según sea necesario o conveniente. Ellos incluyen, sin limitarse a ello, sales, particularmente cloruro de sodio, cloruro de potasio, manitol y glicerina, o cualquier otro ajustador de tonicidad adecuado y aceptable.
Pueden utilizarse varios amortiguantes y medios para ajusfar el pH en tanto que la preparación resultante sea oftálmicamente aceptable. De acuerdo con ello, los amortiguantes incluyen amortiguantes de acetato, amortiguantes de citrato, amortiguantes de fosfato y amortiguantes de borato. Los ácidos o bases pueden utilizarse para ajusfar el pH de estas formulaciones según sea necesario.
En una forma similar, un antioxidante aceptable para uso en la presente invención incluye, sin limitarse a ello, metabisulfito de sodio, tiosulfato de sodio, acetilcisteína, hidroxianisol butilado y hidroxitolueno butilado. Otros componentes excipientes tanto en solución liquida como composición oral, que pueden incluirse en las preparaciones son los agentes quelantes. Dentro de los agentes quelantes a utilizar se pueden mencionar el etilendiaminotetraacetato de calcio y disodio (CaNa2EDTA) , el ácido trietilentetraminohexaacético (TTHA) , el ácido dihidroxietiletilendiaminodiacético, el ácido hidroxietiletilendiaminotriacético (HEDTA) , el oxalato y sus derivados, el ( 1 , 2-bis (difenilfosfino ) etileno (DPPE) el dimercaprol (BAL) , el dietilentriaminopentaacético (DTPA) , de preferencia se utiliza el ácido etilendiaminotetraacético (EDTA) , aunque pueden también utilizarse otros agentes quelantes en lugar del mismo o con untamente con dicho agente. El EDTA posee en esta invensión una función doble, por un lado es un agente quelante que tiende a atrapar partículas metálicas. Por otro lado, el EDTA aunque no ha sido reconocido como un agente antimicrobiano, en general, es considerado como un "potenciador" de la actividad de otros agentes antimicrobianos (Brown y Richards 1965) . Como tal, la literatura ha escrito sobre éste un efecto sinérgico o de refuerzo común a la acción con conservantes, antibióticos y tensioactivos catiónicos, por ejemplo, compuestos de amonio cuaternario (Weiser et al. 1969; Sheikh y Parker 1972; Hart 1984; Vaara 1992) . Mecanisticamente, uno de los modos reconocidos de acción de EDTA es la interrupción de la estructura de lipopolisacárido en la membrana externa de las bacterias Gram- negativas. A través de esto la disrupción de la membrana se vuelve más permeable a otros agentes, por lo tanto, la acción potenciadora . Sumado a esto, si se toma la acción del EDTA en combinación con una lisozima para degradar la capa de peptidoglicano puede resultar en la producción de esferoplastos, en la que la pared celular es totalmente despojada (MacGregor y Elliker 1958; Haque y Russell 1974a, b) .
Una de las pruebas realizadas y que abarca el presente desarrollo es la combinación de los agentes descritos de formula I con EDTA, donde se amplia el campo de acción de éste antibiótico a bacterias Gram (-) .
Lo mencionado anteriormente está demostrado en la tabla IV en las pruebas experimentales.
Los ingredientes son generalmente utilizados en las cantidades siguientes para las diferentes composiciones farmacéuticas, sin ser restrictivas a las mismas, pudiéndose utilizar el mismo principio activo en otras composiciones: COMPRIMIDOS
Materias primas Cantidad (%peso/peso)
Ingrediente activo granulado 80, 0-95, 0
Dextrosa 0-1, 0
Celulosa microcristalina (Avicel pH 10.1) 0-3, 0
Almidón 0-2, 0
Talco 0-1, 0
Materias primas Cantidad (%peso/peso) Ingrediente Activo 95, 0-99, 0
Lactosa c . s . p .
Estearato de magnesio 5-1
EMULSIONES (o/w)
Materias Primas Cantidad (% peso/peso)
Ingrediente Activo 1,0-5, 0
Acido esteárico 7,0-9, 0
Petrolato blanco 1,0-3,0
Aceite mineral 1,0-3,0
Trietanolamina c . s .p
Propilenglicol 4,0-6, 0
Metilparabeno 0, 1-0,3
Propilparabeno 0, 1-0,3
Agua Destilada Estéril c . s .p
POMADA BLANCA
Materias Primas Cantidad (% peso/peso) Ingrediente activo 8,0 - 12,0
Aceite mineral 38,0 - 42,0
Petrolato blanco 38,0 - 42,0
INYECTABLE
Materias Primas Cantidad (% peso/peso) Ingrediente activo 1,0 - 10, o
Cloruro de Sodio 0, 9
Acido Láctico 0, 1-5, 0
Edetato Disódico 0, 1-5, 0
Agua para Inyectable c . s . p . Esta invención se ilustra además por los siguientes ejemplos no limitativos.
Ejemplo 1
Procedimiento general de obtención de 6-etil-2,4- dimetilpirimido [ , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (compuesto intermediario 1) .
Figure imgf000051_0001
Compuesto Intermediario 1
Una solución de 1- (2, 5-dihidroxifenil ) -propan-l-ona (166,6 mg, 1 mmol), 6-amino-l , 3-dimetilpirimidina-2 , 4 ( 1H, 3H) -diona (201,7 mg, 1,3 mmol), MgSÜ4 (300, 0 mg, 3 mmol), Ag2Ü (927, 0 mg, 3 mmol) en CH2CI2 (20 mi) se mantiene en agitación durante 2 horas. El avance de la reacción se sigue por medio de cromatografía de capa fina a 30, 60, 90 y 120 minutos. El crudo de reacción se filtra al vacío con papel filtro y celite en embudo Buchner utilizando CH2CI2 para arrastrar el producto. La solución obtenida de la filtración se evapora hasta sequedad .
El sólido resultante se purifica con 30 g de Silica gel (0,040-0,063 mm) utilizando como fase móvil diclorometano : acetato de étilo = 9:1. Se obtiene un sólido de color amarillo, 244,7 mg, 0,65 mmol, 80% de rendimiento.
Punto fusión 167,6 - 167, 9°C. HRMS (M+) : m/z calculado C15H13N3O4 = 299, 09061; encontrado = 299, 09070. IR (KBr) : 1667,28 cnf1 C=0 (quinona); 1720.35 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.41 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.70 (dd, 3J=7.2 Hz, 2H, 6- CH2CH3 ) , 3.47 (s, 3H, 4-NCH3) , 3.77 (s, 3H, 2- NCH3) , 6.88 (d, 3J=10.3 Hz, 1H, 8-H) , 7.18 (d, 3J=10.3 Hz, 1H, 9-H) . 13C RMN (CDCI3, 100 MHz) : δ 12.0 (6-CH2CH3), 29.0 (4- NCH3) , 30.1 (2-NCH3 ) , 31.5 (6- CH2CH3 ) , 105.3 (10b), 121.2 (6a),
138.6 (9-C), 138.7 (8), 146.9 (10a), 150.9 (3), 152.6 (1),
158.7 (4a), 170.3 (6), 183.7 (7), 185.2 (10) . Ejemplo 2
Obtención de 6-etil-2 , 4-dimetil-8- (feniltio) pirimido [4 , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (2) .
Figure imgf000053_0001
2
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (452, 02 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de tiofenol (83,20 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 50 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo = 9:8:1. Se obtiene un sólido de color naranjo, 196 mg, 0,48 mmol, con 67% rendimiento. Punto de fusión 179.4 - 180.0 °C. HRMS (M+) : m/z calculado C21H17N3O4 S [M+] = 407.09398; encontrado = 407.09400. IR (KBr) : 1660.18, 1688.50 cnf1 C=0 (quinona) ; 1723.89 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.38 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.42 (c, 3J=7.3 Hz, 2H, 6-CH2CH3) , 3.45 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.18 (s, 1H, 9-H) , 7.53 (m, 5H, 8-SC6H5) . 13C RMN (CDCI3, 100 MHz) : δ 12.1 (6-CH2CH3), 29.6 (4-NCH3), 30.1 (2- NCH3) , 31.9 (6-CH2CH3), 105.8 (10a), 121.0 (6a), 127.6 (1'), 128.3 (9), 130.9 (3' y 5' ) , 131.1 (4'), 136.1 (2' y 6' ) , 147.0 (10b), 151.5 (3), 153.1 (1), 157.1 (8), 158.8 (4a), 171.2 (6), 181.2 (10) , 181.7 (7) .
Ejemplo 3
Obtención de 6-etil-2 , -dimetil-8- (o-toliltio) pirimido [ , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (3) .
Figure imgf000054_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (436, 98 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2-metiltiofenol (90,67 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 50 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo =9:10:1. Se obtiene un sólido de color naranjo, 210 mg, 0,50 mmol, con 72% rendimiento. Punto de fusión 206.0 - 210.9°C. HRMS (M+) : m/z calculado C22H19N3O4 S [M+] = 421.10963; encontrado = 421.10957. IR (KBr) : 1660.18, 1688.50 cnf1 C=0 (quinona); 1730.97 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.38 (t, 3J=7.2 Hz, 3H, 6-CH2CH3) , 2.43 (s, 3H, 2'-CH3), 3.42 (c, 3J= 7.3 Hz, 2H, 6-CH2CH3) , 3.43 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.02 (s, 1H, 9-H) , 7.32 (d, 3J=7.1 Hz, 1H, 4'), 7.42 (t, 3J=8.1 Hz, 2H, 5' y 3'), 7.50 (d, 3J=7.5 Hz, 1H, 6') · 13C RMN (CDC13, 100 MHz): δ 12.1 (6- CH2CH3) , 20.5 (2'-CH3), 28.9 (4-NCH3), 30.8 (2-NCH3), 31.7 (6- CH2CH3) , 105.7 (10a), 120.9 (6a), 126.5 (1'), 127.6 (9), 128.1 (4'), 131.5 (5'), 131.8 (3'), 136.9 (6'), 142.2 (2'), 147.5 (10b), 151.2 (3), 152.9 (1), 155.6 (8), 158.6 (4a), 170.9 (6), 181.1 (7) , 181.4 (10) .
Ejemplo 4
Obtención de 6-etil-8- (2-metoxi eniltio) -2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (4 )
Figure imgf000056_0001
4
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (420, 99 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2-metoxitiofenol (90,67 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 80 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo =9:6:1. Se obtiene un sólido de color naranjo, 211 mg, 0,48 mmol, con 72% rendimiento. Punto de fusión 172.3(d) °C. HRMS (M+) : m/z calculado C22H19N3O5S [M+] = 437.10454; encontrado = 437.10450. IR (KBr) : 1660.18, 1688.50 cnf1 C=0 (quinona) ; 1727.43 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.40 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.45 (c, 3J= 7.2 Hz, 2H, 6-CH2CH3) , 3.46 (s, 3H, 4-NCH3) , 3.78 (s, 3H, 2'-OCH3), 3.89 (s, 3H, 2-NCH3) , 6.13 (s, 1H, 9-H) , 7.08 (t, 3J=8.8 Hz, 2H, 5' y 3'), 7.54 (dd, 3J=7.1 Hz, 2H, 4' y 6' ) . 13C RMN (CDCI3, 100 MHz) : δ 12.2 (6-CH2CH3), 29.0 (4-NCH3), 30.2 (2- NCH3) , 31.6 (6-CH2CH3), 56.2 (2'-OCH3), 105.5 (10a), 112.1 (3'), 114.6 (6a), 120.9 (1'), 122.1 (5'), 127.6 (9), 133.1 (4'), 137.6 (6'), 147.4 (2'), 151.2 (10b), 152.8 (3), 154.8 (1), 158.6 (8), 160.1 (4a), 170.7 (6), 181.2 (10), 181.4 (7) .
Ejemplo 5
Obtención de 6-etil-8- ( (2-fluorofenil) tio) -2 , - dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona
Figure imgf000057_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (432, 91 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2-fluorotiofenol (92,6 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH=l : 1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 80 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo =9:14:2. Se obtiene un sólido de color naranjo, 255 mg, 0,60 mmol, con 87% rendimiento. Punto de fusión 218.4 (d)°C. HRMS (M+) : m/z calculado C2iHi6FN304S [M+] = 425.08455; encontrado = 425.08460. IR (KBr) : 1660.18, 1684.96 cnf1 C=0 (quinona); 1727.43 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.38 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.43 (c, 3J= 7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.13 (s, 1H, 9-H) , 7.29 (dd, 3J=8.2 Hz, 2H, 5' y 3'), 7.52 (t, 3J=6.7 Hz, 2H, 4' y 6') · 13C RMN (CDCI3, 100 MHz) : δ 12.5 (6-CH2CH3), 29.5 (4-NCH3), 30.6 (2-NCH3), 32.1 (6- CH2CH3) , 105.7 (10a), 114.9 (d, 3J=18.6 Hz, 1'), 117.6 (d, 3J=22.3 Hz, 3'), 120.9 (6a), 126.3 (d, 3J=3.9 Hz, 5'), 128.4 (9), 133.9 (d, 3J=8.1 Hz, 4'), 137.9 (6'), 147.6 (10b), 151.5 (3), 153.2 (1), 154.4 (8), 158.8 (4a), 163.1 (d, 3J=251.5 Hz, 2'), 171.2 (6), 181.1 (10), 181.6 (7) .
Ejemplo 6
Obtención de 8- ( (2-clorofenil) tio) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (6)
Figure imgf000059_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (416,78 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2-clorotiofenol (100,70 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo =9:14:2. Se obtiene un sólido de color naranjo, 240 mg, 0,54 mmol, con 82% rendimiento. Punto de fusión 220.8 (d) °C. HRMS (M+) : m/z calculado C2iHi6ClN304S [M+] = 441.05500; encontrado = 441.05521. IR (KBr) : 1660.18, 1677.88 cnf1 C=0 (quinona) ; 1720.35 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.38 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.43 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4- NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.07 (s, 1H, 9-H) , 7.41 (t, 3J=7.5 Hz, 1H, 5'), 7.50 (t, 3J=7.7 Hz, 1H, 4'), 7.64 (m, 2H, 3' y 6' ) . 13C RMN (CDCI3, 100 MHz) : δ 12.1 (6-CH2CH3), 29.1 (4-NCH3), 30.2 (2-NCH3), 32.7 (6-CH2CH3), 105.9 (10a), 120.9 (6a), 126.9
(1'), 128.3 (9), 128.9 (5'), 131.6 (3'), 132.9 (4'), 138.4 (6'), 140.3 (2'), 147.6 (10b), 151.5 (3), 153.2 (1), 154.2
(8), 158.8 (4a), 171.2 (6), 181.1 (10), 181.6 (7) .
Ejemplo 7
Obtención de 8- ( (2-bromofenil) tio) -6-etil-2 , - dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (7) .
Figure imgf000060_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (378, 69 mg, 2,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2-bromotiofenol (119,62 mg, 1,0 mmol) disuelto en CH2C12 :MetOH= 1:1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 65 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : éter de petróleo: acetato de étilo =9:12:1. Se obtiene un sólido de color naranjo, 241 mg, 0,49 mmol, con 82% rendimiento.
Punto de fusión 208.3 (d)°C. HRMS (M+) : m/z calculado C2iHi6BrN304S [M+] = 485.00449; encontrado = 485.00455. IR (KBr) : 1660.18, 1688.50 cnf1 C=0 (quinona); 1730.97 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.37 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.41 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.42 (s, 3H, 4- NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.06 (s, 1H, 9-H) , 7.41 (dt, 3J=7.9 Hz, 2H, 5' y 4'), 7.64 (d, 3J=8.8 Hz, 1H, 6'), 7.79 (d, 3J=7.8 Hz, 1H, 3') . 13C RMN (CDCI3, 100 MHz) : δ 12.1 (6-CH2CH3), 29.1 (4-NCH3), 30.1 (2-NCH3) , 31.7 (6-CH2CH3), 105.6 (10a), 120.7 (6a), 127.9 (9), 128.9 (1'), 129.3 (5'), 130.8 (2'), 132.5 (4'), 134.7 (3'), 138.0 (6'), 147.3 (10b), 151.2 (3), 152.9 (1), 154.1 (8), 158.5 (4a), 170.9 (6), 180.7 (10), 181.2 (7) .
Ejemplo 8
Obtención de 6-etil-2 , -dimetil-8- (m-toliltio) pirimido [ , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (8) .
Figure imgf000062_0001
Una solución con 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (452, 02 mg, 2,0 mmol) y tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 3-metiltiofenol (83,20 mg, l,0mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta a una velocidad aproximada de lml/30min por 16 horas. El crudo de la reacción se purifica con 50-90 g de Silica gel 0,063-0,2 mm utilizando como fase móvil una proporción adecuada de éter de petróleo, diclorometano y acetato de etilo. Se obtiene un sólido de color naranjo, 199 mg, 0,47 mmol, con 47% rendimiento. Punto de fusión 162.0 - 163.0°C. HRMS (M+) : m/z calculado C22H19N3O4 S [M+] = 421.10963; encontrado = 421.10960. IR (KBr) : 1561 cnf1 C=0 (quinona) ; 1661, 1682 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.37 (t, 3J=7.2 Hz, 3H, 6-CH2CH3) , 2.41 (s, 3H, 3'-CH3), 3.40 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4- NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.19 (s, 1H, 9-H) , 7.33 (m, 3H, 2', 5' y 6'), 7.42-7.37 (m, 1H, 4') · C RMN (CDCI3, 100 MHz) : δ 12.2 (6-CH2CH3) , 21.3 (3'-CH3), 29.1 (4-NCH3), 30.2 (2-NCH3), 31.7 (6-CH2CH3) , 105.5 (10a), 120.6 (6a), 126.9 (1'), 127.9 (9),
130.3 (4'), 131.6 (5'), 132.7 (6'), 136.1 (2'), 140.6 (3'), 147.4 (10b), 151.1 (3), 152.8 (1), 156.9 (8), 158.5 (4a), 170.8 (6) , 180.9 (7) , 181.4 (10) .
Ejemplo 9
Obtención de 6-etil-8- (3-metoxitiofenil) dimetilpirimido [ , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (9) .
Figure imgf000063_0001
Una solución con 6-etil-2 , 4 -dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (598, 56 mg, 2,0 mmol) y tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 3-metoxitiofenol (140,20 mg, l,0mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta a una velocidad aproximada de lml/30min por 16 horas. El crudo de la reacción se purifica con 50-90 g de Silica gel 0,063-0,2 mm utilizando como fase móvil una proporción adecuada de éter de petróleo, diclorometano y acetato de etilo. Se obtiene un sólido de color naranjo, 288,7 mg, 0,66 mmol, con 66% rendimiento.
Punto de fusión 179.5 - 180.5°C. HRMS (M+) : m/z calculado C22H19N3O5S [M+] = 437.10454; encontrado = 437.10449. IR (KBr) : 1560, 1579 cnf1 C=0 (quinona) ; 1670 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.37 (t, 3J=7.2 Hz, 3H, 6-CH2CH3) , 3.40 (c, 2J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 3'- OCH3) , 3.85 (s, 3H, 2-NCH3) , 6.23 (s, 1H, 9-H) , 7.07-7.02 (m, 2H, 2' y 6'), 7.12 (m 1H, 4'), 7.42 (t, 3J=7.7 Hz, 1H, 5') · 13C RMN (CDCI3, 100 MHz) : δ 12.2 (6-CH2CH3), 29.1 (4-NCH3), 30.2 (2- NCH3) , 31.7 (6-CH2CH3), 55.5 (3'-OCH3), 105.5 (10a), 116.7 (4'), 120.6 (6a), 120.7 (2'), 127.7 (6'), 128.0 (1'), 128.1 (9), 131.1 (5'), 147.3 (10b), 151.5(3) 152.8 (1), 156.06 (8), 158.4 (4a), 160.8 (3'), 170.7 (6), 180.8 (7), 181.4 (10) . Ejemplo 10
Obtención de 6-etil-8- (3- luorotio enil) -2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (10) .
Figure imgf000065_0001
Una solución con 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (589, 56 mg, 2,0 mmol) y tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 3-fluortiofenol (128,17 mg, l,0mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta a una velocidad aproximada de lml/30min por 16 horas. El crudo de la reacción se purifica con 50-90 g de Silica gel 0,063-0,2 mm utilizando como fase móvil una proporción adecuada de éter de petróleo, diclorometano y acetato de etilo. Se obtiene un sólido de color naranjo, 302,1 mg, 0,71 mmol, con 71% rendimiento. Punto de fusión 170 - 171°C. HRMS (M+) : m/z calculado C2iHi6FN304S [M+] = 425.08455; encontrado = 425.08457. IR (KBr) : 1563 cnf1 C=0 (quinona) ; 1667, 1683 cnf1 C=0 en 1 y 3 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.37 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.42 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.21 (s, 1H, 9-H) , 7.26 (d, 3J=8.4 Hz, 2H, 4' y 6'), 7.35 (d, J=7.6 Hz, 1H, 2'), 7.51(c, J=7.5 Hz, 1H, 5') · ±JC RMN (CDCI3, 100 MHz) : δ 12.4 (6-CH2CH3), 29.4 (4-NCH3), 30.5 (2-NCH3) , 32.1 (6-CH2CH3), 105.8 (10a), 118.16 (d, 1C, 1J=20.9 Hz, 3'), 120.8 (6a), 122.66 (d, 1C 1J=22.1 Hz, 2') 128.4 (9), 129.25 (d, 1C 1J=1.6 Hz, 1'), 131.76 (dd, 1C ^=34.4, 5.7 Hz, 4') 147.5 (10b), 151.4 (3), 153.1 (1), 156.1 (8), 158.7 (4a), 162.3 (6?) ,164.8 (5') 171,2 (6), 180.9 (7), 181.6 (10) .
Ejemplo 11
Obtención de 8- (3-clorotiofenil) -6-etil dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (11) ·
Figure imgf000066_0001
Una solución con 6-etil-2 , 4 -dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (598, 6 mg, 2,0 mmol) y tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 3-clorotiofenol (144,62 mg, l,0mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta a una velocidad aproximada de lml/30min por 16 horas. El crudo de la reacción se purifica con 50-90 g de Silica gel 0, 063-0, 2 rom utilizando como fase móvil una proporción adecuada de éter de petróleo, diclorometano y acetato de etilo. Se obtiene un sólido de color naranjo, 256,3 mg, 0,58 mmol, con 58% rendimiento.
Punto de fusión 156.1 - 157.1° C. HRMS (M+) : m/z calculado C2iHi6ClN304S [M+] = 441.05500; encontrado = 441.05514. IR (KBr) : 1558 cnf1 C=0 (quinona) ; 1662, 1681 cnf1 C=0 (uracilo) . 1H RMN (CDCI3, 400 MHz) : δ 1.37 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.41 (c, 2J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.21 (s, 1H, 9-H) , 7.47 (c, 2J=Hz, 2H, 6' y 5'), 7,52 (d, 2J=7.1 Hz, 1H, 4') 7.55 (s, 1H, 2') · 13C RMN (CDCI3, 100 MHz) : δ 12.1 (6-CH2CH3), 29.1 (4-NCH3), 30.2 (2- NCH3) , 31.8 (6-CH2CH3), 105.5 (10a), 120.4 (6a), 128.1 (9), 129.1 (3') 131.1 (6') 131.5 (4'), 133.9 (5'), 135.4 (2'), 136(3') 147.2 (10b), 151.1 (3), 152.8 (1), 155.8 (8), 158.4 (4a), 170.9 (6), 180.5 (7), 181.3 (10) .
Ejemplo 12
Obtención de 8- (3-bromotiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (12) .
Figure imgf000068_0001
Una solución con 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (598, 6 mg, 2,0 mmol) y tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 3-bromotiofenol (189,07 mg, l,0mmol) disuelto en CH2CI2 :MetOH= 1:1 (30 mi) desde una bureta a una velocidad aproximada de lml/30min por 16 horas. El crudo de la reacción se purifica con 50-90 g de Silica gel 0,063-0,2 mm utilizando como fase móvil una proporción adecuada de éter de petróleo, diclorometano y acetato de etilo. Se obtiene un sólido de color naranjo, 398,8 mg, 0,82 mmol, con 82% rendimiento. Punto de fusión 138.3 - 139.3°C. HRMS (M+) : m/z calculado C2iHi6BrN304S [M+] = 485.00449; encontrado = 485.00453. IR (KBr) : 1559 cnf1 C=0 (quinona) ; 1668 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.3 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.43-3.38 (c, 2J=Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2- NCH3) , 6.21 (s, 1H, 9-H) , 7.47 (c, 2J=Hz, 2H, 4' y 5'), 7.52 (d, J=7.1 Hz, 1H, 6') 7.55 (s, 1H, 2') · 13C RMN (CDC13, 100 MHz) : δ 12.5 (6-CH2CH3), 29.4 (4-NCH3), 30.5 (2-NCH3), 32.1 (6- CH2CH3) , 105.8 (10a), 120.7 (6a), 124.2 (1'), 128.5 (9), 129.7 (3'), 132.0 (5'), 134.3 (6'), 134.6 (4'), 138.5 (2'), 147.5 (10b) 151.4 (3), 153.1 (1), 156.1 (8) 158.7 (4a), 171.2 (6), 180.8 (7) , 181.6 (10) .
Ejemplo 13
Obtención de 6-etil-2 , -dimetil-8- (p-toliltio) pirimido [ , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (13) .
Figure imgf000069_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (300, 13 mg, 2,1 mmol), tricloruro de cerio(III) heptahidratado (5 % mol de 1) en una mezcla de CH2CI2 :MetOH=3, 5 : 5 (8 mi), se adiciona mediante goteo una solución de 4-Metiltiofenol (60,8mg, 1,0 mmol) disuelto en CH2CI2 :MetOH= 3,5:5 (34 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 14 horas. El crudo de reacción se purifica con 50 g de silica gel (0, 040-0, 063 mm) utilizando como fase móvil éter de petróleo: diclorometano : acetato de étilo= 1,5:0,5:0,5. Se obtiene un sólido de color naranjo, 174,5 mg, 0,41 mmol, con 87,5% rendimiento .
Punto de fusión 191.0 - 192.3°C. HRMS (M+) : m/z calculado C22H19N3O4 S [M+] = 421.10963; encontrado = 421.10954. IR (KBr) : 1662.34, 1687.48 cnf1 C=0 (quinona); 1725.98 cnf1 C=0 (uracilo) . ½ RMN (CDCI3, 400 MHz) : δ 1.37 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 2.42 (s, 3H, 4'-CH3), 3.42 (c, 3J=7.3 Hz, 2H, 6-CH2CH3) , 3.43 (s, 3H, 4-NCH3) , 3.75 (s, 3H, 2-NCH3) , 6.17 (s, 1H, 9-H) , 7.31 (d, 3J=8.0 Hz, 2H, 3' y 5'), 7.40 (d, 3J =8.0 Hz, 2H, 2' y 6') · 13C RMN (CDCI3, 100 MHz) : δ 12.3 (6-CH2CH3), 21.5 (4'-CH3), 29.2 (4-NCH3), 30.3 (2-NCH3) , 31.8 (6-CH2CH3), 105.5 (10b), 120.7 (7a), 123.6 (1'), 127.9 (9), 131.4 (2C, 3' y 5'), 135.7 (2C, 2' y 6'), 141.4 (4'), 147.5 (10a), 151.2 (3), 152.8 (1), 157.2 (8), 158.8 (4a), 171.1 (6), 181.3 (7), 181.8 (10) .
Ejemplo 14
Obtención de 6-etil-8- (4-metoxitiofenil) -2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (14)
Figure imgf000071_0001
Una Solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (429, 4mg, 2,lmmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=3, 5 : 5 (8 mi), se adiciona mediante goteo una solución de 4-Metoxitiofenol ( 95, 03mg, 1 , Ommol ) en
CH2CI2 :MetOH=3, 5 : 5 (34 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min esto por 14 horas . El crudo de reacción se purifica con 60 g de silica gel (0, 040- 0,063 mm) utilizando como fase móvil éter de petróleo : diclorometano : acetato de etilo=l , 5 : 1 , 5 : 0 , 5. Se obtiene un sólido de color rojizo, 163 mg, 0,37 mmol, con 82 % rendimiento.
Punto de fusión 198.9 - 201.5°C. HRMS (M+) : m/z calculado C22H19N3O5S [M+] = 437.10454; encontrado = 437.10454. IR (KBr) : 1662.34, 1689.34 cnf1 C=0 (quinona) ; 1725.98 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.36 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.41 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.43 (s, 3H, 4-NCH3) , 3.75 (s, 3H, 4'-OCH3), 3.86 (s, 3H, 2-NCH3) , 6.15 (s, 1H, 9-H) , 7.23
(dd, 3'4J=165.7, 8.7 Hz, 4H) . 13C RMN (CDCI3, 100 MHz) : δ 12.3
(6-CH2CH3), 29.2 (4-NCH3), 30.3 (2-NCH3), 31.8 (6-CH2CH3), 55.7
(4'-OCH3), 105.5 (10b), 116.5, 117.3 (1'), 120.7 (6a), 127.9 (9), 137.6, 147.5 (10a), 151.2 (3), 152.8 (1), 157.6 (8), 158.5 (4a), 161.7 (4'), 171.1 (6), 181.4 (7), 181.8 (10) .
Ejemplo 15
Obtención de 6-etil-8- (4-fluorotiofenil) -2 , - dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (15) .
Figure imgf000072_0001
Una Solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (424, 42mg, 2,lmmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=3, 5 : 5 (8 mi), se adiciona mediante goteo una solución de 4-fluorotiofenol (128,17mg, l,0mmol) disuelto en CH2CI2 :MetOH=3, 5 : 5 (34 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min esto por 14 horas. El crudo de reacción se purifica con 65 g de silica gel (0, 040- 0,063 mm) utilizando fase móvil éter de petróleo : diclorometano : acetato de étilo=3 , 0 : 0 , 5 : 0 , 5. Se obtiene un sólido de color naranjo, 122,1 mg, 0,28 mmol, con 61,1 % rendimiento.
Punto de fusión 194.9 - 195.4°C. HRMS (M+) : m/z calculado C2iHi6FN304S [M+] = 425.08455; encontrado = 425.08462. IR (KBr) : 1660.41, 1675.84 cnf1 C=0 (quinona) ; 1720.19 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.37 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.42 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.15 (s, 1H, 9-H) , 7.22 (d, 3J=8.4 Hz, 2H, 2' y 6'), 7.52 (d, 3J=8.4 Hz, 2H, 3' y 5') · 13C RMN (CDC13, 100 MHz) : δ 12.53 (6-CH2CH3), 29.47 (4-NCH3), 30.60 (2-NCH3), 32.13 (6-CH2CH3), 105.83 (10b), 118.24 (d, 2C, 2J=22 Hz, 3' y 5') , 120.87 (6a), 122.85 (1'), 128.29 (9), 138.29 (d, 2C, 3J=8 Hz, 2' y 6'), 147.6 (10a), 151.45 (3), 153.16 (1), 156.88 (8), 158.8 (4a), 164.63 (d, 1C, 1J=2 l Hz, 4'), 171,21 (6), 181.9 (7) , 181.68 (10) .
Ejemplo 16 Obtención de 8- (4-clorotiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (16)
Figure imgf000074_0001
Una Solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (424, 42mg, 2,lmmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=3, 5 : 5 (8 mi), se adiciona mediante goteo una solución de 4-Clorotiofenol (98,80mg, l,0mmol) disuelto en CH2CI2 :MetOH=3, 5 : 5 (34 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min esto por 14 horas aproximadamente. El crudo de reacción se purifica con 60 g de silica gel (0, 040-0, 063 rom) utilizando fase móvil éter de petróleo : diclorometano : acetato de étilo=l , 5 : 0 , 5 : 0 , 5. Se obtiene un sólido de color naranjo, 221,5 mg, 0,5 mmol, con 75% rendimiento.
Punto de fusión 196.5 - 198.3°C. HRMS (M+) : m/z calculado C2iHi6ClN304S [M+] = 441.05500; encontrado = 441.05491. IR (KBr) : 1656.55, 1675.84 cnf1 C=0 (quinona) ; 1722.12 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.36 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.41 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4- NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.17 (s, 1H, 9-H) , 7.49 (m, 4H, 2' 3' 5' y 6'-H) . 13C RMN (CDCI3, 100 MHz) : δ 12.2 (6-CH2CH3), 29.2 (4-NCH3), 30.3 (2-NCH3) , 31.9 (6-CH2CH3), 105.6 (10b), 120.6 (6a), 125.8, 128.1 (9), 130.88, 137.09, 137.54, 147.3 (10a), 151.2 (3), 152.9 (1), 156.2 (8), 158.5 (4a), 170.9 (6), 180.7 (7) , 181.3 (10) .
Ejemplo 17
Obtención de 8- (4-bromotiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (17)
Figure imgf000075_0001
17
Una 6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin-
1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (424, 42mg, 2,lmmol), tricloruro de cerio Heptahidratado (0,5% mol de 1) en una mezcla de CH2C I2 :MetOH=3, 5 : 5 (8 mi), se adiciona mediante goteo una solución de 4-bromotiofenol (98,80mg, l,0mmol) disuelto en CH2C I2 :MetOH=3, 5 : 5 (34 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min esto por 14 horas. El crudo de reacción se purifica con 75 g de silica gel (0, 040- 0,063 mm) utilizando fase móvil 4,0:0,5:0,5 de éter de petróleo : diclorometano : acetato de étilo. Se obtiene un sólido de color naranjo, 201,7 mg, 0,41 mmol, con 68,1 % rendimiento. Punto de fusión 197.9 - 198.7°C. HRMS (M+) : m/z calculado C2 iHi6BrN304S [M+] = 485.00449; encontrado = 485.00438. IR (KBr) : 1656.55, 1677.77 cnf1 C=0 (quinona); 1722.12 cnf1 C=0 (uracilo) . ½ RMN (CDC13, 400 MHz) : δ 1.36 (t, 3J=7.3 Hz, 3H, 6- CH2CH3 ) , 3.41 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) , 3.44 (s, 3H, 4- NCH3) , 3.75 (s, 3H, 2-NCH3) , 6.18 (s, 1H, 9-H) , 7.41 (d, 3J=8.4 Hz, 2H, 2' y 6'), 7.66 (d, 3J=8.4 Hz, 2H, 3' y 5') · 13C RMN (CDCI3, 100 MHz) : δ 12.2 (6-CH2CH3), 29.2 (4-NCH3), 30.3 (2- NCH3) , 31.9 (6- CH2CH3 ) , 105.5 (10b), 120.5 (6a), 125.8 (4'), 126.4 (1'), 128.1 (9), 133.9 (2C, 3' y 5'), 137.3 (2C, 2' y 6'), 147.3 (10a), 151.2 (3), 152.9 (1), 156.0 (8), 158.5 (4a), 170.9 (6) , 180.7 (7) , 181.4 (10) .
Ejemplo 18 Obtención de 6-etil-8- (4-hidroxitiofenil) -2 , - dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (18) .
Figure imgf000077_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (311,05 mg, 0,85 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 4-hidroxitiofenol (52, 80 mg, 0,41 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0,040-0,063 mm) utilizando como fase móvil diclorometano : acetato de étilo =9:0,8. Se obtiene un sólido de color naranjo, 127,2 mg, 0,3 mmol, con 72% rendimiento.
Ejemplo 19 Obtención de 6-etil-2 , 4-dimetil-8- (4- nitrotiofenil) pirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) - tetraona (19) .
Figure imgf000078_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (300, 00 mg, 1,0 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 4-ni trotiofenol (77,80 mg, 0,5 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 15:1:3. Se obtiene un sólido de color naranjo, 220,5 mg, 0,49 mmol, con 96% rendimiento.
1H RMN (DMSOd6, 400 MHz) : δ 1.36 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.40 (c, 3J=7.3 Hz, 2H, 6-CH2CH3) , 3.42 (s, 3H, 4-NCH3) , 3.75 (s, 3H, 2-NCH3) , 6.24 (s, 1H, 9-H) , 7.76 (d, 2H, 2'-H y 6'-H ), 8.34 (d, 2H, 3'-H y 5'-H) . Ejemplo 20
Obtención de 8- ( -aminotiofenil) -6-etil dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (20) .
Figure imgf000079_0001
Una solución de 6-etil-2 , 4-dimetil-8- ( 4- nitrotiofenil) pirimido [4, 5-c] isoquinolin-1, 3, 7, 10 (2H, 4H) - tetraona 19 (100,00 mg, 0,33 mmol), se agregan a una solución de agua: ácido acético: metanol = 1:1:1 (30 mL) que contiene de Fe0 (368 mg, 6,6 mmol) y se agita durante 3 horas a 50°C. Transcurrido este tiempo la se agregan 100 mL de agua y se neutraliza con NaHCC>3 y luego se extrae utilizando diclorometano (30 mL x 3) .Posterior a esto la fase orgánica se seca con NaS04 anhidro, se filtra y se seca al vacio. Finalmente el crudo de reacción se purifica con 60 g de Silica gel (0,040-0,063 mm) utilizando como fase móvil diclorometano: acetato de étilo: = 9:1,5. Se obtiene un sólido de color café, 30,5 mg, 0.07 mmol, con 32,1% rendimiento.
Ejemplo 21
Obtención de 8- (2 , 6-dimetoxitiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H , 4H) -tetraona (21) .
Figure imgf000080_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (106,3 mg, 0,36 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 2 , 6-dimetoxitiofenol (30,20 mg, 0,18 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0,040-0,063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo=9 : 1 : 3. Se obtiene un sólido de color rojo, 52,5 mg, 0,11 mmol, con 63% rendimiento.
Ejemplo 22
Obtención de 8- (5-bromo-2-metoxi eniltio) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (22)
Figure imgf000081_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (109,2 mg, 0,36 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 5-bromo-2-metoxitiofenol (39,97 mg, 0,18 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0,040-0,063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 20:1:4. Se obtiene un sólido de color naranj o, 71,8 mg, 0,14 mmol, con 76% rendimiento . Ejemplo 23
Obtención de 8- (3 , 5-diclorotiofenil) -6-etil-2 , - dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (23) .
Figure imgf000082_0001
23
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (104,4 mg, 0,35 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 3 , 5-diclorotiofenol (31,6 mg, 0,18 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 20:1:7. Se obtiene un sólido de color amarillo, 58,2 mg, 0,12 mmol, con 69% rendimiento. Ejemplo 24
Obtención de 8- (benciltio) -6-etil-2 , 4-dimetilpirimido [4 , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (24) .
Figure imgf000083_0001
24
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (101,2 mg, 0,34 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de bencilmercaptano (20,99 mg, 0,17 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano: acetato de étilo: éter de petróleo = 9:1:3. Se obtiene un sólido de color amarillo-anaran ado, 47,3 mg, 0,11 mmol, con 66% rendimiento.
Ejemplo 25
Obtención de 8- (4-clorobenciltio) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (25) .
Figure imgf000084_0001
i
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona (1) (229, 0 mg, 0,77 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de 4-nitrotiofenol (63,30 mg, 0,40 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 10:1:5. Se obtiene un sólido de color naranjo, 111,2 mg, 0,24 mmol, con 32% rendimiento. Ejemplo 26
Obtención de 6-etil-2 , 4-dimetil-8- (fenetiltio) pirimido [4 , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (26) .
Figure imgf000085_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona (1) (203, 4 mg, 0,68 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de feniletilmercaptano (47,0 mg, 0,34 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 10:1:6. Se obtiene un sólido de color amarillo-anaran ado, 117,2 mg, 0,27 mmol, con 79% rendimiento . Ejemplo 27
Obtención de 8- (benzotiazol-2-iltio) -6-etil dimetilpirimido [ , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (27) .
Figure imgf000086_0001
Una solución de 6-etil-2 , 4 -dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (197, 34 mg, 0,65 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (10 mi), se le adiciona mediante goteo una solución de benzotiazol (61,6 mg, 0,37 mmol) disuelto en CH2CI2 : EtOH= 1:1 (35 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 9:1:3. Se obtiene un sólido de color amarilllo, 121,2 mg, 0,26 mmol, con 71% rendimiento. Ejemplo 28
Obtención del 8- (2-bromo-4-clorotiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (28)
Figure imgf000087_0001
A una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5- c] isoquinolin-1, 3,7,10 (2H, 4JJ) -tetraona 1 (431,2 mg, 1,96 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 :MetOH=l : 1 (10 mi), se adiciona mediante goteo una solución de 4-cloro-2-bromo-tiofenol (164,1 mg, 1,0 mmol) disuelto en CH2CI2 :MetOH=l : 1 (30 mi) desde una bureta de llave lateral a una velocidad aproximada de lml/30min por 16 horas. El crudo de reacción se purifica con 140 g de silica gel (0,040-0,063 mm) utilizando la fase móvil: acetato de étilo: diclorometano : éter de petróleo = 1:4:5. Se obtiene un sólido de color naranjo, 324,7 mg, 0,6 mmol, con 87% rendimiento. Punto Fusión 198,4 - 200,2 °C. Masa Exacta = 518, 96552.
½ RMN (CDC13, 400 MHz) : δ 1.38 (t, 3J=7.2 Hz, 3H, 6-CH2CH3) ; 3.42 (c, 3J=7.2 Hz, 2H, 6-CH2CH3) ; 3.45 (s, 3H, 4-NCH3) ; 3.76
(s, 3H, 2-NCH3) ; 6.07 (s, 1H, 9-H) ; 7.44 (dd, 3,4J=8.3,1.9 Hz, 1H, 5') ; 7.59 (d, 3J=8.3 Hz, 1H, 6' ) ; 7.82 (d, 4J=l .9 Hz, 1H, 3') · 13C RMN (CDCI3, 100 MHz) : δ 12,10 (6-CH2CH3) ; 29, 08 (4- NCH3) ; 30, 22 (2-NCH3) ; 31,74 (6-CH2CH3) ; 105, 52 (10a) ; 120,47 (6a) ; 127,35 (9) ; 127,96 (1') ; 129,53 (5') ; 131,28 (2') ; 132,42 (4') ; 138,18 (3') ; 138,46 (6') ; 147,10 (10b) ; 151,04
(3) ; 152,82 (1) ; 153,43 (8) ; 158,32 (4a) ; 170,85 (6) ; 180,50
(10) ; 180, 99 (7) . Ejemplo 29
Obtención de 8- (4-amino-fenilamino) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 , 3 , 7 , 10 (2H, 4H) -tetraona (29) .
Figure imgf000088_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (100,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de : EtOH=l : 1 (20 mi), se le adiciona 1 , 4-fenilendiamina (72,2 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040- 0,063 mm) utilizando como fase móvil cloroformo: acetato de étilo = 8:1. Se obtiene un sólido de color verde, 69,1 mg, 0,17 mmol, con 51% rendimiento.
Ejemplo 30
Obtención de 6-etil-2 , -dimetil-8- ( enilamino) pirimido [ , 5- c] isoquinolin-1, 3, 7, 10 (2H,4H) -tetraona (30) .
Figure imgf000089_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona 1 (100,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1 ) en una mezcla de CH2Cl2:EtOH=l : 1 (20 mi), se le adiciona anilina (61,5 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0.040-0.063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 1:2:4. Se obtiene un sólido de color morado, 97,6 mg, 0,25 mmol, con 76% rendimiento.
Ejemplo 31
Obtención de 6-etil-8- ( ( -fluorofenil) amino) dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (31) .
Figure imgf000090_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (100,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2Cl2:EtOH=l : 1 (20 mi), se le adiciona 4-fluor-anilina (73,3 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil cloroformo: acetato de étilo: éter de petróleo = 10:3:3. Se obtiene un sólido de color morado, 94,3 mg, 0,23 mmol, con 70% rendimiento.
Ejemplo 32
Obtención de 8- ( (4-clorofenil) amino) -6-etil dimetilpirimido [ , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (32) .
Figure imgf000091_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona 1 (100,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2Cl2:EtOH=l : 1 (20 mi), se le adiciona 4-cloro-anilina (84,2 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil cloroformo: acetato de étilo: éter de petróleo = 2:1:2. Se obtiene un sólido de color morado, 72,2 mg, 0,17 mmol, con 52% rendimiento.
1H RMN (CDC13, 400 MHz) : δ 1.36 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) , 3.40 (c, 3J=7.3 Hz, 2H, 6-CH2CH3) , 3.47 (s, 3H, 4-NCH3) , 3.76 (s, 3H, 2-NCH3) , 6.40 (s, 1H, 9-H) , 7.20 (d, 3J=8.8 Hz, 2H, 2'- H y 6'-H) 7.39 (d, 3J=8.8 Hz, 2H, 3 ' -H y 5'-H) , 7.56 (1H, NH) . Ejemplo 33
Obtención de 8- ( -bromo-fenilamino) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (33) .
Figure imgf000092_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4JJ) -tetraona 1 (100,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2Cl2:EtOH=l : 1 (20 mi), se le adiciona 4-bromo-anilina (113,5 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040-0, 063 mm) utilizando como fase móvil diclorometano : acetato de étilo: éter de petróleo = 4:1:4. Se obtiene un sólido de color morado, 103,2 mg, 0,22 mmol, con 67% rendimiento.
Ejemplo 34
Obtención de 8- (4-metilester- enilamino) -6-etil dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (34)
Figure imgf000093_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (103,0 mg, 0,33 mmol), tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en una mezcla de CH2CI2 : EtOH=l : 1 (20 mi), se le adiciona 4-metilesteranilina (97, 7 mg, 0,66 mmol) y se deja reaccionar durante 16 horas. El crudo de reacción se purifica con 60 g de Silica gel (0, 040- 0,063 mm) utilizando como fase móvil cloroformo: acetato de étilo = 20:1. Se obtiene un sólido de color rojo, 55,8 mg, 0,12 mmol, con 36% rendimiento.
Ejemplo 35
Obtención de 8,9-bistiofenil-6-etil-2,4-dimetil-pirimido[4,5 c] isoquinolin-1 ,3,7,10 (2H,4H) -tetraona (35) .
Figure imgf000094_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (102,6 mg, 1,0 mmol), tiofenol (101,8 mg, 2,8 mmol) tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en etanol (40 mi), se mantiene a reflujo durante 1 hora. Se cambia a baño maria a 70°C durante 2 horas.
Luego se mantuvo se agita a temperatura ambiente durante 18 h. El crudo de reacción se purifica con 70 g de silica gel (0,040-0,063 mm) utilizando como fase móvil: acetato de étilo : diclorometano : éter de petróleo =1,0:4,0:5,0. Se obtiene un sólido de color rojo, 68,1 mg (0,13 mmol), con 39% rendimiento. Punto Fusión 188,9 - 191,5 °C. Masa Exacta= 515, 09735.
½ RMN (CDCI3, 400 MHz) : δ 1,13 (t, 3J=7,3 Hz, 3H, 6-CH2CH3) ;
3,06 (c, 3J=7,3 Hz, 2H, 6-CH2CH3) ; 3,31 (s, 3H, 4-NCH3) ; 3,71 (s, 3H, 2-NCH3) ; 7,30 (m, 3H, 8,9-SC6H5); 7,41 (m, 5H, 8,9-
SC6H5) ; 7,56 (dd, 3J=6,7 Hz, 2H, 2' ', 6' ') . 13C RMN (CDCI3, 100
MHz) : δ 12,33 (6-CH2CH3); 28, 76 (4-NCH3); 30, 06 (2-NCH3); 31,01
(6-CH2CH3); 104,80 (lOb-C); 122,12 (6a-C); 127,93 (9-C);
128,93; 129,27; 129,42; 130,19; 131,23; 133,16; 133,30; 143,68; 147,74 (lOa-C); 150,50 (3-C); 151,09 (1-C); 152,07 (8-
C) ; 157, 63 (4a-C); 169,91 (6-C); 176, 79 (7-C); 179, 33 (10-C) .
Ejemplo 36 Obtención de 8 , 9-bis (4-clorotiofenil) -6-etil-2 , 4- dimetilpirimido [4 , 5-c] isoquinolin-1 ,3,7,10 (2H, 4H) -tetraona (36) .
Figure imgf000096_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (131,4 mg, 1,0 mmol) , 4- clorotiofenol (162,9 mg, 2,5 mmol) tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en etanol (40 mi), se mantuvo a reflujo durante 3 horas a 70°C. Luego se mantuvo en agitación a temperatura ambiente durante 18 h. El crudo de reacción se purificó con 70 g de silica gel (0, 040-0, 063 mm) utilizando como fase móvil: acetato de étilo : diclorometano : éter de petróleo =2,0:2,0:6,0. Se obtuvo un sólido de color café, 64,2 mg, 0,11 mmol, con 49% rendimiento.
Punto Fusión 207.8 - 209.8 °C. Masa Exacta=583.01940.
½ RMN (CDC13, 400 MHz) : δ 1.17 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) ; 3.10 (c, 3J=7.3 Hz, 2H, 6-CH2CH3) ; 3.33 (s, 3H, 4-NCH3) ; 3.71 (s, 3H, 2-NCH3) ; 7.29 (d, 3J=8.8 Hz, 2H, 2' ', 6' ') ; 7.36 (d, 3J=8.7 Hz, 2H, 2', 6') ; 7.36 (d, 3J=8.7 Hz, 2H, 3', 5') ; 7.49 (d, 3J=8.7 Hz, 2H, 3' ', 5' ') .
13C RMN (CDCI3, 100 MHz) : δ 12,31 (6-CH2CH3); 28, 76 (4-NCH3) ; 30, 09 (2-NCH3) ; 31,16 (6-CH2CH3) ; 104, 76 (lOb-C) ; 121,75 (6a- C) ; 128,18 (9-C) ; 129,48; 129,69; 131,43; 132,63; 134,35; 134,76; 135,72; 142,32; 147,77 (lOa-C) ; 151,01 (3-C) ; 151,24 (1-C) ; 152,14 (8-C) ; 157,61 (4a-C) ; 170,15 (6-C) ; 176,40 (7- C) ; 179, 45 (10-C) .
Ejemplo 37
Obtención de 8- (2 ' -bromo-4 ' -cloro-tiofenil ) -6-etil-7 dihidroxi-2, 4-dimetilpirimido [4, 5-c] isoquinolina-1 , 3 (2H, 4H) diona. (37)
Figure imgf000097_0001
37
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona 1 (108,1 mg, 1,0 mmol), 4-cloro-2- bromo-tiofenol (159,1 mg, 1,97 mmol) tricloruro de cerio(III) heptahidratado (0,5% mol de 1) en CH2C12 :MeOH=l : 1 (40 mL) , se lleva a 50°C durante 2 horas. Luego se mantiene en agitación a temperatura ambiente durante 18 h. El crudo de reacción se purifica con 140 g de gel de sílice (0, 040-0, 063 mm) utilizando como fase móvil : acetato de etilo : diclorometano : éter de petróleo=l : 10 : 9. Se obtiene un sólido de color amarillo, 70,3 mg (0,1 mmol) con 26% rendimiento.
Punto Fusión 223,1 - 224,2 °C. Masa Exacta = 520,98117.
½ RMN (CDCI3, 400 MHz) : δ 1,40 (t, 3J=7,2 Hz, 3H, 6-CH2CH3) ;
3,61 (s, 3H, 4-NCH3) ; 3,62 (c, 3J=7,2 Hz, 2H, 6-CH2CH3) ; 3,89
(s, 3H, 2-NCH3) ; 6,62 (d, 3J=8.5 Hz, 1H, 6'); 7,09 (dd, 3'4J=8,5
H<, 2,1 Hz, 1H, 5'); 7,28 (s, 1H, 9-H) ; 7,48 (s, 1H, 7-OH) ;
7,59 (d, 3J= 2,1, 1H, 3'); 11,87 (s, 1H, 10-OH) . 13C RMN (CDCI3, 100 MHz) : δ 12,74 (6-CH2CH3); 29, 92 (4-NCH3); 30, 88 (2-
NCH3) ; 34, 96 (6-CH2CH3); 98, 96 (10a); 113,01 (6a); 116,09 (9);
122,00; 127,46; 128,30; 128,33; 128,47; 132,78; 132,86 (10b);
138, 84 (3); 147, 65 (1); 149, 90 (8); 150, 35 (4a); 150, 52 (6);
165, 27 (10) ; 173,35 (7) .
Ejemplo 38
Obtención de 8-tiopropil-6-etil-2 , 4-dimetil-pirimido [4 , 5- c]isoquinolin-l,3,7,10 (2H, 4H) -tetraona (38) .
Figure imgf000099_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1 , 3 , 7 , 10 ( 2H, 4H) -tetraona 1 (103,8 mg, 1,0 mmol), propanetiol (76,2 mg, 2,4 mmol) tricloruro de cerio(III) heptahidratado (0,5% mol de 1), se mantiene en agitación a temperatura ambiente por 16 horas. El crudo de reacción se purifica con 60 g de silica gel (0, 040-0, 063 mm) utilizando la fase móvil : acetato de étilo : diclorometano : éter de petróleo=l : 2 : 7. Se obtiene un sólido de color naranjo, 30,5 mg, 0,08 mmol, con 24% rendimiento. Punto Fusión 163,8 - 164,9 °C. Masa Exacta = 373, 10963.
½ RMN (CDC13, 400 MHz) : δ 1.11 (t, 3J=7,3 Hz, 3H, 8-CH2CH2CH3) ; 1.35 (t, 3J=7.3 Hz, 3H, 6- CH2CH3 ) ; 1.82 (h, 2H, 8- CH2CH2CH3 ) ; 2.81 (t, 3J=7.3 Hz, 3H, 8- CH2CH2CH3 ) ; 3.39 (c, 3J=7,3 Hz, 2H, 6- CH2CH3 ) ; 3.48 (s, 3H, 4-NCH3) ; 3.76 (s, 3H, 2-NCH3) ; 6.69 (s, 1H, 9-H) . ±JC RMN (CDCI3, 100 MHz) : δ 12,14 (6-CH2CH3); 13,66 (8-
CH2CH2CH3) ; 20.89 (8-CH2CH2CH3) ; 29.08 (4-NCH3); 30,17 (2-NCH3);
31,72 (6-CH2CH3) ; 32, 76 ( 8 -CH2CH2CH3 ) ; 105, 42 (10a); 120,84
(6a); 126,46 (9); 147,15 (10b); 151,14 (3); 152,69 (1); 155,40 (8); 158,55 (4a); 170,74 (6); 180,79 (10); 180,79 (7) .
Ejemplo 39
Obtención de 8 , 9-bis-tiopropil-6-etil-2 , -dimetil pirimido [4 , 5-c] isoquinolin-1 , 3 , 7 , 10 (2Η, 4Η) -tetraona (39) .
Figure imgf000100_0001
Una solución de 6-etil-2 , 4-dimetilpirimido [ 4 , 5-c] isoquinolin- 1 , 3 , 7 , 10 ( 2H, 4JJ) -tetraona 1 (120,5 mg, 1,0 mmol), propanetiol (73,5 mg, 2,4 mmol) tricloruro de cerio(III) heptahidratado (0,5% mol de 1), 72 mg trietilamina (68% mol de propanetiol) disuelto en EtOH : CH2Cl2=l : 1 (40 mi), se mantiene a reflujo por 4 horas. El crudo de reacción se purifica con 70 g de silica gel (0,040-0,063 mm) utilizando la fase móvil: acetato de étilo: diclorometano : éter de petróleo =0,5:2,5:7. Se obtuvo un sólido de color rojo, 155,5 mg, 0,35 mmol, con 86% rendimiento. Punto Fusión 138,9 - 140,2 °C. Masa Exacta = 447, 12865.
½ RMN (CDC13, 400 MHz) : δ 1.11 (t, 3J=7,3 Hz, 3H, 8-CH2CH2CH3) ; 1.35 (t, 3J=7.3 Hz, 3H, 6-CH2CH3) ; 1.82 (h, 2H, 8-CH2CH2CH3) ; 2.81 (t, 3J=7.3 Hz, 3H, 8-CH2CH2CH3) ; 3.39 (c, 3J=7.3 Hz, 2H, 6- CH2CH3) ; 3.48 (s, 3H, 4-NCH3) ; 3.76 (s, 3H, 2-NCH3) ; 6.69 (s, 1H, 9-H) . 13C RMN (CDC13, 100 MHz) : δ 12.14 (6-CH2CH3); 13.66 (8-CH2CH2CH3) ; 20.89 ( 8-CH2CH2CH3) ; 29.08 (4-NCH3); 30.17 (2- NCH3) ; 31.72 (6-CH2CH3); 32.76 ( 8-CH2CH2CH3) ; 105.42 (10a); 120.84 (6a); 126.46 (9); 147.15 (10b); 151.14 (3); 152.69 (1); 155.40 (8); 158.55 (4a); 170.74 (6); 180.79 (10); 180.79 (7) .
Donde el compuesto descrito en el ejemplo 1, es un compuesto intermediario, asi mismo la síntesis de compuestos intermediarios G que comprende las etapas de: a) hacer reaccionar los siguientes compuestos:
Figure imgf000102_0001
Cojupaesfe íntermediaris G
I donde R3 es -H, alquilo C1-C15, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R6 es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: - CO-Z-alquilo C1-C15, -Z-CO-alquilo C1-C15, -H, -ter-butilo, - iso-propilo, -alquilo C1-C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, - 0-R7,-CN, -S-R7, -S-CF3 y fenilo sustituido a su vez con -H, - alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R es un grupo -H, alquilo C1-C15, -OH; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo ; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono; para obtener el compuesto intermediaro G.
Los compuestos obtenidos en los Ejemplos 1 hasta 39 están representados por la siguiente fórmula estructural, como se muestra en la Tabla I que sigue: Tabla
Figure imgf000104_0001
Figure imgf000105_0001
Figure imgf000106_0001
Figure imgf000107_0001
Figure imgf000108_0001
Descripción de figuras: Figura 1/3
Esta figura representa la cadena transportadora de electrones (CTe) .
A. Es una representación del flujo normal de electrones a través de los complejos de la CTe, en donde la energía desprendida de este flujo de electrones se utiliza para la translocación de protones en contra de gradiente, el cual es un proceso energéticamente desfavorable. El gradiente electroquímico generado es utilizado para la formación de ATP mediante un proceso favorable energéticamente.
B. Representación del bloqueo en el flujo de electrones que efectuán los compuestos quinónicos de la presente invención (Q) al emular a la ubiquinona. Esto conlleva a un descenso en la generación de ATP y/o a la producción de ROS.
Figura 2/3
Esta figura presenta un gráfico donde se muestra el aumento de las tasas de resistencia de tres bacterias que son motivo de preocupación para las autoridades de salud pública: (MRSA) , (VRE) y (FQRP).
Estos datos se obtuvieron de las unidades de cuidados intensivos de los hospitales que participan en el sistema Nacional de Vigilancia de Infecciones Nosocomiales de EE.UU.
MRSA: Staphylococcus aureus resistente a meticilina
VRE: Enterococos resistentes a vancomicina
FQRP: Pseudomonas aeruginosa resistente a las fluoroquinolonas Figura 3/3
Esta figura presenta un diagrama superior donde se verificó la actividad del compuesto del ejemplo 16 de formula I contra bacterias Gram (-) del tipo Echerichia Coli ATCC©25922.
El diagrama inferior muestra la actividad del compuesto del ejemplo 16 de formula I contra bacterias Gram (-) del tipo Pseudomona Aeruginosa ATCC©27853.
Para eso se combino el compuesto de formula I (Ejemplo 16) con diferentes concentraciones de EDTA. Pruebas experimentales
Estos compuestos son sometidos a ensayo con respecto a su actividad in vitro (Screening Actividad antibacteriana CIM ( g/mL) ) y los resultados se indican en la Tabla II.
Tabla II
Screening Actividad antibacteriana CIM (p.g/m )
Staphylococcus Staphylococcus
aureus aureus Enterococcus Eschericha Pseudomona
Molécula
meticilino meticilino faecalis coli aeruginosa resistente sensible
ATCC 43300 ATCC 29213 ATCC 29212 ATCC 25922 ATCC 27853
1 >32 >32 >32 >32 >32
2 8 8 8 >32 >32
3 32 32 >32 >32 >32
4 2 4 4 >32 >32
5 >32 >32 >32 >32 >32
6 >32 >32 >32 >32 >32
7 1 4 2 >32 >32 4 4 4 >32 >32
4 8 4 >32 >32
4 4 8 >32 >32
2 32 4 >32 >32
2 32 4 >32 >32
4 4 16 >32 >32
16 16 16 >32 >32
8 8 8 >32 >32
4 4 4 >32 >32
4 8 8 >32 >32
Luego del Screening Actividad antibacteriana se realizaron pruebas para verificar la actividad antibacteriana en una población heterogénea de bacterias, donde los resultados pueden verse en la siguiente tabla III.
Tabla III
Origen n° de Rango CIM50 CIM90 MG CIM
Aislamientos CIM
Aspirado 10 4-2 2 4 2,40 traqueal
Herida 10 4-2 2 2 2,20
Sangre 11 32-1 2 4 4,81
Otros 2 4-2 2 4 3,00
TOTAL 33 4-1 2 2 3,10
Origen n° de Rango CIM50 CIM90 MG CIM
Aislamientos CIM
Aspirado 9 4-1 2 4 2,33 traqueal
Herida 9 4-1 2 4 2, 11
Sangre 9 2-1 2 2 1,77
Otros 2 4-2 2 4 3,00
TOTAL 29 4-1 2 4 2,30
Origen n° de Rango CIM50 CIM90 MG CIM
Aislamientos CIM
Orina 10 4-2 2 4 2, 67
Liquido 10 4-2 2 2 2,20 peritoneal Herida 10 4--2 2 4 2,80
Sangre 10 4- -2 2 4 2, 60
Otros 4 4- -2 2 4 2,50
TOTAL 44 4- -2 2 4 2,59
Bacterias utilizadas: Para el screening de actividad antibacteriana de los compuestos compuestos se utilizó un panel de cepas prototipo:
♦ Staphylococcus aureus resistente a meticilina ATCC© 43300.
♦ Staphylococcus aureus sensible a meticilina ATCC© 29213.
♦ Enterococcus faecalis ATCC© 29212.
♦ Eschericha coli ATCC© 25922.
♦ Pseudomona aeruginosa ATCC© 27853.
Los compuestos que resultaron más activos se ensayaron sobre un panel de 89 aislamientos clínicos de cocacceas Gram positivas aislados de distintos centros hospitalarios chilenos de durante el año 2014. Los aislamientos utilizados fueron Staphylococcus aureus resistente a meticilina y Enterococcus spp . Resistente a vancomicina que cumplieran con un perfil de susceptibilidad de multi-resistencia definido por aquellos aislamientos que presentaran resistencia a lo menos un representante de 2 o más familias de antibacterianos. Los sitios de origen de asilamiento fueron aspirado traqueal, herida y sangre para Staphylococcus aureus , en tanto a los sitios para Enterococcus spp fueron orina, liquido peritoneal, sangre y herida.
Las cepas fueron sembradas desde el cepario (donde se conservaban en glicerol 50% v/v y caldo de cultivo Brain Heart Infusión, a -20°C) en agar Mueller-Hinton (Oxoid, Inglaterra) .
Para la determinación de la concentración inhibitoria mínima (CIM) , se usó la técnica de microdilución en caldo de cultivo de acuerdo al protocolo sugerido por la CLSI, brevemente: En placas de cultivo de 96 pocilios estériles (8 filas y 12 columnas) (Ultracruz™ Polystyrene Microplates, 96 well, U bottom Santa Cruz biotechnology, inc.) se agregaron 100 uL de caldo Müeller Hinton en todos los pocilios, para luego agregar 100 uL de antibiótico control o compuesto a ensayar en las 8 filas de la primera columna, para continuar haciendo diluciones seriadas con un factor de dilución de 0,5. Las concentraciones a ensayar van desde 32 hasta 0,0625 g/mL. Los pocilios de las columnas 11 y 12 se utilizaron para control positivo de crecimiento y control de esterilidad respectivamente .
Una vez preparada la placa, se agregaron 100 uL de la suspensión bacteriana a evaluar ajustada previamente al 0,5 Me Farland, en cada uno de los pocilios excluyendo a los pocilios de la columna 12. Finalmente, las placas fueron tapadas y llevadas a incubar a 36°C por 18 a 24 horas, transcurrido el tiempo, las placas fueron observadas utilizando luz de contraste a fin de determinar la concentración a la cual se inhibe el crecimiento bacteriano (indicada por la desaparición de turbidez ) .
Todos, los ensayos fueron realizados por triplicado, y se consideraron como válidos aquellos resultados en los cuales los controles internos de cada placa (control de crecimiento y de esterilidad) fueran adecuados, asi como también se evaluó la CIM de antibióticos control ( ciprofloxacino, gentamicina y vancomicina) y se contrasto con los rangos permitidos de control de calidad dados por la CLSI, si la CIM detectada en el ensaya estaba dentro de los rangos el ensayo se aceptaba como válido . Los compuestos de esta invención son útiles para el tratamiento de enfermedades infecciosas, de preferencia multiresistentes a antibióticos en mamíferos, por ejemplo, humanos .
La descripción anterior detalla los métodos y composiciones específicos que pueden emplearse para llevar a la práctica la presente invención y representa el mejor modo contemplado. Sin embargo, resulta evidente para un experto en el arte que otros compuestos con las propiedades farmacológicas deseadas pueden prepararse en una forma análoga, y que los compuestos revelados pueden también obtenerse a partir de diferentes compuestos de partida vía diferentes reacciones químicas. En forma similar, pueden prepararse y utilizarse composiciones farmacéuticas diferentes con sustancialmente los mismos resultados. De este modo, sin embargo, y aunque lo anterior puede aparecer detallado en el texto, no debería interpretarse como limitativo del alcance general de la presente. Por el contrario, el ámbito de la presente invención está regida solamente por la interpretación legal de las reivindicaciones adjuntas. Por otro lado se realizaron pruebas para verificar la actividad contra bacterias Gram (_), se probaron 2 cepas, Echerichia Coli ATCC©25922 y Pseudomona Aeruginosa ATCC©27853. Para eso se combino el compuesto de formula I (Ejemplo 16) con diferentes concentraciones de EDTA entregando los siguientes resultados presentados en la figura 3/3.
En resumen, los resultados obtenidos nos señalan que el EDTA permite al antibiótico de formula I actuar sobre las cepas Gram (-) en un rango de concentración entre 10 a 800 g/ml de preferencia en el rango de 64 a 128 g/ml .
Por otro lado y de manera general, el estado del arte utilizado en ele presente desarrollo se resume en el siguiente listado :
1. Munck . , La Europa del Siglo XVII. 1598-1700, Editor E. Akal. 1994: España, p. 132-137.
2. Gloria Pérez, A.D.J.O., Elena Cuenca París, Ma Rosario Limón Mendizábal, Julio Lancho, María del Carmen Ortega, Alvaro Muelas, Calidad de Vida en las Personas Adultas y Mayores ed. U.N.d.E.a. distancia. 2013, Madrid. 3. Cabello, R., Microbiología y parasitología humana. Bases etiológicas de las enfermedades infecciosas y parasitarias. 3 a ed. 2007.
4. Baldry, P., La batalla contra las bacterias, C. Cambridge University Press. 1981: España, p. 73-97.
5. Roca, A.J., Historia de los medicamentos. la ed. 2003, Bogotá, Colombia.
6. Pedro de Lorenzo Fernández, B.L.V., Alfonso Moreno González, Ignacio Lizasoain Hernández, Juan Carlos Leza Cerro, María Ángeles Sánchez Moro, Antonio Portolés Pérez, Farmacología: Básica y Clínica, ed. 18 ava ed. E.M. Panamericana. 2008.
7. Schon, I., Diccionario de la lengua española (Book) . Booklist, 2002. 99(5) : p. 524.
8. García, P., Resistencia Bacteriana en Chile. Revista Chilena de Infectología ; 20 (Supl 1): Sil - S23, 2003. 9. Ji, Y. and T. Lei, Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Sci Prog, 2013. 96 (Pt 1) : p. 43-60.
10. Plaza, D.M.J.M. La Infección Nosocomial. Resistencias bacterianas en Pacientes crónicos. 2011: Valencia, p. 57.
11. OMS, Informe sobre la salud en el mundo: un porvenir más seguro. Protección de la salud pública mundial en el siglo XXI. 2007: Suiza.
12. OMS. Resistencia a los antimicrobianos (RAM) . http : //www. who . int/mediacentre/factsheets/fsi 94 /es/ 2012.
13. Heymann, D., The desk encyclopedia of microbiology, E.A. Press. 2004, Amsterdam.
14. Levy, S.B., Antimicrobial resistance: bacteria on the defence. Resistance stems from misguided efforts to try to sterilise our environment. BMJ, 1998. 317(7159): p. 612-3.
15. Collignon, P., et al., Human Deaths and Third-Generation Cephalosporin use in Poultry, Europe . Emerg Infect Dis, 2013. 19(8): p. 1339-40. 16. Angela Restrepo, J.R., Eduardo Leiderman, Marcos Restrepo, David Botero, Victoria Bedoya, Enfermedades Infecciosas, C.p.i. biolódicas, Editor. 2003: Colombia, p. 38.
17. Gustavo A. Quintero, J.A.N., Carlos H. Lerma, Infección en Cirugía, E.M. Panamericana. 2001: Colombia p. 106.
18. Dbaibo, G.S., Oíd and new targets of antibacterial therapy. J Med Liban, 2000. 48(4): p. 177-81.
19. Donald Voet, J.G.V., Bioquímica, E.M. Panamericana. 2006. p. 829-851.
20. Harmon, H.J. and V.G. Struble, Effects of 2-hydroxy-3- undecyl-1 , 4-naphthoquinone on respiration of electrón transport particles and mitochondria : topographical location of the Rieske iron-sulfur protein and the quinone binding site. Biochemistry, 1983. 22(19): p. 4394-400.
21. Devlin, T.M., Bioquímica: libro de texto con aplicaciones clínicas, E. Reverté. 2004. 22. Salmón-Chemin, L., et al . , 2- and 3-substituted 1,4- naphthoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity . J Med Chem, 2001. 44(4): p. 548-65.
23. Dharmaraja, A.T., et al . , Design, synthesis and evaluation of small molecule reactive oxygen species generators as selective Mycobacterium tuberculosis inhibitors. Chem Commun (Camb), 2012. 48(83): p. 10325-7.
24. Xiao-Ming Yin, Z.D., Reactive Oxygen Species in Cell Fate Decisions, in Essentials of Apoptosis: A Guide for Basic and Clinical Research. 2009. p. 202.
25. Lluvia Itzel López L., E.L., Ramón Fernando García de la Cruz, Las naftoquinonas : más que pigmentos naturales. Revista Mexicana de Ciencias Farmacéuticas, 2011. 42: p. 7-14.
26. Karkare, S., et al., The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J Biol Chem, 2013. 288(7): p. 5149-56. 27. Lima, N.M., et al., Antileishmanial activity of lapachol analogues. Mem Inst Oswaldo Cruz, 2004. 99(7) : p. 757-61.
28. Salas, C, et al . , Trypanosoma cruzi: activities of lapachol and alpha- and beta-lapachone derivatives against epimastigote and trypomastigote forms . Bioorg Med Chem, 2008. 16(2): p. 668-74.
29. Ferreira, D.T., et al . , Antimicrobial activity and chemical investigation of Brazilian Drosera. Mem Inst Oswaldo Cruz, 2004. 99(7): p. 753-5.
30. Cai, L., et al., Namibian chewing stick, Diospyros lycioides, contains antibacterial compounds against oral pathogens . J Agrie Food Chem, 2000. 48(3): p. 909-14.
31. Riffel, A., et al., In vitro antimicrobial activity of a new series of 1, 4-naphthoquinones . Braz J Med Biol Res, 2002. 35(7): p. 811-8.
32. Tandon, V.K., et al., Synthesis and biological evaluation of novel 1 , 4-naphthoquinone derivatives as antibacterial and antiviral agents . Bioorg Med Chem Lett, 2005. 15(14) : p. 3463- 6.
33. Nagata K., et al., Antimicrobial activity of novel furanonaphthoquinone analogs . Antimicrob Agents Chemother, 1998. 42(3): p. 700-2.
34. Eyong, K.O., et al., Newbouldiaquinone A: A naphthoquinone- anthraquinone ether coupled pigment, as a potential antimicrobial and antimalarial agent from Newbouldia laevis. Phytochemistry, 2006. 67(6) : p. 605-9.
35. CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard, 2009. 23(2) .
36. Valderrama JA, V.D., Design and synthesis of angucyclinone AB-pyrido [ 2 , 3-d] pyrimidine analogues. Tetrahedron Lett 2008; 49: 703-6.
37. Vásquez, D., Diseño, síntesis y evaluación antitumoral de aza-análogos de anguciclinonas y derivados de aminopirimidoisoquinolinquinonas , Departamento de Química Orgánica. 2009, Pontificia Universidad Católica de Chile: Santiago, Chile, p. 216.
38. L. G. Wade, J., Organic Chemistry, P. Hall. 1991. p. 1026- 1028.
39. Javier Campanini Salinas, D.V.V., Síntesis, Caracterización y Evaluación de la Actividad Antibacteriana de una serie de Arilmercaptopirimidoisoquinolinquinonas , Facultad de Ciencias Químicas y Farmaceúticas . 2012, Universidad de Chile: Chile.
40. Salmerón, D.P.S., Estudio oscilopolarográfIco de Vitaminas. XIV: p. 387-389.
41. McMurry, J., Organic Chemistry, T. Brooks/Cole, Editor. 2008. p. 560-577.
42. Sara Aldabe, C.B., Laura Lacreu, Pedro Aramendia, Química 2: Química en acción, 1 ed. Colihue. 2004, Buenos Aires.
43. Santiago Luis Lafuente, M.I.B.A., Belén Altava Benito, Introducción a la Química Orgánica. 1997. p. 161-166. 44. Gilman, G.a., Las Bases Farmacológicas de la Terapéutica 2001. p. 1675-1688.
45. Roberto Todeschini, V.C., Molecular Descriptors for Chemoinformatics . 2 ed. Wiley. 2009.
46. Connors, K.A., Curso de Análisis Farmacéutico., Reverté. p. 273.
47. Bergeron, F., et al., Near-UV photolysis of 2-methyl-l , 4- naphthoquinone-DNA duplexes: characteri zation of reversible and stable interstrand cross-links between quinone and adenine moieties. Chem Res Toxicol, 2007. 20(5) : p. 745-56.

Claims

RE IVINDICACIONES
1.- Compuestos derivados pirimido-isoquinolin-quinonicos CARACTERIZADOS porque comprenden compuestos de formula I o sus tautómeros o sales farmacéuticamente aceptables
R5
Figure imgf000127_0001
Figure imgf000127_0002
Figure imgf000128_0001
alquilo C1-C15, -Si-R , -SiO-R , -NH- ( CH2 ) n-R , -N ( ( CH2 ) n-R ) 2' -0- (CH2)n-R6, -S- (CH2)n-R6' -Si- (CH2)n-R6; donde R es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: -CO-Z-alquilo C1-C15, -Z-CO- alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo Ci- C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S- CF3 y fenilo sustituido a su vez con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde 0= 1-14; donde K, Z, P, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si;
R2 es -H, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6 y halógeno del grupo de Cl, Br, F y I;
R3 es H, alquilo C1-C15, -NH2 , -OH, -SH, -NH-R6, -N-(R6)2,-0- R6,-S-R6; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, 0, y S, en el anillo; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, 0, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: - H, -alquilo C1-C15, alquilo sustituido C1-C15 con R7,
halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7,- N(R7)2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S-CF3, - ter-butilo, -iso-propilo y -CF3.
2.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS porque
R1 es -NH- (CH2) n-R6, -0- ( CH2 ) n-R6, -S- (CH2) n-R6; donde R6 es un grupo fenilo sustituido, donde las sustituciones del grupo fenilo son independientemente: -Z- CO-alquilo C1-C15, -CO-Z-alquilo C1-C15, -H, -ter-butilo, iso-propilo, -alquilo C1-C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7 , -N (R7 ) 2 , -COOH, -COO-R7, - OCO-R7, -0-R7,-CN, -S-R7, -S-CF3y fenilo sustituido con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -NO2, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S- R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde n= 0-2; donde z es independientemente: O, N, S02, SO, S, C o Si; R2 es H;
R3 es H y alquilo C1-C15, donde R4 y R5 son H, un grupo alquilo C1-C15.
3.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS porque
R1 es -NH- (CH2) n-R6, -O- ( CH2 ) n-R6, -S- (CH2) n-R6; donde R es un grupo alquilo C1-C15 o un grupo fenilo sustituido, donde las sustituciones del grupo fenilo son independientemente: -H, -alquilo C1-C15 y halógeno del grupo de Cl, Br, F y I; donde n= 0-2;
R2 es -H, -NH-R6, -N- (R6) 2, -O-R6, -S-R6; R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15;
4.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 3, CARACTERIZADOS porque las sustituciones R6 del grupo fenilo están en posiciones orto y para.
5. - Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS donde:
Figure imgf000132_0001
donde X es O, N o S R es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15.
6.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS donde
Figure imgf000133_0001
donde n= 0-8; donde w es independientemente: O, N, SO2, SO, S, C o Si; donde y, z y j son C o N;
R es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: - H, -alquilo C1-C15, alquilo sustituido C1-C15 con R7,
halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, - ter-butilo, -iso-propilo y -CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH.
7.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS donde
Figure imgf000134_0001
donde n= 0-8; donde m= 0-6; donde 0= 1-6; donde Z, J son independientemente: O, N, SO2, SO, S, C o Si; donde Y es C o N;
R es -H;
R3 es H, alquilo C1-C15;
donde R4 y R5 son H, un grupo alquilo C1-C15;
8.- Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS donde
Figure imgf000135_0001
donde n= 0-8; donde z es independientemente: O, N, S02, SO, S, C o Si; donde Y es C o N;
R es -H;
R3 es H, alquilo C1-C15;
donde R4 y R5 son H, un grupo alquilo C1-C15.
9. -Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS donde:
R1 son
Figure imgf000136_0001
donde n= 0-8; donde k, z son independientemente: O, N, SO2, SO, S, C o Si; donde g, i, y, j y w son independientemente: N o C; R2 es -H;
R3 es H, alquilo C1-C15; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R9, R10 y R11 corresponden independientemente a: -H, - alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, - COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, -ter- butilo, -iso-propilo y -CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH.
10. -Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1, CARACTERIZADOS porque comprenden los siguientes compuestos:
6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4H) -tetraona
6-etil-2, 4-dimetil-8- ( feniltio ) pirimido [4, 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4H) -tetraona
6-etil-2, 4-dimetil-8- (o-toliltio) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( (2-metoxifenil) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona 6-etil-8- ( (2-fluorofenil) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( (2-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 2-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-2, 4-dimetil-8- (m-toliltio) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 3-metoxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 3-fluorofenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 3-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 3-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona 6-etil-2, 4-dimetil-8- (p-toliltio) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 4-metoxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 4-fluorofenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 4-clorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 4-bromofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 4-hidroxifenil ) tio) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-2, 4-dimetil-8- ( (4-nitrofenil)tio) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 4-aminofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( (2, 6-dimetoxifenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona 8- ( ( 5-bromo-2-metoxifenil ) tio) -6-etil-2, 4- dimetilpirimido [4, 5-c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( (3, 5-diclorofenil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- (benciltio) -6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4H) -tetraona
8- ( ( 4-clorobencil ) tio) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-2, 4-dimetil-8- ( fenetiltio ) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- (benzotiazol-2-iltio ) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 2-bromo-4-clorofenil ) tio) -6-etil-2, 4- dimetilpirimido [4, 5-c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
8- ( ( 4-aminofenil ) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona 6-etil-2, 4-dimetil-8- ( fenilamino ) pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
6-etil-8- ( ( 4-fluorofenil ) amino) -2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
8- ( ( 4-clorofenil ) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
8- ( (4-bromofenil) amino) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona metil 4- ( (6-etil-2, 4-dimetil-l, 3,7, 10-tetraoxo- 1,2,3,4,7, 1 O-hexahidropirimido [4, 5-c] isoquinolin-8- il ) amino ) benzoato
8, 9-bis-tiofenil- 6-etil-2 , 4-dimetil-pirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
8, 9-bis ( 4-clorotiofenil ) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
8- ( 2 ' -bromo-4 ' -cíoro-tiofenil) -6-etil-7, 10-dihidroxi-2 , 4- dimetilpirimido [4, 5-c] isoquinolina-1 , 3 (2H, 4H) -diona 8-tiopropil- 6-etil-2 , 4-dimetil-pirimido [4, 5-c] isoquinolin- 1, 3, 7, 10 (2H, 4H) -tetraona
8, 9-bis-tiopropil- 6-etil-2 , 4-dimetil-pirimido [4,5- c] isoquinolin-1 , 3,7,10 (2H, 4H) -tetraona
11. - Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 3, CARACTERIZADOS porque comprenden los siguientes compuestos:
8, 9-bis ( 4-clorotiofenil ) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
8, 9-bis-tiopropil- 6-etil-2 , 4-dimetil-pirimido [4,5- c] isoquinolin-1, 3, 7, 10 (2H, 4H) -tetraona.
8, 9-bis-tiofenil- 6-etil-2 , 4-dimetil-pirimido [4,5- c] isoquinolin-1, 3,7,10 (2H, 4H) -tetraona
12. - Compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 5, CARACTERIZADOS porque comprenden el siguiente compuesto:
8- (benzotiazol-2-iltio ) -6-etil-2, 4-dimetilpirimido [4,5- c] isoquinolin-1, 3, 7, 10 (2H, 4H) -tetraona.
13.- Composición farmacéutica, según la reivindicación CARACTERIZADA porque comprende compuestos de formula I sus tautómeros o sales farmacéuticamente aceptables
Figure imgf000143_0001
donde :
R es -H, -NH2, -OH, -SH, -NH-R , -N-(Rb)2, -0-Rb,
R11 R10
Figure imgf000143_0002
Figure imgf000144_0001
alquilo C1-C15, -Si-Rb, -SiO-Rb, -NH- (CH2) n-Rb, -N ( ( CH2 ) n-Rb) 2' -0- (CH2)n-R6, -S- (CH2)n-R6' -Si- (CH2)n-R6; donde R6 es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: -CO-Z-alquilo C1-C15, - Z - CO- alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo Ci- C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S- CF3 y fenilo sustituido a su vez con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7,- N(R7)2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde o= 1-14; donde K, Z, P, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si;
R2 es -H, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6 y halógeno del grupo de Cl, Br, F y I;
R3 es H, alquilo C1-C15, -NH2 , -OH, -SH, -NH-R6, -N-(R6)2,-0- R6,-S-R6; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: - H, -alquilo C1-C15, alquilo sustituido C1-C15 con R7,
halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, - ter-butilo, -iso-propilo y -CF3; y excipientes farmacéuticamente aceptables.
14.- Composición farmacéutica, CARACTERIZADA porque comprende compuestos de formula I o sus tautómeros o sales farmacéuticamente aceptables
Figure imgf000147_0001
Figure imgf000148_0001
alquilo C1-C15, -Si-Rb, -SiO-Rb, -NH- (CH2) n-Rb, -N ( ( CH2 ) n-Rb) 2' -0- (CH2)n-R6, -S- (CH2)n-R6' -Si- (CH2)n-R6; donde R6 es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: -CO-Z-alquilo C1-C15, - Z - CO- alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo Ci- C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S- CF3 y fenilo sustituido a su vez con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7,- N(R7)2, -C00H, -C00-R7, -0C0-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde o= 1-14; donde K, Z, P, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si;
R2 es -H, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6 y halógeno del grupo de Cl, Br, F y I;
R3 es H, alquilo C1-C15, -NH2 , -OH, -SH, -NH-R6, -N-(R6)2,-0- R6,-S-R6; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R8, R9, R10 y R11 corresponden independientemente a: - H, -alquilo C1-C15, alquilo sustituido C1-C15 con R7,
halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, - ter-butilo, -iso-propilo y -CF3; ácido etilendiaminotetraácetico ; y exipientes farmacéuticamente aceptables.
15.- Procedimiento de preparación de los compuestos intermediarios derivados pirimido-isoquinolin-quinonicos , CARACTERIZADO porque comprende las etapas de: a) hacer reaccionar los siguientes compuestos:
Figure imgf000151_0001
donde R3 es -H, alquilo C1-C15, -NH2, -OH, -SH, -NH-R6, -N- (R6) 2, -O-R6, -S-R6; donde R4 y R5 son H, un grupo alquilo C1-C15; donde R6 es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: -CO-Z-alquilo C1-C15, -Z-CO- alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo Ci- C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S- CF3 y fenilo sustituido a su vez con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R es un grupo -H, alquilo C1-C15, -OH; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono;
para obtener el compuesto intermediaro G.
16.- Procedimiento de preparación de los compuestos
intermediarios derivados pirimido-isoquinolin-quinonicos , según la reivindicación 15 CARACTERIZADO porque comprende las etapas de:
Figure imgf000153_0001
a) hacer reaccionar una solución de 1- (2, 5-dihidroxifenil ) - propan-l-ona con 6-amino-l , 3-dimetilpirimidina-2 , 4 ( 1H, 3H) - diona en presencia de MgS04 y Ag2Ü en un medio de CH2CI2 a temperatura ambiente. b) el sólido resultante se purifica con Silica gel utilizando como fase móvil diclorometano : acetato de étilo = 9:1, obteniendosé el compuesto intermediario 1.
17.- Procedimiento de preparación de los compuestos derivados pirimido-isoquinolin-quinonicos , según la reivindicación 1 CARACTERIZADO porque comprende las etapas de : c) hacer reaccionar en un medio de etanol y aire, el compuesto intermediario G
Figure imgf000154_0001
donde R4 y R5 son H, un grupo alquilo C1-C15;
con uno de los compuestos presentados a continuación:
NH2-R , NH-(R )2, HO-R ,
Figure imgf000155_0001
HS-R , Cl-SO-R , CI-SO2-R , alquilo C1-C15, HSi-R , H-SiO-R , NH2- (CH2) n-R6, NH ( (CH2) n-R6) 2, HO- ( CH2 ) n-R6, HS- ( CH2 ) n-R6' HSi- (CH2)n-R6; donde X es O, N o S; donde n= 0-14; donde m= 0-14; donde o= 1-14; donde K, Ζ, Ρ, G, I, Y, J y W son independientemente: O, N, S02, SO, S, C o Si; donde R8, R9, R10 y R11 corresponden independientemente a: - H, -alquilo C1-C15, alquilo sustituido C1-C15 con R7, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3, - ter-butilo, -iso-propilo y -CF3; donde R6 es un grupo alquilo C1-C15, un grupo alquilo C1-C15 sustituido, fenilo, fenilo sustituido, arilo, arilo sustituido, heterociclo, heterociclo sustituido, heteroarilo, heteroarilo sustituido, donde las sustituciones de los grupos alquilo C1-C15, arilo, fenilo, heterociclo y heteroarilo son: -CO-Z-alquilo C1-C15, -Z-CO- alquilo C1-C15, -H, -ter-butilo, -iso-propilo, -alquilo Ci- C15, -CF3, halógeno del grupo de Cl, Br, F y I, -NH2 , -N02, -NH-R7, -N (R7) 2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S- CF3 y fenilo sustituido a su vez con -H, -alquilo C1-C15, halógeno del grupo de Cl, Br, F y I, -NH2, -N02, -NH-R7,- N(R7)2, -COOH, -COO-R7, -OCO-R7, -0-R7,-CN, -S-R7, -S-CF3; donde R7 es un grupo -H, alquilo C1-C15, -OH; donde heterociclo se define como un anillo monociclico, que contienen de aproximadamente entre 3 a 7 átomos en el anillo, con 1 a 5 heteroátomos seleccionados entre N, O, y S, en el anillo; donde heteroarilo se desfine como un sistema de anillo cíclico o policíclico aromático de 3 a 7 átomos en el anillo, que tiene entre 1 a 4 heteroátomos seleccionados entre N, O, y S; donde arilo significa un anillo aromático cíclico o policíclico que tiene de 5 a 12 átomos de carbono, para obtener compuestos derivados pirimido-isoquinolin- quinonicos de formula I :
Figure imgf000158_0001
18.- Procedimiento de preparación de los compuestos farmacéuticos, según la reivindicación 17 CARACTERIZADO porque opcionalmente para el caso de los derivados nitrados de formula 19 se considera una etapa posterior de reducción donde :
Figure imgf000158_0002
a) Se Hace reaccionar en una solución equimolar de agua, ácido acético y metanol el compuesto 6-etil-2 , 4-dimetil-8- ( (4-nitrofenil)tio) pirimido [4, 5-c] isoquinolin- 1 , 3 , 7 , 10 ( 2H, 4H) -tetraona 19, con hierro metálico y con NaHCC>3, para extraer utilizando diclorometano; b) Purificar en columna de Silica gel utilizando como fase móvil diclorometano: acetato de étilo: = 9:1,5 para obtener el compuesto de formula 20, 8- ( ( 4-aminofenil ) tio ) - 6-etil- 2, 4-dimetilpirimido [4, 5-c] isoquinolin-1 , 3,7,10 (2H, 4H) - tetraona .
19. - Uso de los compuestos derivados pirimido-isoquinolin- quinonicos, según la reivindicación 1, CARACTERIZADO porque sirven para la preparación de un medicamento útil en el tratamiento de infecciones bacterianas.
20. - Uso de los compuestos derivados pirimido-isoquinolin- quinonicos, según la reivindicación 19, CARACTERIZADO porque sirven para la preparación de un medicamento útil en el tratamiento de infecciones bacterianas multiresistentes a los antibióticos, tales como Staphylococcus aureus resistente a la meticilina (MRSA o SARM) , Staphylococcus aureus con resistencia intermedia a la vancomicina (VISA) , Staphylococcus aureus con resistencia a la vancomicina (VRSA) , Enterococcus resistente a la Vancomicina (VRE) , cepas EF, Staphylococcus aureus emergentes con resistencia a linezolid y/o cepas bacterianas no susceptibles a daptomicina .
21. - Uso de las composiciones farmacéuticas, según la reivindicación 14, CARACTERIZADO porque sirven para la preparación de un medicamento útil en el tratamiento de infecciones bacterianas, donde las cepas a tratar son Gram (-) ·
22. - Uso de las composiciones farmacéuticas, según la reivindicación 21, CARACTERIZADO donde algunas cepas gram (-) a tratar son Echerichia Coli y Pseudomona Aeruginosa.
23. - Compuesto intermediario según la reivindicación 15, CARACTERIZADO porque posee la estructura
6-etil-2, 4-dimetilpirimido [4, 5-c] isoquinolin- 1,3,7,10 (2H, 4JJ) -tetraona.
PCT/CL2016/050080 2015-12-30 2016-12-29 Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes WO2017113031A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2018008192A MX383627B (es) 2015-12-30 2016-12-29 Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmaceutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes.
EP16880235.3A EP3404026B1 (en) 2015-12-30 2016-12-29 Pyrimido-isoquinolin-quinone derivative compounds, and pharmaceutically acceptable salts, isomers and tautomers thereof; pharmaceutical composition; preparation method; and use thereof in the treatment of diseases caused by bacteria and multidrug-resistant bacteria
ES16880235T ES2951489T3 (es) 2015-12-30 2016-12-29 Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes
US16/067,033 US11390622B2 (en) 2015-12-30 2016-12-29 Pyrimido-isoquinolin-quinone derivative compounds, and pharmaceutically acceptable salts, isomers and tautomers thereof; pharmaceutical composition; preparation method; and use thereof in the treatment of diseases caused by bacteria and multidrug-resistant bacteria
CN201680081761.1A CN109121411B (zh) 2015-12-30 2016-12-29 嘧啶并-异喹啉-醌衍生的化合物、含有它们的药物组合物和它们在细菌性疾病治疗中的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3780-2015 2015-12-30
CL2015003780A CL2015003780A1 (es) 2015-12-30 2015-12-30 Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticas aceptables; composiciones farmáceuticas; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes.

Publications (1)

Publication Number Publication Date
WO2017113031A1 true WO2017113031A1 (es) 2017-07-06

Family

ID=57234031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2016/050080 WO2017113031A1 (es) 2015-12-30 2016-12-29 Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes

Country Status (7)

Country Link
US (1) US11390622B2 (es)
EP (1) EP3404026B1 (es)
CN (1) CN109121411B (es)
CL (1) CL2015003780A1 (es)
ES (1) ES2951489T3 (es)
MX (1) MX383627B (es)
WO (1) WO2017113031A1 (es)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03009894A (es) 2001-06-19 2004-02-17 Warner Lambert Co Agentes antibacterianos.
DE10341614A1 (de) 2003-09-10 2005-04-28 Basf Ag Verfahren zur Herstellung von Xylylendiamin (XDA)
JP2007511597A (ja) 2003-11-18 2007-05-10 ワーナー−ランバート カンパニー リミテッド ライアビリティー カンパニー 抗菌アミノキナゾリヂンヂオン誘導体

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
VALDERRAMA, J. ET AL.: "Design and synthesis of angucyclinone AB-pyrido[2,3-d]pyrimidine analogues", TETRAHEDRON LETTERS, vol. 49, 21 November 2007 (2007-11-21), pages 703 - 706, XP022409423 *
VALDERRAMA, J. ET AL.: "Studies on quihones. Part 44: Novel agucyclinone N-heterocyclic analogues endowed with antitumoral activity", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 16, 5 November 2008 (2008-11-05), pages 10172 - 10182, XP025685105 *
VASQUEZ, D. ET AL.: "Aminopyrimidoisoquinolinequinone (APIQ) redox eyeling is potentiated by ascorbate and induces oxidative stress leading to necrotic-like cancer cell death", INVEST NEW DRUGS, vol. 30, 5 April 2011 (2011-04-05), pages 1004, XP035052850 *
VASQUEZ, D. ET AL.: "Studies on quihones. Part 46. Synthesis and in vitro antitumor evaluation of aminopyrimidoisoquinolinequinones", EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, vol. 45, 21 August 2010 (2010-08-21), pages 5235, XP027408940, Retrieved from the Internet <URL:DOI: 10.1016/j.ejmech.2010.08.040> *
VASQUEZ, D. ET AL.: "Synthesis and antitumor evaluation of 8-phenylaminopyrimido[4,5-c]isoquinolinequinones", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, 10 July 2009 (2009-07-10), pages 5060 - 5062, XP026458558, Retrieved from the Internet <URL:https://doi.org/10.1016/j.bmcl.2009.07.041> *
VASQUEZ, D.: "Diseño, sintesis y evaluación antitumoral de azaanalogos de anguciclinonas y derivados de aminopirimidoisoquinolonas", TESIS PARA OPTAR AL GRADO ACADEMICO DE DOCTOR EN QUIMICA, vol. 14, no. 16, October 2009 (2009-10-01), Chile, pages 11, XP055397306 *

Also Published As

Publication number Publication date
US11390622B2 (en) 2022-07-19
EP3404026B1 (en) 2023-03-15
MX383627B (es) 2025-03-14
ES2951489T3 (es) 2023-10-23
CN109121411B (zh) 2021-01-08
CL2015003780A1 (es) 2016-09-16
EP3404026A4 (en) 2019-11-27
CN109121411A (zh) 2019-01-01
EP3404026A1 (en) 2018-11-21
MX2018008192A (es) 2018-11-09
US20190367505A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
US20210121437A1 (en) Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia
CN111094280B (zh) 用于治疗微生物感染的化合物及其用途
EA013244B1 (ru) 8-МЕТОКСИ-9Н-ИЗОТИАЗОЛО[5,4-b]ХИНОЛИН-3,4-ДИОНЫ И РОДСТВЕННЫЕ СОЕДИНЕНИЯ В КАЧЕСТВЕ ПРОТИВОИНФЕКЦИОННЫХ СРЕДСТВ
ES2886935T3 (es) Inhibidores de FASN para su uso en el tratamiento de esteatohepatitis no alcohólica
TW200932250A (en) Antibiotic macrocycle compounds and methods of manufacture and use thereof
EA020733B1 (ru) Производные актагардина
BRPI0911991B1 (pt) Derivados de 5-hidroximetil-oxazolidin-2-ona para o tratamento de doenças intestinais bacterianas
WO2019084300A1 (en) TREATMENT OF GLIOBLASTOMA WITH FASN INHIBITORS
WO2017142269A1 (ko) 신규한 인돌 유도체 및 이를 포함하는 항암 조성물
ES2951489T3 (es) Compuestos derivados pirimido-isoquinolin-quinonas, sus sales, isomeros, tautomeros farmacéuticamente aceptables; composición farmacéutica; procedimiento de preparación; y su uso en el tratamiento de enfermedades bacterianas y bacterianas multirresistentes
KR102042411B1 (ko) 데커신 유도체를 포함하는 결핵 예방 또는 치료용 조성물
US9920069B2 (en) Compounds for treatment of fluoroquinolone-resistant bacteria
CN102245021A (zh) 安莎霉素氢醌组合物
KR101603317B1 (ko) 케르세틴-아미노산 접합체를 포함하는 항암 및 항생제 내성 억제효능을 보이는 조성물 및 그 방법
KR101584528B1 (ko) 케르세틴-아미노산 접합체를 포함하는 항암 및 항생제 내성 억제효능을 보이는 조성물 및 그 방법
US20230041593A1 (en) Compounds and methods for the treatment of microbial infections
ES2389070B1 (es) Derivados de policétidos dibenzofuránicos prenilados y su aplicación para el tratamiento de enfermedades infecciosas, parasitarias y tumores.
AU2003296872A1 (en) Medicament containing disorazoles and derivatives thereof for the treatment of benign and malignant tumoral diseases
WO2022121977A1 (zh) 稠环酚类化合物的药学应用
CN116143744A (zh) 一种芳香酯类化合物及其用途
BR112020014216A2 (pt) inibidores de glicosiltransferase
WO2016161538A1 (zh) 3-酰氧基取代右旋去氧娃儿藤宁衍生物、其制法和药物组合物与用途
CN107663204A (zh) 一种化合物的抗结核应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008192

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880235

Country of ref document: EP

Effective date: 20180730