WO2017111035A1 - ブタジエン製造用触媒の再生方法 - Google Patents
ブタジエン製造用触媒の再生方法 Download PDFInfo
- Publication number
- WO2017111035A1 WO2017111035A1 PCT/JP2016/088406 JP2016088406W WO2017111035A1 WO 2017111035 A1 WO2017111035 A1 WO 2017111035A1 JP 2016088406 W JP2016088406 W JP 2016088406W WO 2017111035 A1 WO2017111035 A1 WO 2017111035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- reactor
- temperature
- gas
- volume
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 129
- 238000000034 method Methods 0.000 title claims abstract description 96
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 15
- 239000007789 gas Substances 0.000 claims abstract description 87
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 238000011069 regeneration method Methods 0.000 claims abstract description 45
- 239000000126 substance Substances 0.000 claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000001301 oxygen Substances 0.000 claims abstract description 36
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000005839 oxidative dehydrogenation reaction Methods 0.000 claims abstract description 21
- -1 butene compound Chemical class 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims description 24
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 claims description 17
- 229910052684 Cerium Inorganic materials 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims description 4
- 150000001340 alkali metals Chemical class 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052788 barium Inorganic materials 0.000 claims description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 4
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 4
- 239000011133 lead Substances 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000011591 potassium Substances 0.000 claims description 4
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052701 rubidium Inorganic materials 0.000 claims description 4
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 4
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- 229910052712 strontium Inorganic materials 0.000 claims description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052716 thallium Inorganic materials 0.000 claims description 4
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 abstract description 14
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 44
- 230000008569 process Effects 0.000 description 30
- 230000008929 regeneration Effects 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 19
- 239000000843 powder Substances 0.000 description 19
- 238000010304 firing Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 15
- 238000002485 combustion reaction Methods 0.000 description 12
- 238000000465 moulding Methods 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000011259 mixed solution Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 239000011268 mixed slurry Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 238000002036 drum drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000011964 heteropoly acid Substances 0.000 description 2
- RXPAJWPEYBDXOG-UHFFFAOYSA-N hydron;methyl 4-methoxypyridine-2-carboxylate;chloride Chemical compound Cl.COC(=O)C1=CC(OC)=CC=N1 RXPAJWPEYBDXOG-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- XUFUCDNVOXXQQC-UHFFFAOYSA-L azane;hydroxy-(hydroxy(dioxo)molybdenio)oxy-dioxomolybdenum Chemical compound N.N.O[Mo](=O)(=O)O[Mo](O)(=O)=O XUFUCDNVOXXQQC-UHFFFAOYSA-L 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical group 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- 239000010413 mother solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 150000004072 triols Chemical class 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/887—Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8872—Alkali or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/186—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J27/188—Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
- B01J27/19—Molybdenum
- B01J27/192—Molybdenum with bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/396—Distribution of the active metal ingredient
- B01J35/397—Egg shell like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/51—Spheres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0221—Coating of particles
- B01J37/0223—Coating of particles by rotation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/088—Decomposition of a metal salt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/02—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/16—Oxidation gas comprising essentially steam and oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
- B01J38/20—Plural distinct oxidation stages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/50—Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
- B01J2523/54—Bismuth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/60—Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
- B01J2523/68—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/842—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/845—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/80—Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
- B01J2523/84—Metals of the iron group
- B01J2523/847—Nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/12—Alkadienes
- C07C11/16—Alkadienes with four carbon atoms
- C07C11/167—1, 3-Butadiene
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/24—Chromium, molybdenum or tungsten
- C07C2523/28—Molybdenum
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/881—Molybdenum and iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/882—Molybdenum and cobalt
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/883—Molybdenum and nickel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/42—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
- C07C5/48—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Definitions
- the present invention provides a catalyst for producing butadiene, which removes coke-like substances adhering to the catalyst and the reactor, and suppresses damage to the catalyst by subjecting butenes to oxidative dehydrogenation in the presence of the catalyst for producing butadiene. It is a playback method.
- butadiene which is a raw material for synthetic rubber and the like, has been industrially produced by thermal decomposition and extraction of naphtha fractions.
- the reaction product and / or reaction by-product coke-like substances are deposited or deposited in the reactor, that is, on the catalyst surface and inside, the inert material, the inner wall of the reaction tube, and the post-process equipment.
- Patent Document 1 discloses a catalyst regeneration method in which a carbon component is removed from a catalyst through a reactor.
- Patent Document 2 an oxygen-containing gas is allowed to flow through the reactor under conditions where the peak temperature range of the catalyst layer is 400 ° C. (same as the reaction temperature) to 450 ° C., and the use of water vapor with the oxygen-containing gas is avoided. Is preferred for removing coke-like substances.
- Patent Document 3 an oxidation step at a temperature between 400 ° C.
- Patent Document 4 in the method for regenerating a dehydrogenation catalyst, a process of repeatedly changing in the opposite direction by 2 to 20 times in the range of 0.5 to 20 bar is essential.
- Patent Document 5 discloses a method for regenerating a catalyst for producing a lower aliphatic carboxylic acid ester by reacting a lower olefin and a lower aliphatic carboxylic acid in a gas phase.
- Reference 6 is a method for regenerating a zeolite-containing catalyst for converting methanol into dimethyl ether.
- Patent Document 7 in the oxidative dehydrogenation method from butenes (described as “n-butenes” in Patent Document 7) to butadiene, the process includes two or more production steps and at least one regeneration step. Before the conversion loss of the step exceeds 25% at a certain temperature, a regeneration step is performed on the oxygen-containing regeneration gas mixture at a temperature of 200-450 ° C., and 2-50 of carbon per regeneration step. A method is disclosed characterized in that the mass% is burned out.
- Patent Document 8 at least 2 in the oxidative dehydrogenation method of butenes (described as “n-butenes in Patent Document 8”) in which one regeneration step is performed between two or more production steps.
- a technique characterized in that one manufacturing step is performed at a temperature of at least 350 ° C. and at least one regeneration step is performed at a temperature that is at least 50 ° C. above the temperature at which the previous manufacturing step was performed.
- carbon burnout in the regeneration step is a combustion reaction and is difficult to control, and there is no description in Patent Documents 7 and 8 regarding a technique for preventing catalyst damage due to a rapid combustion reaction.
- Patent Document 9 butenes (described as “n-butene” and “n-butenes” in Patent Document 9) are fixed to butadiene in a fixed bed reactor that minimizes catalyst damage during operation of the stationary phase reactor.
- the oxygen content in the product gas is set to at least 5% by volume, and the regeneration step is further provided. It is characteristic that the regeneration process is executed after setting the manufacturing process time to less than 1000 hours.
- Patent Document 9 does not contain a description of a technique for preventing catalyst damage due to carbon combustion reaction in the regeneration process.
- Patent Documents 1 to 9 are insufficient as a technique in a regeneration method for suppressing the removal of coke-like substances adhering to the catalyst and preventing damage to the catalyst, and further improvement is required.
- An object of the present invention is to provide a regeneration method of a catalyst for butadiene production, in which butenes are subjected to oxidative dehydrogenation reaction in the presence of the catalyst for butadiene production to remove the catalyst and a coke-like substance adhering to the reactor.
- the present inventors have conducted catalytic and reaction by subjecting butenes to oxidative dehydrogenation in the presence of a butadiene production catalyst having a predetermined composition charged in the reactor. After treating the reactor filled with the catalyst used in the oxidative dehydrogenation with a first gas containing oxygen at a specific ratio in order to remove coke-like substances adhering to the reactor Supplying a second gas containing water vapor and oxygen at a specific ratio to the reactor, setting the temperature of the heat medium circulating in the reactor to a range of 200 ° C.
- the temperature of the heating medium circulating in the reactor is kept constant, the water vapor content in the first gas and the water vapor in the second gas Different from the content of By causing et enables removal of coke-like material at a temperature lower than the conventional, breakage of the catalyst also found a reproducing method capable of suppressing, to complete the present invention.
- the present invention is (1) used in the oxidative dehydrogenation reaction of butenes, and the composition before use is represented by the following formula 1.
- Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ⁇ ( Equation 1) (Wherein X represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and Y is selected from the group consisting of magnesium, calcium, strontium, and barium)
- A, b, c, d, e, f, and g each indicate an atomic ratio of each component to molybdenum 12, and 0.2 ⁇ a ⁇ 2.0,
- the temperature of the heating medium circulating in the reactor is in the range of 200 ° C. or more and less than 400 ° C., and the reactor is circulated from the end of the treatment step to the end of the subsequent supply step.
- a method for regenerating a catalyst characterized in that the temperature of the circulating heat medium is constant, and the water vapor content in the first gas is different from the water vapor content in the second gas; (2) The production rate of CO 2 and CO discharged from the reactor is the maximum production rate after the production rate of CO 2 and CO discharged from the reactor reaches the maximum production rate under the conditions of the treatment step.
- Method, (4) The temperature of the heat medium in the treatment step and the supply step in the second cycle is higher than the temperature of the heat medium in the treatment step and the supply step in the first cycle.
- Catalyst regeneration method (5) The catalyst regeneration method according to any one of (1) to (4) above, wherein the temperature of the heat medium circulating in the reactor is 200 ° C.
- the present invention provides a reactor filled with the catalyst used for the oxidative dehydrogenation reaction in order to remove the catalyst for butadiene production and the coke-like substance adhering to the reactor by the oxidative dehydrogenation reaction.
- a second gas containing water vapor and oxygen at specific ratios is supplied to the reactor, and the heat medium circulating in the reactor is supplied.
- the temperature is in the range of 200 ° C.
- the temperature of the heat medium circulating in the reactor is kept constant from the end of the treatment step to the end of the subsequent supply step,
- the water vapor content in the first gas different from the water vapor content in the second gas, the coke-like substance can be removed at a lower temperature and in a shorter time than before, and the catalyst is damaged. Also It can be to provide a reproducing method long-term stability and economically superior catalytic.
- butenes are represented by the following composition formula (formula 1). Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ⁇ ( Equation 1) (Wherein X represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and Y is selected from the group consisting of magnesium, calcium, strontium, and barium) At least one alkaline earth metal element, wherein Z is at least one element selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, samarium, eurobium, antimony, tungsten, lead, zinc, cerium, and thallium
- A, b, c, d, e, f, and g each indicate an atomic ratio of each component to molybdenum 12, and 0.2 ⁇ a ⁇ 2.0, 0.6 ⁇
- a coke-like substance in a reactor filled with a catalyst for producing butadiene represented by the formula 1 is used for the oxidative dehydrogenation reaction of butenes.
- a method for regenerating a catalyst to be removed wherein the reactor is treated with a first gas containing oxygen that is greater than 0% by volume and less than or equal to 21% by volume, and then water vapor that is greater than 0% by volume and less than or equal to 42% by volume. And supplying a second gas containing oxygen of greater than 0% by volume and less than or equal to 21% by volume to the reactor, and the temperature of the heat medium circulating in the reactor is 200 ° C. or higher and 400 ° C. And the temperature of the heating medium circulating in the reactor is constant between the end of the treatment step and the end of the subsequent supply step, and the water vapor content in the first gas Quantity and said second gas And the content of water vapor in are different methods.
- the temperature of the heat medium circulating in the reactor filled with the catalyst for butadiene production is 200 ° C. or higher and lower than 400 ° C., preferably 200 ° C. or higher and 350 ° C.
- a gas (first gas or second gas) is supplied to the reactor under the following conditions.
- the temperature of the heat medium circulating in the reactor is constant at 200 ° C. or more and less than 400 ° C. from the end of the treatment step to the end of the subsequent supply step. Preferably, it is kept constant at 200 ° C. or higher and 350 ° C. or lower.
- the composition of the first gas used in the treatment step is such that the oxygen content is greater than 0% by volume and 21% by volume or less.
- the first gas may have a water vapor content different from the water vapor content in the second gas, but the water vapor content is less than the water vapor content in the second gas. It is more preferable that it does not contain water vapor.
- the composition of the second gas used in the supplying step is such that the water vapor content is greater than 0% by volume and 42% by volume or less, and the oxygen content is greater than 0% by volume and 21% by volume or less.
- the “coke-like substance” in the present invention is produced by at least one of a reaction raw material, a target product or a reaction by-product in a reaction for producing butadiene, and details of its chemical composition and production mechanism are unknown.
- a reaction raw material a target product or a reaction by-product in a reaction for producing butadiene
- details of its chemical composition and production mechanism are unknown.
- the flow of reaction gas is obstructed, the reaction tube is blocked and the reaction caused by them. It shall be a causative substance that causes various troubles such as shutdown.
- butenes in the present invention mean a single component gas or a mixed gas containing at least one component of 1-butene, trans-2-butene, cis-2-butene, and isobutylene. More specifically, butadiene in the present invention means 1,3-butadiene.
- the temperature of the heat medium circulating in the reactor is 200 ° C. or higher and lower than 400 ° C., preferably 200 ° C. or higher and 350 ° C. or lower
- a gas is supplied to the reactor.
- the temperature of the heating medium within the above range is such that the coke-like substance produced in this reaction has adhered to the catalyst, the inner wall of the reaction tube, the inert substance, etc. In this case, it is considered that the temperature is suitable for the decomposition to proceed gradually without causing rapid combustion.
- the temperature of the heat medium is 400 ° C.
- the heat generation causes a change in the crystal structure of the catalyst, resulting in deterioration and deterioration. May cause damage to the catalyst due to the generated combustion gas, and in the case of sudden heat generation inside the reaction tube, the reactor may be damaged. Further, when the temperature of the heat medium is lower than 200 ° C., the combustion does not proceed and the effect of the regeneration process may not be sufficiently exhibited, or the regeneration time may become long, and the plant stop period becomes long, which is economical. May get worse.
- the coke-like substance can be effectively removed from the reactor even when the temperature of the heat medium is low.
- the water vapor content and / or oxygen content of the gas supplied to the reactor the water vapor content of the second gas is greater than 0% by volume and 42% by volume or less, and the oxygen in the first and second gases
- the content of is greater than 0% by volume and equal to or less than 21% by volume, and the water vapor content in the first gas is different from the water vapor content in the second gas.
- the regeneration method of the present invention after the first gas containing greater than 0% by volume of oxygen and not more than 21% by volume is supplied to the reactor in the treatment step, then in the supply step, the water vapor is greater than 0% by volume of water vapor.
- the coke-like substance is removed by supplying a second gas containing a volume% or less to the reactor.
- the regeneration method of the present invention preferably, after the first gas containing oxygen of greater than 0% by volume and 21% or less and not containing water vapor is supplied to the reactor in the treatment step, the supply step is then performed.
- the second gas containing greater than 0% by volume of water vapor and not greater than 42% by volume and not less than 0% by volume of oxygen and not greater than 21% by volume is fed to the reactor. In this way, removal of the coke-like substance can be more effectively suppressed.
- the water vapor capacity ratio and / or the oxygen capacity ratio of the gas (first and second gas) supplied to the reactor can be adjusted, for example, with nitrogen or the like.
- the timing for switching the composition of the gas supplied to the reactor from the composition of the first gas to the composition of the second gas is discharged under the conditions of the treatment step.
- the rate of formation of CO 2 and CO is discharged from the reactor is when 95% or less of the maximum production rate, such More preferably, it is a time when the generation rate gradually decreases and stabilizes.
- the nature and amount of coke-like substances differ depending on the reaction conditions, reaction scale, reaction period, and catalyst performance of the oxidative dehydrogenation performed, and the combustion behavior varies accordingly.
- the time of switching the composition of the gas to be supplied may be changed as appropriate within the above range.
- production rate of the discharged is CO 2 and CO and are the production rate of CO 2 and CO generated during the combustion process
- CO 2 and CO amount contained originally in the air is divided calculate It is what is done.
- the heating rate of the heating medium during the regeneration process is not particularly limited, but is preferably in the range of 1 ° C./h to 200 ° C./h. If the heating rate of the heating medium during the regeneration process is faster than 200 ° C./h, rapid combustion may be caused and a sufficient regeneration process may not be performed. Further, if the heating rate of the heat medium during the regeneration process is slower than 1 ° C./h, the time required for the regeneration process becomes long and the economic efficiency deteriorates.
- the heating medium temperature circulating in the reactor and the steam volume ratio and / or the oxygen capacity ratio contained in the gas supplied to the reactor are combined with the heating rate, and the reactor is heated.
- the circulating heat medium was regenerated with a gas containing oxygen greater than 0% by volume and less than 21% by volume under certain conditions at 200 ° C. or higher and 350 ° C. or lower.
- the step of supplying the gas to be contained is repeated twice or more so that the production rate of CO 2 and CO discharged from the reaction tube outlet gas is reduced as much as possible to an appropriate production rate.
- the temperature of the heat medium in the first process and the second process is preferably different, and the temperature of the heat medium in the second process is higher than the temperature of the heat medium in the first process. More preferred.
- the temperature of the heat medium may be different for each process. Further, the appropriate production rate is appropriately determined because it varies depending on the reaction conditions, reaction scale, reaction period, and catalyst performance of the oxidative dehydrogenation performed.
- the cycle including the treatment step and the subsequent supply step is repeated twice or more, the treatment step in the first cycle, the temperature of the heat medium in the supply step, and the treatment step in the second cycle. It is preferable that the temperature of the heating medium in the supply process is different. It is more preferable that the temperature of the heat medium in the treatment process and the supply process in the second cycle is higher than the temperature of the heat medium in the treatment process and the supply process in the first cycle.
- the following catalysts are used.
- the regeneration method of the catalyst of the present invention may have the effect of the present invention even by the regeneration method of a composite metal oxide catalyst having a known composition mainly composed of molybdenum and bismuth.
- the catalyst used in the present invention is a butadiene production catalyst used in the oxidative dehydrogenation reaction of butenes, and the composition before use (composition of the catalytically active component) is represented by the following formula 1.
- Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ⁇ ( Equation 1) (Wherein X represents at least one alkali metal element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium, and Y is selected from the group consisting of magnesium, calcium, strontium, and barium)
- A, b, c, d, e, f, and g each indicate an
- the raw material of each metal element for obtaining the catalyst used in the present invention is not particularly limited, but nitrates, nitrites, sulfates, ammonium salts, organic acid salts, acetates, carbonates containing at least one metal element. Secondary carbonates, chlorides, inorganic acids, inorganic acid salts, heteropolyacids, heteropolyacid salts, hydroxides, oxides, metals, alloys, etc., or a mixture thereof can be used as specific examples. Include the following. As a supply source of molybdenum, ammonium molybdate is preferable.
- ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among them, ammonium heptamolybdate is most preferable.
- bismuth component raw material bismuth nitrate is preferred.
- oxides, nitrates, carbonates, organic acid salts, hydroxides, etc. it is usually possible to use oxides, nitrates, carbonates, organic acid salts, hydroxides, etc., which can be converted to oxides by igniting, or mixtures thereof. .
- the method for preparing the catalyst of the present invention is not particularly limited, but can be roughly classified into the following two types of preparation methods.
- the methods (A) and (B) are used in the present invention.
- the method (A) is a method in which the active component of the catalyst is obtained as a powder and then molded, and the method (B) is supported by bringing a solution in which the active component of the catalyst is dissolved into contact with a preformed carrier. It is a method to make it. Details of the methods (A) and (B) will be described below.
- Step (A1): Preparation and drying Prepare a mixed solution or slurry of the raw materials for the catalytically active component, and go through the steps of precipitation, gelation, coprecipitation, hydrothermal synthesis, etc., then dry spraying, evaporation to dryness, drum drying, freezing
- the dry powder of the present invention is obtained using a known drying method such as a drying method.
- This mixed solution or slurry may be water, an organic solvent, or a mixed solution thereof as a solvent, and there is no limitation on the raw material concentration of the active component of the catalyst. Further, the liquid temperature, atmosphere, etc.
- this mixed solution or slurry There are no particular restrictions on the blending conditions and drying conditions, but an appropriate range should be selected in consideration of the final catalyst performance, mechanical strength, moldability, production efficiency, and the like.
- the most preferable in the present invention is that a mixed solution or slurry of the raw material of the active component of the catalyst is formed under the condition of 20 ° C. or higher and 90 ° C. or lower, and this is introduced into the spray dryer and the dryer outlet is 70 ° C.
- the hot air inlet temperature, the pressure inside the spray dryer, and the flow rate of the slurry are adjusted so that the average particle size of the obtained dry powder is 10 ⁇ m or more and 700 ⁇ m or less.
- Step (A2): Pre-firing The dry powder thus obtained can be pre-baked at 200 ° C. or higher and 600 ° C. or lower to obtain the pre-baked powder of the present invention.
- the pre-firing method is not particularly limited, such as a fluidized bed, a rotary kiln, a muffle furnace, or a tunnel calcining furnace.
- An appropriate range should be selected in consideration of performance, mechanical strength, formability, production efficiency, and the like.
- the method is preferably performed in a tunnel firing furnace at 300 ° C. or more and 600 ° C. or less, pre-baking 1 hour or more and 12 hours or less in an air atmosphere.
- Step (A3) Molding
- the pre-fired powder obtained in this way can be used as a catalyst as it is, but can also be used after being molded.
- the shape of the molded product is not particularly limited, such as a spherical shape, a cylindrical shape, or a ring shape, but it should be selected in consideration of the mechanical strength, the reactor, the production efficiency of the preparation, etc. in the catalyst finally obtained by a series of preparations. .
- There is no particular limitation on the molding method but a tableting machine is used to form a cylindrical shape or a ring shape by adding the carrier, molding aid, strength improver, binder, etc. shown in the following paragraph to the pre-fired powder.
- a molded product is obtained using a granulator or the like.
- the method of carrying out support molding by coating the pre-fired powder on the inert spherical carrier by the rolling granulation method is preferred in the present invention.
- the mixing ratio of the spherical carrier and the pre-fired powder is calculated as a loading rate from the following formula according to the charged weight of each raw material.
- Support rate (% by weight) (weight of pre-fired powder used for molding) / ⁇ (weight of pre-fired powder used for molding) + (weight of spherical carrier used for molding) ⁇ ⁇ 100
- pre-fired powder and molding aids such as crystalline cellulose, or strength improvers such as ceramic whiskers, alcohols, diols, triols as binders, and their It can shape
- the catalyst raw material solution for the binder it is possible to introduce the element into the outermost surface of the catalyst in a mode different from the step (A1).
- Step (A4): Main firing The pre-fired powder or molded product thus obtained is preferably fired again (main firing) at 300 ° C. or higher and 600 ° C. or lower before being used for the reaction.
- the firing method is not particularly limited, such as a fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance and machine. Appropriate ranges should be selected in consideration of strength and production efficiency.
- the most preferable method in the present invention is a method in a tunnel baking furnace in which main baking is performed at 450 ° C. or more and 600 ° C. or less, main baking is performed for 1 hour or more and 12 hours or less in an air atmosphere.
- the temperature raising time is usually 2 hours or more and 20 hours or less, preferably 3 hours or more and 15 hours or less, more preferably 4 hours or more and 10 hours or less.
- Step (B1): Impregnation A solution or slurry into which the active component of the catalyst has been introduced is prepared, and this is impregnated with the molded carrier or the catalyst obtained by the method (A) to obtain a molded product.
- the supporting method of the active component of the catalyst by impregnation is not particularly limited, such as a dip method, an incipient wetness method, an ion exchange method, a pH swing method, etc. Water, an organic solvent, or these as a solvent of a solution or slurry Any of the mixed solutions may be used, and the raw material concentration of the active component of the catalyst is not limited.
- the liquid temperature of the mixed solution or slurry, the pressure applied to the liquid, and the atmosphere around the liquid are not particularly limited. An appropriate range should be selected in consideration of catalyst performance, mechanical strength, moldability, production efficiency, and the like.
- the shape of the molded carrier and the catalyst obtained by the method (A) is not particularly limited, such as a spherical shape, a cylindrical shape, a ring shape, a powder shape, and the material, particle size, water absorption rate, and mechanical strength are not particularly limited. Absent.
- Step (B2): Drying The molded product thus obtained is subjected to a heat treatment in a range of 20 ° C. or more and 200 ° C. or less using a known drying method such as evaporation to dryness, drum drying, freeze drying, etc. obtain.
- a known drying method such as evaporation to dryness, drum drying, freeze drying, etc. obtain.
- the drying time and atmosphere during drying there are no particular restrictions on the drying time and atmosphere during drying, and there are no particular restrictions on the drying method such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, etc.
- Final catalyst performance, mechanical strength, moldability and production efficiency An appropriate range should be selected in consideration of the above.
- Step (B3): Main firing The catalyst molded dry body thus obtained is heat-treated at a temperature of 300 ° C. to 600 ° C. to obtain the catalyst of the present invention.
- the firing method is not particularly limited, such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance and mechanical strength.
- An appropriate range should be selected in consideration of moldability and production efficiency.
- the most preferable method in the present invention is a method in a tunnel baking furnace in which main baking is performed at 450 ° C. or more and 600 ° C. or less, main baking is performed for 1 hour or more and 12 hours or less in an air atmosphere.
- the temperature raising time is usually 2 hours or more and 20 hours or less, preferably 3 hours or more and 15 hours or less, more preferably 4 hours or more and 10 hours or less.
- the shape and size of the catalyst obtained by the above preparation are not particularly limited, but considering the workability of filling the reaction tube and the pressure loss in the reaction tube after filling, the shape is spherical and the average particle size is The diameter is preferably 3.0 mm or more and 10.0 mm or less, and the catalyst active component loading is preferably 20 wt% or more and 80 wt% or less.
- the reaction conditions for oxidative dehydrogenation of n-butene in the presence of a catalyst for butadiene production are as follows: n-butene having a raw material gas composition of 1% by volume to 20% by volume, Using a mixed gas containing molecular oxygen of volume% to 20 volume%, water vapor of 0 volume% to 60 volume% and inert gas of 0 volume% to 94 volume%, for example, nitrogen and carbon dioxide gas, The temperature is in the range of 200 ° C.
- the reaction pressure is in the range of normal pressure to 10 atm
- the space velocity (GHSV) of the raw material gas with respect to the catalyst is in the range of 350 hr ⁇ 1 to 7000 hr ⁇ 1 .
- GHSV space velocity
- GHSV Space velocity of the gas in the regeneration method of the catalyst of the present invention as is not particularly limited, usually 50 hr -1 or more 4000 hr -1 or less, preferably 100 hr -1 or more 2000 hr -1 the range It is.
- the value of GHSV exceeds the normal range, the catalyst is damaged and the inside of the reactor is blocked by the catalyst powder or debris or flows out of the reactor. Contamination due to spillage of carbonaceous material may be caused.
- the value of GHSV is lower than the normal range, the removal of the coke-like substance may not be performed efficiently, and a long period of time may be required for the regeneration process, or the effect may not be sufficiently exhibited.
- Example 1 (Preparation of catalyst) 800 parts by weight of ammonium heptamolybdate was completely dissolved in 3000 parts by weight of pure water heated to 80 ° C. (Mother solution 1). Next, 11 parts by weight of cesium nitrate was dissolved in 124 ml of pure water and added to the mother liquor 1. Next, 275 parts by weight of ferric nitrate, 769 parts by weight of cobalt nitrate and 110 parts by weight of nickel nitrate were dissolved in 612 ml of pure water heated to 60 ° C. and added to the mother liquor 1.
- nitric acid aqueous solution prepared by adding 79 parts by weight of nitric acid (60% by weight) to 330 ml of pure water heated to 60 ° C. and added to the mother liquor 1.
- This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-fired at 440 ° C. for 5 hours.
- an inert spherical carrier using a 33% by weight glycerin solution as a binder by tumbling granulation method was added to the pre-fired powder obtained in this manner and mixing well.
- the support was molded into a spherical shape so that the support ratio was 50% by weight.
- the spherical molded product thus obtained is calcined at 520 ° C. for 5 hours, and has a composition represented by the formula 1 as an example of the catalyst used in the regeneration method of the present invention.
- a supported catalyst for producing butadiene in which X is Cs and a catalyst for producing butadiene in which f and g in Formula 1 are 0 is supported on a carrier was obtained.
- the temperature of the heat medium circulating in the reactor is 250 ° C.
- a combustion reaction a treatment process of the first cycle
- the reaction tube outlet gas during the combustion reaction was analyzed by a gas chromatograph equipped with a heat conduction detector, and the total production rate Rcox of CO 2 and CO was determined to be 0.21 mmol / h.
- the reaction tube outlet gas during the combustion reaction was analyzed by a gas chromatograph equipped with a heat conduction detector, and the total production rate Rcox of CO 2 and CO was determined to be 0.4 mmol / h.
- the temperature is increased stepwise by repeatedly heating and holding the heating medium at a rate of 200 ° C./h every 10 ° C. while monitoring Rcox.
- the heating medium was 280 ° C., the total production rate of CO 2 and CO increased to 0.7 mmol / h.
- the heating medium is repeatedly heated up and maintained at a rate of 200 ° C./h every 10 ° C., and the heating medium reaches 340 ° C. in steps. It took 170 hours to complete.
- damage to the catalyst particularly a pulverization phenomenon, was observed, and further, discoloration of the catalyst could be observed.
- required from a following formula was 0.42 weight%.
- Powder rate (% by weight) 100 ⁇ (W 0 ⁇ W 1 ) / W 0
- W 0 weight of the catalyst filled in the reaction tube
- W 1 weight of catalyst remaining on the sieve when the catalyst was extracted from the reaction tube after the reaction and sieved with a sieve having an opening of 3.35 mm
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
しかしながら、再生ステップにおけるカーボンの焼失は燃焼反応であり制御が難しく、急激な燃焼反応による触媒の損傷を防ぐ技術についての記載は、特許文献7及び8には見当たらない。
しかしながら、特許文献9には、再生工程におけるカーボンの燃焼反応による触媒の損傷を防ぐ技術についての記載は見当たらない。
(1)ブテン類の酸化的脱水素反応に使用された、使用前の組成が下記式1
Mo12BiaFebCocNidXeYfZgOh・・・・(式1)
(式中、Xは、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を示し、Yは、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群より選ばれる少なくとも1種のアルカリ土類金属元素を示し、Zは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f、及びgは各々、モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0を満たす範囲にあり、hは、他の元素の酸化状態を満足させる数値である。)
で表されるブタジエン製造用触媒が充填された反応器内のコーク状物質を除去する触媒の再生方法であって、0容量%より大きく21容量%以下の酸素を含む第1のガスで反応器を処理する処理工程と、次いで0容量%より大きく42容量%以下の水蒸気、および0容量%より大きく21容量%以下の酸素を含有する第2のガスを前記反応器に供給する供給工程とを含み、前記反応器内を循環する熱媒の温度を200℃以上400℃未満の範囲とし、かつ、前記処理工程の終了時点からそれに続く前記供給工程の終了時点までの間、前記反応器内を循環する熱媒の温度を一定にし、前記第1のガスにおける水蒸気の含有量と前記第2のガスにおける水蒸気の含有量とが異なることを特徴とする触媒の再生方法、
(2)前記処理工程の条件において前記反応器から排出されるCO2およびCOの生成速度が最大生成速度となった後、前記反応器から排出されるCO2およびCOの生成速度が前記最大生成速度の95%以下の時に前記供給工程を行うことを特徴とする上記(1)に記載の触媒の再生方法、
(3)前記処理工程及びそれに続く前記供給工程を含むサイクルを2回以上繰り返し、
1回目のサイクルにおける処理工程及び供給工程の熱媒の温度と、2回目のサイクルにおける処理工程及び供給工程の熱媒の温度とが異なることを特徴とする上記(2)に記載の触媒の再生方法、
(4)2回目のサイクルにおける処理工程及び供給工程の熱媒の温度が、1回目のサイクルにおける処理工程及び供給工程の熱媒の温度よりも高いことを特徴とする上記(3)に記載の触媒の再生方法、
(5)前記反応器内を循環する熱媒の温度が、200℃以上350℃以下であることを特徴とする上記(1)~(4)のいずれか1項に記載の触媒の再生方法、
(6)前記ブタジエン製造用触媒が担体に担持されているブタジエン製造用担持触媒を使用する上記(1)~(5)のいずれか1項に記載の触媒の再生方法、
に関する。
Mo12BiaFebCocNidXeYfZgOh・・・・(式1)
(式中、Xは、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を示し、Yは、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群より選ばれる少なくとも1種のアルカリ土類金属元素を示し、Zは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f、及びgは各々、モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0を満たす範囲にあり、hは、他の元素の酸化状態を満足させる数値である。)
を満たす組成を有するブタジエン製造用触媒の存在下に酸化的脱水素反応させることで触媒並びに反応器内に付着したコーク状物質を除去するための方法である。
Mo12BiaFebCocNidXeYfZgOh・・・・(式1)
(式中、Xは、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を示し、Yは、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群より選ばれる少なくとも1種のアルカリ土類金属元素を示し、Zは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f、及びgは各々、モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0を満たす範囲にあり、hは、他の元素の酸化状態を満足させる数値である。)
で表されるものである。
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件について特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、20℃以上90℃以下の条件下で触媒の活性成分の原料の混合溶液またはスラリーを形成させ、これを噴霧乾燥器に導入して乾燥器出口が70℃以上150℃以下、得られる乾燥粉体の平均粒径が10μm以上700μm以下となるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、本発明の予備焼成粉体を得ることができる。この予備焼成の条件に関しても、予備焼成時間や予備焼成時の雰囲気について特に制限はなく、予備焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択すべきである。このうち本発明においてトンネル焼成炉において300℃以上600℃以下、予備焼成1時間以上12時間以下、空気雰囲気下による方法が好ましい。
こうして得られた予備焼成粉体をそのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下段落に示す担体や成形助剤、強度向上剤、バインダー等を予備焼成粉体に添加して円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。このうち本発明において不活性な球状担体に予備焼成粉体を転動造粒法によりコーティングさせ担持成形する方法が好ましい。
担持率(重量%)=(成形に使用した予備焼成粉体の重量)/{(成形に使用した予備焼成粉体の重量)+(成形に使用した球状担体の重量)}×100
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に300℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間としては、通常2時間以上20時間以下であり、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲で行うのがよい。
触媒の活性成分が導入された溶液またはスラリーを調製し、ここに成形担体または(A)法で得た触媒を含浸させ、成形品を得る。ここで、含浸による触媒の活性成分の担持手法はディップ法、インシピエントウェットネス法、イオン交換法、pHスイング法など特に制限はなく、溶液またはスラリーの溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、混合溶液またはスラリーの液温、液にかかる圧力、液の周囲の雰囲気についても特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択すべきである。また、成形担体および(A)法で得た触媒のいずれも形状は球状、円柱状、リング状、粉末状など特に制限はなく、さらに材質、粒径、吸水率、機械的強度も特に制限はない。
こうして得られた成形品を、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて20℃以上200℃以下の範囲において熱処理を行い、本発明の触媒成形乾燥体を得る。乾燥時間や乾燥時の雰囲気について特に制限はなく、乾燥の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。
こうして得られた触媒成形乾燥体を、本焼成300℃以上600℃以下で熱処理を行い、本発明の触媒を得る。ここで、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間としては、通常2時間以上20時間以下であり、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲で行うのがよい。
=(反応したn-ブテンのモル数/供給したn-ブテンのモル数)
×100
TOS=混合ガス流通時間(時間)
(触媒の調製)
ヘプタモリブデン酸アンモニウム800重量部を80℃に加温した純水3000重量部に完全溶解させた(母液1)。次に、硝酸セシウム11重量部を純水124mlに溶解させて、母液1に加えた。次に、硝酸第二鉄275重量部、硝酸コバルト769重量部及び硝酸ニッケル110重量部を60℃に加温した純水612mlに溶解させ、母液1に加えた。続いて硝酸ビスマス311重量部を60℃に加温した純水330mlに硝酸(60重量%)79重量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成形した。こうして得られた球状成形品を、520℃、5時間の条件で焼成し、本発明の再生方法に使用する触媒の一例としての、前記式1で表される組成を有し、前記式1中のXがCsであり、前記式1中のf及びgが0であるブタジエン製造用触媒が担体に担持されているブタジエン製造用担持触媒を得た。仕込み原料から計算される触媒の原子比は、Mo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.0:1.0:0.15(前記式1中のa=1.7、b=1.8、c=7.0、d=1.0、e=0.15)であった。
ステンレス鋼反応管を備える反応器を使用し、得られたブタジエン製造用担持触媒106mlをステンレス鋼反応管に充填し、ガス体積比率が1-ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV600hr-1の条件で、1-ブテン転化率=85.0±1.0%を保持できるよう前記反応器を循環する熱媒の温度を変化させてTOS200時間まで反応し、コーク状物質をブタジエン製造用担持触媒上に析出させた。
析出したコーク状物質を除去させる目的で、前記反応器を循環する熱媒の温度を250℃として、ガス体積比率が酸素:窒素:水蒸気=1:9:0(酸素含有量10容量%)の混合ガス(第1のガス)を用い、常圧下、混合ガスの空間速度を250hr-1で燃焼反応(1回目のサイクルの処理工程)を開始した。燃焼反応中の反応管出口ガスを熱伝導検出器が装着されたガスクロマトグラフで分析し、CO2およびCOの合計生成速度Rcoxを求めたところ、0.21mmol/hであった。
(触媒の調製)
実施例1記載と同様に実施した。
(コーク状物質の析出反応)
実施例1記載と同様に実施した。
(コーク状物質の除去(再生処理))
析出したコーク状物質を除去させる目的で、前記反応器を循環する熱媒を240℃としてガス体積比率が酸素:窒素:水蒸気=2:8:0の混合ガスを用い、常圧下、空間速度250hr-1で燃焼反応を開始した。燃焼反応中の反応管出口ガスを熱伝導検出器が装着されたガスクロマトグラフで分析し、CO2およびCOの合計生成速度Rcoxを求めたところ、0.4mmol/hであった。続けて、CO2およびCOの合計生成速度が低下安定した後、Rcoxを監視しながら、熱媒を10℃ごと200℃/hの速度による昇温と温度保持を繰り返すことで温度を段階的に上昇させ、熱媒が280℃ではCO2およびCOの合計生成速度は0.7mmol/hまで上昇した。以降もCO2およびCOの合計生成速度を監視しながら、熱媒を10℃ごと200℃/hの速度による昇温と温度保持を繰り返すことで段階的に昇温し熱媒が340℃になるまでに要した時間は170時間であった。再生処理後の触媒を抜き出し、目視にて観察したところ、触媒の破損、特に粉化現象が観察され、さらには触媒の変色を見ることができた。下記式から求められる粉化率は、0.42重量%であった。
粉化率(重量%)=100×(W0-W1)/W0
ここで、W0:反応管へ充填した触媒の重量
W1:反応後に触媒を反応管から抜き出し目開き3.35mmの
篩でふるったときに篩に残存した触媒の重量
Claims (6)
- ブテン類の酸化的脱水素反応に使用された、使用前の組成が下記式1
Mo12BiaFebCocNidXeYfZgOh・・・・(式1)
(式中、Xは、リチウム、ナトリウム、カリウム、ルビジウム、及びセシウムからなる群より選ばれる少なくとも1種のアルカリ金属元素を示し、Yは、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群より選ばれる少なくとも1種のアルカリ土類金属元素を示し、Zは、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、及びタリウムからなる群より選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f、及びgは各々、モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0を満たす範囲にあり、hは、他の元素の酸化状態を満足させる数値である。)
で表されるブタジエン製造用触媒が充填された反応器内のコーク状物質を除去する触媒の再生方法であって、
0容量%より大きく21容量%以下の酸素を含む第1のガスで前記反応器を処理する処理工程と、
次いで0容量%より大きく42容量%以下の水蒸気、および0容量%より大きく21容量%以下の酸素を含有する第2のガスを前記反応器に供給する供給工程とを含み、
前記反応器内を循環する熱媒の温度を200℃以上400℃未満の範囲とし、かつ、前記処理工程の終了時点からそれに続く前記供給工程の終了時点までの間、前記反応器内を循環する熱媒の温度を一定にし、
前記第1のガスにおける水蒸気の含有量と前記第2のガスにおける水蒸気の含有量とが異なることを特徴とする触媒の再生方法。 - 前記処理工程の条件において前記反応器から排出されるCO2およびCOの生成速度が最大生成速度となった後、前記反応器から排出されるCO2およびCOの生成速度が前記最大生成速度の95%以下の時に前記供給工程を行うことを特徴とする請求項1に記載の触媒の再生方法。
- 前記処理工程及びそれに続く前記供給工程を含むサイクルを2回以上繰り返し、
1回目のサイクルにおける処理工程及び供給工程の熱媒の温度と、2回目のサイクルにおける処理工程及び供給工程の熱媒の温度とが異なることを特徴とする請求項2に記載の触媒の再生方法。 - 2回目のサイクルにおける処理工程及び供給工程の熱媒の温度が、1回目のサイクルにおける処理工程及び供給工程の熱媒の温度よりも高いことを特徴とする請求項3に記載の触媒の再生方法。
- 前記反応器内を循環する熱媒の温度が、200℃以上350℃以下であることを特徴とする請求項1~4のいずれか1項に記載の触媒の再生方法。
- 前記ブタジエン製造用触媒が担体に担持されているブタジエン製造用担持触媒を使用する請求項1~5のいずれか1項に記載の触媒の再生方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187016510A KR20180097543A (ko) | 2015-12-25 | 2016-12-22 | 부타디엔 제조용 촉매의 재생 방법 |
CN201680075802.6A CN108430631A (zh) | 2015-12-25 | 2016-12-22 | 丁二烯制造用催化剂的再生方法 |
EP16878922.0A EP3395443A4 (en) | 2015-12-25 | 2016-12-22 | METHOD OF REGENERATING A CATALYST FOR BUTADIA PRODUCTION |
JP2017558272A JP6779911B2 (ja) | 2015-12-25 | 2016-12-22 | ブタジエン製造用触媒の再生方法 |
US16/065,243 US20190299195A1 (en) | 2015-12-25 | 2016-12-22 | Method for regenerating catalyst for butadiene production |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015253054 | 2015-12-25 | ||
JP2015-253054 | 2015-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017111035A1 true WO2017111035A1 (ja) | 2017-06-29 |
Family
ID=59090641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/088406 WO2017111035A1 (ja) | 2015-12-25 | 2016-12-22 | ブタジエン製造用触媒の再生方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190299195A1 (ja) |
EP (1) | EP3395443A4 (ja) |
JP (1) | JP6779911B2 (ja) |
KR (1) | KR20180097543A (ja) |
CN (1) | CN108430631A (ja) |
WO (1) | WO2017111035A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109647544B (zh) * | 2019-01-03 | 2021-06-11 | 飞潮(无锡)过滤技术有限公司 | 一种干湿法复合再生回收废旧铜铋催化剂的工艺 |
US20220126281A1 (en) * | 2021-06-30 | 2022-04-28 | Uop Llc | Process for regenerating a dehydrogenation catalyst |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020987A (ja) * | 1983-07-15 | 1985-02-02 | Jgc Corp | 脱水素用固体酸素キヤリヤ−及びその製造法 |
JPS6058928A (ja) * | 1983-09-09 | 1985-04-05 | Japan Synthetic Rubber Co Ltd | 共役ジオレフインの製造法 |
CN103071544A (zh) * | 2013-01-30 | 2013-05-01 | 中国石油化工股份有限公司 | 丁烯氧化脱氢催化剂的原位再生方法 |
WO2014086768A1 (de) * | 2012-12-06 | 2014-06-12 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
WO2014086815A1 (de) * | 2012-12-06 | 2014-06-12 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
WO2014157390A1 (ja) * | 2013-03-27 | 2014-10-02 | 旭化成ケミカルズ株式会社 | ブタジエンの製造方法 |
WO2014202501A1 (de) * | 2013-06-17 | 2014-12-24 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien |
WO2015004042A2 (de) * | 2013-07-10 | 2015-01-15 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
WO2015007839A1 (de) * | 2013-07-18 | 2015-01-22 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3130065A1 (de) | 1981-07-30 | 1983-02-17 | Bayer Ag, 5090 Leverkusen | Verfahren zur regeneration von katalysatoren |
JP2587488B2 (ja) | 1989-02-22 | 1997-03-05 | 株式会社日本触媒 | イソ酪酸の酸化脱水素用触媒の再生方法 |
JP3110838B2 (ja) | 1992-01-21 | 2000-11-20 | 株式会社日本触媒 | 触媒再生方法 |
DE10060099A1 (de) | 2000-12-04 | 2002-06-06 | Basf Ag | Regenerierung eines Dehydrierkatalysators |
JP2003071299A (ja) | 2001-06-19 | 2003-03-11 | Showa Denko Kk | 低級脂肪族カルボン酸エステル製造用触媒の再生方法、該再生方法による低級脂肪族カルボン酸エステル製造用触媒の製造方法、該再生方法により再生した低級脂肪族カルボン酸エステル製造用触媒及び該触媒を用いた低級脂肪族カルボン酸エステルの製造方法 |
FR2837273B1 (fr) | 2002-03-15 | 2004-10-22 | Inst Francais Du Petrole | Procede d'elimination au moins partielle de depots carbones dans un echangeur de chaleur |
DE102004008573A1 (de) * | 2004-02-19 | 2005-09-08 | Stockhausen Gmbh | Ein Verfahren zur Entfernung kohlenstoffhaltiger Rückstände in einem Reaktor |
CN104226334B (zh) * | 2013-06-17 | 2016-12-28 | 中国石油化工股份有限公司 | 丁烯氧化脱氢催化剂的再生方法 |
-
2016
- 2016-12-22 CN CN201680075802.6A patent/CN108430631A/zh active Pending
- 2016-12-22 KR KR1020187016510A patent/KR20180097543A/ko unknown
- 2016-12-22 EP EP16878922.0A patent/EP3395443A4/en not_active Withdrawn
- 2016-12-22 US US16/065,243 patent/US20190299195A1/en not_active Abandoned
- 2016-12-22 JP JP2017558272A patent/JP6779911B2/ja active Active
- 2016-12-22 WO PCT/JP2016/088406 patent/WO2017111035A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6020987A (ja) * | 1983-07-15 | 1985-02-02 | Jgc Corp | 脱水素用固体酸素キヤリヤ−及びその製造法 |
JPS6058928A (ja) * | 1983-09-09 | 1985-04-05 | Japan Synthetic Rubber Co Ltd | 共役ジオレフインの製造法 |
WO2014086768A1 (de) * | 2012-12-06 | 2014-06-12 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
WO2014086815A1 (de) * | 2012-12-06 | 2014-06-12 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
CN103071544A (zh) * | 2013-01-30 | 2013-05-01 | 中国石油化工股份有限公司 | 丁烯氧化脱氢催化剂的原位再生方法 |
WO2014157390A1 (ja) * | 2013-03-27 | 2014-10-02 | 旭化成ケミカルズ株式会社 | ブタジエンの製造方法 |
WO2014202501A1 (de) * | 2013-06-17 | 2014-12-24 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien |
WO2015004042A2 (de) * | 2013-07-10 | 2015-01-15 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu butadien |
WO2015007839A1 (de) * | 2013-07-18 | 2015-01-22 | Basf Se | Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien |
Non-Patent Citations (1)
Title |
---|
See also references of EP3395443A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20190299195A1 (en) | 2019-10-03 |
EP3395443A1 (en) | 2018-10-31 |
EP3395443A4 (en) | 2019-09-04 |
JP6779911B2 (ja) | 2020-11-04 |
JPWO2017111035A1 (ja) | 2018-10-18 |
KR20180097543A (ko) | 2018-08-31 |
CN108430631A (zh) | 2018-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6674441B2 (ja) | 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒及びその製造方法並びに不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 | |
JP6559039B2 (ja) | 共役ジオレフィン製造用触媒と、その製造方法 | |
WO2005046870A1 (ja) | 複合酸化物触媒の製造方法 | |
JP2008231044A (ja) | 不飽和アルデヒド及び/又は不飽和カルボン酸の製造方法 | |
JP7455256B2 (ja) | 触媒及びその製造方法 | |
JP4715699B2 (ja) | メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法 | |
KR20180029031A (ko) | 불포화 알데히드 및/또는 불포화 카본산의 제조 방법 | |
JP2002239386A (ja) | 反応管、触媒の製造方法、不飽和アルデヒドおよび不飽和カルボン酸の製造方法 | |
JP6779911B2 (ja) | ブタジエン製造用触媒の再生方法 | |
JP6564847B2 (ja) | 共役ジオレフィン製造用触媒と、その製造方法 | |
WO2017146024A1 (ja) | 共役ジオレフィンの製造方法 | |
WO2017146025A1 (ja) | 共役ジオレフィンの製造方法 | |
JP6534217B2 (ja) | 共役ジオレフィン製造用触媒の再生方法 | |
JP6534216B2 (ja) | 共役ジオレフィン製造用触媒の再生方法 | |
JP6734178B2 (ja) | 精製系阻害物質を選択的に低減させる触媒およびその製造方法 | |
JP2018140951A (ja) | 共役ジオレフィンの製造方法 | |
JP2018140952A (ja) | 共役ジオレフィンの製造方法 | |
JP2013086008A (ja) | メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法 | |
JP2022124634A (ja) | イソプレン製造用触媒及びその用途 | |
KR20230150817A (ko) | 촉매 및, 그것을 이용한 기상 산화 반응에 의한 화합물의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878922 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187016510 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017558272 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016878922 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016878922 Country of ref document: EP Effective date: 20180725 |