WO2017110853A1 - コンクリートの計測方法 - Google Patents

コンクリートの計測方法 Download PDF

Info

Publication number
WO2017110853A1
WO2017110853A1 PCT/JP2016/088055 JP2016088055W WO2017110853A1 WO 2017110853 A1 WO2017110853 A1 WO 2017110853A1 JP 2016088055 W JP2016088055 W JP 2016088055W WO 2017110853 A1 WO2017110853 A1 WO 2017110853A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
neutralization
wavelengths
calcium hydroxide
concentration
Prior art date
Application number
PCT/JP2016/088055
Other languages
English (en)
French (fr)
Inventor
熊谷 薫
秀吾 秋山
一晴 半谷
鵬 趙
政司 舟橋
良光 中島
勇二 白根
Original Assignee
株式会社トプコン
前田建設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン, 前田建設工業株式会社 filed Critical 株式会社トプコン
Priority to US16/065,971 priority Critical patent/US10345232B2/en
Publication of WO2017110853A1 publication Critical patent/WO2017110853A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Definitions

  • the present invention relates to a concrete measuring method capable of optically detecting the chloride content and the degree of neutralization of concrete.
  • Patent Document 1 a concrete measuring method capable of optically detecting the chloride content and neutralization of concrete has been known (see, for example, Patent Document 1).
  • the technique disclosed in Patent Document 1 detects deterioration of concrete based on an absorption spectrum in a predetermined wavelength region of near-infrared light reflected from a concrete building.
  • the concentration of calcium hydroxide is detected using the wavelength range of 900 nm to 1700 nm of the absorption spectrum, and salt damage related to concrete deterioration is detected. Detects the concentration of chloride ions using the wavelength region of 1700 nm to 2500 nm of the absorption spectrum.
  • the wavelength range of a predetermined range of the absorption spectrum is spectrally analyzed by a spectroscope to detect the concentration of calcium hydroxide and the ion concentration of chloride. For this reason, it is possible to accurately detect the concentration of calcium hydroxide and the ion concentration of chloride, but there is an inconvenience that the measuring device becomes complicated and the manufacturing cost of the measuring device increases.
  • the present invention has been made in view of the above circumstances, and provides a concrete measurement method capable of easily measuring the deterioration of concrete without using a spectroscope while maintaining its estimation accuracy. It is in.
  • the concrete measuring method of the present invention irradiates the irradiation light including the near-infrared wavelength region related to the measurement of the concrete toward the concrete, receives the reflected light from the concrete of the irradiation light, and measures the concrete.
  • PLS regression is performed with at least 5 wavelengths different from each other in the wavelength range of 900 nm to 2500 nm of the absorption spectrum. It is specified by an analysis method, and is characterized by estimating the degree of neutralization by calcium hydroxide and the concentration of chloride ions.
  • FIG. 1 It is a block diagram which shows schematic structure of the measuring apparatus used for the concrete measuring method which concerns on the Example of this invention. It is a characteristic curve figure which shows the change of the absorption spectrum by deterioration of the concrete shown in FIG. 1, Comprising: The spectral distribution curve in case the density
  • 1 to 4 are explanatory views of a concrete measuring method according to an embodiment of the present invention.
  • FIG. 1 is an optical block diagram of a measuring apparatus used in a concrete measuring method according to an embodiment of the present invention.
  • reference numeral 1 denotes a concrete measuring device
  • reference numeral 2 denotes concrete.
  • the measuring device 1 includes at least a computer CPU, a light source unit 3, and a light receiving unit 4.
  • the light source unit 3 irradiates the concrete 2 with irradiation light P including a near infrared wavelength range (for example, a wavelength range of 780 nm to 2500 nm) related to the measurement of the concrete 2.
  • the light source unit 3 includes, for example, a halogen lamp 3a, a reflecting mirror 3b, an aperture member 3c, and a condensing lens L that condenses the irradiation light P and emits it as a parallel light beam.
  • the light receiving unit 4 receives the reflected light P ′ from the concrete 2 of the irradiation light P.
  • the light receiving unit 4 receives reflected light P ′ having at least five wavelengths different from each other in the wavelength range of 900 nm to 2500 nm of the absorption spectrum.
  • the degree of neutralization may be determined by estimating the concentration of calcium hydroxide, or may be determined by estimating PH (pH).
  • FIG. 2 is an explanatory diagram showing a spectral distribution curve obtained with normal concrete 2 and a spectral distribution curve obtained with neutralized concrete 2.
  • the broken line shows the spectral distribution curve obtained with normal concrete 2.
  • a one-dot chain line indicates a spectral distribution curve obtained by the neutralized concrete 2.
  • the spectral distribution curve Q1 obtained from the neutralized concrete 2 varies depending on the degree of neutralization (for example, the concentration of calcium hydroxide or PH).
  • the wavelengths ⁇ 1 to ⁇ 5 are determined by acquiring a lot of data of the spectral distribution curve Q1 and applying a PLS regression analysis method to this data.
  • the spectral distribution curve Q2 obtained with the concrete 2 containing salt varies depending on the salt concentration.
  • the wavelengths ⁇ 6 to ⁇ 10 are determined by acquiring a lot of data of the spectral distribution curve Q2 and applying a PLS regression analysis method to this data.
  • the degree of neutralization by calcium hydroxide is set to two wavelengths ⁇ 1, ⁇ 2 within a wavelength range of 900 nm to 1700 nm and three wavelengths ⁇ 3 to ⁇ 3 within a range of 1700 nm to 2500 nm.
  • the concentration of chloride ions is estimated using one wavelength ⁇ 6 within the wavelength range of 900 nm to 1700 nm and four wavelengths ⁇ 7 to ⁇ 10 within the range of 1700 nm to 2500 nm. .
  • the true value of the neutralization degree of concrete 2 and the true value of the chloride ion concentration (calcium hydroxide ion concentration value or PH value obtained by a known analytical method used for quantitative analysis, chloride ion)
  • Calibration curve related to the degree of neutralization from multiple regression analysis using the determined wavelength ⁇ 1 to wavelength ⁇ 5 and wavelength ⁇ 6 to wavelength ⁇ 10, and a calibration curve related to the concentration of chloride ions.
  • the horizontal axis is Wavelength (wavelength)
  • the vertical axis is Reflectance or Transmittance (reflectance or transmittance).
  • the light receiving unit 4 includes, for example, a light receiving unit 4a used to estimate the degree of neutralization due to calcium hydroxide related to neutralization, and a light receiving unit used to estimate the concentration of chloride ions related to salt damage. 4b.
  • the reflected light P ′ transmitted through the filters Fi1 to Fi5 is condensed by the condenser lenses L1 to L5, photoelectrically converted by the pin photodiodes Pin1 to Pin5, amplified by the amplifiers AMP1 to AMP5, and analog to digital converters.
  • the signals are digitally converted by A / D1 to A / D5 and input to the CPU as signals NK for detecting the degree of neutralization.
  • the reflected light P ′ transmitted through the filters Fi6 to Fi10 is collected by the condenser lenses L6 to L10, photoelectrically converted by the pin photodiodes Pin6 to Pin10, amplified by the amplifiers AMP6 to AMP10, and analog to digital converters.
  • the signals are digitally converted by A / D6 to A / D10 and input to the CPU as signals CK for detecting the chloride ion concentration.
  • the CPU stores an estimation coefficient for estimating the degree of neutralization and an estimation coefficient for estimating the concentration of chloride ions.
  • the CPU estimates the degree of neutralization and the concentration of chloride ions from the signals NK and CK and the respective estimation coefficients.
  • the wavelength of 900 nm to 2500 nm related to the measurement of concrete deterioration without distinguishing the wavelength range of the absorption spectrum with respect to the degree of neutralization related to concrete deterioration and the concentration of chloride ions Since the extent of neutralization by calcium hydroxide and the concentration of chloride ions are estimated using the spectrum, the deterioration of concrete 2 can be measured without losing accuracy even if the absorption spectrum is not analyzed by a spectroscope. It can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

分光器を用いなくともコンクリートの劣化の計測を、その推定精度を維持しつつ簡便に行うことができるコンクリートの計測方法を提供する。 本発明のコンクリートの計測方法は、コンクリート(2)の計測に関係する近赤外の波長域を含む照射光(P)をコンクリート(2)に向けて照射し、照射光Pのコンクリート(2)からの反射光(P')を受光する。中性化に関係する水酸化カルシウム、塩害に関係する塩化物イオンについて、吸収スペクトルの波長900nmないし2500nmの範囲において、それぞれ互いに異なる少なくとも5波長以上の波長λ1~λ5、λ6~λ10をPLS回帰分析法により特定し、水酸化カルシウムによる中性化の程度と塩化物イオンの濃度とを推定する。

Description

コンクリートの計測方法
 本発明は、コンクリートの塩化物含有量及び中性化の程度を光学的に検出可能なコンクリートの計測方法に関する。
 従来から、コンクリートの塩化物含有量及び中性化を光学的に検出可能なコンクリートの計測方法が知られている(例えば、特許文献1参照。)。
 その特許文献1に開示の技術は、コンクリート建造物から反射された近赤外光の所定波長域における吸収スペクトルに基づき、コンクリートの劣化を検出している。
 この特許文献1に開示の技術は、コンクリートの劣化に関係する中性化については吸収スペクトルの900nm~1700nmの波長域を用いて水酸化カルシウムの濃度を検出し、コンクリートの劣化に関係する塩害については吸収スペクトルの1700nm~2500nmの波長域を用いて塩化物イオンの濃度を検出している。
 この特許文献1に開示の技術によれば、コンクリートの劣化を非破壊的方法により精密に計測可能である。
特許5031281号
 ところで、その特許文献1に開示のものでは、吸収スペクトルの所定範囲の波長域を分光器により分光分析して、水酸化カルシウムの濃度、塩化物のイオン濃度を検出している。
 このため、精密に水酸化カルシウムの濃度、塩化物のイオン濃度を検出することは可能であるが、その分、計測装置が複雑化し、計測装置の製造コストが高くなるという不都合がある。
 本発明は、上記の事情に鑑みて為されたもので、分光器を用いなくともコンクリートの劣化の計測を、その推定精度を維持しつつ簡便に行うことができるコンクリートの計測方法を提供することにある。
 本発明のコンクリートの計測方法は、コンクリートの計測に関係する近赤外の波長域を含む照射光をコンクリートに向けて照射し、前記照射光の前記コンクリートからの反射光を受光してコンクリートの計測を行う計測方法において、
 中性化に関係する水酸化カルシウムによる中性化の程度、塩害に関係する塩化物イオンの濃度について、吸収スペクトルの波長900nmないし2500nmの範囲において、それぞれ互いに異なる少なくとも5波長以上の波長をPLS回帰分析法により特定し、水酸化カルシウムによる中性化の程度と塩化物イオンの濃度とを推定することを特徴とする。
 本発明によれば、分光器を用いなくともコンクリートの劣化の計測を、その推定精度を維持しつつ簡便に行うことができる。
本発明の実施例に係るコンクリートの計測方法に用いる計測装置の概略構成を示すブロック図である。 図1に示すコンクリートの劣化による吸収スペクトルの変化を示す特性曲線図であって、中性化に関係する水酸化カルシウムの濃度が異なる場合の分光分布曲線を示している。 図1に示すコンクリートの劣化による吸収スペクトルの変化を示す特性曲線図であって、塩害に関係する塩化物イオン濃度が異なる場合の分光分布曲線を示している。 PLS回帰分析法により特定された波長を示す説明図である。
 以下に、本発明に係るコンクリートの計測方法を図面を参照しつつ説明する。
 図1ないし図4は、本発明の実施例に係るコンクリートの計測方法の説明図である。
 その図1は本発明の実施例に係るコンクリートの計測方法に使用する計測装置の光学ブロック図である。
 その図1において、符号1はコンクリートの計測装置、符号2はコンクリートを示す。
 その計測装置1は、コンピュータCPUと、光源部3と、受光部4とを少なくとも備えている。
 光源部3は、コンクリート2の計測に関係する近赤外の波長域(例えば、780nmから2500nmの波長域)を含む照射光Pをコンクリート2に向けて照射する。この光源部3は、例えば、ハロゲンランプ3aと、反射鏡3bと、アパーチャ部材3cと、照射光Pを集光して平行光束として出射する集光レンズLとを備えている。
 受光部4は、照射光Pのコンクリート2からの反射光P’を受光する。この受光部4は、吸収スペクトルの波長900nmないし2500nmの範囲において、それぞれ互いに異なる少なくとも5波長以上の波長の反射光P’を受光する。
 この互いに異なる5波長以上の波長は、それぞれ中性化に関係する水酸化カルシウムによる中性化の程度の推定と、塩害に関係する塩化物イオンの濃度の推定とに用いられる。
なお、中性化の程度については、水酸化カルシウムの濃度を推定することにより判断しても良いし、PH(ペーハー)を推定することにより判断しても良い。
 その互いに異なる少なくとも5波長は、PLS回帰分析法により特定する。
 図2は正常なコンクリート2により得られる分光分布曲線と中性化したコンクリート2により得られる分光分布曲線とを示す説明図である。
 図2において、破線は正常なコンクリート2により得られる分光分布曲線を示している。一点鎖線は中性化したコンクリート2により得られる分光分布曲線を示している。
 中性化したコンクリート2により得られる分光分布曲線Q1は、中性化の程度(例えば、水酸化カルシウムの濃度又はPH)により変化する。波長λ1ないし波長λ5は、その分光分布曲線Q1のデータを多数取得し、このデータにPLS回帰分析の手法を適用して決定する。
 同様に、図3に示すように、塩分を含んだコンクリート2により得られる分光分布曲線Q2は、塩分の濃度により変化する。波長λ6ないし波長λ10は、その分光分布曲線Q2のデータを多数取得し、このデータにPLS回帰分析の手法を適用して決定する。
 ここでは、図4に示すように、水酸化カルシウムによる中性化の程度については、吸収スペクトルの波長900nmないし1700nmの範囲内の2波長λ1、λ2と1700nmないし2500nmの範囲内の3波長λ3~λ5とを用いて推定され、塩化物イオンの濃度については、吸収スペクトルの波長900nmないし1700nmの範囲内の1波長λ6と1700nmないし2500nmの範囲内の4波長λ7~λ10とを用いて推定される。
 ついで、コンクリート2の中性化の程度の真値、塩化物イオンの濃度の真値(公知の定量分析に用いる分析手法により得た水酸化カルシウムのイオンの濃度の値又はPH値、塩化物イオンの濃度の値)と、決定された波長λ1~波長λ5、波長λ6~波長λ10を用いて重回帰分析から中性化の程度に関係する検量線、塩化物イオンの濃度に関係する検量線を作成し、それぞれ中性化の程度に関する推定係数、塩化物イオン濃度に関する推定係数を決定する。なお、その図2ないし図4において、横軸はWavelength(波長)であり、縦軸はReflectance又はTransmittance(反射率又は透過率)である。
 受光部4は、例えば、中性化に関係する水酸化カルシウムによる中性化の程度を推定するために用いる受光部4aと、塩害に関係する塩化物イオンの濃度を推定するために用いる受光部4bとから構成されている。
 その受光部4aは、波長λ1=920nm、λ2=1410nm、λ3=1970nm、λ4=2010nm、λ5=2225nmを中心としてその近傍の波長の反射光P’をそれぞれ透過する特性を有するフィルタFi1ないしFi5を備えている。
 その各フィルタFi1ないしFi5を透過した反射光P’は、それぞれ集光レンズL1ないしL5により集光されて、ピンホトダイオードPin1ないしPin5により光電変換され、増幅器AMP1ないしAMP5により増幅され、アナログデジタル変換器A/D1ないしA/D5によりデジタル変換されて、中性化の程度を検出する信号NKとしてそれぞれCPUに入力される。
 その受光部4bは、波長λ6=1430nm、λ7=1723nm、λ8=1960nm、λ9=1967nm、λ10=2245nmを中心としてその近傍の波長の反射光P’をそれぞれ透過する特性を有するフィルタFi6ないしFi10を備えている。
 その各フィルタFi6ないしFi10を透過した反射光P’は、それぞれ集光レンズL6ないしL10により集光されて、ピンホトダイオードPin6ないしPin10により光電変換され、増幅器AMP6ないしAMP10により増幅され、アナログデジタル変換器A/D6ないしA/D10によりデジタル変換されて、塩化物イオンの濃度を検出する信号CKとしてそれぞれCPUに入力される。
 CPUには、中性化の程度を推定するための推定係数と塩化物イオンの濃度を推定するための推定係数とが保存されている。
 CPUは、その信号NK、CKと各推定係数とにより中性化の程度、塩化物イオンの濃度を推定する。
 この実施例によれば、コンクリートの劣化に関係する中性化の程度、塩化物イオンの濃度について、吸収スペクトルの波長域を区別することなく、コンクリートの劣化の計測に関係する900nm~2500nmの波長域を用いてそれぞれ水酸化カルシウムによる中性化の程度、塩化物イオンの濃度を推定しているので、吸収スペクトルを分光器により分光しなくとも、精密性を損なうことなくコンクリート2の劣化の計測を行うことができる。
関連出願への相互参照
 本出願は、2015年12月25日に日本国特許庁に出願された特願2015-254407に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
 

Claims (4)

  1.  コンクリートの計測に関係する近赤外の波長域を含む照射光をコンクリートに向けて照射し、前記照射光の前記コンクリートからの反射光を受光してコンクリートの計測を行う計測方法において、
     中性化に関係する水酸化カルシウム、塩害に関係する塩化物イオンについて、吸収スペクトルの波長900nmないし2500nmの範囲において、それぞれ互いに異なる少なくとも5波長以上の波長をPLS回帰分析法により特定し、前記水酸化カルシウムによる中性化の程度と前記塩化物イオンの濃度とを推定することを特徴とするコンクリートの計測方法。
  2.  前記水酸化カルシウムによる中性化の程度については、吸収スペクトルの波長900nmないし2500nmの範囲内の2波長と1700nmないし2500nmの範囲内の3波長とを用いて推定し、前記塩化物イオンの濃度については、吸収スペクトルの波長900nmないし1700nmの範囲内の1波長と1700nmないし2500nmの範囲内の4波長とを用いて推定することを特徴とする請求項1に記載のコンクリートの計測方法。
  3.  前記水酸化カルシウムによる中性化の程度をPHで推定することを特徴とする請求項1又は請求項2に記載のコンクリートの計測方法。
  4.  前記水酸化カルシウムによる中性化の程度の推定に用いる波長が、920nm、1410nm、1970nm、2010nm、2225nmの近傍に存在し、前記塩化物イオンの濃度の推定に用いる波長が、1430nm、1723nm、1960nm、1967nm、2245nmの近傍に存在することを特徴とする請求項1ないし請求項3のいずれか1項に記載のコンクリートの計測方法。
     
PCT/JP2016/088055 2015-12-25 2016-12-21 コンクリートの計測方法 WO2017110853A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/065,971 US10345232B2 (en) 2015-12-25 2016-12-21 Method of measuring state of concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254407A JP6748427B2 (ja) 2015-12-25 2015-12-25 コンクリートの計測方法、コンクリートの計測装置
JP2015-254407 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110853A1 true WO2017110853A1 (ja) 2017-06-29

Family

ID=59090713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088055 WO2017110853A1 (ja) 2015-12-25 2016-12-21 コンクリートの計測方法

Country Status (3)

Country Link
US (1) US10345232B2 (ja)
JP (1) JP6748427B2 (ja)
WO (1) WO2017110853A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110163134B (zh) * 2019-05-10 2022-03-29 大连理工大学 一种基于分频段加权最小二乘的结构损伤区域识别方法
US11501206B2 (en) * 2019-09-20 2022-11-15 Nxp B.V. Method and machine learning system for detecting adversarial examples
CN117269109B (zh) * 2023-11-23 2024-02-23 中国矿业大学(北京) 基于近红外光谱的混凝土结构中氯离子含量检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273125A (ja) * 1992-03-26 1993-10-22 Snow Brand Milk Prod Co Ltd 近赤外線によるナチュラルチーズの熟成度合の非破壊的測定法
JP2008122412A (ja) * 2004-03-12 2008-05-29 Aomori Prefecture 食品のカロリー測定方法及び食品のカロリー測定装置
WO2010046968A1 (ja) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 コンクリート構造物の診断装置および診断方法
JP2011214940A (ja) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd 物体中の異物混入判別方法及び物体中の異物混入判別装置
JP5031281B2 (ja) * 2006-07-05 2012-09-19 株式会社Ihiインフラシステム コンクリートの診断方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720732B2 (ja) 1973-07-20 1982-05-01
DE19726023A1 (de) * 1997-06-19 1998-12-24 Univ Dresden Tech Verfahren zur qualitativen und quantitativen infrarotspektroskopischen Bestimmung mineralischer Baustoffe
CN100559161C (zh) 2004-03-12 2009-11-11 乐世太平洋株式会社 物体的卡路里测定方法以及物体的卡路里测定装置
JP4800909B2 (ja) * 2006-11-27 2011-10-26 株式会社Ihiインフラシステム コンクリートの診断方法
JP5591155B2 (ja) * 2011-03-04 2014-09-17 株式会社Ihiインフラシステム コンクリート劣化因子検出方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05273125A (ja) * 1992-03-26 1993-10-22 Snow Brand Milk Prod Co Ltd 近赤外線によるナチュラルチーズの熟成度合の非破壊的測定法
JP2008122412A (ja) * 2004-03-12 2008-05-29 Aomori Prefecture 食品のカロリー測定方法及び食品のカロリー測定装置
JP5031281B2 (ja) * 2006-07-05 2012-09-19 株式会社Ihiインフラシステム コンクリートの診断方法
WO2010046968A1 (ja) * 2008-10-21 2010-04-29 西日本高速道路エンジニアリング四国株式会社 コンクリート構造物の診断装置および診断方法
JP2011214940A (ja) * 2010-03-31 2011-10-27 Caloria Japan Co Ltd 物体中の異物混入判別方法及び物体中の異物混入判別装置

Also Published As

Publication number Publication date
JP2017116476A (ja) 2017-06-29
JP6748427B2 (ja) 2020-09-02
US20190017929A1 (en) 2019-01-17
US10345232B2 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
US20170219433A1 (en) Spectroscopic measurement method and spectroscopic measurement device
US12013347B2 (en) Product inspection method and product inspection apparatus
WO2017110853A1 (ja) コンクリートの計測方法
WO2009093453A1 (ja) 分析装置および分析方法
JP2005257676A5 (ja)
WO2016080442A1 (ja) 品質評価方法及び品質評価装置
ATE454847T1 (de) Optische durchleuchtung- und reflektanzspektroskopie zur quantifizierung von krankheitsrisiko
JP6535461B2 (ja) 材料分析センサ及び材料分析装置
CN107250742A (zh) 多通道分光光度计以及多通道分光光度计用数据处理方法
JP2021067611A5 (ja)
WO2015122237A1 (ja) 分光分析装置および分光分析方法
US20180073925A1 (en) Microscope device
US10620178B2 (en) Optical sensor
WO2018016709A3 (ko) 주파수 도메인 기반의 다파장 생체신호 분석 장치 및 그 방법
JP2015227858A5 (ja)
JP6347070B2 (ja) 分光分析装置
US20180180535A1 (en) Determining absorption and scattering coefficient using a calibrated optical reflectance signal
JP2013088263A (ja) 分光装置校正方法
US8780337B2 (en) System and method for eliminating the effect of non-primary laser modes on characterization of optical components through characterized decomposition
JP5407794B2 (ja) テラヘルツ光を用いた物質成分の解析装置及びテラヘルツ光を用いた物質成分の解析方法
JP2013228270A (ja) シラン系シール材の硬化度測定方法
JP2018205084A (ja) 光学測定装置及び光学測定方法
JP2006141712A (ja) 生体情報測定方法および生体情報測定装置
JP2017003499A (ja) 分光測定装置及び分光測定方法
JP2005221307A (ja) 色度計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878740

Country of ref document: EP

Kind code of ref document: A1