JP6534217B2 - 共役ジオレフィン製造用触媒の再生方法 - Google Patents

共役ジオレフィン製造用触媒の再生方法 Download PDF

Info

Publication number
JP6534217B2
JP6534217B2 JP2016031518A JP2016031518A JP6534217B2 JP 6534217 B2 JP6534217 B2 JP 6534217B2 JP 2016031518 A JP2016031518 A JP 2016031518A JP 2016031518 A JP2016031518 A JP 2016031518A JP 6534217 B2 JP6534217 B2 JP 6534217B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
regeneration
less
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031518A
Other languages
English (en)
Other versions
JP2017148700A (ja
Inventor
佑太 中澤
佑太 中澤
成喜 奥村
成喜 奥村
文吾 西沢
文吾 西沢
友洋 小畑
友洋 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2016031518A priority Critical patent/JP6534217B2/ja
Priority to PCT/JP2017/006305 priority patent/WO2017146026A1/ja
Publication of JP2017148700A publication Critical patent/JP2017148700A/ja
Application granted granted Critical
Publication of JP6534217B2 publication Critical patent/JP6534217B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造するための再生方法である。
従来、合成ゴム等の原料であるブタジエンは、工業的にはナフサ留分の熱分解および抽出により製造されているが、今後市場への安定供給の悪化が懸念されることから、新たなブタジエンの製造方法が求められている。そこで、ブテン類(n−ブテンとも表記)と分子状酸素を含む混合ガスから、触媒の存在下でn−ブテンを酸化的脱水素する方法が注目されている。しかし、反応生成物および/または反応副生成物によるコーク状物質が反応器内、つまり触媒表面および内部、イナート物質、反応管内壁や後工程設備内に析出または付着することによって、工業プラントにおいて反応ガスの流通の阻害、反応管の閉塞やそれらに伴うプラントのシャットダウンや収率の低下等さまざまなトラブルを引き起こす課題がある。これらのトラブルを回避する目的で、工業プラントでは一般的にコーク状物質によって閉塞が生じる前に反応を中止し、反応器内を循環する熱媒を昇温すること等によりコーク状物質を除去する再生を行う。また、コーク状物質の生成メカニズムとしては、たとえば以下が想定される。モリブデンを含む複合金属酸化物触媒の使用の際には昇華し反応器内に析出したモリブデン化合物を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、触媒および反応器内の異常酸塩基点やラジカル生成点を起点とした各種オレフィン類の重合および高沸点化合物の凝縮によるもの、共役ジエンおよびその他オレフィン化合物によるディールスアルダー反応による高沸点化合物の生成および反応器内で局所的に温度が低い点における凝縮によるもの、などが挙げられ、これ以外にも種々のメカニズムが知られている。
触媒表面に析出したコーク状物質の除去方法として、イソ酪酸またはその低級エステルを製造するためのヘテロポリ酸系触媒に炭素分が析出することにより触媒性能が劣るため、空気と水蒸気を含有するガスを反応器に流し、炭素分を触媒から除去する触媒の再生方法が特許文献1にて開示されている。特許文献2では、触媒層のピーク温度範囲を400℃(反応温度と同じ)〜450℃の状況下、酸素含有ガスを反応器に流しており、かつ酸素含有ガスとともに水蒸気の使用を避けた方がコーク状物質除去には好ましいことが開示されている。特許文献3では、化学反応器内における炭素状物質の除去のために400℃と500℃の間の温度での酸化段階を必須としている。特許文献4では、脱水素化触媒の再生方法において0.5bar〜20barの範囲で繰り返し迅速に反対方向に2倍〜20倍だけ変化させる工程を必須としている。特許文献5では、低級オレフィンと低級脂肪族カルボン酸とを気相中で反応させて低級脂肪族カルボン酸エステル製造用触媒を再生する方法である。引用文献6では、メタノールをジメチルエーテルへ転化するためのゼオライト含有触媒の再生方法である。
コーク状物質の除去方法は、種々の反応によって生成されるコーク状物質の性状や触媒の性状によって特徴が異なることから、炭素原子数4以上のモノオレフィンを酸化的脱水素反応によって共役ジオレフィンを製造する触媒並びに反応器内に付着するコーク状物質の除去および該触媒の破損を抑制する再生方法における技術として特許文献1〜6では不十分であり、さらなる改良が求められる。
特開平2−222726号公報 特開平05−192590号公報 特表2005−521021号公報 特表2004−522563号公報 特開2003−71299号公報 特開昭58−30340号公報
本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造するための再生方法であって、触媒の破損を抑制し、長期安定性に優れた共役ジオレフィンの製造方法を提供することを目的とする。
本発明者らは、前述課題を解決すべく鋭意研究の結果、本発明は、炭素原子数4以上のモノオレフィン、好ましくはn−ブテンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィン、好ましくはブタジエンを製造するための再生方法であって、反応に使用する前の触媒における累積比表面積A1と再生後の触媒における累積比表面積A2との比率A2/A1が特定の範囲となるように再生処理を施せば上記課題を解決できることを見出し、本発明を完成させるに至った。
即ち、本発明は
(1)本発明は、炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造するための再生方法であって、反応に使用する前の触媒における累積比表面積A1と再生後の触媒における累積比表面積A2との比率A2/A1が1.72以下となるように再生を実施することを特徴とする再生方法、
(2)下記の式1で表わされる活性成分組成を満たす触媒を用いた上記(1)記載の再生方法、
Mo12BiFeCoNi・・・・(式1)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)、
(3)触媒が、担体に触媒活性成分をコーティングした成形触媒であり、該成形触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分の担持率が20重量%以上80重量%以下である(1)または(2)いずれか記載の再生方法、
(4)気相接触酸化的触媒の反応前における累積比表面積が1.49m/g以上4.49m/g以下である(1)から(3)いずれか記載の再生方法、
(5)(1)記載のモノオレフィンがn−ブテンであり、共役ジオレフィンが1,3−ブタジエンである(1)から(4)いずれか記載の再生方法、
に関する。
本発明によれば、反応に使用する前の触媒における累積比表面積と再生後の触媒における累積比表面積との比率が特定の範囲となるように再生処理することにより触媒の破損を抑制し、収率が維持され、長期にわたり安定して共役ジオレフィンが製造できる。
本発明は、炭素原子数4以上のモノオレフィン、好ましくはn−ブテンを共役ジオレフィン製造用、好ましくはブタジエン触媒の存在下に気相接触酸化的脱水素反応させることで触媒並びに反応器内に付着したコーク状物質を除去する方法である。本発明においては、共役ジオレフィン製造用触媒が充填された反応器内を循環する熱媒を200℃以上400℃未満、好ましくは200℃以上350℃以下の条件下にて下記組成のガスを供給し再生処理する。なお、反応器内を循環する熱媒の温度を200℃以上400℃未満で一定、200℃以上350℃以下で一定にするとさらに好ましい。ガスの組成としては水蒸気0容量%以上42容量%以下かつ酸素0容量%より大きく21%容量%以下である。再生処理後、再生された触媒を再度反応に使用するが、再生処理を施す時期は重要で、処理が早い場合にはプラントの停止回数が多くなることから総じて期間が長くなり経済性が著しく悪化し、また時期が遅い場合には、コーク状物質が過剰析出することで触媒の損傷が大きく、再生を実行しても効果が十分に発現されず、再生しても触媒を再使用できなくなることで触媒の交換が必要となり、経済性が悪化するため、適切な時期に実施されるべきである。
しかし、これまでどのような指標で再生時期を決定すれば適切かは知られていないのは、触媒の表面や細孔内で炭素が析出している再生処理前の触媒の物性測定を実施しても評価が困難であることが理由であると考えられる。そこで、本発明では、触媒を再生処理することによって炭素を除去した後の触媒の物性評価の結果を指標として採用する。具体的には反応前と再生後の触媒自体の累積比表面積の比率が一定の範囲を満たすように再生処理する。
累積比表面積A1は、反応に使用する前の触媒固有の物性値であり、公知の技術によって目的の反応に適した物性へ制御されるものである。具体的には触媒組成や成形方法、焼成方法等を変更することで触媒細孔を設計することが可能である。累積比表面積A2は、触媒反応や再生の過程で前述の通り変化するものである。より詳細には、反応と再生それぞれにおける供給ガス組成や供給ガス空間速度、反応器の形態、反応器に循環される熱媒の温度、反応器内における温度制御能力などが影響すると考えられる。本発明によれば、累積比表面積A2が累積比表面積A1に近い値である方が好ましく、A2/A1≦1.72となるよう累積比表面積の変化を抑えるための方法としては、気相接触酸化的脱水素反応において供給するガス濃度を変更する方法、例えば酸素濃度を比較的高くする方法、また供給ガス空間速度を比較的高くする方法、反応器を循環する熱媒の温度を比較的高くする方法等が効果的な傾向にある。
触媒並びに反応器内に付着したコーク状物質を除去するための適切な再生時期は、気相接触酸化的脱水素反応の反応条件や使用する触媒の性状、n−ブテン炭素数4以上のモノオレフィン原料の性状、プラント反応器の形態などによって大きく影響を受ける。しかるに、反応後再生された触媒の性状から再生時期が適切であったかを判断することができる。具体的には、反応前の触媒における累積比表面積A1と再生後の触媒の累積比表面積A2との比率A2/A1が通常1.72以下であり、好ましくは0.46以上1.72以下、より好ましくは0.69以上1.50以下さらに好ましくは0.93以上1.26以下であれば触媒の破損が抑制され、触媒を長期安定的に使用することが可能となる。
適した再生の時期を予測するためには、小スケールでのシミュレーションを繰り返し、前述の物性パラメータを満たす条件範囲を特定し、これを実機規模の工業技術へ適応すればよい。なお、実機規模で定常運転する際に、設備が定修などで停止した場合に、再生後の触媒の一部を抜き出し、物性パラメータを測定し再生時期が適していたかを検証することで、より適した再生時期を選択できる。
累積比表面積の測定方法は特に制限されないが、水銀圧入法によって測定するのが好ましい。また、測定値を細孔径が0.0036μm以上400μm以下までの細孔分布データから算出することが好ましい。
累積比表面積とは、触媒の微細な構造の性状を示すパラメータの一つであり、反応によって触媒表面に高比表面積な炭素が析出すれば累積比表面積は大きくなり、また炭素が微細な細孔を閉塞させるよう析出した場合には累積比表面積が小さくなる可能性がある。さらには、炭素析出によって触媒の細孔が拡大され、その後再生によって炭素が取り除かれた場合には累積比表面積は大きくなるなどの変化が生じる。また、累積比表面積の大きな変化は、成形触媒の歪みを意味し、強度が低下する傾向にあり、反応成績の低下や反応管の閉塞、異常反応を誘引する。
本発明における「コーク状物質」とは、共役ジオレフィンを製造する反応において、反応原料または目的生成物または反応副生成物の少なくともいずれかにより生じるものであり、その化学的組成や生成メカニズムの詳細は不明であるが、触媒表面および内部、イナート物質、反応管内壁や後工程設備内に析出または付着することによって、特に工業プラントにおいては反応ガスの流通の阻害、反応管の閉塞やそれらに伴う反応のシャットダウン等さまざまなトラブルを引き起こす原因物質であるものとする。
本発明においてコーク状物質が除去できるメカニズムは、詳細には解明できておらず不明であるが、気相接触酸化的脱水素反応で生成するコーク状物質が触媒、反応管内壁、イナート物質等に付着した場合に、急激な燃焼を引き起こさずに徐々に分解が進行するのに適した温度であると考えられる。しかし、熱媒が400℃以上の条件では、コーク状物質が急激に燃焼し、触媒に付着している場合には、その発熱によって触媒の結晶構造変化が引き起こされ、変質劣化し、さらには発生した燃焼ガスによって触媒に圧力がかかり破損する可能性があり、また反応管内部の急激な発熱の場合には、反応器の損傷を引き起こしかねない。また、熱媒が200℃よりも低い場合には、燃焼が進行せず再生の効果が十分に発現されない、もしくは再生時間が長くなる場合があり、プラント停止期間が長くなることで経済性が悪化するおそれがある。
また、反応器に供給する希釈酸素ガスに対し水蒸気を加えることによって、熱媒の温度が低くてもコーク状物質を効果的に反応器から除去することができる。反応器に供給するガスの水蒸気容量率及び/または酸素容量率に関し、水蒸気においては0容量%以上42容量%以下、酸素においては0容量%より大きく21容量%以下であれば特に制限はないが、酸素0容量%より大きく21容量%以下を含有するガスを反応器に供給した後、次いで水蒸気を0容量%より大きく42容量%以下を含有するガスを反応器に供給することによってコーク状物質を除去することが好ましい。さらに好ましくは、酸素0容量%より大きく21%以下を含有し、かつ水蒸気を含有しないガスを反応器に供給した後、次いで水蒸気を0容量%より大きく42容量%以下を含有し、かつ酸素0容量%より大きく21容量%以下を含有するガスを反応器に供給するとコーク状物質をより効果的に抑制することができる。
反応器に供給するガスの水蒸気容量率及び/または酸素容量率は、例えば窒素等によって調整することができる。
供給するガスの組成を切り替える時期としては、その条件において排出されるCOおよびCOの生成速度が最大となった後、生成速度が最大生成速度の95%以下であり、かつ生成速度が緩やかに低下、安定した時である。実施した酸化的脱水素反応の反応条件や反応スケール、反応期間や触媒の性能によってコーク状物質の性質や量によって燃焼挙動が異なるため、それらを考慮の上、ガスの組成を切り替える時を上述の範囲内において、適宜変えてもよい。また、ここで排出されるCOおよびCOの生成速度とは、処理中に生成されるCOおよびCOの生成速度であるため、空気中にもともと含まれるCOおよびCO量は除され計算されるものである。
再生中の熱媒の昇温速度は通常は特に制限されないが、1℃/h以上200℃/h以下の範囲にすることが好ましい。昇温速度が200℃/hよりも速いと急激な燃焼を引き起こし、十分効果的な再生を行うことができない場合がある。また、昇温速度が1℃/hよりも遅いと再生に要する時間が長くなり経済性が悪化する。
前述の反応器内を循環する熱媒温度および反応器に供給するガスに含まれる水蒸気容量率及び/または酸素容量率の操作と昇温速度を組み合わせて実施するとさらに好ましく、反応器内を循環する熱媒を200℃以上350℃以下で一定の状況下、0容量%より大きく21容量%以下の酸素を含むガスで再生した後、次いで0容量%より大きく42容量%以下の水蒸気を含むガスを供給する工程を2回以上繰り返して、反応管出口ガスから排出されるCOおよびCOの生成速度が適切な生成速度まで可能な限り低下するよう実施すると最も好ましい。この工程を2回繰り返す場合は、1回目工程と2回目工程の熱媒の温度は異なる方が好ましく、2回目工程の熱媒の温度は、1回目工程の熱媒の温度よりも高い方がより好ましい。この工程を2回以上繰り返す場合は、工程ごとに熱媒の温度が異なっても良い。また、適切な生成速度とは、実施した酸化的脱水素反応の反応条件や反応スケール、反応期間や触媒の性能によって異なるため、適宜、決定されるものである。
再生は回数に限定はなく、1回でも複数回でも実施が可能であり、再生後の累積比表面積の比率が前述記載の範囲を満たせば、再生触媒は継続して反応に供することが可能である。
本発明に使用する触媒は、下記(式1)で表される組成の触媒活性成分を含有するのが好ましい。
Mo12BiFeCoNi・・・・(式1)
(式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)
本発明に使用する触媒を得るための各金属元素の原料としては特に制限はないが、各金属元素を少なくとも一種含む硝酸塩、亜硝酸塩、硫酸塩、アンモニウム塩、有機酸塩、酢酸塩、炭酸塩、次炭酸塩、塩化物、無機酸、無機酸の塩、ヘテロポリ酸、ヘテロポリ酸の塩、水酸化物、酸化物、金属、合金等、またはこれらの混合物を用いることができ、その具体例としては、下記のようなものが挙げられる。モリブデンの供給源としてはモリブデン酸アンモニウムが好ましい。特にモリブデン酸アンモニウムには、ジモリブデン酸アンモニウム、テトラモリブデン酸アンモニウム、ヘプタモリブデン酸アンモニウム等、複数種類の化合物が存在するが、その中でもヘプタモリブデン酸アンモニウムが最も好ましい。ビスマス成分原料としては硝酸ビスマスが好ましい。鉄、コバルト、ニッケル及びその他の元素の原料としては通常は酸化物あるいは強熱することにより酸化物になり得る硝酸塩、炭酸塩、有機酸塩、水酸化物等又はそれらの混合物を用いることができる。
本発明の触媒の調製法としては特に制限はないが、大別すると以下の通り2種類の調製法があり、便宜的に本発明において(A)法および(B)法とする。(A)法は触媒の活性成分を粉末として得た後、これを成形する方法であり、(B)法は予め成形された担体上に、触媒の活性成分の溶解した溶液を接触させて担持させる方法である。以下で(A)法および(B)法の詳細を記載する。
以下では(A)法による触媒調製方法を記載する。以下で各工程の順を好ましい例として記載しているが、最終的な触媒製品を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。
工程(A1) 調合と乾燥
触媒活性成分の原料の混合溶液またはスラリーを調製し、沈殿法、ゲル化法、共沈法、水熱合成法等の工程を経た後、乾燥噴霧法、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて、本発明の乾燥粉体を得る。この混合溶液またはスラリーは、溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、この混合溶液またはスラリーの液温、雰囲気等の調合条件および乾燥条件について特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、20℃以上90℃以下の条件下で触媒の活性成分の原料の混合溶液またはスラリーを形成させ、これを噴霧乾燥器に導入して乾燥器出口が70℃以上150℃以下、得られる乾燥粉体の平均粒径が10μm以上700μm以下となるよう熱風入口温度、噴霧乾燥器内部の圧力、およびスラリーの流量を調節する方法である。
工程(A2) 予備焼成
こうして得られた乾燥粉体を200℃以上600℃以下で予備焼成し、本発明の予備焼成粉体を得ることができる。この予備焼成の条件に関しても、予備焼成時間や予備焼成時の雰囲気について特に制限はなく、予備焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明においてトンネル焼成炉において300℃以上600℃以下、予備焼成1時間以上12時間以下、空気雰囲気下による方法が好ましい。
工程(A3) 成形
こうして得られた予備焼成粉体をそのまま触媒として使用することもできるが、成形して使用することもできる。成形品の形状は球状、円柱状、リング状など特に制限されないが、一連の調製で最終的に得られる触媒における機械的強度、反応器、調製の生産効率等を考慮して選択するべきである。成形方法についても特に制限はないが、以下段落に示す担体や成形助剤、強度向上剤、バインダー等を予備焼成粉体に添加して円柱状、リング状に成形する際には打錠成形機や押出成形機などを用い、球状に成形する際には造粒機などを用いて成形品を得る。このうち本発明において不活性な球状担体に予備焼成粉体を転動造粒法によりコーティングさせ担持成形する方法が好ましい。
球状担体の材質としてはアルミナ、シリカ、チタニア、ジルコニア、ニオビア、シリカアルミナ、炭化ケイ素、炭化物、およびこれらの混合物など公知の物を使用でき、さらにその粒径、吸水率、機械的強度、各結晶相の結晶化度や混合割合なども特に制限はなく、最終的な触媒の性能、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。球状担体と予備焼成粉体の混合の割合は、各原料の仕込み重量により、下記式より担持率として算出される。
担持率(重量%)=(成形に使用した予備焼成粉体の重量)/{(成形に使用した予備焼成粉体の重量)+(成形に使用した球状担体の重量)}×100
成形に使用する予備焼成粉体以外の原料として、予備焼成粉体と結晶性セルロ−スなどの成形助剤、またはセラミックウィスカ−などの強度向上剤、バインダーとしてアルコール、ジオール、トリオール、およびそれらの水溶液等を任意の種類および混合割合で用いて成形することができ、特に制限はない。また、このバインダーに前記触媒原料の溶液を使用することで、工程(A1)とは異なる態様で触媒の最表面に元素を導入することも可能である。
工程(A4) 本焼成
このようにして得られた予備焼成粉体または成形品は、反応に使用する前に300℃以上600℃以下で再度焼成(本焼成)することが好ましい。本焼成に関しても、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間としては、通常2時間以上20時間以下であり、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲で行うのがよい。
次に、以下では(B)法による触媒調製方法を記載する。以下では各工程を順に記載しているが、最終的な触媒を得るための各工程の順番、工程数、各工程の組み合わせについて制限はないものとする。
工程(B1) 含浸
触媒の活性成分を含む溶液またはスラリーを調製し、ここに成形担体または(A)法で得た触媒を含浸させ、成形品を得る。ここで、含浸による触媒の活性成分の担持手法はディップ法、インシピエントウェットネス法、イオン交換法、pHスイング法など特に制限はなく、溶液またはスラリーの溶媒として水、有機溶剤、またはこれらの混合溶液のいずれでも良く、触媒の活性成分の原料濃度も制限はなく、更に、混合溶液またはスラリーの液温、液にかかる圧力、液の周囲の雰囲気についても特に制限はないが、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。また、成形担体および(A)法で得た触媒のいずれも形状は球状、円柱状、リング状、粉末状など特に制限はなく、さらに材質、粒径、吸水率、機械的強度も特に制限はない。
工程(B2) 乾燥
こうして得られた成形品を、蒸発乾固法、ドラム乾燥法、凍結乾燥法等の公知の乾燥方法を用いて20℃以上200℃以下の範囲において熱処理を行い、本発明の触媒成形乾燥体を得る。乾燥時間や乾燥時の雰囲気について特に制限はなく、乾燥の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。
工程(B3) 本焼成
こうして得られた触媒成形乾燥体を、本焼成300℃以上600℃以下で熱処理を行い、本発明の触媒を得る。ここで、本焼成時間や本焼成時の雰囲気について特に制限はなく、本焼成の手法も流動床、ロータリーキルン、マッフル炉、トンネル焼成炉など特に制限はなく、最終的な触媒の性能、機械的強度、成形性や生産効率等を考慮して適切な範囲を選択されるべきである。このうち本発明において最も好ましいのは、トンネル焼成炉において本焼成450℃以上600℃以下、本焼成1時間以上12時間以下、空気雰囲気下による方法である。このとき、昇温時間としては、通常2時間以上20時間以下であり、好ましくは3時間以上15時間以下、さらに好ましくは4時間以上10時間以下の範囲で行うのがよい。
以上の調製により得られた触媒は、その形状やサイズに特に制限はないが、反応管への充填の作業性と充填後の反応管内の圧力損失等を勘案すると、形状は球形状、平均粒径は3.0mm以上10.0mm以下、また触媒活性成分の担持率は20重量%以上80重量%以下が好ましい。
ここで、触媒における累積比表面積は、触媒の組成や形状、製造方法の違いによって変化し得るため、本発明の効果を発現するために特に限定するものでは無いが、通常1.49/g以上4.49/g以下、好ましくは1.99/g以上3.99/g以下、より好ましくは2.49/g以上3.49/gである。
本発明による例として、モノオレフィン、好ましくはn−ブテンをブタジエン製造用触媒の存在下に酸化的脱水素反応の条件は、原料ガス組成として1容量%以上20容量%以下のn−ブテン、さらに好ましくは1−ブテン、5容量%以上20容量%以下の分子状酸素、0容量%以上60容量%以下の水蒸気及び0容量%以上94容量%以下の不活性ガス、例えば窒素、炭酸ガスを含む混合ガスを用い、熱媒温度としては200℃以上500℃以下の範囲であり、反応圧力としては常圧以上10気圧以下の圧力下、触媒に対する前記原料ガスの空間速度(GHSV)は350hr−1以上7000hr−1以下の範囲となる。反応の形態として固定床、移動床、および流動床の中で制約はないが、固定床が好ましい。
本発明におけるブテン類(n−ブテン類とも表記)とは、1−ブテン、トランス−2−ブテン、シス−2−ブテン、イソブチレンのうち、単一成分のガス、もしくは少なくとも一つの成分を含む混合ガスを意味するものとし、共役ジオレフィンとは、ブタジエン、好ましくは1,3−ブタジエンを意味するものとする。
本発明の触媒の再生工程における空間速度(以下GHSVと略す。)としては、特に制限はないが、通常50hr−1以上4000hr−1以下、好ましくは100hr−1以上2000hr−1以下の範囲である。GHSVの値が通常の範囲を超えると、触媒の破損が生じ触媒の粉末や破片によって反応器内が閉塞する、または反応器外へ流出するなどの影響による触媒の活性低下、後工程へ炭素状物質が流出することによる汚染が引き起こされる可能性がある。一方、GHSVの値が通常の範囲よりも低いとコーク状物質の除去が効率よく実行されず、再生に長期間が必要となる、または効果が十分に発現されない場合がある。
以下実施例により本発明を更に詳細に説明する。本発明はその趣旨を超えない限り、以下の実施例に限定されるものではない。なお、以下において、%は特に断りがない限りモル%を意味する。また、以下において1―ブテン転化率、ブタジエン収率、TOS、破損率の定義とは、以下の通りである。
累積比表面積の測定方法は水銀圧入法によって測定する。また、測定値は細孔径が0.0036μmから400μmまでの細孔分布データから算出される。
破損率とは、再生後、反応管より触媒を抜出し、3.35mmの篩にて分級した。篩の下に落ちた欠片状および粉状にまで破損した触媒を触媒片として秤量し、以下式により算出する。
破損率(重量%)
= 触媒片の重量(g)/反応後の抜き出した触媒重量(g)×100
1−ブテン転化率(モル%)
=(反応した1―ブテンのモル数/供給した1―ブテンのモル数)×100
ブタジエン収率(モル%)
=(生成したブタジエンのモル数/供給したn−ブテンのモル数)×100
TOS=混合ガス流通時間(時間)
実施例1
(触媒の調製)
ヘプタモリブデン酸アンモニウム800重量部を80℃に加温した純水3000重量部に完全溶解させた(母液1)。次に、硝酸セシウム11重量部を純水124mlに溶解させて、母液1に加えた。次に、硝酸第二鉄275重量部、硝酸コバルト769重量部及び硝酸ニッケル110重量部を60℃に加温した純水612mlに溶解させ、母液1に加えた。続いて硝酸ビスマス311重量部を60℃に加温した純水330mlに硝酸(60重量%)79重量部を加えて調製した硝酸水溶液に溶解させ、母液1に加えた。この母液1をスプレードライ法にて乾燥し、得られた乾燥粉体を440℃、5時間の条件で予備焼成した。こうして得られた予備焼成粉体に対して5重量%分の結晶性セルロースを添加し、十分混合した後、転動造粒法にてバインダーとして33重量%グリセリン溶液を用い、不活性の球状担体に、担持率が50重量%となるように球状に担持成形した。こうして得られた球状成形品を、520℃、5時間の条件で焼成し、本発明の触媒を得た。仕込み原料から計算される触媒の原子比は、Mo:Bi:Fe:Co:Ni:Cs=12:1.7:1.8:7.0:1.0:0.15であった。ここで、反応に使用する前の触媒の累積比表面積A1を測定したところ、2.99m/gであった。
(反応試験)
得られた触媒53mlをステンレス鋼反応管に充填し、ガス体積比率が1−ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr−1の条件で、1−ブテン転化率=78.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS400時間まで反応した。その後、1−ブテンおよび酸素、水蒸気の供給を停止し、析出したコーク状物質を除去させる再生目的で、反応器を循環する熱媒を220℃まで下げ、続けて空気を用い、常圧下、空間速度250hr−1で燃焼反応を開始し、空気雰囲気のまま段階的に熱媒が400℃になるまで昇温した。再生後の触媒を抜き出し、累積比表面積A2を測定し、反応前と比較したところ比率A2/A1は1.26であった。また、破損率を測定したところ、0.05重量%であった。
実施例2
(反応試験)
実施例1で得られた触媒53mlをステンレス鋼反応管に充填し、ガス体積比率が1−ブテン:酸素:窒素:水蒸気=1:1:7:1の混合ガスを用い、常圧下、GHSV1200hr−1の条件で、1−ブテン転化率=97.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS600時間まで反応した。その時のブタジエン収率は85.4%であった。反応の途中で、1−ブテンと追加窒素ガス供給を停止し、空気のみ流通させながら熱媒の温度を400℃まで昇温する再生を反応と交互に4回行った。最後の再生後に抜き出した触媒の累積比表面積A2を測定したところ、反応前との比率A2/A1は1.05であった。また、破損率を測定したところ、0.02重量%であった。その後、反応を1−ブテン転化率=97.0±1.0%を保持できるよう再開したところ、ブタジエン収率は85.8%であった。
実施例3
(反応試験)
実施例1で得られた触媒1.64Lをステンレス鋼反応管に充填し、ガス体積比率が1−ブテン:酸素:窒素:水蒸気=1:1.2:11.1:2.3の混合ガスを用い、常圧下、GHSV2000hr−1の条件で、1−ブテン転化率=92.0±1.0%を保持できるよう反応器を循環する熱媒の温度を変化させてTOS4000時間まで反応した。反応の途中で、1−ブテンと追加窒素ガス、水蒸気の供給を停止し、空気のみ流通させながら熱媒の温度を400℃まで昇温する再生を反応と交互に2回行った。最後の再生後に抜き出した触媒のガス入口部位の累積比表面積A2を測定したところ、反応前との比率A2/A1は0.97であった。また、破損率を測定したところ、0.03重量%であった。
比較例1
(反応試験)
実施例3で最後の再生後に抜き出した触媒のガス出口部位の累積比表面積A2を測定したところ、反応前との比率A2/A1は1.73であった。また、破損率を測定したところ、1.95%であり、目視で触媒の破損が観察された。
このように、実施例では反応前後における累積比表面積の比率A2/A1が1.72を下回り破損率が低いことから、反応の継続使用に耐えうる長期安定性に優れた触媒であることがわかる。また、比較例では累積比表面積の比率A2/A1が1.72よりも大さく、破損率は高い傾向にあることから、触媒を再生しても破損が進行しており反応管の閉塞や異常反応の発生など、さまざまなトラブルを誘発しうる状態であることがわかる。

Claims (5)

  1. 炭素原子数4以上のモノオレフィンを触媒の存在下で気相接触酸化的脱水素反応させて共役ジオレフィンを製造するための再生方法であって、反応に使用する前の触媒における累積比表面積A1と再生後の触媒における累積比表面積A2との比率A2/A1が1.72以下となるように再生を実施することを特徴とする再生方法。
  2. 下記の式1で表わされる活性成分組成を満たす触媒を用いた請求項1記載の再生方法、
    Mo12BiFeCoNi・・・・(式1)
    (式中、Xはリチウム、ナトリウム、カリウム、ルビジウム、セシウムから選ばれるアルカリ金属の少なくとも1種の元素を示し、Yはマグネシウム、カルシウム、ストロンチウム、バリウムから選ばれるアルカリ土類金属の少なくとも1種の元素を示し、Zはランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユウロビウム、アンチモン、タングステン、鉛、亜鉛、セリウム、タリウムから選ばれる少なくとも1種の元素を示し、a、b、c、d、e、f及びgは各々モリブデン12に対する各成分の原子比を示し、0.2≦a≦2.0、0.6<b<3.4、5.0<c<8.0、0<d<3.0、0<e<0.5、0≦f≦4.0、0≦g≦2.0の範囲にあり、hは他の元素の酸化状態を満足させる数値である。)。
  3. 触媒が、担体に触媒活性成分をコーティングした成形触媒であり、該成形触媒の平均粒径が3.0mm以上10.0mm以下であり、触媒活性成分の担持率が20重量%以上80重量%以下である請求項1または請求項2いずれか記載の再生方法。
  4. 気相接触酸化的触媒の反応前における累積比表面積が1.49m/g以上4.49m/g以下である請求項1から請求項3いずれか記載の再生方法。
  5. 請求項1記載のモノオレフィンがn−ブテンであり、共役ジオレフィンが1,3−ブタジエンである請求項1から請求項4いずれか記載の再生方法。
JP2016031518A 2016-02-22 2016-02-22 共役ジオレフィン製造用触媒の再生方法 Active JP6534217B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016031518A JP6534217B2 (ja) 2016-02-22 2016-02-22 共役ジオレフィン製造用触媒の再生方法
PCT/JP2017/006305 WO2017146026A1 (ja) 2016-02-22 2017-02-21 共役ジオレフィン製造用触媒の再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031518A JP6534217B2 (ja) 2016-02-22 2016-02-22 共役ジオレフィン製造用触媒の再生方法

Publications (2)

Publication Number Publication Date
JP2017148700A JP2017148700A (ja) 2017-08-31
JP6534217B2 true JP6534217B2 (ja) 2019-06-26

Family

ID=59686205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031518A Active JP6534217B2 (ja) 2016-02-22 2016-02-22 共役ジオレフィン製造用触媒の再生方法

Country Status (2)

Country Link
JP (1) JP6534217B2 (ja)
WO (1) WO2017146026A1 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012092092A (ja) * 2010-09-27 2012-05-17 Asahi Kasei Chemicals Corp ブタジエンの製造方法
WO2014086815A1 (de) * 2012-12-06 2014-06-12 Basf Se Verfahren zur oxidativen dehydrierung von n-butenen zu butadien
CN103071544A (zh) * 2013-01-30 2013-05-01 中国石油化工股份有限公司 丁烯氧化脱氢催化剂的原位再生方法
DE102013226370A1 (de) * 2013-12-18 2015-06-18 Evonik Industries Ag Herstellung von Butadien durch oxidative Dehydrierung von n-Buten nach vorhergehender Isomerisierung

Also Published As

Publication number Publication date
WO2017146026A1 (ja) 2017-08-31
JP2017148700A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6559039B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP7455256B2 (ja) 触媒及びその製造方法
JP6932292B1 (ja) 触媒、触媒の充填方法、および触媒を用いた化合物の製造方法
JP6779911B2 (ja) ブタジエン製造用触媒の再生方法
JP7209578B2 (ja) 触媒およびその製造方法
JP6564847B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP2017149655A (ja) 共役ジオレフィンの製造方法
JP6534217B2 (ja) 共役ジオレフィン製造用触媒の再生方法
JP6534216B2 (ja) 共役ジオレフィン製造用触媒の再生方法
JP2017149654A (ja) 共役ジオレフィンの製造方法
JP2017080738A (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP6731927B2 (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP2017080739A (ja) 共役ジオレフィン製造用触媒と、その製造方法
JP2018140952A (ja) 共役ジオレフィンの製造方法
JP7325688B1 (ja) 触媒、及びそれを用いた化合物の製造方法
JP6734178B2 (ja) 精製系阻害物質を選択的に低減させる触媒およびその製造方法
WO2023100856A1 (ja) 触媒、及びそれを用いた化合物の製造方法
JP2018140951A (ja) 共役ジオレフィンの製造方法
JP2022124634A (ja) イソプレン製造用触媒及びその用途
JP2021000610A (ja) 触媒およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6534217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250