US20210121437A1 - Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia - Google Patents

Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia Download PDF

Info

Publication number
US20210121437A1
US20210121437A1 US17/083,716 US202017083716A US2021121437A1 US 20210121437 A1 US20210121437 A1 US 20210121437A1 US 202017083716 A US202017083716 A US 202017083716A US 2021121437 A1 US2021121437 A1 US 2021121437A1
Authority
US
United States
Prior art keywords
cannabis
pharmaceutical composition
pharmaceutically acceptable
acceptable salt
shown below
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/083,716
Inventor
Henry Lowe
Ngeh J. Toyang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/835,198 external-priority patent/US9687469B2/en
Application filed by Individual filed Critical Individual
Priority to US17/083,716 priority Critical patent/US20210121437A1/en
Publication of US20210121437A1 publication Critical patent/US20210121437A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/322,3-Dihydro derivatives, e.g. flavanones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2

Definitions

  • the present invention relates to flavonoid derivatives and, more particularly, to cannabis flavonoid derivatives or the pharmaceutically acceptable salt thereof that may be used in a pharmaceutical composition for preventing and treating multiple myeloma, lymphoma, and leukemia.
  • Flavonoids are common constituents of plants and cover a wide range of functions including acting as yellow pigments in petals and leaves to attract pollinating insects. They might also appear as bluish pigments (anthocyanins) to receive certain wavelengths of light, which permits the plant to be aware of the photoperiod. Many of these flavonoids also protect the plants by being involved in the filtering of harmful ultraviolet light. Some flavonoids play crucial roles in establishing symbiotic fungi, while at the same time they fight infections caused by pathogenic fungi.
  • Flavonoids have relevant pharmacological activities such as; antioxidant, antidiabetic, anti-inflammatory, antiallergic, antibiotic, antidiarrheal, CNS and against cancer.
  • Cannabis is credited to have several beneficial pharmacological properties.
  • Cannabis is credited to have several beneficial pharmacological properties.
  • Much attention on Cannabis is focused on its recreational use as a psychoactive drug.
  • flavonoids such as; cannflavin A, cannflavin B, cannflavin C, chiysoeriol, cosmosiin, flavocannabiside, vitexin, isovitexin, apigenin, kaempferol, myricetin, quercetin, luteolin, homoorientin and orientin.
  • Turner, C. E., Elsohly, M. A., & Boeren, E. G. “Constituents of Cannabis Sativa L.
  • Cannabis flavonoids have been shown to have several pharmacological properties especially the most common flavonoids such as quercetin, apigenin, luteolin and kaempferol. ElSohly, M. A., Slade, D., “ Life Sciences”, 78(5), 539-548 (2005). Chemical constituents of marijuana: the complex mixture of natural cannabinoids). These more common flavonoids can be found in many other plants and as such are not unique to cannabis . Apart from the specific pharmacologic properties identified, cannabis flavonoids are thought to play synergistic roles with other metabolites in the plant. For example, some flavonoids are volatile, lipophilic, permeate membranes, and seem to retain pharmacological properties in cannabis smoke. Sauer, M.
  • Marijuana interaction with the estrogen receptor. Flavonoids may modulate the pharmacokinetics of THC, via a mechanism shared by CBD, the inhibition of P450 3A11 and P450 3A4 enzymes. These two related enzymes metabolize environmental toxins from procarcinogens to their activated forms. P450-suppressing compounds as such serve as chemoprotective agents, shielding healthy cells from the activation of benzo[a]pyrene and aflatoxin B1. Offord, E.
  • Cannabis flavonoids thus may be modulating the therapeutic effects of THC and CBDs by either synergistically enhancing desired pharmacologic effects or reducing detrimental effects.
  • flavonoid derivatives for a “molecular treatment approach” against multiple myeloma, lymphoma, and leukemia, e.g., the targeting of kinases, sirtuins, matrix metalloproteinase, bromodomains and histone deacetylases by the cannflavins, cannabis flavonoids or their analogs in the treatment of these cancers utilizing FDA approved therapeutic targets.
  • FDA approved therapeutic targets is FLT3 internal tandem duplications (FLT3-ITDs) which are present in nearly 25% of patients with AML and have been associated with poor response to conventional chemotherapy. See, Abu-Duhier, F.
  • CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer.” Cancer research 73.9 (2013): 2782-2794. Inhibition of CSF1R has also been reported to exhibit antitumor activity in acute myeloid leukemia (Edwards, David K., et al. “CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells.” Blood, The Journal of the American Society of Hematology 133.6 (2019): 588-599.), multiple myeloma (Wang, Qiang, et al.
  • oncogene is a gene that has the potential to cause or promote the progression of cancer.
  • oncogenes are often mutated or expressed at abnormal levels.
  • some cancers overexpress certain oncogenic factors, and these oncogenic factors may be useful therapeutic targets.
  • different cancers respond differently to various oncogenic agents and that is why the response of an outgrowth line to a combination of several agents is unpredicatble.
  • cannflavins and cannabis flavonoids or their derivatives against these important therapeutic targets has been problemmatic, but prompted research by the present inventors on cannflavins and their analogs that has led to the present invention: a novel small natural cannabis -based flavonoid molecule that is a first-in-class selective CSF1R, FLT3 and FLT3-ITD inhibitor with no detectable toxicity or safety screen issues.
  • the molecule exhibits significant in-vivo efficacy against several kinases, sirtuins, matrix metalloproteinases, bromodomains and histone deacetylases, with excellent results.
  • the inventors have isolated and successfully synthesized cannflavins including cannflavin A, cannflavin B and cannflavin C and their derivative flavonoids including caflanone, chiysoeriol, diosmetin, geraldol and their derivatives thereof and have demonstrated their anticancer efficacy in various assays including with specific focus on identifying their molecular therapeutic targets.
  • the present invention relates to the use of the newly synthesized flavonoids alone or in combination with other bioactive compounds to treat or prevent multiple myeloma, lymphoma, and leukemia.
  • the present invention provides a flavonoid-based pharmaceutical composition for the prevention and treatment of multiple myeloma, lymphoma, and leukemia having the structure of the general formula shown below (see also FIG. 1 ) or a pharmaceutically acceptable salt thereof.
  • R1-R10 may be any one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), a methyl group comprising one carbon atom bonded to three hydrogen atoms (CH3), an alkoxy group (O—CH3), a carboxyl group (COOH), chlorine (Cl), Bromine (Br), Fluorine (F), Glutamic acid (Glu), geranyl chain, prenyl chain and any salts or derivatives of the foregoing.
  • a and B may be linked by either a single or double bond.
  • a method for the prevention and treatment of multiple myeloma, lymphoma, and leukemia using the specific cannabis -based flavonoid pharmaceutical compositions is also disclosed, as well as a method for isolating the specific flavonoid-based pharmaceutical compositions from raw plant material, and a method for synthesizing said flavonoid-based pharmaceutical compositions.
  • FIG. 1A is an illustration of the general cannabis -based flavonoid pharmaceutical compositions according to the present invention.
  • FIG. 1B is an illustration of the specific family of cannabis -based flavonoid pharmaceutical compositions best-suited to be therapeutic targets for the cancer AML.
  • FIG. 2 is a flow diagram illustrating a suitable method for isolating the specific cannabis -based flavonoid pharmaceutical compositions from raw plant material.
  • FIG. 3 is a process diagram illustrating a suitable synthesis approach.
  • FIG. 4 is an illustration of the specific isolated cannabis -based flavonoid pharmaceutical compositions including Flavone, Flavanone and Flavanol isolates and their synthetic derivatives, according to the present invention.
  • FIG. 5 is a graphical illustration of the results of the kinase inhibition by cannabis flavonoids and derivatives presented in Table 1 and Table 4
  • FIG. 6 is a graphical illustration of the results of the anticancer activity presented in Table 3 (Hela cells at A and CMK cells at B) and Table 4 (MV4-11, MOLT14 and AML29).
  • FIG. 7 is a graphical illustration of the results of the anticancer activity in mice bearing pancreatic cancer treated with FBL-03B.
  • FIG. 8 is a graphical illustration of the results of the anticancer activity in mice bearing acute myeloid leukemia harboring FLT3 mutation.
  • FIG. 9 is a graphical illustration of the results of the anticancer activity in mice bearing pancreatic cancer treated with Caflanone (FBL-03G)
  • FIG. 10 presents the mechanism of inhibition of FLT3 and FLT3-ITD by FBLGS-70.
  • FIG. 11 presents the computer aided drug design study of FBLGS-70 and FBLGS-81 docking interaction with the crystal structure of FLT3.
  • an oncogene is herein defined as a gene that has the potential to cause cancer. In tumor cells, oncogenes are often mutated or expressed at high levels. Certain cancers overexpress certain oncogenic factors including kinases, sirtuins, bromodomains, matrix metalloproteinases and histone deacetylases. Thus, these particular oncogenic factors are identified as useful therapeutic targets for purposes of the present invention.
  • some of the cancers that can be treated by use of cannabis flavonoids based on the inhibition of these therapeutic targets include brain, breast, colon, renal, liver, lung, lymphoma, pancreatic, pigmented villonodular synovitis, prostate, leukemia, melanoma, tenosynovial giant cell tumor as well as any other cancers (solid, soft or heamatological) that overexpress the oncogenic factors inhibited by the identified cannabis based flavonoids.
  • the present invention is a group of cannabis -based flavonoid pharmaceutical compositions selected from among the group of Apigenin, Caflanone, Cannflavin A, Cannflavin B, Cannflavin C, Chrysoeriol, Cosmosiin, Flavocannabiside, Kaempferol, Luteolin, Myricetin, Orientin, Isoorientin (Homoorientin), Quercetin, (+)-Taxifolin, Vitexin, and Isovitexin and their derivatives including geraldol, rhamnetin, isorhamnetin, rhamnazin, useful for the prevention and treatment of certain cancers by targeting kinases, sirtuins, bromodomains, matrix metalloproteinases and histone deacetylases which have been identified to be useful therapeutic targets for said cancers.
  • Some of the cancers that can be treated by use of cannabis flavonoids based on the inhibition of these therapeutic targets include brain, breast, colon, renal, liver, lung, lymphoma, pancreatic, pigmented villonodular synovitis, prostate, leukemia, melanoma, multiple myeloma, tenosynovial giant cell tumor as well as any other cancers (solid, soft or heamatological) that overexpress the oncogenic factors inhibited by the cannabis flavonoids identified under this invention.
  • the cannabis -based flavonoid pharmaceutical composition for the prevention and treatment of cancers has the structure of the general formula shown below (see also FIG. 1 ), or a pharmaceutically acceptable salt thereof
  • R1-R10 may be any one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), a methyl group comprising one carbon atom bonded to three hydrogen atoms (CH3), an alkoxy group (O—CH3), a carboxyl group (COOH), chlorine (Cl), Bromine (Br), Fluorine (F), Glutamic acid (Glu), and any salts or derivatives of the foregoing.
  • a and B may be linked by either a single or double bond.
  • This family of AML-therapeutic targets likewise has the flavone backbone (2-phenyl-1,4-benzopyrone) chemical structure, in this case more defined as shown below (see also FIG. 1B ), or any pharmaceutically acceptable salt thereof:
  • FBLGS-70 flavonoid molecule
  • the molecule FBLGS-70 exhibited significant in-vivo efficacy on MV4-11 AML.
  • FBLGS-70, FBL-03G and derivatives were synthesized, and structure activity relationship studies were conducted. From these the inventors identified FBLGS-81, an isomer of FBLGS-70 also described below, as one of the most potent candidate to advance for further development against AML.
  • FIG. 2 is a flow diagram illustrating a suitable method for isolating the specific cannabis -based flavonoid pharmaceutical compositions from raw plant material.
  • flavonoid molecules for use in combatting AML are primarily FBLGS-81, FBLGS-70, and FBL-03G, all Type 1 selective tyrosine kinase inhibitors with potent activity against FLT3, FLT3-ITD and FLT3-D835Y kinases.
  • FIG. 3 shows a molecular illustration of the specific isolated cannabis -based flavonoid pharmaceutical compositions of the present invention including Flavone, Flavanone and Flavanol isolates and their synthetic derivatives, complete with a process diagram illustrating a suitable synthesis approach for each.
  • a method for the prevention and treatment of multiple myeloma, lymphoma, and leukemia using the specific cannabis -based flavonoid pharmaceutical compositions above is also disclosed.
  • Administration may be by oral or intravenous injections.
  • the flavonoid derivatives of the general formula ( FIG. 1 ) according to the present invention and a pharmaceutically acceptable salt thereof may be administered in an effective dose, depending on the patient's condition and body weight, extent of disease, drug form, route of administration, and duration, within a range of from 0.1 to 500 mg between 1-6 times a day. Of course, most dosages will be by a carrier.
  • the specific dose level and carrier for patients can be changed according to the patient's weight, age, gender, health status, diet, time of administration, method of administration, rate of excretion, and the severity of disease.
  • the composition may be formulated for oral dosage such as powders, granules, tablets, capsules, suspensions, emulsions, syrups or in the form of a sterile injectable solution.
  • Acceptable carriers and excipients may comprise lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starches, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methyl benzoate, propyl benzoate, talc, magnesium stearate, mineral oil, castor oil and polyethylene glycol.
  • a method for isolating the specific cannabis -based flavonoid pharmaceutical compositions from raw plant material is also disclosed.
  • the isolation was realized according to the scheme shown in FIG. 2 .
  • an appropriate amount of plant biomass is collected.
  • Cannabis sativa plants were collected by hand. See, Radwan, M. M., ElSohly, M. A., Slade, D., Ahmed, S. A., Wilson, L., El-Alfy, A T., Khan, I. A., Ross, S. A., “ Non - Cannabinoid Constituents From A High Potency Cannabis Sativa Variety ”, Phytochemistry 69, 2627-2633 (2008) and Radwan, M. M., Ross, S. A., Slade, D., Ahmed, S. A., Zulfiqar, F., ElSohly, M. A., “ Isolation And Characterization Of New Cannabis Constituents From A High Potency Variety ”, Planta Med. 74, 267-272 (2008). The collected plant material was air dried under shade and pulverized into powder.
  • the powder is subjected to supercritical fluid extraction (SFE) by which carbon dioxide (CO 2 ) is used for separating one component (the extractant) from another (the matrix).
  • SFE supercritical fluid extraction
  • CO 2 carbon dioxide
  • the extract is evaporated to dryness resulting in a green residue.
  • a bioassay-guided fractionation was employed, using a standard protocol to isolate a pure chemical agent from its natural origin. This entailed a step-by-step separation of extracted components based on differences in their physicochemical properties, and assessing all their biological activity.
  • the extracted components may, for example, be fractionated by dry column flash chromatography on Si gel using hexane/CH 2 Cl 2 /ethyl acetate and mixtures of increasing polarity to yield different fractions. The sample is then degassed by ultra-sonication to yield an insoluble solid, which solid is then filtered.
  • the sample may then be subjected to high performance liquid chromatography (HPLC) using a column Phenomenex LunaTM C18, 5 ⁇ m, 2 ⁇ 50 mm; eluent, acetonitrile with 0.05% MeOH to confirm the presence of the various fractions.
  • HPLC high performance liquid chromatography
  • bioactivity of the extracts were verified by an anticancer cell proliferation assay as described above.
  • SFE supercritical fluid extracts
  • the identified cannabis -based flavonoid extracts showed activity against several cancer cell lines including brain, breast, Kaposi sarcoma, leukemia, lung, melanoma, tenosynovial giant cell tumor ovarian, pancreatic, colon and prostate cancer.
  • NMR/MS Nuclear Magnetic Resonance Spectroscopy and mass spectrometry
  • the bioactive cannabis -based flavonoid pharmaceutical composition may be synthesized by the phenylpropanoid metabolic pathway in which the amino acid phenylalanine is used to produce 4-coumaroyl-CoA.
  • FIG. 3 is a process diagram illustrating a suitable synthesis approach for the cannflavins.
  • the 2′,4′,6′-Trihydroxyacetophenone was the major starting material and the synthesis was carried out using art known to the industry with modifications yielded the flavonoid backbone, which contains two phenyl rings for the cannflavins.
  • Conjugate ring-closure of chalcones results in the familiar form of flavonoids, the three-ringed structure of a flavone.
  • the metabolic pathway continues through a series of enzymatic modifications to yield the desired Flavone, Flavone and Flavanol as identified above and as shown in step 60 ( FIG. 3 ).
  • the specific Flavone, Flavanone and Flavanol isolates are shown in step FIG. 4 .
  • Cannabis flavonoids and their analogs were subjected to kinase inhibition assay.
  • the compounds were first screened at a single concentration of 10 ⁇ M in the primary assay.
  • Compounds inhibiting at least 70% of specific kinases were subjected to further screening to determine kd/IC 50 values.
  • competition binding assays were established, authenticated and executed as described previously. Fabian et al., “A Small Molecule-Kinase Interaction Map For Clinical Kinase Inhibitors.”, Nat Biotechnol, 23(3):329-36, Epub (2005). See also, Karaman et al., “A Quantitative Analysis Of Kinase Inhibitor Selectivity”, Nat.
  • kinases were fused to T7 phage strains (Fabian, supra) and for the other assays, kinases were produced in HEK-293 cells after which they were tagged with DNA for quantitative PCR detection. In general, full-length constructs were used for small, single domain kinases, and catalytic domain constructs for large multi-domain kinases.
  • the binding assays utilized streptavidin-coated magnetic beads treated with biotinylated small molecule ligands for 30 minutes at room temperature which generated affinity resins for the kinase assays.
  • the assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1 ⁇ PBS, 0.05% Tween 20). The beads were then re-suspended in elution buffer (1 ⁇ PBS, 0.05% Tween 20, 0.5 ⁇ M non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes.
  • the kinase concentration in the eluates was measured by quantitative PCR.
  • Kd/IC 50 values were determined using a standard dose response curve using the hill equation. Curves were fitted using a non-linear least square fit with the Levenberg-Marquardt algorithm.
  • the compound(s) were screened at 10 ⁇ M and results for primary screen binding interactions are reported as ‘% Ctrl’, where lower numbers indicate stronger hits in the matrix.
  • Bioactivity of the above-described compounds has been verified by an anticancer cell proliferation assay using the WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazoliol-1, 3-benzene disulfonate) colorimetric assay by Roche Life Sciences®.
  • Anticancer activity was tested against several standard cancer cell lines including brain, breast, Kaposi sarcoma, leukemia, lung, melanoma, tenosynovial giant cell tumor, ovarian, pancreatic, colon and prostate cancer. Cells were trypsinized and plated into 96 well plates in 50 ⁇ l of media and incubated overnight.
  • mice The results of the anticancer activity are presented in Tables 3 and 4 (above) and in FIG. 6 , Hela cells shown at (A) and CMK cells at (B) and MV4-11 and MOLT-14 acute myeloid leukemia cells.
  • human pancreatic cancer xenograft CFPAC-1 cells implanted on scid mice were treated with FBL-03B and FBL-03G and demonstrated significant inhibition of tumor compared to the control.
  • Caflanone (FBL-03G) has a flavone backbone (2-phenyl-1,4-benzopyrone) and the chemical structure shown in FIG. 4 .
  • the results of the anti-pancreatic cancer activity in mice are presented in FIG. 7 and FIG.
  • mice infected with acute myeloid leukemia cells harboring the FLT-3 mutation were treated with FBLGS-70 and its derivatives.
  • the results of the anti-acute myeloid leukemia activity of FBLGS-70 and its derivatives are shown in FIG. 9 .
  • the above-described invention provides a pharmaceutical composition for the prevention and treatment of disease with specific cannabis -based flavonoid compounds selected from among the groups of Caflanone, Cannflavin A, Cannflavin B, Cannflavin C, Chrysoeriol, Cosmosiin, Flavocannabiside and their derivatives selected from among the group of Geraldol, Rhamnetin, Isorhamnetin, Rhamnazin, a method for the prevention and treatment of disease using the specific cannabis -based flavonoid pharmaceutical compositions, a method for isolating the cannabis -based flavonoid pharmaceutical compositions from raw plant material, and a method for synthesizing said specific cannabis -based flavonoid pharmaceutical compositions.
  • specific cannabis -based flavonoid compounds selected from among the groups of Caflanone, Cannflavin A, Cannflavin B, Cannflavin C, Chrysoeriol, Cosmosiin, Flavocannabiside and their derivatives selected from among the group of

Abstract

A cannabis-based flavonoid pharmaceutical composition for treatment of multiple myeloma, lymphoma, and leukemia, the composition including any one or more selected from among the group of Cannflavin A, Cannflavin B, Cannflavin C, FBL-03G (Caflanone), Chiysoeriol, Cosmosiin, Flavocannabiside and their derivatives selected from among the group of Geraldol, Rhamnetin, Isorhamnetin, Rhamnazin, or their synthases

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a division of U.S. Ser. No. 16/550,866 filed 26 Aug. 2019, which is a division of U.S. Ser. No. 15/567,118 filed 17 Oct. 2017 (now U.S. Pat. No. 10,398,674), which is National Stage Entry of PCT/US2015/062331 filed 24 Nov. 2015, which is a continuation of of U.S. Ser. No. 14/835,198 (now U.S. Pat. No. 9,687,469) which claims priority from provisional application 62/156,228 filed 2 May 2015.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to flavonoid derivatives and, more particularly, to cannabis flavonoid derivatives or the pharmaceutically acceptable salt thereof that may be used in a pharmaceutical composition for preventing and treating multiple myeloma, lymphoma, and leukemia.
  • 2. Description of the Background
  • Flavonoids are common constituents of plants and cover a wide range of functions including acting as yellow pigments in petals and leaves to attract pollinating insects. They might also appear as bluish pigments (anthocyanins) to receive certain wavelengths of light, which permits the plant to be aware of the photoperiod. Many of these flavonoids also protect the plants by being involved in the filtering of harmful ultraviolet light. Some flavonoids play crucial roles in establishing symbiotic fungi, while at the same time they fight infections caused by pathogenic fungi.
  • Flavonoids have relevant pharmacological activities such as; antioxidant, antidiabetic, anti-inflammatory, antiallergic, antibiotic, antidiarrheal, CNS and against cancer.
  • Cannabis is credited to have several beneficial pharmacological properties. Unfortunately much attention on Cannabis is focused on its recreational use as a psychoactive drug. Studies have identified over twenty flavonoids in the Cannabis plant, such as; cannflavin A, cannflavin B, cannflavin C, chiysoeriol, cosmosiin, flavocannabiside, vitexin, isovitexin, apigenin, kaempferol, myricetin, quercetin, luteolin, homoorientin and orientin. Turner, C. E., Elsohly, M. A., & Boeren, E. G., “Constituents of Cannabis Sativa L. XVII., A review of the natural constituents”, Journal of Natural Products, 43(2), 169-234 (1980). The distribution of these flavonoids in the plant varies depending on the type of flavonoid. The total content of flavonoids in the Cannabis' leaves and flowers can reach 1-2.5% of its dry weight depending on environment factors and the variety of the plant. It is noteworthy to mention that even though cannflavin A has been isolated from other plant sources, it is only cannabis that has been shown to harbor all three natural cannflavins.
  • Cannabis flavonoids have been shown to have several pharmacological properties especially the most common flavonoids such as quercetin, apigenin, luteolin and kaempferol. ElSohly, M. A., Slade, D., “Life Sciences”, 78(5), 539-548 (2005). Chemical constituents of marijuana: the complex mixture of natural cannabinoids). These more common flavonoids can be found in many other plants and as such are not unique to cannabis. Apart from the specific pharmacologic properties identified, cannabis flavonoids are thought to play synergistic roles with other metabolites in the plant. For example, some flavonoids are volatile, lipophilic, permeate membranes, and seem to retain pharmacological properties in cannabis smoke. Sauer, M. A., Rifka, S. M., Hawks, R. L., Cutler, G. B., & Loriaux, D. L., “Journal of Pharmacology and Experimental Therapeutics”, 224(2), 404-407 (1983). Marijuana: interaction with the estrogen receptor. Flavonoids may modulate the pharmacokinetics of THC, via a mechanism shared by CBD, the inhibition of P450 3A11 and P450 3A4 enzymes. These two related enzymes metabolize environmental toxins from procarcinogens to their activated forms. P450-suppressing compounds as such serve as chemoprotective agents, shielding healthy cells from the activation of benzo[a]pyrene and aflatoxin B1. Offord, E. A., Macé, K, Avanti, O., & Pfeifer, A. M., “Mechanisms Involved In The Chemoprotective Effects Of Rosemary Extract Studied In Human Liver And Bronchial Cells”, Cancer Letters, 114(1), 275-281, (1997). Benzo[a]pyrene and aflatoxin B1 are two procarcinogenic agents found in cannabis smoke. McPartland, J. M., & Pruitt, P. L., “Alternative Therapies In Health And Medicine”, 5(4), 57 (1999). Side effects of pharmaceuticals not elicited by comparable herbal medicines: the case of tetrahydrocannabinol and marijuana. Cannabis flavonoids thus may be modulating the therapeutic effects of THC and CBDs by either synergistically enhancing desired pharmacologic effects or reducing detrimental effects. McPartland, J. M., Russo, E. B., “Cannabis And Cannabis Extracts: Greater Than The Sum Of Their Parts?”, Journal of Cannabis Therapeutics, 1(3-4), 103-132 (2001).
  • There is a small amount of literature on the bioactivity of cannflavins and other closely related flavonoids isolated either from cannabis or from other plants. Barrett et al (1985) reported the inhibition properties of cannflavins on prostalglandins with implication on inflammation. Barrett, M. L., Gordon, D., Evans, F. J., “Isolation From Cannabis Sativa L. Of Cannflavin—A Novel Inhibitor Of Prostaglandin Production”, Biochemical Pharmacology, 34(11), 2019-2024 (1985).
  • Blanco et al. (2008) reported on cannabidiol and denbinobin and their use for the prevention and treatment of gastrointestinal inflammatory diseases and for the prevention and treatment of gastrointestinal cancers. U.S. patent application Ser. No. 12/681,453 published 2 Sep. 2010. Radwan et al. (2008) reported antileishmanial activity for cannflavin A and cannflavin B. Radwan, M. M., ElSohly, M. A., Slade, D., Ahmed, S. A., Wilson, L., El-Alfy, A. T., Ross, S. A., “Non-Cannabinoid Constituents From A High Potency Cannabis Sativa Variety”, Phytochemistry 69(14), 2627-2633 (2008). Brunelli, et al. (2009) reported that isocannflavin B induced autophagy in hormone sensitive breast cancer cells. Brunelli, E., Pinton, G., Bellini, P., Minassi, A., Appendino, G., & Moro, L., “Flavonoid-Induced Autophagy In Hormone Sensitive Breast Cancer Cells”, Fitoterapia 80(6), 327-332 (2009). Li and Meng (2012) reported the use of the flavonoid Icaritin to treat estrogen receptor related disease. U.S. Pat. No. 8,252,835 issued 28 Aug. 2012. Meng et al. (2014) also reported the use of Icaritin to treat cancers. U.S. patent application Ser. No. 14/291,639 published 24 Dec. 2014. Apart from the autophagy activity on breast cancer reported by Brunelli and colleagues no other report was seen relating to anticancer activity of cannflavins. Cytotoxicity studies carried out by the US National Cancer Institute (NCI) using its 60 cancer cell line panel showed that cannflavin B was not cytotoxic against cancer cells (NSC:719330).
  • Apart from the Cannflavins, a number of other flavonoid derivatives in Cannabis are known to exhibit varying anti-cancer properties. The most prominent of these flavonoids with reported anticancer activity include apigenin, see Shukla, Sanjeev, and Sanjay Gupta, “Apigenin: a promising molecule for cancer prevention”, Pharmaceutical research 27.6 (2010): 962-978; Chrysin: Khoo, Boon Yin, Siang Ling Chua, and Prabha Balaram. “Apoptotic effects of chrysin in human cancer cell lines”, International journal of molecular sciences, 11.5 (2010): 2188-2199. Chrysoeriol: Yang, Yang, et al. “Discovery of chrysoeriol, a PI3K-AKT-mTOR pathway inhibitor with potent antitumor activity against human multiple myeloma cells in vitro”, Journal of Huazhong University of Science and Technology [Medical Sciences] 30 (2010): 734-740; Luteolin: Chowdhury, Arnab Roy, et al., “Luteolin, An Emerging Anti-Cancer Flavonoid, Poisons Eukaryotic DNA To Poisomerase I.”, Biochemical Journal 366.2 (2002): 653-661; and Quercetin: Chen, Jie, et al. “Combination with water-soluble antioxidants increases the anticancer activity of quercetin in human leukemia cells”, Die Pharmazie—An International Journal of Pharmaceutical Sciences 59.11 (2004): 859-863.
  • There has been little prior effort to detail the use of flavonoid derivatives for a “molecular treatment approach” against multiple myeloma, lymphoma, and leukemia, e.g., the targeting of kinases, sirtuins, matrix metalloproteinase, bromodomains and histone deacetylases by the cannflavins, cannabis flavonoids or their analogs in the treatment of these cancers utilizing FDA approved therapeutic targets. An example of an FDA recognized therapeutic target is FLT3 internal tandem duplications (FLT3-ITDs) which are present in nearly 25% of patients with AML and have been associated with poor response to conventional chemotherapy. See, Abu-Duhier, F. M., et al., “FLT3 Internal Tandem Duplication Mutations In Adult Acute Myeloid Leukaemia Define A High-Risk Group”, British journal of haematology 111.1 (2000), 190-195; Wiemik, Peter H., “FLT3 inhibitors for the treatment of acute myeloid leukemia”, Clin Adv Hematol Oncol 8.6 (2010): 429-444. Chin and colleagues attempted a study of 17 flavonoids for their inhibition of FLT3 kinase but none of the flavonoids showed activity at a therapeutically relevant dose. See Chin, Young-Won, Jae Yang Kong, and Sun-Young Han, “Flavonoids as receptor tyrosine kinase FLT3 inhibitors”, Bioorganic & medicinal chemistry letters 23.6 (2013): 1768-1770. Meng and colleagues reported the activity of the flavonoid Icaritin against FLT3 and the acute myeloid leukemia cell line. See, PCT Patent Application WO/2015/024512 (2015). The first FDA approved drug for the treatment of acute myeloid leukemia harboring the FLT3-ITD mutation is Midostaurin. See, DiGiulio, Sarah, “FDA's Breakthrough Therapy Designation to PKC412 (Midostaurin) for AML”, Oncology Times (2016). Other drugs targeting this very important kinase and currently in advance phases of clinical development include Quizartinib (see, Carlson, Robert H. “AML: FLT3 Inhibitor Quizartinib Produces High Response Rates in Relapsed/Refractory Patients”, Oncology Times 35.6 (2013): 14-15, also, Gilteritinib, Pratz, Keith W., and Mark Levis, “How I treat FLT3-mutated AML”, Blood (2016): blood-2016. FLT3 and a number of other kinases such as the CSF1R which is potently inhibited by FBL-03G are considered to be oncogenic factors. CSF1R is another attractive therapeutic target involving a number of cancers. Ravi, Vinod, Wei-Lien Wang, and Valerae O. Lewis. “Treatment of tenosynovial giant cell tumor and pigmented villonodular synovitis.” Current opinion in oncology 23.4 (2011): 361-366. Strachan, Debbie C., et al. “CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+ T cells.” Oncoimmunology 2.12 (2013): e26968. Xu, Jingying, et al. “CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer.” Cancer research 73.9 (2013): 2782-2794. Inhibition of CSF1R has also been reported to exhibit antitumor activity in acute myeloid leukemia (Edwards, David K., et al. “CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells.” Blood, The Journal of the American Society of Hematology 133.6 (2019): 588-599.), multiple myeloma (Wang, Qiang, et al. “Therapeutic effects of CSF1R-blocking antibodies in multiple myeloma.” Leukemia 32.1 (2018): 176-183.) and lymphoma (Moskowitz, Craig H., et al. “CSF1R inhibition by PLX3397 in patients with relapsed or refractory Hodgkin lymphoma: Results from a phase 2 single agent clinical trial.” (2012): 1638-1638.).
  • An oncogene is a gene that has the potential to cause or promote the progression of cancer. In tumor cells, oncogenes are often mutated or expressed at abnormal levels. As seen in the example of CSF1R and FLT3, some cancers overexpress certain oncogenic factors, and these oncogenic factors may be useful therapeutic targets. However, different cancers respond differently to various oncogenic agents and that is why the response of an outgrowth line to a combination of several agents is unpredicatble. The absence of knowledge regarding the use of cannflavins and cannabis flavonoids or their derivatives against these important therapeutic targets has been problemmatic, but prompted research by the present inventors on cannflavins and their analogs that has led to the present invention: a novel small natural cannabis-based flavonoid molecule that is a first-in-class selective CSF1R, FLT3 and FLT3-ITD inhibitor with no detectable toxicity or safety screen issues. The molecule exhibits significant in-vivo efficacy against several kinases, sirtuins, matrix metalloproteinases, bromodomains and histone deacetylases, with excellent results.
  • SUMMARY OF THE INVENTION
  • It is another object to provide a method for the prevention and treatment of multiple myeloma, lymphoma, and leukemia using specific cannabis-based flavonoid pharmaceutical compositions.
  • It is another object to provide a method for isolating specific cannabis-based flavonoid pharmaceutical compositions from raw plant material that are biologically active in the prevention and treatment of multiple myeloma, lymphoma, and leukemia.
  • It is still another object to provide a method for synthesizing said specific cannabis-based flavonoid pharmaceutical compositions.
  • In accordance with the foregoing objects, the inventors have isolated and successfully synthesized cannflavins including cannflavin A, cannflavin B and cannflavin C and their derivative flavonoids including caflanone, chiysoeriol, diosmetin, geraldol and their derivatives thereof and have demonstrated their anticancer efficacy in various assays including with specific focus on identifying their molecular therapeutic targets. The present invention relates to the use of the newly synthesized flavonoids alone or in combination with other bioactive compounds to treat or prevent multiple myeloma, lymphoma, and leukemia.
  • In accordance with the foregoing objects, the present invention provides a flavonoid-based pharmaceutical composition for the prevention and treatment of multiple myeloma, lymphoma, and leukemia having the structure of the general formula shown below (see also FIG. 1) or a pharmaceutically acceptable salt thereof.
  • Figure US20210121437A1-20210429-C00001
  • wherein,
  • R1-R10 may be any one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), a methyl group comprising one carbon atom bonded to three hydrogen atoms (CH3), an alkoxy group (O—CH3), a carboxyl group (COOH), chlorine (Cl), Bromine (Br), Fluorine (F), Glutamic acid (Glu), geranyl chain, prenyl chain and any salts or derivatives of the foregoing. A and B may be linked by either a single or double bond.
  • A method for the prevention and treatment of multiple myeloma, lymphoma, and leukemia using the specific cannabis-based flavonoid pharmaceutical compositions is also disclosed, as well as a method for isolating the specific flavonoid-based pharmaceutical compositions from raw plant material, and a method for synthesizing said flavonoid-based pharmaceutical compositions.
  • The present invention is described in greater detail in the detailed description of the invention, and the appended drawings. Additional features and advantages of the invention will be set forth in the description that follows, will be apparent from the description, or may be learned by practicing the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other objects, features, and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments and certain modifications thereof when taken together with the accompanying drawings in which:
  • FIG. 1A is an illustration of the general cannabis-based flavonoid pharmaceutical compositions according to the present invention.
  • FIG. 1B is an illustration of the specific family of cannabis-based flavonoid pharmaceutical compositions best-suited to be therapeutic targets for the cancer AML.
  • FIG. 2 is a flow diagram illustrating a suitable method for isolating the specific cannabis-based flavonoid pharmaceutical compositions from raw plant material.
  • FIG. 3 is a process diagram illustrating a suitable synthesis approach.
  • FIG. 4 is an illustration of the specific isolated cannabis-based flavonoid pharmaceutical compositions including Flavone, Flavanone and Flavanol isolates and their synthetic derivatives, according to the present invention.
  • FIG. 5 is a graphical illustration of the results of the kinase inhibition by cannabis flavonoids and derivatives presented in Table 1 and Table 4
  • FIG. 6 is a graphical illustration of the results of the anticancer activity presented in Table 3 (Hela cells at A and CMK cells at B) and Table 4 (MV4-11, MOLT14 and AML29).
  • FIG. 7 is a graphical illustration of the results of the anticancer activity in mice bearing pancreatic cancer treated with FBL-03B.
  • FIG. 8 is a graphical illustration of the results of the anticancer activity in mice bearing acute myeloid leukemia harboring FLT3 mutation.
  • FIG. 9 is a graphical illustration of the results of the anticancer activity in mice bearing pancreatic cancer treated with Caflanone (FBL-03G)
  • FIG. 10 presents the mechanism of inhibition of FLT3 and FLT3-ITD by FBLGS-70.
  • FIG. 11 presents the computer aided drug design study of FBLGS-70 and FBLGS-81 docking interaction with the crystal structure of FLT3.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
  • An oncogene is herein defined as a gene that has the potential to cause cancer. In tumor cells, oncogenes are often mutated or expressed at high levels. Certain cancers overexpress certain oncogenic factors including kinases, sirtuins, bromodomains, matrix metalloproteinases and histone deacetylases. Thus, these particular oncogenic factors are identified as useful therapeutic targets for purposes of the present invention. Given the foregoing targets, some of the cancers that can be treated by use of cannabis flavonoids based on the inhibition of these therapeutic targets include brain, breast, colon, renal, liver, lung, lymphoma, pancreatic, pigmented villonodular synovitis, prostate, leukemia, melanoma, tenosynovial giant cell tumor as well as any other cancers (solid, soft or heamatological) that overexpress the oncogenic factors inhibited by the identified cannabis based flavonoids.
  • The present invention is a group of cannabis-based flavonoid pharmaceutical compositions selected from among the group of Apigenin, Caflanone, Cannflavin A, Cannflavin B, Cannflavin C, Chrysoeriol, Cosmosiin, Flavocannabiside, Kaempferol, Luteolin, Myricetin, Orientin, Isoorientin (Homoorientin), Quercetin, (+)-Taxifolin, Vitexin, and Isovitexin and their derivatives including geraldol, rhamnetin, isorhamnetin, rhamnazin, useful for the prevention and treatment of certain cancers by targeting kinases, sirtuins, bromodomains, matrix metalloproteinases and histone deacetylases which have been identified to be useful therapeutic targets for said cancers.
  • Some of the cancers that can be treated by use of cannabis flavonoids based on the inhibition of these therapeutic targets include brain, breast, colon, renal, liver, lung, lymphoma, pancreatic, pigmented villonodular synovitis, prostate, leukemia, melanoma, multiple myeloma, tenosynovial giant cell tumor as well as any other cancers (solid, soft or heamatological) that overexpress the oncogenic factors inhibited by the cannabis flavonoids identified under this invention.
  • The cannabis-based flavonoid pharmaceutical composition for the prevention and treatment of cancers has the structure of the general formula shown below (see also FIG. 1), or a pharmaceutically acceptable salt thereof
  • Figure US20210121437A1-20210429-C00002
  • wherein,
  • R1-R10 may be any one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), a methyl group comprising one carbon atom bonded to three hydrogen atoms (CH3), an alkoxy group (O—CH3), a carboxyl group (COOH), chlorine (Cl), Bromine (Br), Fluorine (F), Glutamic acid (Glu), and any salts or derivatives of the foregoing. A and B may be linked by either a single or double bond.
  • As described below the present inventors have tested candidates from the general grouping on various cancer cell lines and were further able to identify the most potent family of candidates as therapeutic targets for the particular cancer AML, the family being selective FLT3, FLT3-ITD and FLT-3 D835Y inhibitors with low toxicity and safety screen issues during in vitro profiling. This family of AML-therapeutic targets likewise has the flavone backbone (2-phenyl-1,4-benzopyrone) chemical structure, in this case more defined as shown below (see also FIG. 1B), or any pharmaceutically acceptable salt thereof:
  • Figure US20210121437A1-20210429-C00003
      • R2 may be one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), or an oxygen molecule (0);
      • R3 may be none, or one or more hydrogen molecules (H),
      • R4 may be none, or any one or more substituents selected from the group consisting of a hydroxide molecule (OH) or a nitrogen dioxide molecule (NO2);
      • R5 and R8 may be none, or a hydroxide molecule (OH);
      • R7 may be none, or the amine NH2;
      • R9 may be none, or any one or more substituents selected from the group consisting of a hydroxide molecule (OH) or an oxygen molecule (0);
      • and A and B may each be either a single or double bond.
  • From the family of AML-therapeutic targets the inventors isolated one particular flavonoid molecule (FBLGS-70 described below) that proved to be a first-in-class selective FLT3, FLT3-ITD and FLT-3 D835Y inhibitor with no detectable toxicity or safety screen issues. The molecule FBLGS-70 exhibited significant in-vivo efficacy on MV4-11 AML. Thus, FBLGS-70, FBL-03G and derivatives were synthesized, and structure activity relationship studies were conducted. From these the inventors identified FBLGS-81, an isomer of FBLGS-70 also described below, as one of the most potent candidate to advance for further development against AML.
  • FIG. 2 is a flow diagram illustrating a suitable method for isolating the specific cannabis-based flavonoid pharmaceutical compositions from raw plant material.
  • From the general family, it was found that the most preferred flavonoid molecules for use in combatting AML are primarily FBLGS-81, FBLGS-70, and FBL-03G, all Type 1 selective tyrosine kinase inhibitors with potent activity against FLT3, FLT3-ITD and FLT3-D835Y kinases.
  • FIG. 3 shows a molecular illustration of the specific isolated cannabis-based flavonoid pharmaceutical compositions of the present invention including Flavone, Flavanone and Flavanol isolates and their synthetic derivatives, complete with a process diagram illustrating a suitable synthesis approach for each.
  • A method for the prevention and treatment of multiple myeloma, lymphoma, and leukemia using the specific cannabis-based flavonoid pharmaceutical compositions above is also disclosed. Administration may be by oral or intravenous injections. The flavonoid derivatives of the general formula (FIG. 1) according to the present invention and a pharmaceutically acceptable salt thereof may be administered in an effective dose, depending on the patient's condition and body weight, extent of disease, drug form, route of administration, and duration, within a range of from 0.1 to 500 mg between 1-6 times a day. Of course, most dosages will be by a carrier. The specific dose level and carrier for patients can be changed according to the patient's weight, age, gender, health status, diet, time of administration, method of administration, rate of excretion, and the severity of disease.
  • The composition may be formulated for oral dosage such as powders, granules, tablets, capsules, suspensions, emulsions, syrups or in the form of a sterile injectable solution. Acceptable carriers and excipients may comprise lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starches, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methyl benzoate, propyl benzoate, talc, magnesium stearate, mineral oil, castor oil and polyethylene glycol.
  • Bioactivity
  • Bioactivity of the above-described compounds were verified and is presented in Tables 1, 2, 3 and 4 below:
  • TABLE 1
    FBL- FBL- FBL- FBL-03G
    Kinase 03A 03B FBL-03C 03D (FIG. 2)
    IC50 (nM)
    Aurora A 730 12 >30000 1090
    BIKE >20000 >20000 21 >30000 81
    CK2a 740 768 58 >30000 38
    CK2a2 350 477 19 >30000 9.7
    c-Kit(Y823D) >20000 244 >20000 >30000 84
    c-Kit(D820Y) >20000 1280 >20000 >30000 113
    DRAK2 >20000 <1000 980 >30000 1400
    DYRK1/DYRK1A >20000 <1000 620 >30000 36
    DYRK1B >20000 1670 6400 >30000 22.8
    EFGR(L858R, >20000 >1000 680 >30000 >1000
    T7790M)
    EPHB6 >20000 >1000 270 >30000 >1000
    FGR >20000 224 >20000 >30000 880
    FLT3 >20000 41.9 >20000 >30000 44
    FLT3(D835Y) >20000 12.7 >20000 >30000 45
    FLT3(D835V) 220 <1000 190 >30000 12.5
    FLT3(ITD) >20000 57 >20000 >30000 38.2
    FLT4(VEGFR3) 330 9.3 >20000 >30000 4220
    FMS/CSF1R 1500 199 1200 >30000 4
    JAK1 644
    JAK2 1850
    JAK3 >20000 >1000 780 >30000 5.58
    KIT 350 <1000 >1000 >30000 <1000
    KIT(L576P) 180 <1000 >1000 >30000 <1000
    KIT(V559D) 200 <1000 >1000 >30000 <1000
    MELK >20000 232 >1000 >30000 88.9
    MEK5 140 >1000 84 >30000 190
    MNK2 549
    PASK >20000 2060 >20000 >30000 116
    PDGFRa 982 >30000 698
    PDGFRa(T6741) 0.92 >1000 >30000 1670
    PDGFRB 330 1160 >1000 >30000 3310
    PIK3CA(1800L) >20000 780 >30000 125
    PIK4CB 670 >1000 >30000 136
    PIM-1 >20000 >1000 >30000 78
    PIM-3 >20000 173 >1000 >30000 35
    PIP5K1A >20000 >10000 360 >30000 320
    RIOK1 >20000 >10000 340 >30000 >20000
    RIOK3 >20000 >10000 280 >30000 >20000
    SIK2 >20000 >10000 >1000 >30000 63
    SRPK1 >20000 >10000 300 >30000 >10000
    SRC 1700
    c-SRC 1100
    TNIK >20000 152 >1000 >30000 115
    TXK 164
    Yes/yes1 294
  • TABLE 2
    Activity FBL-03A FBL-03B FBL-03C FBL-03D FBL-03G
    SIRT IC50 (μM)
    SIRT-1 19.00 27.40 39.50
    SIRT-2 2.57 10.80 14.00 2.38 24.10
    SIRT-3 94.90 77.00 65.40 66.40
    SIRT-5 123.00 104.00 132.00 974.00
    Bromodomain IC50 (μM)
    BRD2 NT 9.52 NT NT 12.00
    BRD3 NT 7.05 NT NT 8.69
    BRD4 NT 10.40 NT NT 6.14
    Matrix metallo-
    proteinase IC50 (μM)
    MMP-2 NT 115.00 NT NT 6.64
    MMP-3 NT NT NT 66.30
    MMP-7 NT 17.52 NT NT 3.35
    MMP-9 NT NT NT 85.40
    IC50 (μM)
    BCL-2 NT NT NT 2.49
    BCL-XL NT NT NT
  • TABLE 3
    Isolation And Synthesis
    Cell Line FBL-03A FBL-03B FBL-03C FBL-03D FBL-03G
    IC50 (μM)
    A498 (Kidney) 17 NT 14 NT NT
    A549 (Lung) 17 NT 9.4 NT NT
    CFPAC-1 12 17 12 NT 14.32
    (Pancreatic)
    CMK NT 11.60 NT NT 1.78
    (leukemia)
    COLO-205 27 NT 17 NT NT
    (Colon)
    DLD-1 (Colon) 15 NT 13 NT NT
    HC-1 NT 29.70 NT NT 5.00
    (Leukemia)
    HeLa (cervical) NT 10.40 NT NT 2.53
    IGROV-1 29 15 NT NT
    (Ovarian)
    KMS-11 NT NT NT NT 0.0647
    (Multiple
    myeloma)
    MCF-7 (Breast) 17 NT 12 NT NT
    MiaPaca-2 16 NT 9.5 NT NT
    (Pancreatic)
    MOLT-4 NT 13.20 NT NT 20.00
    (Leukemia)
    MV4-11 NT 1.43 NT NT 0.0386
    (Leukemia)
    MM.1S NT NT NT NT 0.95
    (Multiple
    Myeloma)
    NCI-H69 16 11 18 NT 9.5
    (Small lung)
    PC-3 (Prostate) 26 NT 20 NT NT
    RL 5.9 NT 12 NT NT
    (Lymphoma)
    SNU-16 NT 15.00 NT NT 4.09
    (Stomach)
    U2-OS (Bone) NT 19.40 NT NT 8.70
    UACC-62 27 NT 14 NT NT
    (Melanoma)
    U87 (Glioma) 34.00 6.20 12.50 NT 5.46
  • A method for isolating the specific cannabis-based flavonoid pharmaceutical compositions from raw plant material is also disclosed. The isolation was realized according to the scheme shown in FIG. 2.
  • At step 10 an appropriate amount of plant biomass is collected. For present purposes, Cannabis sativa plants were collected by hand. See, Radwan, M. M., ElSohly, M. A., Slade, D., Ahmed, S. A., Wilson, L., El-Alfy, A T., Khan, I. A., Ross, S. A., “Non-Cannabinoid Constituents From A High Potency Cannabis Sativa Variety”, Phytochemistry 69, 2627-2633 (2008) and Radwan, M. M., Ross, S. A., Slade, D., Ahmed, S. A., Zulfiqar, F., ElSohly, M. A., “Isolation And Characterization Of New Cannabis Constituents From A High Potency Variety”, Planta Med. 74, 267-272 (2008). The collected plant material was air dried under shade and pulverized into powder.
  • At step 20 the powder is subjected to supercritical fluid extraction (SFE) by which carbon dioxide (CO2) is used for separating one component (the extractant) from another (the matrix). The extract is evaporated to dryness resulting in a green residue.
  • At step 30, for experimental purposes, a bioassay-guided fractionation was employed, using a standard protocol to isolate a pure chemical agent from its natural origin. This entailed a step-by-step separation of extracted components based on differences in their physicochemical properties, and assessing all their biological activity. The extracted components may, for example, be fractionated by dry column flash chromatography on Si gel using hexane/CH2Cl2/ethyl acetate and mixtures of increasing polarity to yield different fractions. The sample is then degassed by ultra-sonication to yield an insoluble solid, which solid is then filtered. The sample may then be subjected to high performance liquid chromatography (HPLC) using a column Phenomenex Luna™ C18, 5 μm, 2×50 mm; eluent, acetonitrile with 0.05% MeOH to confirm the presence of the various fractions.
  • At step 40, bioactivity of the extracts were verified by an anticancer cell proliferation assay as described above. This identified the bioactive flavonoids from all the supercritical fluid extracts (SFE). As reported previously, the identified cannabis-based flavonoid extracts showed activity against several cancer cell lines including brain, breast, Kaposi sarcoma, leukemia, lung, melanoma, tenosynovial giant cell tumor ovarian, pancreatic, colon and prostate cancer.
  • At step 50 Nuclear Magnetic Resonance Spectroscopy and mass spectrometry (NMR/MS) was performed and the interpreted spectra were consistent with cannabis-based flavonoid compositions as identified above, as illustrated in step 60.
  • Synthesis
  • Given the known structure of the general formula of FIG. 1 and the isolate of FIG. 2, a method for synthesizing the same becomes possible. The bioactive cannabis-based flavonoid pharmaceutical composition may be synthesized by the phenylpropanoid metabolic pathway in which the amino acid phenylalanine is used to produce 4-coumaroyl-CoA.
  • FIG. 3 is a process diagram illustrating a suitable synthesis approach for the cannflavins. The 2′,4′,6′-Trihydroxyacetophenone was the major starting material and the synthesis was carried out using art known to the industry with modifications yielded the flavonoid backbone, which contains two phenyl rings for the cannflavins. Conjugate ring-closure of chalcones results in the familiar form of flavonoids, the three-ringed structure of a flavone. The metabolic pathway continues through a series of enzymatic modifications to yield the desired Flavone, Flavone and Flavanol as identified above and as shown in step 60 (FIG. 3). The specific Flavone, Flavanone and Flavanol isolates are shown in step FIG. 4.
  • For background see Minassi, A., Giana, A., Ech-Chahad, A., & Appendino, G. “A regiodivergent synthesis of ring A C-prenylflavones”, Organic Letters 10(11), 2267-2270 (2008). Of course, one skilled in the art will readily understand that other methods for synthesis are possible, such as the asymmetric methods set forth in Nibbs, A E; Scheidt, K A, “Asymmetric Methods for the Synthesis of Flavanones, Chromanones, and Azaflavanones”,
  • European Journal Of Organic Chemistry, 449-462. doi:10.1002/ejoc.201101228. PMC 3412359. PMID 22876166 (2012). Borsari, Chiara, et al. “Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.” Journal of Medicinal Chemistry 59.16 (2016): 7598-7616. Pandurangan, N. “A new synthesis for acacetin, chiysoeriol, diosmetin, tricin and other hydroxylated flavones by modified baker-venkataraman transformation.” Letters in Organic Chemistry 11.3 (2014): 225-229. Wang, Q. Synthesis of citrus bioactive polymethoxyflavonoids and flavonoid glucosides. Chinese journal of organic chemistry, 2010, 30, 11, 1682-1688.
  • Bioactivity Assays
  • Cannabis flavonoids and their analogs were subjected to kinase inhibition assay. The compounds were first screened at a single concentration of 10 μM in the primary assay. Compounds inhibiting at least 70% of specific kinases were subjected to further screening to determine kd/IC50 values. To determine the kd or IC50 values, competition binding assays were established, authenticated and executed as described previously. Fabian et al., “A Small Molecule-Kinase Interaction Map For Clinical Kinase Inhibitors.”, Nat Biotechnol, 23(3):329-36, Epub (2005). See also, Karaman et al., “A Quantitative Analysis Of Kinase Inhibitor Selectivity”, Nat. Biotechnol. January, 26(1):127-32. doi: 10.1038/nbt1358 (2008). For most assays, kinases were fused to T7 phage strains (Fabian, supra) and for the other assays, kinases were produced in HEK-293 cells after which they were tagged with DNA for quantitative PCR detection. In general, full-length constructs were used for small, single domain kinases, and catalytic domain constructs for large multi-domain kinases. The binding assays utilized streptavidin-coated magnetic beads treated with biotinylated small molecule ligands for 30 minutes at room temperature which generated affinity resins for the kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05 % Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific phage binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1× binding buffer (20% SeaBlock, 0.17×PBS, 0.05 % Tween 20, 6 mM DTT). Test compounds were prepared as 40× stocks in 100% DMSO and diluted directly into the assay (Final DMSO concentration=2.5%). All reactions were performed in polypropylene 384-well plates in a final volume of 0.04 ml. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1×PBS, 0.05% Tween 20). The beads were then re-suspended in elution buffer (1×PBS, 0.05% Tween 20, 0.5 μM non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by quantitative PCR. An illustration of the kinase interaction process is presented below. Kd/IC50 values were determined using a standard dose response curve using the hill equation. Curves were fitted using a non-linear least square fit with the Levenberg-Marquardt algorithm.
  • Percent Control (% Ctrl)
  • The compound(s) were screened at 10 μM and results for primary screen binding interactions are reported as ‘% Ctrl’, where lower numbers indicate stronger hits in the matrix.
  • % Ctrl Calculation ( test compound signal - positive control signal negative control signal - positive control signal ) × 100
  • where:
    test compound=compound submitted by Environmental Health Foundation
    negative control=DMSO (100% Ctrl)
    positive control=control compound (0% Ctrl).
  • The results of the kinase inhibition by cannflavins and flavonoid derivatives are presented in Table 1 and Table 4 (below) and in FIG. 5 and FIG. 10.
  • TABLE 4
    Acute Myeloid Leukemia
    Kinases Acute Myeloid Normal
    FLT3- FLT3- Leukemia cell lines Bone
    Code FLT3 ITD D835Y MV4-11 MOLM-14 THP-1 marrow
    IC50 (μM)
    FBLGS-70 0.011 0.006 0.021 1.25 1.7 >100 >100
    FBLGS-71 0.127 0.079 0.022 3.26 3.68 >100 >100
    FBLGS-73 0.152 0.046 0.049 4.53 4.86 >100 >100
    FBLGS-74 16.6 9.09 8.58 >100 >100 >100 >100
    FBLGS-75 0.220 0.091 0.076 4.35 4.57 >100 >100
    FBLGS-76 0.87 0.75 0.68 1.9 2.3 >100 >100
    FBLGS-77 1.32 0.799 0.577 7.21 7.34 >100 >100
    FBLGS-78 0.307 0.345 0.149 5.62 5.73 >100 >100
    FBLGS-79 0.025 0.084 0.013 3.41 4.84 >100 >100
    FBLGS-80 0.060 0.084 0.027 5.86 6.12 >100 >100
    FBLGS-81 0.0019 0.0038 0.0009 0.9 0.7 >100 >100
    FBLGS-82 17.4 12.1 11.0 >10 >10 >100 >100
    FBLGS-83 0.578 0.180 0.082 1.6 2.35 13.0 NT
    FBLGS-84 0.822 0.453 0.194 6.3 7.42 NA >100
    FBLGS-85 0.050 0.057 0.022 0.9 1.5 >100 >100
    FBLGS-86 0.074 0.045 0.043 2.2 3.1 >100 >100
    Midostaurin 0.0004 0.001 0.00009 0.008 0.022 >100 NT
  • Inhibition of Sirtuins, matrix metalloproteinase, bromodomains was also confirmed using standard protocols and the results are present in Table 2.
  • Bioactivity of the above-described compounds has been verified by an anticancer cell proliferation assay using the WST-1 (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazoliol-1, 3-benzene disulfonate) colorimetric assay by Roche Life Sciences®. Anticancer activity was tested against several standard cancer cell lines including brain, breast, Kaposi sarcoma, leukemia, lung, melanoma, tenosynovial giant cell tumor, ovarian, pancreatic, colon and prostate cancer. Cells were trypsinized and plated into 96 well plates in 50 μl of media and incubated overnight. The next day approximately 18 hours after plating, 50 μl of media containing the required flavonoid-based pharmaceutical composition was added per well. Cells were plated at a density so that 72 hours post drug addition, the cells will be in log phase (500-2000 cells/well). The compounds and extracts were solubilized in Dimethyl sulfoxide (DMSO). The cells are allowed to proliferate for 72 hours 37° C. in humidified atmosphere of 5% CO2. The experiment is terminated using WST-1 (Roche®) 10 μl per well and absorbance is read at 450 nm/690 nm. The effect of drugs on growth is assessed as percent of cell viability. The IC50 values were determined from the extract dose versus control growth curves using Graphpad Prism® software. All experiments were carried out in duplicate and the mean results determined.
  • The results of the anticancer activity are presented in Tables 3 and 4 (above) and in FIG. 6, Hela cells shown at (A) and CMK cells at (B) and MV4-11 and MOLT-14 acute myeloid leukemia cells. To demonstrate a proof of concept in vivo, human pancreatic cancer xenograft CFPAC-1 cells implanted on scid mice were treated with FBL-03B and FBL-03G and demonstrated significant inhibition of tumor compared to the control. Caflanone (FBL-03G) has a flavone backbone (2-phenyl-1,4-benzopyrone) and the chemical structure shown in FIG. 4. The results of the anti-pancreatic cancer activity in mice are presented in FIG. 7 and FIG. 8. To further demonstrate activity in-vivo, mice infected with acute myeloid leukemia cells harboring the FLT-3 mutation were treated with FBLGS-70 and its derivatives. The results of the anti-acute myeloid leukemia activity of FBLGS-70 and its derivatives are shown in FIG. 9.
  • It should now be apparent that the above-described invention provides a pharmaceutical composition for the prevention and treatment of disease with specific cannabis-based flavonoid compounds selected from among the groups of Caflanone, Cannflavin A, Cannflavin B, Cannflavin C, Chrysoeriol, Cosmosiin, Flavocannabiside and their derivatives selected from among the group of Geraldol, Rhamnetin, Isorhamnetin, Rhamnazin, a method for the prevention and treatment of disease using the specific cannabis-based flavonoid pharmaceutical compositions, a method for isolating the cannabis-based flavonoid pharmaceutical compositions from raw plant material, and a method for synthesizing said specific cannabis-based flavonoid pharmaceutical compositions.
  • Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the claims. In addition, as one of ordinary skill in the art would appreciate, any dimensions shown in the drawings or described in the specification are merely exemplary, and can vary depending on the desired application of the invention. Many variations and modifications of the embodiments described herein will be obvious to one of ordinary skill in the art in light of the above disclosure. The scope of the invention is to be defined only by the claims, and by their equivalents.

Claims (18)

We claim:
1. A cannabis-based flavonoid pharmaceutical composition for the prevention and treatment of multiple myeloma, lymphoma, and leukemia having a general flavone backbone (2-phenyl-1,4-benzopyrone) chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00004
wherein R1, R3, R5, R6, R7 and R10 may be none, any one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), a methyl group comprising one carbon atom bonded to three hydrogen atoms (CH3), an alkoxy group (O—CH3), a carboxyl group (COOH), chlorine (Cl), Bromine (Br), Fluorine (F), Glutamic acid (Glu), and any salts or derivatives of the foregoing, R2, R4, R8 and R9 may be any one or more substituents selected from said group, and A and B may be linked by either a single or double bond.
2. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00005
3. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00006
4. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00007
5. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00008
6. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00009
7. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00010
8. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00011
9. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00012
10. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00013
11. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00014
12. The cannabis-based flavonoid pharmaceutical composition according to claim 1, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00015
13. A cannabis-based flavonoid pharmaceutical composition for the prevention and treatment of multiple myeloma, lymphoma, and leukemia having a general flavone backbone (2-phenyl-1,4-benzopyrone) chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00016
R2 may be one or more substituents selected from the group consisting of a hydrogen molecule (H), a hydroxide molecule (OH), or an oxygen molecule (0);
R3 may be none, or one or more hydrogen molecules (H),
R4 may be none, or any one or more substituents selected from the group consisting of a hydroxide molecule (OH) or a nitrogen dioxide molecule (NO2);
R5 and R8 may be none, or a hydroxide molecule (OH);
R7 may be none, or the amine NH2;
R9 may be none, or any one or more substituents selected from the group consisting of a hydroxide molecule (OH) or an oxygen molecule (0);
and A and B may be be linked by either a single or double bond.
14. The cannabis-based flavonoid pharmaceutical composition according to claim 13, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00017
15. The cannabis-based flavonoid pharmaceutical composition according to claim 13, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00018
16. The cannabis-based flavonoid pharmaceutical composition according to claim 13, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00019
17. The cannabis-based flavonoid pharmaceutical composition according to claim 13, having a specific chemical structure as shown below, or any pharmaceutically acceptable salt thereof:
Figure US20210121437A1-20210429-C00020
18. A method of treating multiple myeloma, lymphoma, and leukemia, the method comprising administering the general composition of claim 1.
US17/083,716 2015-05-02 2020-10-29 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia Abandoned US20210121437A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/083,716 US20210121437A1 (en) 2015-05-02 2020-10-29 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562156228P 2015-05-02 2015-05-02
US14/835,198 US9687469B2 (en) 2014-11-26 2015-08-25 Agent containing flavonoid derivatives for treating cancer and inflammation
PCT/US2015/062331 WO2016178713A1 (en) 2015-05-02 2015-11-24 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US201715567118A 2017-10-17 2017-10-17
US16/550,866 US11141401B2 (en) 2015-05-02 2019-08-26 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US17/083,716 US20210121437A1 (en) 2015-05-02 2020-10-29 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/550,866 Division US11141401B2 (en) 2015-05-02 2019-08-26 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers

Publications (1)

Publication Number Publication Date
US20210121437A1 true US20210121437A1 (en) 2021-04-29

Family

ID=57218201

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/778,899 Abandoned US20180353462A1 (en) 2015-05-02 2016-12-13 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US16/550,866 Active US11141401B2 (en) 2015-05-02 2019-08-26 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US16/697,894 Abandoned US20200253918A1 (en) 2015-05-02 2019-11-27 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US17/083,716 Abandoned US20210121437A1 (en) 2015-05-02 2020-10-29 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US15/778,899 Abandoned US20180353462A1 (en) 2015-05-02 2016-12-13 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US16/550,866 Active US11141401B2 (en) 2015-05-02 2019-08-26 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
US16/697,894 Abandoned US20200253918A1 (en) 2015-05-02 2019-11-27 Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers

Country Status (2)

Country Link
US (4) US20180353462A1 (en)
WO (2) WO2016178713A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10278950B2 (en) * 2015-07-08 2019-05-07 Henry I C Lowe Therapeutic agents containing cannabis flavonoid derivative for ocular disorders
WO2020040600A1 (en) * 2018-08-23 2020-02-27 건국대학교 산학협력단 Composition for prevention or treatment of cancer comprising compound represented by formula 1
KR102349477B1 (en) * 2019-08-30 2022-01-10 (주)프론트바이오 Pharmaceutical composition for preventing or treating cancer comprising biguanides, and flavone, hydroxyflavone, flvanone, flavone derivatives, hydroxyflavone derivatives, flavanone derivatives as active ingredients
KR102420262B1 (en) * 2019-11-26 2022-07-13 주식회사 베노바이오 Novel quercetin redox derivatives and their use as bet inhibitors
CN111961021B (en) * 2019-12-30 2021-08-03 云南汉盟制药有限公司 Separation and purification process of geranylflavone A
CN114478455A (en) 2020-11-12 2022-05-13 德义制药有限公司 Preparation method of cannabinoids
CN114478456A (en) 2020-11-12 2022-05-13 德义制药有限公司 Preparation method of cannabinoids
CN113350331B (en) * 2021-05-21 2023-08-29 广州医科大学附属第一医院(广州呼吸中心) Application of hesperetin and/or derivative thereof in preparation of or application of hesperetin and/or derivative thereof in preparation of medicines for preventing and/or treating renal cell carcinoma
WO2023141695A1 (en) * 2022-01-31 2023-08-03 Canurta Inc. Cannabis-derived flavonoids and related methods
CN114853833A (en) * 2022-05-27 2022-08-05 南通大学 Flavonol derivative and preparation method thereof
CN114832010A (en) * 2022-05-27 2022-08-02 南通大学 Application of flavonol glycoside derivatives in preparation of antitumor drugs

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303544A1 (en) * 2010-12-31 2013-11-14 Beijing Shenogen Pharma Group Ltd. Benzopyrone estrogen receptor regulator
US9687469B2 (en) * 2014-11-26 2017-06-27 University Of Maryland, Baltimore Agent containing flavonoid derivatives for treating cancer and inflammation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344736B2 (en) * 2002-08-14 2008-03-18 Gw Pharma Limited Extraction of pharmaceutically active components from plant materials
US7326734B2 (en) * 2003-04-01 2008-02-05 The Regents Of The University Of California Treatment of bladder and urinary tract cancers
EP1648437A2 (en) * 2003-07-01 2006-04-26 President And Fellows Of Harvard College Sirt1 modulators for manipulating cell/organism lifespan/stress response
ES2359168T3 (en) * 2007-10-02 2011-05-19 Vivacell Biotechnology España S.L. COMPOSITION THAT INCLUDES NON-PSYCHOTROPIC CANNABINOIDS FOR THE TREATMENT OF ANTI-INFLAMMATORY DISEASES.
WO2009108392A2 (en) * 2008-02-29 2009-09-03 Northwestern University Catalytic enantioselective synthesis of flavanones and chromanes
US9044390B1 (en) * 2014-04-17 2015-06-02 Gary J. Speier Pharmaceutical composition and method of manufacturing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130303544A1 (en) * 2010-12-31 2013-11-14 Beijing Shenogen Pharma Group Ltd. Benzopyrone estrogen receptor regulator
US9687469B2 (en) * 2014-11-26 2017-06-27 University Of Maryland, Baltimore Agent containing flavonoid derivatives for treating cancer and inflammation
US10765660B2 (en) * 2014-11-26 2020-09-08 Henry Lowe Agent containing flavonoid derivatives for treating cancer and inflammation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Batra and Sharma, 3 Biotech (2013) 3:439–459 (Year: 2013) *
Dong et al., Bioorganic & Medicinal Chemistry Letters 2008. Vol 16, pp. 8151-8160. (Year: 2008) *
Manthey and Guthrie, J. Agric. Food Chem. 2002, 50, 5837−5843 (Year: 2002) *
Minassi et al., ORGANIC LETTERS 2008, Vol. 10, No. 11, pp/2267-2270. (Year: 2008) *
Statement of Richard Klausner, M.D. Before the Senate Appropriations Subcommittee (June 2001), pp. 1-12. (Year: 2001) *

Also Published As

Publication number Publication date
US20200253918A1 (en) 2020-08-13
WO2016178713A1 (en) 2016-11-10
US20200054596A1 (en) 2020-02-20
US20180353462A1 (en) 2018-12-13
US11141401B2 (en) 2021-10-12
WO2017091837A2 (en) 2017-06-01
WO2017091837A3 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US20210121437A1 (en) Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of multiple myeloma, lymphoma, and leukemia
US10398674B2 (en) Therapeutic agents containing cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancers
CN105189486B (en) Benzofuranone and indoles or azaindole conjugates and its preparation and application
Muchtaridi et al. Anticancer potential of α-mangostin
US10751320B2 (en) Therapeutic agents containing cannabis flavonoid derivatives for the prevention and treatment of neurodegenerative disorders
Schwikkard et al. The antiangiogenic activity of naturally occurring and synthetic homoisoflavonoids from the Hyacinthaceae (sensu APGII)
Ma et al. Melatonin derivatives combat with inflammation-related cancer by targeting the Main Culprit STAT3
CN101735276A (en) Water-soluble phosphate monoester derivatives and application thereof
US20190358196A1 (en) Pi 4-kinase inhibitor as a therapeutic for viral hepatitis, cancer, malaria. autoimmune disorders and inflammation, and a radiosensitizer and immunosuppressant
CN102584768B (en) 3-nitro-8-ethyoxyl-2H-chromene compound and preparation method and application thereof
AU2015352041B2 (en) Titled extracts of Cynara scolymus and uses thereof
US10632098B2 (en) Therapeutic agents containing cannabis flavonoid derivative for ocular disorders
WO2017151947A1 (en) 4-azapodophylotoxins compounds
CN107324999B (en) Naphthoquinone dimer and preparation method and application thereof
EP3069725A1 (en) Gloriosa superba l. extracts, compositions and use thereof
EP3043809B1 (en) Filipendula vulgaris extract and uses thereof
CN107501219B (en) Asymmetric curcumin compound and application thereof in preparation of anti-gastric cancer drugs
CN100415219C (en) Substituted bicyclo[3.3.1]nonan-2,4,9-triones as pharmaceutical active ingredients
CN110590778A (en) 3, 10 di-p-methoxyphenyl 6, 12 diaza tetracubane compound, synthetic method and application thereof, and pharmaceutical composition
ES2951489T3 (en) Pyrimido-isoquinoline-quinone derivative compounds, their pharmaceutically acceptable salts, isomers, tautomers; pharmaceutical composition; preparation procedure; and its use in the treatment of bacterial and multidrug-resistant bacterial diseases
US10383905B2 (en) Extract of Cynara ssp. and uses thereof
CN101157628B (en) Substituted benzoic acid nitrogen-containing derivatives and antineoplastic usage thereof
KR20090093026A (en) Anti-cancer drug Effective for Multidrug resistant cancer cells
CN109942562A (en) Five-ring heterocycles connection compound in triazine class containing heteroaryl structure and its preparation method and application
JPH04178327A (en) Compound having multiple drug resistance-mitigative effect

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION