JP2018205084A - 光学測定装置及び光学測定方法 - Google Patents

光学測定装置及び光学測定方法 Download PDF

Info

Publication number
JP2018205084A
JP2018205084A JP2017109920A JP2017109920A JP2018205084A JP 2018205084 A JP2018205084 A JP 2018205084A JP 2017109920 A JP2017109920 A JP 2017109920A JP 2017109920 A JP2017109920 A JP 2017109920A JP 2018205084 A JP2018205084 A JP 2018205084A
Authority
JP
Japan
Prior art keywords
light
measurement
spectral data
unit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017109920A
Other languages
English (en)
Inventor
山田 英一郎
Eiichiro Yamada
英一郎 山田
奥野 俊明
Toshiaki Okuno
俊明 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017109920A priority Critical patent/JP2018205084A/ja
Publication of JP2018205084A publication Critical patent/JP2018205084A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】波長帯域によらず高精度でのスペクトルデータを取得する。【解決手段】光学測定装置1は、測定対象物3に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射する光源部としての光源ユニット10と、光源部からの測定光の照射により出射される測定対象物3からの拡散反射光を受光し、測定対象物からの前記拡散反射光のスペクトルデータを取得する検出部としての検出ユニット20と、検出部において取得されたスペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う補正部、及び、光源部から複数の測定光を照射することで検出部においてそれぞれ検出され、補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する分析部としての分析ユニット30と、を有する。【選択図】図1

Description

本発明は、光学測定装置及び光学測定方法に関する。
検査対象物中に混入している異物又は不良品を検出する技術として、検査対象物に対して測定光を照射することで、検査対象物からの反射光を受光して分析を行う方法が知られている。例えば、特許文献1では、近赤外光を照射することで得られる光を分光して、検査対象物に係るスペクトルデータを取得して評価する方法が示されている。
特開2014−215177号公報
ところで、検査対象物における測定光に対する反射率は、検査対象物の材質等に由来して波長特性がある。したがって、検査対象物における反射率が低い波長域のスペクトルデータは、検出器のダイナミックレンジを十分に活用できていないため、測定精度が低下する可能性がある。
本発明は上記を鑑みてなされたものであり、波長帯域によらず高精度でのスペクトルデータを取得することが可能な光学測定装置及び光学測定方法を提供することを目的とする。
本願発明は、
(1)測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射する光源部と、
前記光源部からの前記測定光の照射により出射される前記測定対象物からの拡散反射光を受光する受光素子を有し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する検出部と、
前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う補正部と、
前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する分析部と、
を有する光学測定装置、
(2)光源部により、測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射することで、前記測定対象物から出射される拡散反射光を検出部の受光素子で受光し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する工程と、
補正部において、前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う工程と、
分析部において、前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する工程と、
を有する、光学測定方法、
である。
本発明によれば、波長帯域によらず高精度でのスペクトルデータを取得することが可能な光学測定装置及び光学測定方法が提供される。
本発明の一実施形態に係る光学測定装置の概略構成図である。 光学測定方法について説明するフロー図である。 第1の光量の測定光を用いた測定結果を示す図である。 第1の光量の測定光を用いた測定結果に対するダーク・ホワイト補正の結果を示す図である。 第2の光量の測定光を用いた測定結果を示す図である。 第2の光量の測定光を用いた測定結果に対するダーク・ホワイト補正の結果を示す図である。 本実施形態の光学測定方法により得られる対象物スペクトルデータの例である。 グレー板を利用したスペクトルデータの例を示す図である。 グレー板のスペクトルデータによるダーク・ホワイト補正の結果を示す図である。 第1の変形例により得られる対象物スペクトルデータの例である。 第2の変形例に係る光学測定装置の概略構成図である。
[本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。
本願の光学測定装置は、測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射する光源部と、前記光源部からの前記測定光の照射により出射される前記測定対象物からの拡散反射光を受光する受光素子を有し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する検出部と、前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う補正部と、前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する分析部と、を有する。
上記の光学測定装置によれば、光量が互いに異なる複数の測定光を測定対象物に照射することで、測定光の波長毎にスペクトルデータを取得する検出部における受光素子のダイナミックレンジを十分に活用した測定対象物に係るスペクトルデータを取得することができる。そして、補正部において、標準スペクトルデータを用いて補正した後にこれらを組み合わせて、対象物スペクトルデータを作成する構成とすることで、波長帯域によらず高精度でのスペクトルデータを取得することが可能となる。
また、前記分析部は、前記複数のスペクトルデータのうち、前記光源部から出射された測定光の光量が大きい場合に前記検出部で検出されたスペクトルデータに含まれる情報を優先して使用して、前記対象物スペクトルデータを作成する。
上記のように、光源部から出射された測定光の光量が大きい場合に検出部で検出されたスペクトルデータに含まれる情報を優先して使用して、対象物スペクトルデータを作成する構成とすることで、受光素子のダイナミックレンジを適切に活用した対象物スペクトルデータを作成することができ、波長帯域によらず高精度でのスペクトルデータを取得することが可能となる。
また、前記標準スペクトルデータは、グレー標準反射板に係るスペクトルデータを含む。
標準スペクトルデータとしてグレー標準反射板に係るスペクトルデータを含むことで、補正部においてグレー標準反射板に係るスペクトルデータを用いて補正を行うことができる。グレー標準反射板は、通常用いられるホワイト標準反射板と比較して反射率が低いため、測定光の光量が大きい場合でも、受光素子の検出感度を超えることを防ぎやすい。したがって、測定光の光量が大きい場合でも、標準スペクトルデータに基づいたスペクトルデータの補正を行うことができる。
また、前記光源部は、光量が互いに異なる測定光を照射する光源を含んで複数設けられ、前記検出部は、前記複数の光源部に対応して複数設けられ、前記複数の光源部による照射領域の間において前記測定対象物を搬送する搬送部をさらに有する。
上記のように、光源部が光量が互いに異なる測定光を照射する光源を含んで複数設けられている場合、光量可変光源を用いずに光学測定装置の構成をそろえることができる。
本願の光学測定方法は、光源部により、測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射することで、前記測定対象物から出射される拡散反射光を検出部の受光素子で受光し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する工程と、補正部において、前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う工程と、分析部において、前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する工程と、を有する。
上記の光学測定方法によれば、光量を変化した測定光を測定対象物に照射することで、測定光の波長毎にスペクトルデータを取得する検出部における受光素子のダイナミックレンジを十分に活用した測定対象物に係るスペクトルデータを取得することができる。そして、補正部において、標準スペクトルデータを用いて補正した後にこれらを組み合わせて、対象物スペクトルデータを作成する構成とすることで、波長帯域によらず高精度でのスペクトルデータを取得することが可能となる。
[本願発明の実施形態の詳細]
本発明に係る光学測定装置及び光学測定方法の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
本実施形態に係る光学測定装置1について図1を用いて説明する。光学測定装置1は、測定台2上に載置された測定対象物3について、その測定対象となる領域毎の定量分析を行う装置である。光学測定装置1の測定対象物3は特に限定されない。また、定量分析を行う対象としては、例えば、測定対象物3に含まれる特定成分の濃度や物性が挙げられる。
光学測定装置1は、近赤外光である測定光を測定対象物3に対して照射することにより得られる拡散反射光のスペクトルを測定し、そのスペクトルに基づいて測定対象物3の分光測定を行う。このため、光学測定装置1は、光源ユニット10(光源部)、検出ユニット20(検出部)、及び分析ユニット30(補正部、分析部)を備える。なお、以下の実施形態では近赤外光を分光測定に使用する場合について説明するが、他の波長範囲の光を測定に用いてもよい。また、拡散反射光のスペクトルに替えて透過光又は散乱光のスペクトルを測定してもよい。
光源ユニット10は、測定光を測定台2上における所定の照射領域A1へ向けて照射する。光源ユニット10が照射する測定光の波長範囲は、測定対象物3によって適宜選択される。測定光の波長は特に制限されないが、測定光として近赤外光を用いた場合、有機物は近赤外光に対する吸収ピークを持っている場合が多いため、定量が可能な成分が多くなる。近赤外光を測定光として用いる場合、具体的には、波長範囲が800nm〜2500nmの光が好適に用いられ、特に1000nm〜2300nmの光が好適に用いられる。なお、本実施形態では、ハロゲンランプからなる光源11を含む光源ユニット10について説明する。
照射領域A1とは、測定対象物3を載置する測定台2の表面の一部の領域である。この照射領域A1は、測定台2の一の方向(図1のx軸方向)に広がるライン状に延びる領域である。
光源ユニット10は、光源11と、照射部12と、光源11と照射部12とを接続する光ファイバ13と、を備える。光源11は、近赤外光を発生させる。なお、本実施形態に係る光源ユニット10は、互いに異なる光量の近赤外光を出射可能とされている。本実施形態では、2種類の光量の近赤外光を出射する場合について説明するが、この構成には限定されない。
光源11により発生された近赤外光は、光ファイバ13の一方の端面へ入射される。この近赤外光は、光ファイバ13のコア領域を導波し、もう一方の端面から照射部12に対して出射される。
照射部12は、光ファイバ13の端面から出射される近赤外光を測定対象物3が載置される照射領域A1に対して照射する。照射部12は、光ファイバ13から出射される近赤外光を入射して、照射領域A1に対応した1次元のライン状に出射するため、照射部12としてシリンドリカルレンズが好適に用いられる。このように照射部12においてライン状に整形された近赤外光L1が、照射部12から照射領域A1に対して照射される。
なお、光源ユニット10から出力される近赤外光L1は、その出力強度が可変である。出力強度が可変な光源ユニット10を用いることで、後述の一連の光学測定に係る処理を1台の光学測定装置1を用いて行うことができる。
光源ユニット10から出力された近赤外光L1は、照射領域A1上に載置された測定対象物3により拡散反射される。そして、その一部が、拡散反射光L2として検出ユニット20に入射する。
検出ユニット20は、2次元に配置された受光素子によってハイパースペクトル画像を取得するハイパースペクトルセンサとしての機能を有する。ハイパースペクトル画像とは、一画素がN個の波長データにより構成されている画像であり、画素毎にそれぞれ複数の波長に対応した反射強度データからなるスペクトル情報が含まれている。すなわち、ハイパースペクトル画像は、画像を構成する画素毎に、それぞれ複数波長の強度データを持つという特徴から、画像としての二次元的要素と、スペクトルデータとしての要素をあわせ持った三次元的構成のデータである。なお、本実施形態では、ハイパースペクトル画像とは、1画素あたり少なくとも3つの波長帯域における強度データを保有している画素によって構成された画像のことをいう。
なお、本実施形態では光学測定装置1がハイパースペクトル画像を取得する装置としての例を示すが、これに限定されない。また、検出ユニット20もイメージセンサ及びハイパースペクトルセンサには限定されない。すなわち、検出ユニット20は、少なくとも測定対象物3に係るスペクトルデータ(分光スペクトル)を取得可能であればよく、その構成は適宜変更することができる。また、光学測定装置1がハイパースペクトル画像を取得装置とする場合であっても、検出ユニット20は、画素毎に単一波長又は複数波長の光強度情報を取得する機能を有していればよく、その構成は適宜変更することができる。
図1に戻り、本実施形態に係る検出ユニット20は、カメラレンズ24と、スリット21と、分光器22と、受光部23と、を備える。この検出ユニット20は、その視野領域20s(撮像領域)が照射領域A1と同じ(x軸方向)に延びている。検出ユニット20の視野領域20sは、測定台2上の照射領域A1に含まれるライン状の領域であって、スリット21を通過した拡散反射光L2が受光部23上に像を結ぶ領域である。
スリット21は、照射領域A1の延在方向(x軸方向)と平行な方向に開口が設けられる。検出ユニット20のスリット21に入射した拡散反射光L2は、分光器22へ入射する。
分光器22は、スリット21の長手方向、すなわち照射領域A1の延在方向に垂直な方向(y軸方向)に拡散反射光L2を分光する。分光器22により分光された光は、受光部23によって受光される。
受光部23は、複数の受光素子が2次元に配列された受光面を備え、各受光素子が光を受光する。これにより、受光部23が測定台2上の照射領域A1の延在方向(x軸方向)に沿った領域で反射した拡散反射光L2の各波長の光をそれぞれ受光することとなる。各受光素子は、受光した光の強度に応じた信号を位置と波長とからなる二次元平面状の一点に関する情報として出力する。受光素子としては、InGaAs、MCT、PbS又はInGaAs/GaAsSbタイプの量子井戸型センサ等を用いることができる。この受光部23の受光素子から出力される信号が、ハイパースペクトル画像に係るスペクトルデータとして、検出ユニット20から分析ユニット30に送られる。
分析ユニット30は、入力された信号に基づいて、拡散反射光L2のスペクトルデータを作成する機能を有する。また、分析ユニット30では、この作成したスペクトルデータを用いて、測定対象物3に係る各種分析に係る処理を行う。
この分析ユニット30は、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)及びROM(Read Only Memory)、検出ユニット等の他の機器との間の通信を行う通信モジュール、並びにハードディスク等の補助記憶装置等のハードウェアを備えるコンピュータとして構成される。そして、これらの構成要素が動作することにより、分析ユニット30としての機能が発揮される。
次に、図2〜図7を参照しながら本実施形態に係る光学測定装置1における光学測定方法(スペクトルデータの作成方法)について説明する。図2は、光学測定方法について説明するフロー図である。また、図3〜図7は、各ステップでの処理の結果を説明する図である。
図2に示すように、まず、測定対象物3について、光源ユニット10からの近赤外光L1の光量を第1光量として測定を行う(S01:スペクトルデータを取得する工程)。第1光量をどのように選択するかは特に限定されないが、例えば、光源ユニット10から出力される近赤外光L1の出力強度の最大を100%とした場合に対して50%の光量とすることができる。光源ユニット10からこの第1光量での測定を行うことで、検出ユニット20では、照射領域A1上に載置された測定対象物3により拡散反射された拡散反射光L2を検出する。この結果、検出ユニット20では、測定対象物3に係る第1光量の近赤外光L1に基づくスペクトルデータが取得される。
次に、第1光量の近赤外光L1を用いた測定の結果得られたスペクトルデータについて、分析ユニット30において、ダーク・ホワイト補正を行う(S02:スペクトルデータを補正する工程)。ダーク・ホワイト補正とは、光学測定装置1を用いて、照射領域A1に対してダーク板(反射率が0に近い標準反射板)を載置した測定により得られたスペクトルデータ又はカメラレンズ24に対して入射する光を全て遮った状態で得られたスペクトルデータ(ダークデータ)と、ホワイト板(反射率が1に近い標準反射板)載置した測定により得られたスペクトルデータ(ホワイトデータ)と、を用いて補正を行う処理である。なお、ホワイト板を載置した測定により得られたスペクトルデータのみを用いて補正を行うホワイト補正でもよい。ダーク・ホワイト補正またはホワイト補正を行うことで、ホワイトバランスを調整したスペクトルデータが得られる。
図3は、2種類の物質P,Qについて、光源ユニット10により第1光量の近赤外光L1を照射して検出ユニット20により拡散反射光L2を検出することで得られたスペクトルデータを示す図である。図3に示すように、物質Pは、物質Qよりも反射率が高い物質であるが、検出ユニット20の受光部23に載置された受光素子のダイナミックレンジが65535であるのに対して、物質Pは、最大値が約45000であり、物質Qは、最大値が約27000である。すなわち、検出ユニット20の受光部23の受光素子のダイナミックレンジに対して物質P,Qからの拡散反射光L2の光量が弱いことが分かる。
図3には、ホワイト板のスペクトルデータも示している。ホワイト板のスペクトルデータは物質P,Qよりも反射率が高いものであり、光量の最大値が約61000である。ただし、ホワイト板を測定した場合であっても、図3に示すように、波長域によっては検出ユニット20において検出される光量が小さくなる。そこで、ホワイトデータ及びダークデータを利用して、規格化(ダーク・ホワイト補正)を行う。
図4に、物質P,Qに係るスペクトルデータのダーク・ホワイト補正後の結果を示す。図4に示すように、物質P,Qのそれぞれについて、近赤外光L1の波長範囲でのダーク・ホワイト補正後のスペクトルデータが得られる。ただし、例えば、短波長側(1200nm以下)や長波長側(1650nm以上)では、ホワイト板のスペクトルデータにおいても受光部23の受光素子のダイナミックレンジを十分に活用できていない状態で取得された情報に基づくものである。したがって、スペクトルデータの精度という観点では、改善の余地がある。
次に、測定対象物3について、光源ユニット10からの近赤外光L1の光量を第2光量として測定を行う(S03:スペクトルデータを取得する工程)。第2光量をどのように選択するかは特に限定されないが、例えば、光源ユニット10から出力される近赤外光L1の出力強度の最大100%の光量とすることができる。第2光量は、第1光量とは異なる光量であり、且つその差がある程度大きい(例えば、一方の光量に対して他方の光量の割合が20%以上)ことが好ましい。光源ユニット10からの近赤外光L1を第2光量として照射を行うことで、検出ユニット20では照射領域A1上に載置された測定対象物3により拡散反射された拡散反射光L2を検出する。この結果、検出ユニット20では、測定対象物3に係る第2光量の近赤外光L1に基づくスペクトルデータが取得される。
次に、第2光量の近赤外光L1を用いた測定の結果得られたスペクトルデータについて、分析ユニット30において、ダーク・ホワイト補正を行う(S04:スペクトルデータを補正する工程)。ここで行われるダーク・ホワイト補正(またはホワイト補正)は、第1光量の近赤外光L1を用いた測定の結果得られたスペクトルデータに対する補正と同じとされる。すなわち、第1光量の近赤外光L1を用いた測定結果と、第2光量の近赤外光L1を用いた測定結果と、について、同じ基準での補正を行う。
図5は、2種類の物質P,Qについて、光源ユニット10により第2光量の近赤外光L1を照射して検出ユニット20により拡散反射光L2を検出することで得られたスペクトルデータを示す図である。第2光量は第1光量よりも大きいので、図5に示すように、ホワイト板及び物質Pのスペクトルデータは一部(1200nm〜1700nm付近)において、計測不能となっている。一方、物質Qは、ダイナミックレンジ65535に対して、最大値が約50000となっていて、第1光量での測定時よりも受光素子のダイナミックレンジを十分に活用できていることが分かる。
図6に、図5に示す物質P,Qに係るスペクトルデータのダーク・ホワイト補正後の結果を示す。ただし、ホワイトデータが計測不能により取得できていない波長範囲はダーク・ホワイト補正ができないので、ホワイトデータが取得された波長範囲のみダーク・ホワイト補正を行う。その結果が図6である。したがって、図6に示すダーク・ホワイト補正後の結果には、1200nm以下及び1650nm以上の波長域の結果のみが含まれる。
図6に示す結果は、図4に示す結果と比較すると、ホワイト板、物質P,Q及び全てのスペクトルデータにおいて、短波長側(1200nm以下)及び長波長側(1650nm以上)において受光部23の受光素子のダイナミックレンジを十分に活用した状態で取得された情報に基づくものである。したがって、スペクトルデータの精度という観点において、図4に示す結果よりも精度が改善されたものといえる。
そこで、分析ユニット30において、補正結果を合成して、測定対象物3に係るスペクトルデータである対象物スペクトルデータを作成する(S05:対象物スペクトルデータを作成する工程)。
具体的には、図7に示すように、図4に示す結果と図6に示す結果とを組み合わせルことになる。具体的には、第1光量による測定の結果(ダーク・ホワイト補正後)を波長帯域W1(細線部)に当てはめ、第2光量による測定の結果(ダーク・ホワイト補正後)を波長帯域W2(太線部)に当てはめる。第2光量による測定の結果は、波長帯域W2でしか得られていない。分析ユニット30では、この第2光量による測定の結果を優先して採用し、第2光量による測定の結果が得られていない波長帯域については、第1光量による測定の結果を採用する。分析ユニット30では、上記の処理を行って、測定対象物3に係るスペクトルデータを作成する。
本実施形態に係る光学測定装置1及び光学測定装置1による光学測定方法(対象物スペクトルデータの作成方法)を用いることで、以下の効果が奏される。上述した第1の光量のように、ダーク・ホワイト補正を行うためにホワイト板のスペクトルデータが検出不能とならない条件でスペクトルデータを取得すると、図3に示すように、受光素子のダイナミックレンジを十分に活用できない波長帯域が生じる。したがって、そのような領域については、受光素子の検出性能を十分に生かしていない状態で測定が行われるため、スペクトルデータの精度が低くなる。
これに対して、本実施形態に係る光学測定装置1による光学測定方法(対象スペクトルデータの作成方法)では、図5に示すように、ホワイト板のスペクトルデータが検出不能となる領域が含まれる第2の光量でも測定対象物3のスペクトルデータを取得する構成とすることで、第1の光量では受光素子のダイナミックレンジを十分に活用できなかった波長帯域でもダイナミックレンジを活用した状態での測定が行われる。
そして、本実施形態に係る光学測定装置1による光学測定方法では、第1の光量での測定で得られたスペクトルデータ(補正後)と第2の光量での測定で得られたスペクトルデータ(補正後)とを組み合わせて、測定対象物3に係る対象物スペクトルデータを作成する構成としている。このような構成とすることで、波長帯域によらず受光素子のダイナミックレンジを十分に活用したスペクトルデータが得られるため、測定対象物3に係る高精度のスペクトルデータである対象物スペクトルデータを得ることができる。
また、上記実施形態では、第2の光量による測定から得られたスペクトルデータ(補正後)を優先して使用して、対象物スペクトルデータを作成している。このような構成とすることで、受光素子のダイナミックレンジを十分に活用した精度の高い対象物スペクトルデータを作成することができる。
(変形例)
次に、上記実施形態で説明した光学測定装置1による光学測定方法の変形例について説明する。まず、第1の変形例として、対象物スペクトルデータを作成する際の処理の変更例について説明する。
上記実施形態では、光源ユニット10からの近赤外光L1の強度を変化させた2つのスペクトルデータについて、それぞれダーク・ホワイト補正を行い、その結果を組み合わせて対象物スペクトルデータを作成した。ただし、図5に示すように、光源ユニット10からの近赤外光L1の光量を大きくすると、ホワイト板のスペクトルデータが検出不能となる波長帯域が拡がる。ホワイト板のスペクトルデータが検出不能となると、当該波長域のスペクトルデータについてダーク・ホワイト補正ができなくなる。そこで、変形例として、補正を行う際に用いる標準反射板に係るスペクトルデータである標準スペクトルデータとして、ホワイト板(ホワイト標準反射板)を用いたスペクトルデータではなく、グレー板(50%標準反射板)を用いたスペクトルデータを利用する例について説明する。本変形例では、上記実施形態で説明した2種類のスペクトルデータ(第1の光量による測定結果をホワイト板の標準スペクトルデータにより補正したものと、第2の光量による測定結果をホワイト板の標準スペクトルデータにより補正したもの)に加えて、第2の光量による測定結果をグレー板の標準スペクトルデータにより補正したものを組み合わせて対象物スペクトルデータを作成する場合について説明する。
図8は、図5に対応するものであり、2種類の物質P,Qについて、光源ユニット10により第2光量の近赤外光L1を照射して検出ユニット20により拡散反射光L2を検出することで得られたスペクトルデータを示す図である。図5では、ホワイト板及び物質Pのスペクトルデータは一部(1200nm〜1700nm付近)において、計測不能となっていたが、図8では、グレー板については、計測不能となっている領域が存在しない。すなわち、グレー板のスペクトルデータを利用した補正が可能となる。この点がホワイト板を使用する場合と相違する。
図9は、図8に示す物質P,Qに係るスペクトルデータのダーク・ホワイト補正後の結果を示す。図9に示す結果は、グレー板を利用してダーク・ホワイト補正を行ったものである。グレー板の反射率(ホワイト板を基準とした反射率比)に関する情報等は、公的機関等で高精度な情報を別途入手することができる。図9に示す結果は、グレー板が有する反射率を利用した補正を行った上で、ダーク・ホワイト補正を行ったものである。この結果と、図6に示す結果とを比較すると、物質P,Qのいずれについても、補正後のスペクトルが得られる波長領域が広くなっていることが分かる。すなわち、グレー板を利用して補正を行うことで、第1の光量と比較して光量が大きい第2の光量を用いて、受光部23の受光素子のダイナミックレンジを十分に活用した結果をより有効に活用することができる。
ただし、グレー板を利用した補正を行う場合には、上述したように、グレー板の反射率に係る補正を行う必要がある。また、ホワイト板を用いたスペクトルデータに基づくダーク・ホワイト補正が行うことができる波長帯域では、ホワイト板を用いたスペクトルデータに基づくダーク・ホワイト補正を行った結果のほうが、受光素子のダイナミックレンジを有効に活用しているといえる。したがって、分析ユニット30では、この第2光量による測定の結果のうち、ホワイト板を用いたスペクトルデータに基づくダーク・ホワイト補正を行った結果を優先して採用する。そして、ホワイト板を用いたスペクトルデータに基づくダーク・ホワイト補正を行った結果が得られていない波長帯域のうち、グレー板を用いたスペクトルデータに基づくダーク・ホワイト補正を行った結果が得られている波長帯域については、当該結果を優先して採用する。そして、第2光量による測定の結果が得られていない波長帯域については、第1光量による測定の結果を採用する。すなわち、変形例の場合は、分析ユニット30では、測定対象物に係る3種類のスペクトルデータ(第1光量による測定の結果、第2光量による測定の結果であってホワイト板を用いたスペクトルデータに基づいて補正を行ったもの、第2光量による測定の結果であってグレー板を用いたスペクトルデータに基づいて補正を行ったもの)を上記の手順で組み合わせて、測定対象物3に係る対象物スペクトルデータを作成する。
その結果、図10に示すように、図4に示す結果、図6に示す結果、及び、図9に示す結果を組み合わせた対象物スペクトルデータが作成されることになる。具体的には、第1光量による測定の結果(ダーク・ホワイト補正後)を波長帯域W1(細線部)に当てはめられ、第2光量による測定の結果(ホワイト板に係るスペクトルデータに基づくダーク・ホワイト補正後)を波長帯域W2(太線部)に当てはめられる。ただし、図7に示す結果では、物質Pに係る対象物スペクトルデータのうち、波長帯域W1に含まれていた領域の一部が、第2光量による測定の結果(グレー板に係るスペクトルデータに基づくダーク・ホワイト補正後)を示す波長帯域W3(より太線で示される部分)に変更されている。また、物質Qに係る対象物スペクトルデータは、第2光量による測定の結果(ホワイト板に係るスペクトルデータに基づくダーク・ホワイト補正後)が用いられる波長帯域W2と、第2光量による測定の結果(グレー板に係るスペクトルデータに基づくダーク・ホワイト補正後)が用いられる波長帯域W3とにより構成される。すなわち、物質Qに係る対象物スペクトルデータには、第1光量による測定の結果(ダーク・ホワイト補正後)が用いられていない。上述のように、物質Qに関しては、第2光量による測定結果であってグレー板のスペクトルデータを用いたダーク・ホワイト補正を行ったスペクトルデータが全波長帯域について得られている。このスペクトルデータは、第1光量による測定結果よりもダイナミックレンジを十分活用できていると考えられるため、このように第2光量による測定結果のうち、グレー板のスペクトルデータを用いてダーク・ホワイト補正を行った測定結果を、第1光量による測定結果よりも優先して用いることで、受光部23の受光素子のダイナミックレンジを十分に活用した結果をより有効に活用することになり、より精度の高い対象物スペクトルデータを作成することができる。
次に、装置構成に係る変更例である第2の変形例について説明する。上記実施形態で説明した光学測定装置1では、光源ユニット10から出射される近赤外光L1の強度が可変であった。これに対して、本発明に係る光学測定装置は、光源部が出射する近赤外光の強度が互いに異なる複数の光源部を有していてもよい。また、複数の光源部を含む場合には、検出部も複数の光源部に対応して複数設けられていてもよい。
図11は、変形例に係る光学測定装置1Aの概略構成図である。図11に示す光学測定装置1Aは、光源ユニット10A(光源部)、及び、検出ユニット20A(検出部)を含む撮像部100Aと、光源ユニット10B及び検出ユニット20Bを含む撮像部100Bと,を有している。光源ユニット10Aの光源11と、光源ユニット10Bの光源11とは互いに異なる光量の光を出射し、光源ユニット10A,10Bにおいて互いに異なる光量の近赤外光L1が出射される。また、光学測定装置1Aでは、測定台2が例えばベルトコンベアのように測定対象物を搬送可能な搬送部として機能する。
また、分析ユニット30(補正部・分析部)は、2つの撮像部100A,100Bの検出ユニット20A,20Bに対して接続されているが、分析ユニット30のうち、ダーク・ホワイト補正を行う補正部としての機能の部分は、2つの撮像部100A,100Bのそれぞれに設けられていてもよい。
上記の光学測定装置1Aでは、測定対象物は測定台2により搬送されながら、撮像部100Aによる撮像と、撮像部100Bによる撮像とが行われる。そして、撮像部100Aの光源ユニット10Aから出射される近赤外光L1と、撮像部100Bの光源ユニット10Bから出射される近赤外光L1と、は互いに光量が異なるので、撮像部100A,100Bで取得されるスペクトルデータは互いに異なるものとなる。そして、分析ユニット30において、これらのスペクトルデータに係るダーク・ホワイト補正を行った後、これらを組み合わせることで、光学測定装置1と同様に対象物スペクトルデータが作成される。また、光源ユニット10A,10Bのように、光源部が光量が互いに異なる測定光を照射する光源11を含んで複数設けられている場合、光量が可変の光源を用いずに光学測定装置1Aの構成をそろえることができるため、装置構成を柔軟に変更することができる。
このように、本発明に係る光学測定装置は、所定の波長域を有し光量が互いに異なる複数の測定光を測定対象物に対して照射し、測定対象物からの拡散反射光を受光することで、複数のスペクトルデータを取得可能であればよく、光源ユニット10及び検出ユニット20の構成は、適宜変更することができる。
なお、本発明に係る光学測定装置は上記実施形態に限定されない。例えば、上記実施形態のように分光測定装置が光源ユニット、検出ユニットおよび分析ユニットを備えている構成には限定されない。
また、上記実施形態では、2次元に配列された受光素子のうち、一方向(波長方向:y軸方向)に配列された複数の受光素子を用いて1画素に係るスペクトルデータを取得していたが、光学測定装置1がハイパースペクトル画像を取得する場合その構成は上記に限定されない。例えば、1受光素子がスペクトルデータを取得することにより、各受光素子において取得されたスペクトルデータを各画素のスペクトルデータとすることができる分光測定装置(エリアカメラ)でもハイパースペクトル画像を取得することができる。具体的には、光源ユニット10からの光の波長を変化させるか、又は、検出ユニット20の分光器22に代えて特定の波長のみを選択して透過できるフィルタ又はバンドパスフィルタ等を設けることで、時間と共に光の波長を変えながら受光部23に2次元に配置された受光素子のそれぞれで受光をすることで、各受光素子でスペクトルデータを得ることができる。
1,1A…光学測定装置、10,10A,10B…光源ユニット、20,20A,20B…検出ユニット、30…分析ユニット。

Claims (5)

  1. 測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射する光源部と、
    前記光源部からの前記測定光の照射により出射される前記測定対象物からの拡散反射光を受光する受光素子を有し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する検出部と、
    前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う補正部と、
    前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する分析部と、
    を有する光学測定装置。
  2. 前記分析部は、前記複数のスペクトルデータのうち、前記光源部から出射された測定光の光量が大きい場合に前記検出部で検出されたスペクトルデータに含まれる情報を優先して使用して、前記対象物スペクトルデータを作成する、請求項1に記載の光学測定装置。
  3. 前記標準スペクトルデータは、グレー標準反射板に係るスペクトルデータを含む、請求項1に記載の光学測定装置。
  4. 前記光源部は、光量が互いに異なる測定光を照射する光源を含んで複数設けられ、
    前記検出部は、前記複数の光源部に対応して複数設けられ、
    前記複数の光源部による照射領域の間において前記測定対象物を搬送する搬送部をさらに有する、請求項1〜3のいずれか一項に記載の光学測定装置。
  5. 光源部により、測定対象物に対して、所定の波長域を有し光量が互いに異なる複数の測定光を照射することで、前記測定対象物から出射される拡散反射光を検出部の受光素子で受光し、前記測定対象物からの前記拡散反射光のスペクトルデータを取得する工程と、
    補正部において、前記検出部において取得された前記スペクトルデータについて、標準反射板に係るスペクトルデータである標準スペクトルデータを用いて補正を行う工程と、
    分析部において、前記光源部から複数の測定光を照射することで前記検出部においてそれぞれ検出され、前記補正部により補正された複数のスペクトルデータを組み合わせて、前記測定対象物に係る対象物スペクトルデータを作成する工程と、
    を有する、光学測定方法。
JP2017109920A 2017-06-02 2017-06-02 光学測定装置及び光学測定方法 Pending JP2018205084A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017109920A JP2018205084A (ja) 2017-06-02 2017-06-02 光学測定装置及び光学測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017109920A JP2018205084A (ja) 2017-06-02 2017-06-02 光学測定装置及び光学測定方法

Publications (1)

Publication Number Publication Date
JP2018205084A true JP2018205084A (ja) 2018-12-27

Family

ID=64955700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017109920A Pending JP2018205084A (ja) 2017-06-02 2017-06-02 光学測定装置及び光学測定方法

Country Status (1)

Country Link
JP (1) JP2018205084A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364920A1 (en) * 2019-09-18 2022-11-17 Roumiana Tsenkova Spectroscopic analyzer and spectroscopic analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364920A1 (en) * 2019-09-18 2022-11-17 Roumiana Tsenkova Spectroscopic analyzer and spectroscopic analysis method
US11828654B2 (en) * 2019-09-18 2023-11-28 Roumiana Tsenkova Spectroscopic analyzer and spectroscopic analysis method

Similar Documents

Publication Publication Date Title
US20170219433A1 (en) Spectroscopic measurement method and spectroscopic measurement device
US9164029B2 (en) Method of classifying and discerning wooden materials
US9625376B2 (en) System for and method of combined LIBS and IR absorption spectroscopy investigations
JP2014215177A (ja) 検査装置及び検査方法
WO2018043748A1 (ja) 生体計測装置及び生体計測方法
CN104655279A (zh) 包括分色光束组合器和分离器的光学吸收光谱法系统
US20170254741A1 (en) Quality evaluation method and quality evaluation device
US8080796B1 (en) Standoff spectroscopy using a conditioned target
JP6295798B2 (ja) 検査方法
JP2013164338A (ja) 植物または植物加工品の異物検出方法
JP2011141809A (ja) 画像データ分析装置及び画像データ分析方法
JP2013044729A (ja) 塗布状態測定方法
JP2016090476A (ja) 異物検出方法
JP5644580B2 (ja) 異状判定装置及び異状判定方法
JP2012189390A (ja) 毛髪検出装置
CN114127520A (zh) 光谱仪装置
JP5298684B2 (ja) 異物の検出装置及び検出方法
JP2015014527A (ja) 異状検出装置及び異状検出方法
JP2018205084A (ja) 光学測定装置及び光学測定方法
JP2015040818A (ja) 穀物分類方法及び穀物分類装置
WO2013133171A1 (ja) 種子選別方法及び種子選別装置
JP2019011992A (ja) 卵内の検査装置
JP2017190957A (ja) 光学測定装置
JP2017133953A (ja) 錠剤検査装置
JP2016206060A (ja) 分光測定装置及び分光測定方法