JP4800909B2 - コンクリートの診断方法 - Google Patents
コンクリートの診断方法 Download PDFInfo
- Publication number
- JP4800909B2 JP4800909B2 JP2006318821A JP2006318821A JP4800909B2 JP 4800909 B2 JP4800909 B2 JP 4800909B2 JP 2006318821 A JP2006318821 A JP 2006318821A JP 2006318821 A JP2006318821 A JP 2006318821A JP 4800909 B2 JP4800909 B2 JP 4800909B2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- component
- absorption spectrum
- light
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002405 diagnostic procedure Methods 0.000 title claims description 20
- 238000000862 absorption spectrum Methods 0.000 claims description 47
- 238000010521 absorption reaction Methods 0.000 claims description 37
- 230000006866 deterioration Effects 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 33
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical group [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 31
- 230000015556 catabolic process Effects 0.000 claims description 11
- 238000006731 degradation reaction Methods 0.000 claims description 11
- 238000012937 correction Methods 0.000 claims description 10
- 238000003745 diagnosis Methods 0.000 claims description 10
- 238000004611 spectroscopical analysis Methods 0.000 claims description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical group [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 5
- 239000000920 calcium hydroxide Substances 0.000 claims description 5
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 5
- 238000007619 statistical method Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 2
- 238000000491 multivariate analysis Methods 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 description 31
- 238000006386 neutralization reaction Methods 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000002835 absorbance Methods 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 239000004568 cement Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000001678 irradiating effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000013307 optical fiber Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- -1 hydroxide ions Chemical class 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 238000010238 partial least squares regression Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000012628 principal component regression Methods 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 208000034526 bruise Diseases 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- HOOWDPSAHIOHCC-UHFFFAOYSA-N dialuminum tricalcium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[Al+3].[Al+3].[Ca++].[Ca++].[Ca++] HOOWDPSAHIOHCC-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
中性化は、コンクリートが大気中の二酸化炭素(炭酸ガス)と化学反応を起こして、炭酸カルシウムに変化することによって起こる。この中性化が鉄筋部分まで進むと、鉄筋の表面の保護被膜が失われて鉄筋腐食が生じてしまう。
塩害による鉄筋の腐食は、海水などによりコンクリートの表面から塩化物が浸透する等、コンクリート内に多量の塩化物を含み、塩化物イオンの作用により鉄筋の保護被膜が破壊され、鉄筋腐食が生じてしまう。
アルカリ骨材反応は、骨材中のある種反応性成分がセメント中に含まれているアルカリ分と反応し、生成物がコンクリート中の水分で吸収膨張することで、コンクリートにひび割れを発生させるものである。
例えば、塩害と中性化が同時に発生した場合には、コンクリートに近赤外線を照射して劣化因子を検出する従来の方法では、塩化物の検出を正確に行うことができない可能性が高いことを、発明者らは発見した。すなわち、中性化が進行すると、塩化物の吸収ピークが影響を受けて塩化物濃度が同じでも塩害の吸収ピークが小さくなるため、従来の技術では、中性化が進行したコンクリートに対しては劣化因子の定量的な評価が困難であるという問題がある。
本発明は、コンクリート面に照射した近赤外線の反射光を分光分析して劣化成分を検出するコンクリート診断方法において、複数の吸収スペクトルを採取する第一工程と、前記第一工程で採取した吸収スペクトルから第一劣化成分の影響を排除する第二工程と、前記因子の影響を排除した吸収スペクトルに統計的手法を適用して第二劣化成分を検出する第三工程と、を有することを特徴とする。
前記第二劣化成分は、塩化物イオンであることを特徴とする。
前記第三成分は、水酸化イオンであることを特徴とする。
前記相対化工程は、前記第一工程で採取した吸収スペクトル毎に前記第三成分の吸収ピークを含む所定範囲の吸収スペクトルを抽出する工程と、抽出された吸収スペクトルの最大値と最小値をそれぞれ所定値に一致させる補正値をそれぞれ求める工程と、前記第一工程で採取した吸収スペクトル毎に前記補正値で補正する工程と、を含むことを特徴とする。
コンクリート面に光を照射して採取した反射光を分光分析して劣化成分を検出する評価方法において、採取した吸収スペクトルから第一劣化成分の影響を排除することで、第二劣化成分を検出することが可能となる。
しかも、採取した吸収スペクトルを、第三成分の吸収ピークを基準にして相対化するだけなので、特別な装置やコスト上昇を伴わずに、容易かつ確実に、正確な分析が可能となる。
分光分析法を用いたコンクリート診断方法は、測定対象とする構造物のコンクリート面Cに光Lを照射し、その反射光を測定して、コンクリート面の劣化を光学的に検出する方法である。
本実施形態のコンクリート診断方法では、コンクリートを劣化させる原因となる成分(劣化因子)として、例えば、塩害因子、中性化因子、硫酸塩因子等があり、それら劣化因子が赤外領域(特に近赤外〜中間赤外)に吸収ピークを有するので、その吸収ピークの吸光度から劣化因子の濃度を求める分光分析法を用いている。
図1(a)に示すように、分光分析装置10は、測定の対象となるコンクリート面Cに光Lを照射して、その反射光L1からコンクリート面Cにおける劣化因子等の2次元分布を計測するシステムであり、光源11と、スキャニング装置12と、マルチチャンネル分光器(以下、分光器)14と、演算手段15とを備える。
具体的には、図1(b)に示すように、スキャニング装置12は、ポリゴンミラー16及びガルバノミラー17を備えている。ポリゴンミラー16は、回転軸の周囲に一連の平面ミラーを備えた回転多面体からなる偏向器であり、ガルバノミラー17は、単一のミラーに軸を付け、電気信号に応じてミラーの回転角を変えられるようにした偏向器である。
分光分析装置10では、ポリゴンミラー16が図1(b)中紙面に垂直な軸を回転軸として回転して、コンクリート面Cを横方向(図1(a)中i方向)に走査し、ガルバノミラー17が図1(b)中紙面に平行な軸を回動軸として回動して、コンクリート面Cを縦方向(図1(a)中j方向)に走査するように構成している。
分光器14は、光ファイバ13の他端側に光学的に接続され、光の伝搬方向上流側から、回折格子31、光反射偏向手段32、アパチャ33、集光手段34、光検出器35の順に設けられてなる。
コンクリート面Cに光強度I0の光Lを照射し、反射させると、光Lの一部の波長バンドがコンクリート面C内の劣化因子により吸光され、光強度I1の反射光L1として出射される。
L1(λ)=L(λ)×T(λ)
ここで、T(λ)は反射率
の関係が成り立つ。
反射率T(λ)が小さい程、反射光L1(λ)の光強度は減衰し、光強度が減衰された波長帯から劣化因子の種類を、吸光度から劣化因子の濃度を、求めることができる。
ここで、吸光度とは、光源出射光Lの光強度と反射光L1の光強度との比を対数で表したものと定義されている。
しかしながら、塩害と中性化が同時に発生した場合には、波長2260nm付近に存在するはずの吸収ピークが殆どなくなってしまい、塩害の検出が困難である。
図3に示すように、塩害により内部に塩化物が浸透しているコンクリートが、その後にコンクリート表面から中性化が進行し、表面側に存在した塩化物が減少してしまう現象が見られるからである。
Ca(OH)2+CO2→CaCO3+H2O・・・(1)
このように、中性化が進行すると、水酸化カルシウムは減少し、炭酸カルシウムは増大する。
したがって、中性化が進行するに従って、水酸化カルシウムの特性を示す1420nmの吸光度は減少し、炭酸カルシウムの特性を示す3980nmが増大するようになる。
3CaO・Al2O3・CaCl2・10H2O+3CO2→3CaCO3+2Al(OH)3+CaCl2+7H2O・・・(2)
この反応は,中性化することにより、コンクリート表面付近にあったフリーデル氏塩が二酸化炭素と反応して溶解することを示す。そして、コンクリートの年数が経つに従って、表面付近はフリーデル氏塩が存在しない状態となる。
したがって、コンクリートの塩害に関しては、単に2260nm付近の吸収ピークを観察するのみでは正確な情報を得ることはできないので、他の吸収ピークの変動等も観察して、総合判断しなければならない。
そこで、水酸化イオン(OH-)、つまり、水の吸収ピークに注目し、採取した吸収スペクトルのデータから水の吸収ピークの影響を減らす(水の吸収ピークを基準に、採取した吸収スペクトルのデータを相対化(規格化)する)ことで、中性化の影響を排除して、コンクリートの塩害を判断する。
図4は、本発明の実施形態に係るコンクリート診断方法を示すフローチャート図である。図5〜図10は、本実施形態に係るコンクリート診断方法(ステップS1〜ステップS7)において得られるデータを示す。
具体的には、分光分析装置10の光源11からコンクリート面Cに光Lを照射する。その光Lは、コンクリート面Cで反射され、反射光L1として出射する。
その際、スキャニング装置12は、ポリゴンミラー16及びガルバノミラー17の角度を調整してコンクリート面C内の計測点p(1,1)からの反射光L1を捉える。具体的には、光ファイバ13に反射光L1が入射されるようポリゴンミラー16及びガルバノミラー17と反射光L1の光軸が合致するように光軸の調整がなされる。
MEMSアクチュエータに到達した光L1は、所定の角度範囲で高速で反射、偏向されアパチャ33へと向かう。この反射、偏向によって、反射光L1のうち、分光された各波長の光ごとに光強度が調整される。
そして、演算手段15では、採取した電気信号を処理して、図5に示すような吸収スペクトルの波形データが求められる。
具体的には、図6に示すように、1850nm〜2400nmの範囲のデータのみを抽出する。
ベースライン補正は、コンクリート面Cの光散乱の影響等で、吸収スペクトルの波形に生じるベースラインの傾きやうねりを矯正するための処理である。ここで、ベースライン補正とは、選択した波長範囲の両端を結んだ線(通常は直線であり、これをベースラインと呼ぶ)が0になるようにする補正である。
具体的には、図7に示すように、1850nm〜2150nmの範囲のデータのみを抽出する。
相対化係数Q=1.0/(当該波形データの最大値)
を乗算する。
そして、この波形データ毎の相対化係数Q値を記憶しておく。
これにより、図10に示すように、相対化後の吸収スペクトルの各波形データが得られる。この吸収スペクトルの波形データは、水の吸収ピークを基準にして相対化(規格化)させた波形データである。
すなわち、各吸収スペクトルの波形データは、その最大値(水の吸収ピーク)と最小値が略一致するようなっている。つまり、相対化された各吸収スペクトルにおいては、水の吸収ピークの影響が略同一となっている。
ケモメトリックス分析は、スペクトルのような多変量データに、数学的、統計的手法を適用するものであって、スペクトル解析法として有効な手法であり、特に多変量データなど、その背後にある情報を直接読み取ることは困難なデータの解析において大きな効果を発揮する。 代表的な手法としてPCR(Principal Component Regression)、PLSR(Partial Least Squares Regression)がある。
更に、PCA(Principal Component Analysis)、LDA(Linear Discriminant Analysis)、ANNs(Artificial Neural Networks)、SVM(Support Vector Machine)、K-means、SOM(Self-Organizing Map)、Self Modeling Curve Resolution(SMCR)等がある。
分光分析装置10として、PCX(Polychromix)社製分光器を用い、コンクリート面Cとして、粉砕および未粉砕のセメントペースト,モルタル,コンクリートの中性化および塩害を模擬した試験体の劣化度を計測した。
コンクリート面Cにハロゲンランプを当て,その反射光をMEMSアクチュエータにより分光してスキャンした。
主に塩化物イオンの吸収ピーク(2260nm)を検出するため、波長域として、1700nm〜2500nmの分光分析を行った。
a)中性化および塩害測定用試験体
試験体種類:セメントペースト,モルタル,コンクリート
水セメント比:48.5%
形状:4×4×16cm(セメントペースト,モルタル),10×10×40cm(コ
ンクリート)それぞれ粉砕および未粉砕で使用
塩化物イオン濃度:0,1,3,5,10,20kg/m3
中性化促進期間:0,1,3ヶ月(二酸化炭素濃度:7%,温度40℃,湿度50%)
配合強度:30N/mm2
スランプ:10cm
空気量:3.9%
形状:0.5×0.5×0.1m 4体,1×1×0.1m 1体
塩化物イオン濃度:0,1,5,10kg/m3
(形状:0.5×0.5×0.1mに混入)
図11は、上記コンクリート試験体のはつり面に対して、本実施形態に係る診断方法を行った結果を示す図である。横軸に試験体の塩化物濃度、縦軸に求めた塩分濃度をプロットしたものである。なお、図11(b)に、従来方法の結果を示す。
図11(a)に示すように、本実施形態のコンクリート診断方法を用いた場合には、コンクリート試験体の塩化物濃度と求めた塩分濃度とには、相関性が認められる。
一方、図11(b)に示すように、従来方法では、このような相関性が認められない。
すなわち、本実施形態のコンクリート診断方法によれば、中性化の影響を排除して、コンクリートの塩害を正確に判断することが可能であることが明らかである。
本実施形態に係るコンクリート診断方法によれば、中性化の影響が排除されているので、回帰ベクトル図及び相関スペクトル図から、塩害以外の他の劣化要因も、正確に判断することが可能である。これを基に、図11(a)の結果を導くものである。
コンクリートペースト(図13(a))及びモルタル(図13(b))においても、試験体の塩化物濃度と求めた塩分濃度とには、相関性が認められる。
吸収スペクトルの各波形データから抽出する範囲を変化させた場合であって、各試験体(コンクリート、コンクリートペースト及びモルタル)の塩化物濃度と求めた塩分濃度とには、相関性が認められる。
図15(a)は吸収スペクトルの波形データ、図15(b)は差スペクトル法を用いて波長2600nmの吸収ピークを分析した結果、図15(c)は本実施形態の分析方法を用いて塩化物濃度を求めた結果である。
差スペクトル法を用いた場合には、試験体毎に波長2600nmの吸収ピークがばらついていることが分かる。
実構造物試験体においても、本実施形態の分析方法を用いることで、試験体毎の塩化物濃度のばらつきが少なくなり、正確な測定が行われていることが分かる。
しかも、採取した吸収スペクトルの波形データに対して、水の吸収ピークを基準にデータの相対化(規格化)を行うだけなので、特別な装置やコスト上昇を伴わずに、容易かつ確実に、正確な分析が可能となる。
L…出射光
L1…反射光
C…コンクリート面
Claims (6)
- コンクリート面に照射した近赤外線の反射光を分光分析して劣化成分を検出するコンクリート診断方法において、
複数の吸収スペクトルを採取する第一工程と、
前記第一工程で採取した吸収スペクトルから第一劣化成分の影響を排除する第二工程と、
前記影響を排除した吸収スペクトルに統計的手法を適用して第二劣化成分を検出する第三工程と、
を有し、
前記第二工程は、前記影響を排除するために、前記第一工程で採取した吸収スペクトル毎に前記第一劣化成分と前記第二劣化成分に関連する第三成分の吸収ピークを基準に相対化する相対化工程を含むことを特徴とするコンクリートの診断方法。 - 前記第一劣化成分は、水酸化カルシウムであることを特徴とする請求項1に記載のコンクリートの診断方法。
- 前記第二劣化成分は、塩化物イオンであることを特徴とする請求項1又は請求項2に記載のコンクリートの診断方法。
- 前記第三成分は、水酸化イオンであることを特徴とする請求項1から請求項3のうちいずれか一項に記載のコンクリートの診断方法。
- 前記相対化工程は、
前記第一工程で採取した吸収スペクトル毎に前記第三成分の吸収ピークを含む所定範囲の吸収スペクトルを抽出する工程と、
抽出された吸収スペクトルの最大値と最小値をそれぞれ所定値に一致させる補正値をそれぞれ求める工程と、
前記第一工程で採取した吸収スペクトル毎に前記補正値で補正する工程と、
を含むことを特徴とする請求項1から請求項4のうちいずれか一項に記載のコンクリートの診断方法。 - 前記統計的手法は、多変量解析法であることを特徴とする請求項1から請求項5のうちいずれか一項に記載のコンクリートの診断方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006318821A JP4800909B2 (ja) | 2006-11-27 | 2006-11-27 | コンクリートの診断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006318821A JP4800909B2 (ja) | 2006-11-27 | 2006-11-27 | コンクリートの診断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008134091A JP2008134091A (ja) | 2008-06-12 |
JP4800909B2 true JP4800909B2 (ja) | 2011-10-26 |
Family
ID=39559045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006318821A Active JP4800909B2 (ja) | 2006-11-27 | 2006-11-27 | コンクリートの診断方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4800909B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112114084A (zh) * | 2020-08-19 | 2020-12-22 | 河海大学 | 一种混凝土拌合物中氯离子浓度快速检测方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102362160A (zh) * | 2009-03-24 | 2012-02-22 | 日本电气株式会社 | 光信道监测器以及用于计算光信道监测器的信号光级的方法 |
JP2012013657A (ja) * | 2010-07-05 | 2012-01-19 | Ihi Infrastructure Systems Co Ltd | 分光分析装置 |
JP6148836B2 (ja) * | 2012-09-12 | 2017-06-14 | 東京都下水道サービス株式会社 | ガス濃度測定装置 |
JP6748427B2 (ja) * | 2015-12-25 | 2020-09-02 | 株式会社トプコン | コンクリートの計測方法、コンクリートの計測装置 |
JP6796391B2 (ja) * | 2016-03-31 | 2020-12-09 | 株式会社トプコン | コンクリート測定装置及びコンクリート測定方法 |
JP7013131B2 (ja) * | 2017-02-20 | 2022-01-31 | 株式会社トプコン | 測定装置、測定装置の制御方法及び測定装置の制御プログラム |
JP7000169B2 (ja) * | 2018-01-15 | 2022-01-19 | 株式会社東芝 | 劣化推定装置、劣化推定システム、劣化推定方法及びコンピュータープログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000214084A (ja) * | 1999-01-25 | 2000-08-04 | Asahi Chem Ind Co Ltd | 検査対象物質判定方法及びその装置 |
JP2004354097A (ja) * | 2003-05-27 | 2004-12-16 | Starlabo Corp | スペクトル画像化装置 |
-
2006
- 2006-11-27 JP JP2006318821A patent/JP4800909B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112114084A (zh) * | 2020-08-19 | 2020-12-22 | 河海大学 | 一种混凝土拌合物中氯离子浓度快速检测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2008134091A (ja) | 2008-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4800909B2 (ja) | コンクリートの診断方法 | |
US8970838B2 (en) | Method and apparatus for evaluating a sample through variable angle Raman spectroscopy | |
Simonaho et al. | Determination of wood grain direction from laser light scattering pattern | |
JP2009156809A (ja) | コンクリートの診断方法、データベース装置 | |
WO2020196690A1 (ja) | 製品検査方法及び製品検査装置 | |
WO2001075421A1 (fr) | Procede et appareil servant a detecter une mastite au moyen d'une lumiere visible et/ou d'une lumiere proche infrarouge | |
Sandak et al. | Estimation of physical and mechanical properties of timber members in service by means of infrared spectroscopy | |
JP4672498B2 (ja) | コンクリート劣化因子検出方法及び検出装置 | |
JP2009068969A (ja) | コンクリート含有物質計測方法および装置 | |
Antikainen et al. | Simultaneous measurement of lathe check depth and the grain angle of birch (Betula pendula Roth) veneers using laser trans-illumination imaging | |
JP5031281B2 (ja) | コンクリートの診断方法 | |
US11406267B2 (en) | Cartilage-tissue analysis device | |
JP3992064B2 (ja) | 光学分析装置 | |
JP2008032430A (ja) | 塗膜劣化診断方法 | |
JP5678148B2 (ja) | コンクリートの診断方法、データベース装置 | |
JP6488659B2 (ja) | コンクリート劣化診断装置 | |
JP2005291881A (ja) | コンクリート構造物の劣化検出装置、及びコンクリート構造物の劣化検出方法 | |
JP2009139098A (ja) | コンクリート構造物中の任意深さの劣化成分検出装置及び検出方法 | |
JP4672496B2 (ja) | コンクリート劣化因子検出方法 | |
JP5591155B2 (ja) | コンクリート劣化因子検出方法 | |
US7532325B2 (en) | Method and apparatus for the separation of fluoroscence and elastic scattering produced by broadband illumination using polarization discrimination techniques | |
Wilsch et al. | Laser Induced Breakdown Spectroscopy (LIBS)-alternative to wet chemistry and micro-XRF | |
WO2017170975A1 (ja) | 分光曲線取得装置及びコンクリート測定装置及び分光曲線取得方法及びコンクリート測定方法 | |
KR20170114594A (ko) | 부식 측정용 라만 분광 시스템 | |
Agresti et al. | Colour modifications and hyperspectral imaging: non-invasive analysis of photo-degraded wood surfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090618 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20091218 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110712 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110804 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140812 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4800909 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |