WO2017146025A1 - 共役ジオレフィンの製造方法 - Google Patents

共役ジオレフィンの製造方法 Download PDF

Info

Publication number
WO2017146025A1
WO2017146025A1 PCT/JP2017/006303 JP2017006303W WO2017146025A1 WO 2017146025 A1 WO2017146025 A1 WO 2017146025A1 JP 2017006303 W JP2017006303 W JP 2017006303W WO 2017146025 A1 WO2017146025 A1 WO 2017146025A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reaction
conjugated diolefin
producing
gas
Prior art date
Application number
PCT/JP2017/006303
Other languages
English (en)
French (fr)
Inventor
佑太 中澤
成喜 奥村
文吾 西沢
友洋 小畑
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2017146025A1 publication Critical patent/WO2017146025A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention is a process for producing a conjugated diolefin by subjecting a monoolefin having 4 or more carbon atoms to gas phase catalytic oxidative dehydrogenation in the presence of a catalyst, and producing a conjugated diolefin having excellent long-term stability. Regarding the method.
  • butadiene which is a raw material for synthetic rubber and the like, has been industrially produced by thermal decomposition and extraction of naphtha fractions.
  • a manufacturing method There is a need for a manufacturing method.
  • a method for vapor-phase catalytic oxidative dehydrogenation of n-butene in the presence of a catalyst from a mixed gas containing butenes (also expressed as n-butene) and molecular oxygen has attracted attention.
  • coke-like substances from reaction products and / or reaction by-products are deposited or deposited in the reactor, that is, on the catalyst surface and inside, the inert material, the inner wall of the reaction tube, and the post-process equipment.
  • Patent Document 1 discloses the correlation between the change rate of the outer diameter of the catalyst before and after the reaction and the change in strength.
  • the tableting method which is a catalyst molding method of Patent Document 1
  • the mechanical strength of the catalyst is increased, while the catalyst active component is molded so as to be densely aggregated.
  • the heat of reaction is likely to accumulate inside the catalyst, the yield is reduced, and the reaction runaway occurs, and the production of the catalyst itself.
  • Patent Document 2 discloses the correlation between the crushing rate in the packed catalyst and the amount of coke-like substance produced, but there is no disclosure regarding the catalyst or reaction conditions for suppressing the crushing rate in the long-term reaction.
  • Patent Documents 3 to 9 all relate to a catalyst for adding an organic auxiliary agent and / or an inorganic auxiliary agent having a specific particle size distribution, fiber length, acid strength, and the like, or a method for producing the same.
  • Non-Patent Document 1 control of the pore structure can be mentioned.
  • the failure of the catalyst is considered to be caused by the stress inside the catalyst in the long-term reaction or regeneration treatment, and it can be estimated that the stress increases around the pores, leading to the failure. That is, it is preferable to reduce the pores in order to suppress the damage of the catalyst.
  • the pores are reduced, the reaction field on the surface of the catalyst is reduced, resulting in a decrease in performance such as catalyst activity. No technology has been pursued in terms of determining the pore structure.
  • the present invention is a method for producing a conjugated diolefin by subjecting a monoolefin having 4 or more carbon atoms to gas phase catalytic oxidative dehydrogenation in the presence of a catalyst, which suppresses damage to the catalyst and improves long-term stability. It aims at providing the manufacturing method of the outstanding conjugated diolefin.
  • the present inventors have conducted a gas-phase catalytic oxidative dehydrogenation reaction of a monoolefin having 4 or more carbon atoms, preferably n-butene, in the presence of a catalyst. It is a method for producing a conjugated diolefin, preferably butadiene, using a post-regeneration catalyst that satisfies a certain range with an average pore diameter in the reaction, thereby preventing damage and being excellent in long-term stability.
  • the headline and the present invention have been completed.
  • the present invention is (1) a method for producing a conjugated diolefin by subjecting a monoolefin having 4 or more carbon atoms to a gas phase catalytic oxidative dehydrogenation reaction in the presence of a catalyst for producing a conjugated diolefin.
  • X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium
  • Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium.
  • Z represents an element, and Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, cerium, thallium, and a, b, c, d, e, f and g each represent an atomic ratio of each component to molybdenum 12, and 0.2 ⁇ a ⁇ 2.0, 0.6 ⁇ b ⁇ 3.4, 5.0 ⁇ c ⁇ 8.0, 0 ⁇ d ⁇ 3.0, 0 ⁇ e ⁇ 0.5, 0 ⁇ f ⁇ 4.0, 0 ⁇ g ⁇ 2.0, and h is a numerical value that satisfies the oxidation state of other elements).
  • the catalyst is a molded catalyst in which a carrier is coated with a catalytically active component, the resulting molded catalyst has an average particle size of 3.0 mm to 10.0 mm, and the loading ratio of the catalytically active component is 20% by weight.
  • the production method according to (1) which is not less than 80% by weight, (3)
  • the production method according to (1) or (2), wherein the monoolefin having 4 or more carbon atoms is n-butene and the conjugated diolefin is 1,3-butadiene, About.
  • the present invention is a method for producing a conjugated diolefin by subjecting a monoolefin having 4 or more carbon atoms to gas phase catalytic oxidative dehydrogenation in the presence of a catalyst, and the average pore diameter satisfies a certain range.
  • a method for producing a conjugated diolefin having excellent long-term stability that can suppress breakage and maintain the yield is provided.
  • the present invention is a reaction for producing a conjugated diolefin by a gas phase catalytic oxidative dehydrogenation reaction from a mixed gas containing a monoolefin having 4 or more carbon atoms and molecular oxygen, and preferably comprises n-butene and molecular oxygen.
  • This is a method for producing butadiene, preferably 1,3-butadiene, from a mixed gas containing it by a gas phase catalytic oxidative dehydrogenation reaction.
  • the monoolefin having 4 or more carbon atoms in the present invention is an unsaturated hydrocarbon having 4 or more carbon atoms containing one carbon-carbon double bond, butene, pentene, hexene, heptene, octene, nonene and N-butene means 1-butene, trans-2-butene, cis-2-butene, isobutylene, a single component gas or a mixed gas containing at least one component Conjugated diolefin is a hydrocarbon having two carbon-carbon double bonds bonded through one single bond, preferably butadiene, particularly preferably 1,3-butadiene And
  • a gas having the following composition may be supplied under conditions of 200 ° C. or higher and lower than 400 ° C., preferably 200 ° C. or higher and 350 ° C. or lower, as the heating medium circulating in the reactor filled with the catalyst. More preferably, the temperature of the heat medium circulating in the reactor is constant at 200 ° C. or higher and lower than 400 ° C., and constant at 200 ° C. or higher and 350 ° C. or lower.
  • the composition of the gas is greater than 0% by volume of water vapor and 42% by volume or less and greater than 0% by volume of oxygen and 21% by volume or less.
  • the average pore diameter is one of the parameters indicating the fine pore properties of the catalyst. If the reaction deposits carbon on the catalyst surface and closes the pores, the average pore diameter becomes smaller, and further the carbon deposition As the process proceeds, the pores are enlarged, and thereafter, if carbon is removed by regeneration, the average pore diameter becomes larger. In particular, if the average pore diameter of the catalyst after regeneration is too small, the space in which the catalytic reaction proceeds is reduced, causing deterioration of the reaction results such as a decrease in the activity of the catalyst. In the present invention, a regenerated catalyst having an average pore diameter of 0.19 ⁇ m or more is used. In addition, when the average pore diameter is too large, the strength of the catalyst may be low.
  • it is more preferably 0.19 ⁇ m or more and 0.40 ⁇ m or less, further preferably 0.21 ⁇ m or more and 0.37 ⁇ m or less, and further preferably 0. It is 24 ⁇ m or more and 0.34 ⁇ m or less.
  • the method for measuring the average pore diameter is not particularly limited, but it is preferably measured by a mercury intrusion method. Moreover, it is preferable to calculate a measured value from the pore distribution data with a pore diameter of 0.0036 ⁇ m to 400 ⁇ m.
  • the average pore diameter of the pre-reaction catalyst is a physical property value specific to the produced catalyst, and is controlled to a physical property suitable for the target reaction by a known technique.
  • catalyst pores can be designed by changing the catalyst composition, molding method, firing method, and the like.
  • the average pore diameter of the regenerated catalyst changes as described above in the course of catalytic reaction and regeneration.
  • the supply gas composition and supply gas space velocity in the reaction and regeneration, the form of the reactor, the temperature of the heat medium circulated in the reactor, and the temperature control ability in the reactor are low, the reactor The internal temperature is not maintained uniformly, and a local temperature deviation occurs, so that an unfavorable space is generated for the catalytic reaction to proceed, and this is influenced by phenomena that induce various troubles.
  • the “coke-like substance” in the present invention is produced by at least one of a reaction raw material, a target product and a reaction by-product in the reaction for producing a conjugated diolefin, and details of its chemical composition and production mechanism. Is unknown, but deposits or adheres to the catalyst surface and inside, inert materials, reaction tube inner walls and post-processing equipment, especially in industrial plants, obstructing the flow of reaction gas, blocking the reaction tube and accompanying them. It is a causative substance that causes various troubles such as reaction shutdown.
  • the mechanism by which the coke-like substance can be removed in the catalyst regeneration step of the present invention has not been elucidated in detail and is unclear, but the coke-like substance produced by the gas phase catalytic oxidative dehydrogenation reaction is the catalyst in the reaction tube.
  • a temperature suitable for the decomposition to proceed gradually without causing rapid combustion is considered necessary.
  • the heat medium is 400 ° C. or higher, the coke-like substance burns rapidly and adheres to the catalyst, and the heat generation causes a change in the crystal structure of the catalyst, causing deterioration and further combustion. Gases can cause pressure on the catalyst and break it, and sudden heat generation inside the reaction tube can cause damage to the reactor.
  • the heat medium is lower than 200 ° C., the combustion does not proceed and the regeneration effect is not sufficiently exhibited, or the regeneration time may become long, and the economic efficiency deteriorates due to the long plant stoppage period. There is a risk.
  • the coke-like substance can be effectively removed from the reactor even when the temperature of the heating medium is low.
  • the water vapor volume ratio and / or oxygen volume ratio of the gas supplied to the reactor there is no particular limitation as long as it is 0% to 42% by volume for water vapor and greater than 0% by volume to 21% by volume for oxygen.
  • a coke-like substance by supplying a gas containing more than 0% by volume of oxygen and containing 21% by volume or less of oxygen, and then supplying a gas containing more than 0% by volume and less than 42% by volume of water vapor to the reactor Is preferably removed.
  • the water vapor is then greater than 0% by volume and not greater than 42% by volume and oxygen 0%.
  • a gas containing greater than 21% by volume and less than 21% by volume is supplied to the reactor, the coke-like substance can be more effectively suppressed.
  • the water vapor capacity ratio and / or oxygen capacity ratio of the gas supplied to the reactor can be adjusted, for example, with nitrogen or the like.
  • the generation rate is 95% or less of the maximum generation rate after the generation rate of CO 2 and CO discharged under the conditions is maximized, and the generation rate gradually decreases.
  • the nature and amount of coke-like substances differ depending on the reaction conditions, reaction scale, reaction period, and catalyst performance of the gas phase catalytic oxidative dehydrogenation performed, and the combustion behavior differs.
  • the time of switching may be appropriately changed within the above-mentioned range.
  • the heating rate of the heating medium during regeneration is not particularly limited, but is preferably in the range of 1 ° C./h to 200 ° C./h. If the rate of temperature rise is higher than 200 ° C./h, rapid combustion may be caused and sufficient effective regeneration may not be performed. On the other hand, if the rate of temperature rise is slower than 1 ° C./h, the time required for regeneration becomes long and the economy may deteriorate.
  • the heat medium to be regenerated with a gas containing oxygen that is greater than 0% by volume and less than or equal to 21% by volume under certain conditions at 200 ° C. or more and 350 ° C. or less, and then a gas that contains greater than 0% by volume and less than 42% by volume of water vapor. It is most preferable to carry out the step of supplying the gas so as to reduce the production rate of CO 2 and CO discharged from the reaction tube outlet gas as much as possible to an appropriate production rate.
  • the temperature of the heat medium in the first process and the second process is preferably different, and the temperature of the heat medium in the second process is higher than the temperature of the heat medium in the first process. More preferred.
  • the temperature of the heat medium may be different for each process.
  • the appropriate production rate is appropriately determined because it varies depending on the reaction conditions, reaction scale, reaction period, and catalyst performance of the gas phase catalytic oxidative dehydrogenation performed.
  • the number of regenerations is not limited, and can be performed once or multiple times. If the average pore diameter after regeneration satisfies the range described above, the regenerated catalyst can continue to be subjected to the reaction. .
  • the catalyst before use contains a catalytically active component having a composition represented by the following (formula 1). Mo 12 Bi a Fe b Co c Ni d X e Y f Z g O h ⁇ ( Equation 1) (In the formula, X represents at least one element of an alkali metal selected from lithium, sodium, potassium, rubidium, and cesium, and Y represents at least one element of an alkaline earth metal selected from magnesium, calcium, strontium, and barium.
  • Z represents an element, and Z represents at least one element selected from lanthanum, cerium, praseodymium, neodymium, samarium, europium, antimony, tungsten, lead, zinc, cerium, thallium, and a, b, c, d, e, f and g each represent an atomic ratio of each component to molybdenum 12, and 0.2 ⁇ a ⁇ 2.0, 0.6 ⁇ b ⁇ 3.4, 5.0 ⁇ c ⁇ 8.0, 0 ⁇ d ⁇ 3.0, 0 ⁇ e ⁇ 0.5, 0 ⁇ f ⁇ 4.0, 0 ⁇ g ⁇ 2.0, and h is a numerical value that satisfies the oxidation state of other elements.
  • the raw material of each metal element for obtaining the catalyst used in the present invention is not particularly limited, but nitrates, nitrites, sulfates, ammonium salts, organic acid salts, acetates, carbonates containing at least one metal element. Secondary carbonates, chlorides, inorganic acids, inorganic acid salts, heteropolyacids, heteropolyacid salts, hydroxides, oxides, metals, alloys, etc., or a mixture thereof can be used as specific examples. Include the following. As a supply source of molybdenum, ammonium molybdate is preferable.
  • ammonium molybdate includes a plurality of types of compounds such as ammonium dimolybdate, ammonium tetramolybdate, and ammonium heptamolybdate. Among them, ammonium heptamolybdate is most preferable.
  • bismuth component raw material bismuth nitrate is preferred.
  • oxides, nitrates, carbonates, organic acid salts, hydroxides, etc. it is usually possible to use oxides, nitrates, carbonates, organic acid salts, hydroxides, etc., which can be converted to oxides by igniting, or mixtures thereof. .
  • the method (A) is a method in which the active component of the catalyst is obtained as a powder and then molded
  • the method (B) is a method in which a solution in which the active component of the catalyst is dissolved is brought into contact with a preformed carrier. It is a method to carry. Details of the methods (A) and (B) will be described below.
  • Step (A1) Prepare a mixed solution or slurry of the raw material of the preparation and dry catalyst active ingredient, and after passing through steps such as precipitation method, gelation method, coprecipitation method, hydrothermal synthesis method, etc., then dry spray method, evaporation to dryness
  • the dry powder of the present invention is obtained using a known drying method such as a method, a drum drying method or a freeze drying method.
  • a known drying method such as a method, a drum drying method or a freeze drying method.
  • any of water, an organic solvent, or a mixed solution thereof may be used as a solvent, and the raw material concentration of the active component of the catalyst is not limited.
  • the mixing conditions or drying conditions of the mixed solution or slurry such as the temperature, atmosphere, etc., but it is appropriate in consideration of the final catalyst performance, mechanical strength, moldability, production efficiency, etc. A range should be selected.
  • the most preferable in the present invention is that a mixed solution or slurry of the raw material of the active component of the catalyst is formed under the condition of 20 ° C. or higher and 90 ° C. or lower, which is introduced into the spray dryer and the dryer outlet is 70 ° C.
  • the hot air inlet temperature, the pressure inside the spray dryer, and the flow rate of the slurry are adjusted so that the average particle size of the obtained dry powder is 10 ⁇ m or more and 700 ⁇ m or less.
  • Step (A2) Pre-baking
  • the dry powder thus obtained can be pre-baked at 200 ° C. or higher and 600 ° C. or lower to obtain the pre-baked powder of the present invention.
  • the pre-firing method is not particularly limited, such as a fluidized bed, a rotary kiln, a muffle furnace, or a tunnel calcining furnace.
  • An appropriate range should be selected in consideration of performance, mechanical strength, formability, production efficiency, and the like.
  • the method is preferably performed in a tunnel firing furnace at 300 ° C. or more and 600 ° C. or less, pre-baking 1 hour or more and 12 hours or less in an air atmosphere.
  • Step (A3) Molding The pre-fired powder obtained in this way can be used as a catalyst as it is, but it can also be molded and used.
  • the shape of the molded product is not particularly limited, such as a spherical shape, a cylindrical shape, or a ring shape, but should be selected in consideration of the mechanical strength, the reactor, the production efficiency of the preparation, etc. finally obtained in a series of preparations. is there.
  • There is no particular limitation on the molding method but when molding into a cylindrical shape or a ring shape by adding the carrier, molding aid, strength improver, binder, etc. shown in the following paragraph to the pre-fired powder, tableting is performed.
  • a molded product is obtained using a granulator or the like.
  • a method in which a pre-fired powder is coated on an inert spherical carrier by a tumbling granulation method and carried out is preferable.
  • the material of the spherical carrier known materials such as alumina, silica, titania, zirconia, niobia, silica alumina, silicon carbide, carbide, and a mixture thereof can be used, and further, the particle size, water absorption rate, mechanical strength, The crystallinity and mixing ratio of the crystal phase are not particularly limited, and an appropriate range should be selected in consideration of the final catalyst performance, moldability, production efficiency, and the like.
  • molding aids such as crystalline cellulose or strength improvers such as ceramic whiskers, alcohols, diols, triols, and aqueous solutions thereof as binders
  • Any kind and mixing ratio can be used together with the pre-fired powder, and there is no particular limitation.
  • the catalyst raw material solution for the binder it is possible to introduce the element into the outermost surface of the catalyst in a mode different from the step (A1).
  • Step (A4) Main Firing
  • the pre-fired powder or molded product thus obtained is preferably fired again (main firing) at 300 ° C. or higher and 600 ° C. or lower before being used for the reaction.
  • the firing method is not particularly limited, such as a fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance and machine. Appropriate ranges should be selected in consideration of strength and production efficiency.
  • the most preferable method in the present invention is a method in a tunnel baking furnace in which main baking is performed at 450 ° C. or more and 600 ° C. or less, main baking is performed for 1 hour or more and 12 hours or less in an air atmosphere.
  • the temperature raising time is usually in the range of 2 hours to 20 hours, preferably 3 hours to 15 hours, and more preferably 4 hours to 10 hours.
  • Step (B1) A solution or slurry containing the active component of the impregnated catalyst is prepared and impregnated with the shaped carrier or the catalyst obtained by the method (A) to obtain a molded product.
  • the support method of the active component of the catalyst by impregnation is not particularly limited, such as a dip method, an incipient wetness method, an ion exchange method, and a pH swing method, and water, an organic solvent, or these as a solvent for the solution or slurry
  • the raw material concentration of the active component of the catalyst there are no particular restrictions on the liquid temperature of the mixed solution or slurry, the pressure applied to the liquid, and the atmosphere surrounding the liquid.
  • the shape of the shaped carrier and the catalyst obtained by the method (A) is not particularly limited, such as a spherical shape, a cylindrical shape, a ring shape, and a powder shape, and the material, particle size, water absorption rate, and mechanical strength are not particularly limited. Absent.
  • Step (B2) Drying
  • the molded product thus obtained is subjected to heat treatment in a range of 20 ° C. to 200 ° C. using a known drying method such as evaporation to dryness, drum drying, freeze drying, etc.
  • the dried catalyst molded body of the invention is obtained.
  • the drying time and atmosphere during drying and there are no particular restrictions on the drying method such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, etc.
  • Final catalyst performance, mechanical strength, moldability and production efficiency An appropriate range should be selected in consideration of the above.
  • Step (B3) Main calcination
  • the catalyst molded dry body thus obtained is heat-treated at a main calcination of 300 ° C. or higher and 600 ° C. or lower to obtain the catalyst of the present invention.
  • the firing method is not particularly limited, such as fluidized bed, rotary kiln, muffle furnace, tunnel firing furnace, and the final catalyst performance and mechanical strength.
  • An appropriate range should be selected in consideration of moldability and production efficiency.
  • the most preferable method in the present invention is a method in a tunnel baking furnace in which main baking is performed at 450 ° C. or more and 600 ° C. or less, main baking is performed for 1 hour or more and 12 hours or less in an air atmosphere.
  • the temperature raising time is usually in the range of 2 hours to 20 hours, preferably 3 hours to 15 hours, and more preferably 4 hours to 10 hours.
  • the shape and size of the catalyst obtained by the above preparation are not particularly limited, but considering the workability of filling the reaction tube and the pressure loss in the reaction tube after filling, the shape is spherical and the average particle size is The diameter is preferably 3.0 mm or more and 10.0 mm or less, and the catalyst active component loading is preferably 20 wt% or more and 80 wt% or less.
  • the average pore diameter of the catalyst before being used in the reaction can vary depending on the difference in the composition and shape of the catalyst and the production method, and is not particularly limited in order to exhibit the effects of the present invention. Usually, it is 0.16 ⁇ m or more and 0.46 ⁇ m or less, preferably 0.21 ⁇ m or more and 0.41 ⁇ m or less, more preferably 0.26 ⁇ m or more and 0.36 ⁇ m.
  • examples of conditions for subjecting a monoolefin, preferably n-butene, to gas phase catalytic oxidative dehydrogenation in the presence of a catalyst for butadiene production include the following conditions. That is, the raw material gas composition is 1% by volume to 20% by volume n-butene, more preferably 1-butene, 5% by volume to 20% by volume molecular oxygen, 0% by volume to 60% by volume water vapor, A mixed gas containing 0% by volume or more and 94% by volume or less of an inert gas such as nitrogen or carbon dioxide gas is used, the heating medium temperature is in the range of 200 ° C. or more and 500 ° C. or less, and the reaction pressure is normal pressure or more and 10 atm.
  • the raw material gas composition is 1% by volume to 20% by volume n-butene, more preferably 1-butene, 5% by volume to 20% by volume molecular oxygen, 0% by volume to 60% by volume water vapor, A mixed gas containing 0% by volume or more and 94%
  • the space velocity (GHSV) of the raw material gas with respect to the catalyst is in the range of 350 hr ⁇ 1 to 7000 hr ⁇ 1 .
  • GHSV space velocity
  • the space velocity in the regeneration step of the catalyst of the present invention (hereinafter abbreviated as GHSV.) Is not particularly limited, usually 50 hr -1 or more 4000 hr -1 or less, preferably in the range of 100 hr -1 or more 2000 hr -1 or less. If the GHSV value exceeds the normal range, the catalyst will be damaged and the inside of the reactor will be blocked by the catalyst powder or debris, or it will flow out of the reactor. Contamination due to material spillage can be caused. On the other hand, if the value of GHSV is lower than the normal range, the removal of the coke-like substance may not be performed efficiently, and a long period of time may be required for regeneration, or the effect may not be sufficiently exhibited.
  • the average pore diameter of the catalyst is measured by the mercury intrusion method.
  • the measured value is calculated from the pore distribution data with a pore diameter of 0.0036 ⁇ m to 400 ⁇ m.
  • Example 1 (Preparation of catalyst) 800 parts by weight of ammonium heptamolybdate was completely dissolved in 3000 parts by weight of pure water heated to 80 ° C. (Mother solution 1). Next, 11 parts by weight of cesium nitrate was dissolved in 124 ml of pure water and added to the mother liquor 1. Next, 275 parts by weight of ferric nitrate, 769 parts by weight of cobalt nitrate, and 110 parts by weight of nickel nitrate were dissolved in 612 ml of pure water heated to 60 ° C. and added to the mother liquor 1.
  • nitric acid aqueous solution prepared by adding 79 parts by weight of nitric acid (60% by weight) to 330 ml of pure water heated to 60 ° C. and added to the mother liquor 1.
  • This mother liquor 1 was dried by a spray drying method, and the obtained dry powder was pre-fired at 440 ° C. for 5 hours.
  • an inert spherical carrier using a 33% by weight glycerin solution as a binder by tumbling granulation method (Silica alumina) was molded into a spherical shape so that the loading ratio was 50% by weight.
  • the spherical molded product thus obtained was calcined at 520 ° C. for 5 hours to obtain the catalyst of the present invention.
  • Comparative Example 1 (Reaction test) The average pore diameter at the gas outlet of the catalyst extracted after the last regeneration in Example 3 was 0.18 ⁇ m. Moreover, when the failure rate was measured, it was 1.95% by weight, and the failure of the catalyst was visually observed.
  • the post-regeneration catalyst having an average pore diameter of 0.19 ⁇ m or more after regeneration tends to have a low failure rate, and the yield in the reaction after regeneration can be maintained. It can be seen that the catalyst has excellent long-term stability that can withstand continuous use. In the comparative example, the average pore diameter is less than 0.19 ⁇ m, and the failure rate tends to be high. Therefore, the failure proceeds even after the catalyst is regenerated, and the reaction tube is blocked and various abnormal reactions occur. It can be seen that it is a state that can induce trouble.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、触媒の破損を抑制し、長期安定性に優れた共役ジオレフィンの製造方法を提供する。 炭素原子数4以上のモノオレフィンを共役ジオレフィン製造用触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、使用前の触媒の活性成分組成が下記の式1で表される触媒を使用後に再生し、平均細孔直径が0.19μm以上となった再生後触媒を使用することを特徴とする共役ジオレフィンの製造方法。 Mo12BiFeCoNi・・・・(式1)

Description

共役ジオレフィンの製造方法
本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、長期安定性に優れた共役ジオレフィンの製造方法に関する。
従来、合成ゴム等の原料であるブタジエンは、工業的にはナフサ留分の熱分解および抽出により製造されているが、今後市場への安定供給の悪化が懸念されることから、新たなブタジエンの製造方法が求められている。そこで、ブテン類(n-ブテンとも表記)と分子状酸素を含む混合ガスから、触媒の存在下でn-ブテンを気相接触酸化的脱水素する方法が注目されている。しかし、反応生成物および/または反応副生成物によるコーク状物質が、反応器内、つまり触媒表面および内部、イナート物質、反応管内壁や後工程設備内に析出または付着することによって、工業プラントにおいて反応ガスの流通の阻害、反応管の閉塞やそれらに伴うプラントのシャットダウンや収率の低下等さまざまなトラブルを引き起こすことがある。これらのトラブルを回避する目的で、工業プラントでは、一般的にコーク状物質によって閉塞が生じる前に反応を中止し、反応器内を循環する熱媒を昇温すること等によりコーク状物質を除去する。また、コーク状物質の生成メカニズムとしては、たとえば以下が想定される。すなわち、モリブデンを含む複合金属酸化物触媒の使用の際には昇華し反応器内に析出したモリブデン化合物を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、触媒および反応器内の異常酸塩基点やラジカル生成点を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、共役ジエンおよびその他オレフィン化合物によるディールスアルダー反応による高沸点化合物の生成および反応器内で局所的に温度が低い点における凝縮によるもの、などが挙げられ、これ以外にも種々のメカニズムが知られている。
さらに、ブタジエンの製造方法における別の課題として、触媒の破損が挙げられる。これは、長期反応により充填時の触媒の形状から触媒片に、すなわち欠片状、顆粒状、さらには粉状にまで形状が変化または劣化し崩れる(破損する)、共役ジオレフィンの製造プロセスに特有の現象であり、次にあげるようなトラブルが懸念される。すなわち、破損した触媒片が反応器内に蓄積することによる圧力損失の増大、反応器内に局所的に蓄積した触媒による好ましくない副反応、および後段の精製系への破損した触媒片の混入等が懸念され、従来技術における対策は以下に示すような文献が公知である。
特許文献1は反応前後の触媒の外径変化率と強度変化の相関を開示している。特許文献1の触媒の成形方法である打錠成形は、触媒の機械的強度が高くなる一方、触媒活性成分が緻密に凝集するよう成形されるため触媒内部においてコーク状物質が副反応により生成および/または滞留しやすく他の成形方法による触媒と比較してコーク状物質が析出しやすい点、触媒内部においても反応熱が蓄積しやすく収率低下や反応暴走が生じる点、さらには触媒そのものの生産性が悪い点、が課題である。特許文献2は充填触媒中の破砕率とコーク状物質生成量の相関を開示しているが、長期反応における破砕率を抑制するための触媒または反応条件に関する開示はない。
触媒の破損を解決するための手段の一つとして、触媒そのものの硬度の向上が挙げられる。一般的な機械的強度の向上のための方法としては以下の文献が公知である。特許文献3から特許文献9は、いずれも特定の粒径分布、繊維長、酸強度等を持つ有機助剤または/および無機助剤を添加する触媒またはその製造方法に関するものである。
触媒をセラミックス材料と捉えると、無機助剤の添加以外に硬度を向上する方法として、非特許文献1のように細孔構造の制御が挙げられる。触媒の破損は、長期反応または再生処理における触媒内部の応力に起因すると考えられ、細孔の周辺では応力が高くなり破損に至ると推測できる。すなわち、触媒の破損を抑制するためには細孔を減らすことが好ましいが、細孔を減らせば触媒表面における反応場が減少し、触媒活性等の性能低下を伴うため、いかにして適切な細孔構造を定めるかという観点で追究された技術は見られない。
また、工業プラントでの経済性の観点からは、目的生成物であるブタジエンを高い収率で得られる点も当然重要である。収率を維持し生産活動の長期安定性に優れた技術が望まれ、前述のように触媒やプロセスの改良方法が公開されているが、実状としては、反応後に再生工程を実施し、再生後触媒を再使用する技術が検討されているにもかかわらず、再生後触媒の物性について追究された技術の開示はなかった。
特開2011-241208号公報 特開2012-046509号公報 特許第3313863号公報 特許第4863436号公報 特開2002-273229号公報 特許第5388897号公報 国際公開第2012/036038号 特許第5628936号公報 特開平07-16463号公報
宮田昇、神野博、"材料"32,354,P102-108
本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、触媒の破損を抑制し、長期安定性に優れた共役ジオレフィンの製造方法を提供することを目的とする。
本発明者らは、前述課題を解決すべく鋭意研究の結果、本発明は、炭素原子数4以上のモノオレフィン、好ましくはn-ブテンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィン、好ましくはブタジエンを製造する方法であって、平均細孔直径がある特定の範囲を満たす再生後触媒を反応に使用することで、破損を抑制でき、長期安定性に優れることを見出し、本発明を完成させるに至った。
即ち、本発明は
(1)炭素原子数4以上のモノオレフィンを共役ジオレフィン製造用触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、使用前の触媒の活性成分組成が下記の式1で表される触媒を使用後に再生し、平均細孔直径が0.19μm以上となった再生後触媒を使用することを特徴とする共役ジオレフィンの製造方法、
Mo12BiFeCoNi・・・・(式1)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、fおよびgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である)、
(2)触媒が、担体に触媒活性成分をコーティングした成形触媒であり、得られた成形触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分の担持率が20重量%以上80重量%以下である(1)に記載の製造方法、
(3)炭素原子数4以上のモノオレフィンがn-ブテンであり、共役ジオレフィンが1,3-ブタジエンである(1)または(2)に記載の製造方法、
に関する。
本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、平均細孔直径がある特定の範囲を満たす再生後触媒を反応に使用することで、破損を抑制でき、収率が維持される長期安定性に優れた共役ジオレフィンの製造方法を提供する。
本発明は、炭素原子数4以上のモノオレフィンと分子状酸素を含む混合ガスから気相接触酸化的脱水素反応により共役ジオレフィンを製造する反応であり、好ましくはn-ブテンと分子状酸素を含む混合ガスから気相接触酸化的脱水素反応によりブタジエン、好ましくは1、3-ブタジエンを製造する方法である。次に、炭素原子数4以上のモノオレフィンを気相接触酸化的脱水素反応し、平均細孔直径が特定の範囲を満たす再生後触媒を使用した、共役ジオレフィン製造方法について説明する。
本発明における炭素原子数4以上のモノオレフィンとは、炭素-炭素二重結合1個を含む炭素原子数4以上の不飽和炭化水素であり、ブテン、ペンテン、へキセン、ヘプテン、オクテン、ノネンおよびデセン等が挙げられ、n-ブテンとは1-ブテン、トランス-2-ブテン、シス-2-ブテン、イソブチレンのうち、単一成分のガス、もしくは少なくとも一つの成分を含む混合ガスを意味するものとし、共役ジオレフィンとは、1つの単結合を介して結合している2つの炭素-炭素二重結合をもつ炭化水素であり、好ましくはブタジエン、特に好ましくは1,3-ブタジエンを意味するものとする。
炭素原子数4以上のモノオレフィンを共役ジオレフィン製造用触媒の存在下に気相接触酸化的脱水素反応させて共役ジオレフィンを製造する際に用いる触媒の再生方法としては、共役ジオレフィン製造用触媒が充填された反応器内を循環する熱媒を200℃以上400℃未満、好ましくは200℃以上350℃以下の条件下にて下記組成のガスを供給することが挙げられる。反応器内を循環する熱媒の温度を200℃以上400℃未満で一定、200℃以上350℃以下で一定にするとさらに好ましい。ガスの組成は水蒸気0容量%より大きく42容量%以下かつ酸素0容量%より大きく21%容量%以下である。
平均細孔直径とは、触媒の微細な細孔性状を示すパラメータの一つであり、反応によって触媒表面に炭素析出し細孔が閉塞されれば平均細孔直径は小さくなり、またさらに炭素析出が進めば細孔が拡大され、その後、再生によって炭素が取り除かれれば平均細孔直径は大きくなるなどの変化が生じる。特に再生後触媒の平均細孔直径が過小となれば、触媒反応が進行する空間が減少し、触媒の活性低下など反応成績の悪化を引き起こす。本発明では、平均細孔直径が0.19μm以上の再生触媒を使用する。また、平均細孔直径が大き過ぎる場合には触媒の強度が低い場合があるため、より好ましくは0.19μm以上0.40μm以下、さらに好ましくは0.21μm以上0.37μm以下、さらに好ましくは0.24μm以上0.34μm以下である。
平均細孔直径の測定方法は特に制限されないが、水銀圧入法によって測定するのが好ましい。また、測定値を細孔径が0.0036μm以上400μm以下までの細孔分布データから算出することが好ましい。
反応前触媒の平均細孔直径は、製造された触媒固有の物性値であり、公知の技術によって目的の反応に適した物性へ制御されるものである。具体的には触媒組成や成形方法、焼成方法等を変更することで触媒細孔を設計することが可能である。これに対して、再生後触媒の平均細孔直径は、触媒反応や再生の過程で前述の通り変化するものである。より詳細には、反応と再生それぞれにおける供給ガス組成や供給ガス空間速度、反応器の形態、反応器に循環される熱媒の温度、反応器内における温度制御能力が低い場合には、反応器内の温度が均一に維持されず局所で温度の偏りが生じることで、触媒反応が進行するには好ましくない空間が発生し、さまざまなトラブルが誘引される現象などに影響を受ける。
本発明における「コーク状物質」とは、共役ジオレフィンを製造する反応において、反応原料、目的生成物および反応副生成物の少なくともいずれかにより生じるものであり、その化学的組成や生成メカニズムの詳細は不明であるが、触媒表面および内部、イナート物質、反応管内壁や後工程設備内に析出または付着することによって、特に工業プラントにおいては反応ガスの流通の阻害、反応管の閉塞やそれらに伴う反応のシャットダウン等さまざまなトラブルを引き起こす原因物質である。
本発明における触媒の再生工程で、コーク状物質が除去できるメカニズムは、詳細には解明できておらず不明であるが、気相接触酸化的脱水素反応で生成するコーク状物質が触媒、反応管内壁、イナート物質等に付着した場合に、急激な燃焼を引き起こさずに徐々に分解が進行するのに適した温度が必要であると考えられる。熱媒が400℃以上の条件では、コーク状物質が急激に燃焼し、触媒に付着している場合には、その発熱によって触媒の結晶構造変化が引き起こされ、変質劣化し、さらには発生した燃焼ガスによって触媒に圧力がかかり破損する可能性があり、また反応管内部の急激な発熱の場合には、反応器の損傷を引き起こしかねない。また、熱媒が200℃よりも低い場合には、燃焼が進行せず再生の効果が十分に発現されない、もしくは再生時間が長くなる場合があり、プラント停止期間が長くなることで経済性が悪化するおそれがある。
また、反応器に供給する希釈酸素ガスに対し水蒸気を加えることによって、熱媒の温度が低くてもコーク状物質を効果的に反応器から除去することができる。反応器に供給するガスの水蒸気容量率および/または酸素容量率に関し、水蒸気においては0容量%以上42容量%以下、酸素においては0容量%より大きく21容量%以下であれば特に制限はないが、酸素0容量%より大きく21容量%以下を含有するガスを反応器に供給した後、次いで水蒸気を0容量%より大きく42容量%以下を含有するガスを反応器に供給することによってコーク状物質を除去することが好ましい。さらに好ましくは、酸素0容量%より大きく21%以下を含有し、かつ水蒸気を含有しないガスを反応器に供給した後、次いで水蒸気を0容量%より大きく42容量%以下を含有し、かつ酸素0容量%より大きく21容量%以下を含有するガスを反応器に供給するとコーク状物質をより効果的に抑制することができる。
反応器に供給するガスの水蒸気容量率および/または酸素容量率は、例えば窒素等によって調整することができる。
供給するガスの組成を切り替える時期は、その条件において排出されるCOおよびCOの生成速度が最大となった後、生成速度が最大生成速度の95%以下であり、かつ生成速度が緩やかに低下、安定した時である。実施した気相接触酸化的脱水素反応の反応条件や反応スケール、反応期間や触媒の性能によってコーク状物質の性質や量が異なり、燃焼挙動が異なるため、それらを考慮の上、ガスの組成を切り替える時を上述の範囲内において、適宜変えてもよい。また、ここで排出されるCOおよびCOの生成速度とは、処理中に生成されるCOおよびCOの生成速度であるため、空気中にもともと含まれるCOおよびCO量は除され計算されるものである。
再生中の熱媒の昇温速度は、通常は特に制限されないが、1℃/h以上200℃/h以下の範囲にすることが好ましい。昇温速度が200℃/hよりも速いと急激な燃焼を引き起こし、十分効果的な再生を行うことができない場合がある。また、昇温速度が1℃/hよりも遅いと再生に要する時間が長くなり経済性が悪化する場合がある。
前述の反応器内を循環する熱媒温度、反応器に供給するガスに含まれる水蒸気容量率および/または酸素容量率、ならびに昇温速度の操作を組み合わせて実施するとさらに好ましく、反応器内を循環する熱媒を200℃以上350℃以下で一定の状況下、0容量%より大きく21容量%以下の酸素を含むガスで再生した後、次いで0容量%より大きく42容量%以下の水蒸気を含むガスを供給する工程を2回以上繰り返して、反応管出口ガスから排出されるCOおよびCOの生成速度が適切な生成速度まで可能な限り低下するよう実施すると最も好ましい。この工程を2回繰り返す場合は、1回目工程と2回目工程の熱媒の温度は異なる方が好ましく、2回目工程の熱媒の温度は、1回目工程の熱媒の温度よりも高い方がより好ましい。この工程を2回以上繰り返す場合は、工程ごとに熱媒の温度が異なっても良い。また、適切な生成速度とは、実施した気相接触酸化的脱水素反応の反応条件や反応スケール、反応期間や触媒の性能によって異なるため、適宜、決定されるものである。
再生は回数に限定はなく、1回でも複数回でも実施が可能であり、再生後の平均細孔直径が前述記載の範囲を満たせば、再生触媒は継続して反応に供することが可能である。
本発明においては、使用前の触媒は、下記(式1)で表される組成の触媒活性成分を含有する。
Mo12BiFeCoNi・・・・(式1)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、fおよびgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)
本発明に使用する触媒を得るための各金属元素の原料としては特に制限はないが、各金属元素を少なくとも一種含む硝酸塩、亜硝酸塩、硫酸塩、アンモニウム塩、有機酸塩、酢酸塩、炭酸塩、次炭酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、水酸化物、酸化物、金属、合金等、またはこれらの混合物を用いることができ、その具体例としては、下記のようなものが挙げられる。モリブデンの供給源としてはモリブデン酸アンモニウムが好ましい。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムが最も好ましい。ビスマス成分原料としては硝酸ビスマスが好ましい。鉄、コバルト、ニッケルおよびその他の元素の原料としては通常は酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等またはそれらの混合物を用いることができる。
本発明の触媒の調製法としては特に制限はないが、大別すると以下の通り2種類の調製法があり、便宜的に本発明において(A)法および(B)法とする。(A)法は、触媒の活性成分を粉末として得た後、これを成形する方法であり、(B)法は、予め成形された担体上に、触媒の活性成分の溶解した溶液を接触させて担持させる方法である。以下で(A)法および(B)法の詳細を記載する。
以下では(A)法による触媒調製方法を記載する。以下で各工程の順を好ましい例として記載しているが、最終的な触媒製品を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。
工程(A1) 調合と乾燥
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれを用いても良く、触媒の活性成分の原料濃度も制限はない。更に、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件は、特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、20℃以上90℃以下の条件下で触媒の活性成分の原料の混合溶液またはスラリーを形成し、これを噴霧乾燥器に導入して乾燥器出口が70℃以上150℃以下、得られる乾燥粉体の平均粒径が10μm以上700μm以下となるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。
工程(A2) 予備焼成
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、本発明の予備焼成粉体を得ることができる。この予備焼成の条件に関しても、予備焼成時間や予備焼成時の雰囲気について特に制限はなく、予備焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明においてトンネル焼成炉において300℃以上600℃以下、予備焼成1時間以上12時間以下、空気雰囲気下による方法が好ましい。
工程(A3) 成形
こうして得られた予備焼成粉体をそのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は、球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下段落に示す担体や成形助剤、強度向上剤、バインダー等を予備焼成粉体に添加して、円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。このうち本発明においては、不活性な球状担体に予備焼成粉体を転動造粒法によりコーティングさせ担持成形する方法が好ましい。
球状担体の材質としては、アルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。球状担体と予備焼成粉体の仕込み重量から、下記式より担持率が算出される。
担持率(重量%)=(成形に使用した予備焼成粉体の重量)/{(成形に使用した予備焼成粉体の重量)+(成形に使用した球状担体の重量)}×100
成形に使用する予備焼成粉体以外の原料としては、結晶性セルロ-スなどの成形助剤、またはセラミックウィスカ-などの強度向上剤、バインダーとしてアルコール、ジオール、トリオール、およびそれらの水溶液等を、任意の種類および混合割合で、予備焼成粉体と共に用いて成形することができ、特に制限はない。また、このバインダーに前記触媒原料の溶液を使用することで、工程(A1)とは異なる態様で触媒の最表面に元素を導入することも可能である。
工程(A4) 本焼成
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に300℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間は、通常2時間以上20時間以下、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲である。
次に、以下では(B)法による触媒調製方法を記載する。以下では各工程を順に記載しているが、最終的な触媒を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。
工程(B1) 含浸
触媒の活性成分を含む溶液またはスラリーを調製し、ここに成形担体または(A)法で得た触媒を含浸させ、成形品を得る。ここで、含浸による触媒の活性成分の担持手法は、ディップ法、インシピエントウェットネス法、イオン交換法、pHスイング法など特に制限はなく、溶液またはスラリーの溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、混合溶液またはスラリーの液温、液にかかる圧力、液の周囲の雰囲気についても特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。また、成形担体および(A)法で得た触媒のいずれの形状も球状、円柱状、リング状、粉末状など特に制限はなく、さらに材質、粒径、吸水率、機械的強度も特に制限はない。
工程(B2) 乾燥
こうして得られた成形品を、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて20℃以上200℃以下の範囲において熱処理を行い乾燥し、本発明の触媒成形乾燥体を得る。乾燥時間や乾燥時の雰囲気について特に制限はなく、乾燥の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。
工程(B3) 本焼成
こうして得られた触媒成形乾燥体を、本焼成300℃以上600℃以下で熱処理を行い、本発明の触媒を得る。ここで、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間は、通常2時間以上20時間以下、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲である。
以上の調製により得られた触媒は、その形状やサイズに特に制限はないが、反応管への充填の作業性と充填後の反応管内の圧力損失等を勘案すると、形状は球形状、平均粒径は3.0mm以上10.0mm以下、また触媒活性成分の担持率は20重量%以上80重量%以下が好ましい。
ここで、反応に使用する前の触媒の平均細孔直径は、触媒の組成や形状、製造方法の違いによって変化し得るため、本発明の効果を発現するために特に限定するものではないが、通常0.16μm以上0.46μm以下、好ましくは0.21μm以上0.41μm以下、より好ましくは0.26μm以上0.36μである。
本発明において、モノオレフィン、好ましくはn-ブテンをブタジエン製造用触媒の存在下に気相接触酸化的脱水素反応させる条件の例としては、以下のような条件が挙げられる。すなわち、原料ガス組成として1容量%以上20容量%以下のn-ブテン、さらに好ましくは1-ブテン、5容量%以上20容量%以下の分子状酸素、0容量%以上60容量%以下の水蒸気および0容量%以上94容量%以下の不活性ガス、例えば窒素、炭酸ガスを含む混合ガスを用い、熱媒温度としては200℃以上500℃以下の範囲であり、反応圧力としては常圧以上10気圧以下の圧力下、触媒に対する前記原料ガスの空間速度(GHSV)は350hr-1以上7000hr-1以下の範囲である。反応の形態として固定床、移動床、および流動床の中で制約はないが、固定床が好ましい。
本発明の触媒の再生工程における空間速度(以下GHSVと略す。)は、特に制限はないが、通常50hr-1以上4000hr-1以下、好ましくは100hr-1以上2000hr-1以下の範囲である。GHSVの値が通常の範囲を超えると、触媒の破損が生じ触媒の粉末や破片によって反応器内が閉塞する、または反応器外へ流出するなどの影響による触媒の活性低下、後工程へ炭素状物質が流出することによる汚染が引き起こされる可能性がある。一方、GHSVの値が通常の範囲よりも低いと、コーク状物質の除去が効率よく実行されず、再生に長期間が必要となる、または効果が十分に発現されない場合がある。
以下、実施例により本発明を更に詳細に説明する。本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、%は特に断りがない限りモル%を意味する。また、本発明における1―ブテン転化率、ブタジエン収率、TOS、破損率の定義は、以下の通りである。
触媒の平均細孔直径は、水銀圧入法によって測定する。測定値は細孔径が0.0036μmから400μmまでの細孔分布データから算出される。
n-ブテン転化率(モル%)
=(反応した1―ブテンのモル数/供給した1―ブテンのモル数)×100
ブタジエン収率(モル%)
=(生成したブタジエンのモル数/供給したn-ブテンのモル数)×100
TOS=混合ガス流通時間(時間)
破損率は、再生後、反応管より触媒を抜出し、3.35mmの篩にて分級したときに、篩の下に落ちた欠片状および粉状にまで破損した触媒を触媒片として秤量し、以下式により算出する。
破損率(重量%)
= 触媒片の重量(g)/反応後の抜き出した触媒重量(g)×100
実施例1
(触媒の調製)
ヘプタモリブデン酸アンモニウム800重量部を80℃に加温した純水3000重量部に完全溶解させた(母液1)。次に、硝酸セシウム11重量部を純水124mlに溶解させて、母液1に加えた。次に、硝酸第二鉄275重量部、硝酸コバルト769重量部および硝酸ニッケル110重量部を60℃に加温した純水612mlに溶解させ、母液1に加えた。続いて硝酸ビスマス311重量部を60℃に加温した純水330mlに硝酸(60重量%)79重量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を用い、不活性の球状担体(シリカアルミナ)に、担持率が50重量%となるように球状に担持成形した。こうして得られた球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒を得た。仕込み原料から計算される触媒の原子比は、Mo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.0:1.0:0.15であった。ここで、反応に使用する前の触媒の平均細孔直径を測定したところ、0.31μmであった。
(反応試験)
得られた触媒53mlをステンレス鋼反応管に充填し、ガス体積比率が1-ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr-1の条件で、1-ブテン転化率=78.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS400時間まで反応した。その後、1-ブテンおよび酸素、水蒸気の供給を停止し、析出したコーク状物質を除去させる再生目的で、反応器を循環する熱媒を220℃まで下げ、続けて空気を用い、常圧下、空間速度250hr-1で燃焼反応を開始し、空気雰囲気のまま段階的に熱媒が400℃になるまで昇温した。再生後の触媒を抜き出し、平均細孔直径を測定したところ0.24μmであった。また、破損率を測定したところ、0.05重量%であった。
実施例2
(反応試験)
実施例1で得られた触媒53mlをステンレス鋼反応管に充填し、ガス体積比率が1-ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr-1の条件で、1-ブテン転化率=97.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS600時間まで反応した。その時のブタジエン収率は85.4%であった。反応の途中で、1-ブテンと追加窒素ガス供給を停止し、空気のみ流通させながら熱媒の温度を400℃まで昇温する再生を反応と交互に4回行った。最後の再生後に抜き出した触媒の平均細孔直径を測定したところ0.31μmであった。また、破損率を測定したところ、0.02重量%であった。その後、反応を1-ブテン転化率=97.0±1.0%を保持できるよう再開したところ、ブタジエン収率は85.8%であった。
実施例3
(反応試験)
実施例1で得られた触媒1.64Lをステンレス鋼反応管に充填し、ガス体積比率が1-ブテン:酸素:窒素:水蒸気=1:1.2:11.1:2.3の混合ガスを用い、常圧下、GHSV2000hr-1の条件で、1-ブテン転化率=92.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS4000時間まで反応した。反応の途中で、1-ブテンと追加窒素ガス、水蒸気の供給を停止し、空気のみ流通させながら熱媒の温度を400℃まで昇温する再生を反応と交互に2回行った。最後の再生後に抜き出した触媒のガス入口部位の平均細孔直径を測定したところ0.33μmであった。また、破損率を測定したところ、0.03重量%であった。
比較例1
(反応試験)
実施例3で最後の再生後に抜き出した触媒のガス出口部位の平均細孔直径を測定したところ0.18μmであった。また、破損率を測定したところ、1.95重量%であり、目視で触媒の破損が観察された。
実施例のように、再生後に平均細孔直径が0.19μm以上である再生後触媒は、破損率が低い傾向にあり、さらに再生後の反応における収率が維持できていることから、反応の継続使用に耐えうる長期安定性に優れた触媒であることがわかる。また、比較例では平均細孔直径が0.19μmを下回り、破損率は高い傾向にあることから、触媒を再生しても破損が進行しており反応管の閉塞や異常反応の発生など、さまざまなトラブルを誘発しうる状態であることがわかる。

Claims (3)

  1. 炭素原子数4以上のモノオレフィンを共役ジオレフィン製造用触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造する方法であって、使用前の触媒の活性成分組成が下記の式1で表される触媒を使用後に再生し、平均細孔直径が0.19μm以上となった再生後触媒を使用することを特徴とする共役ジオレフィンの製造方法、
    Mo12BiFeCoNi・・・・(式1)
    (式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロピウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、fおよびgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である)。
  2. 触媒が、担体に触媒活性成分をコーティングした成形触媒であり、得られた成形触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分の担持率が20重量%以上80重量%以下である請求項1に記載の製造方法。
  3. 炭素原子数4以上のモノオレフィンがn-ブテンであり、共役ジオレフィンが1,3-ブタジエンである請求項1または2に記載の製造方法。
PCT/JP2017/006303 2016-02-22 2017-02-21 共役ジオレフィンの製造方法 WO2017146025A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031519A JP2017149654A (ja) 2016-02-22 2016-02-22 共役ジオレフィンの製造方法
JP2016-031519 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017146025A1 true WO2017146025A1 (ja) 2017-08-31

Family

ID=59686196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006303 WO2017146025A1 (ja) 2016-02-22 2017-02-21 共役ジオレフィンの製造方法

Country Status (2)

Country Link
JP (1) JP2017149654A (ja)
WO (1) WO2017146025A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579010B2 (ja) * 2016-03-23 2019-09-25 三菱ケミカル株式会社 複合酸化物触媒および共役ジエンの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884047A (ja) * 1981-11-02 1983-05-20 ハイドロカ−ボン・リサ−チ・インコ−ポレ−テツド 触媒の再生方法
WO2001094009A1 (fr) * 2000-06-08 2001-12-13 Japan Energy Corporation Procede de preparation d'un catalyseur utilise dans le raffinage par hydrogenation et procede de recuperation de metal
WO2014086768A1 (de) * 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014086815A1 (de) * 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014202501A1 (de) * 2013-06-17 2014-12-24 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
WO2015004042A2 (de) * 2013-07-10 2015-01-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884047A (ja) * 1981-11-02 1983-05-20 ハイドロカ−ボン・リサ−チ・インコ−ポレ−テツド 触媒の再生方法
WO2001094009A1 (fr) * 2000-06-08 2001-12-13 Japan Energy Corporation Procede de preparation d'un catalyseur utilise dans le raffinage par hydrogenation et procede de recuperation de metal
WO2014086768A1 (de) * 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014086815A1 (de) * 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
WO2014202501A1 (de) * 2013-06-17 2014-12-24 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu 1,3-butadien
WO2015004042A2 (de) * 2013-07-10 2015-01-15 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien

Also Published As

Publication number Publication date
JP2017149654A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6559039B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP7455256B2 (ja) 触媒及びその製造方法
WO2017146024A1 (ja) 共役ジオレフィンの製造方法
JP2020171906A (ja) 触媒およびその製造方法
JP2008080232A (ja) メタクリル酸製造用触媒の再生方法及びメタクリル酸の製造方法
JP6779911B2 (ja) ブタジエン製造用触媒の再生方法
JP6564847B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
WO2017146025A1 (ja) 共役ジオレフィンの製造方法
JP2017080738A (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP6731927B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP6534216B2 (ja) 共役ジオレフィン製造用触媒の再生方法
JP6534217B2 (ja) 共役ジオレフィン製造用触媒の再生方法
JP2017080739A (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP2018140951A (ja) 共役ジオレフィンの製造方法
JP2018140952A (ja) 共役ジオレフィンの製造方法
JP6734178B2 (ja) 精製系阻害物質を選択的に低減させる触媒およびその製造方法
JP7191482B2 (ja) 触媒およびその製造方法
JP2022124634A (ja) イソプレン製造用触媒及びその用途

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756463

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756463

Country of ref document: EP

Kind code of ref document: A1