WO2017110291A1 - 計測センサ用パッケージおよび計測センサ - Google Patents

計測センサ用パッケージおよび計測センサ Download PDF

Info

Publication number
WO2017110291A1
WO2017110291A1 PCT/JP2016/083435 JP2016083435W WO2017110291A1 WO 2017110291 A1 WO2017110291 A1 WO 2017110291A1 JP 2016083435 W JP2016083435 W JP 2016083435W WO 2017110291 A1 WO2017110291 A1 WO 2017110291A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing recess
light
base body
measurement sensor
ground
Prior art date
Application number
PCT/JP2016/083435
Other languages
English (en)
French (fr)
Inventor
泰 大出
宏樹 伊藤
杉本 好正
範高 新納
翔吾 松永
林 拓也
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US15/770,658 priority Critical patent/US11166642B2/en
Priority to EP21205560.2A priority patent/EP4026493A1/en
Priority to CN201680060515.8A priority patent/CN108135516B/zh
Priority to JP2017557785A priority patent/JP6483859B2/ja
Priority to EP16878189.6A priority patent/EP3395242B1/en
Priority to KR1020187010706A priority patent/KR102136538B1/ko
Publication of WO2017110291A1 publication Critical patent/WO2017110291A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0261Measuring blood flow using optical means, e.g. infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/18Shielding or protection of sensors from environmental influences, e.g. protection from mechanical damage
    • A61B2562/182Electrical shielding, e.g. using a Faraday cage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to a measurement sensor package and a measurement sensor.
  • blood flow can be measured using the Doppler effect of light.
  • light When light is irradiated to blood, light is scattered by blood cells such as red blood cells.
  • the moving speed of the blood cell is calculated from the frequency of the irradiation light and the frequency of the scattered light.
  • a measurement sensor that measures blood flow is described as, for example, a self-luminous measurement sensor in Patent Document 1, and an irradiation unit that irradiates light to blood and a light receiving unit that receives scattered light are arranged on a substrate.
  • the front plate is bonded to the substrate by a light-shielding bonding portion that surrounds each.
  • the tip of a finger which is a measurement location
  • the human fingertip works like a capacitor, and when it touches the measurement sensor, the charge accumulated on the fingertip is released. Due to the discharge of this charge, noise is mixed in the current input to the light emitting element and the current output from the light receiving element, and the measurement accuracy is lowered due to the influence of this noise.
  • the package for a measurement sensor includes a base, a lid, and a ground conductor layer.
  • the base includes a base body and a ground via conductor.
  • the base body is formed by laminating a plurality of dielectric layers, has a rectangular plate shape, and has a first housing recess for housing the light emitting element and a second housing recess for housing the light receiving element on the first surface. ing.
  • the lid is a plate made of an insulating material that covers the first housing recess and the second housing recess, and the light emitted from the light emitting element housed in the first housing recess is transmitted therethrough, Light received by the light receiving element housed in the second housing recess is transmitted.
  • the ground conductor layer is disposed on a surface of the lid that faces the first housing recess and the second housing recess, and is connected to a ground potential.
  • the ground conductor layer is provided with a first opening through which light emitted from the light emitting element passes and a second opening through which light received by the light receiving element passes, and is electrically connected to the plurality of ground via conductors. Connected to.
  • a measurement sensor includes the above-described measurement sensor package, a light emitting element accommodated in the first accommodating recess, and a light receiving element accommodated in the second accommodating recess.
  • FIG. 2 is a cross-sectional view taken along a cutting plane line AA of FIG.
  • FIG. 2 is a cross-sectional view taken along a cutting plane line BB in FIG.
  • FIG. 3 is a cross-sectional view of a measurement sensor package 1 ⁇ / b> A corresponding to the cross-sectional view shown in FIG. 2.
  • FIG. 4 is a cross-sectional view of a measurement sensor package 1 ⁇ / b> A corresponding to the cross-sectional view shown in FIG. 3.
  • 2 is a cross-sectional view illustrating a configuration of a measurement sensor 100.
  • FIG. It is a figure which shows the measurement result of the power spectrum of an Example and a comparative example. It is a figure which shows the evaluation result of an Example and a comparative example.
  • FIG. 1 is a plan view showing a measurement sensor package 1 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the section line AA of FIG. 1
  • FIG. FIG. 6 is a cross-sectional view taken along the cutting plane line BB.
  • the lid 3 is omitted.
  • the measurement sensor package 1 includes a base 2, a lid 3 and a ground conductor layer 4.
  • the base 2 contains a light emitting element and a light receiving element, and includes a base body 20, a plurality of ground via conductors 21, an annular ground conductor layer 22, a signal wiring conductor 23, and an external connection terminal 24. .
  • the base body 20 of the present embodiment has a rectangular plate shape and is formed by laminating a plurality of dielectric layers.
  • the base body 20 is provided with at least two recesses, and one of the two recesses is a first storage recess 20a for storing the light emitting element, and the other of the two recesses is It is the 2nd accommodation recessed part 20b which accommodates a light receiving element.
  • the first housing recess 20 a and the second housing recess 20 b are provided so as to open on the same first surface (one main surface) of the base body 20.
  • the measurement sensor package 1 of the present embodiment is suitably used as a measurement sensor that measures the flow of fluid such as blood flow by utilizing the Doppler effect of light.
  • the measurement sensor includes a light emitting element that irradiates light to the object to be measured and a light receiving element that receives light scattered by the object to be measured.
  • a part of the body such as a finger is irradiated with light from the outside, and light scattered by blood cells contained in blood flowing through the blood vessels under the skin is received, and the frequency Measure blood flow from changes.
  • the light emitting element and the light receiving element are arranged at a predetermined interval based on the positional relationship between the irradiation light and the scattered light.
  • the first housing recess 20a and the second housing recess 20b are provided according to the positional relationship of these elements.
  • the size of the first receiving recess 20a and the size of the second receiving recess 20b may be appropriately set according to the size of the light emitting element and the light receiving element to be stored.
  • the opening of the first housing recess 20a may be rectangular or square, for example.
  • the size of the opening of the first housing recess 20a is, for example, a longitudinal length of 0.3 mm to 2.0 mm and a lateral length of 0.3 mm to 2.0 mm, and the depth of the first housing recess 20a. Is between 0.3 mm and 1.0 mm.
  • the shape of the opening of the second housing recess 20b may be rectangular or square, for example.
  • the size of the opening of the second housing recess 20b is, for example, a longitudinal length of 0.3 mm to 2.0 mm and a lateral length of 0.3 mm to 2.0 mm, and the depth of the second housing recess 20b. Is 0.4 mm to 1.5 mm.
  • the opening shape of the first receiving recess 20a and the second receiving recess 20b may be, for example, a circular shape, a square shape, a rectangular shape, or other shapes.
  • the first receiving recess 20a and the second receiving recess 20b may have a cross-sectional shape that is parallel to the main surface of the base body 20 and has a uniform shape in the depth direction.
  • the first receiving recess 20a and the second receiving recess 20b have a uniform cross-sectional shape that is the same as the opening shape at a predetermined depth, and a cross-section after the predetermined depth. It may be a concave portion with a step whose shape is small and uniform to the bottom.
  • a light emitting element or a light receiving element is mounted on the bottom of the recess, and a connection terminal for electrical connection with the light emitting element or the light receiving element is provided on the surface of the step. It is done.
  • the ground via conductor 21 is a via conductor connected to the ground potential, and one or a plurality of the ground via conductors 21 are disposed outside the first housing recess 20a and the second housing recess 20b of the base body 20 in a plan view.
  • the ground via conductor 21 includes a plurality of through conductors that penetrate through the dielectric layers constituting the base body 20 in the thickness direction in the thickness direction of the base body 20. In the present embodiment, for example, as shown in FIG. 2, the ground via conductor 21 penetrates the entire base body 20 in the thickness direction, and the position of the through conductor provided in each dielectric layer is the same in plan view. is there.
  • the ground via conductor 21 penetrates in a straight line from one main surface of the base body 20 to the second surface (the other main surface), and one end surface 21 a of the ground via conductor 21 is one main surface of the base body 20.
  • the other end surface 21 b is exposed on the other main surface of the base body 20.
  • ground via conductor 21 One end surface 21a of the ground via conductor 21 is connected to a ground conductor layer disposed on the lid 3 via an annular ground conductor layer 22 described later.
  • the other end surface 21 b of the ground via conductor 21 is connected to an external connection terminal 24 disposed on the other main surface of the base body 20.
  • Such a ground via conductor 21 is electrically connected to the ground conductor layer, the annular ground conductor layer 22 and the ground via conductor 21 disposed on the lid 3 and is given the same ground potential.
  • the electric charge emitted from a person is signal wiring from a connection body that electrically connects the light emitting element or the light receiving element and the measurement sensor package 1 such as a bonding wire. Enters the conductor and causes noise.
  • the ground via conductor 21 forms a path in the measurement sensor package 1 through which charges discharged from a person easily flow, so that the charges are guided to the path and released to the outside. Prevents entry into the wiring conductor.
  • the ground via conductor 21 is disposed along the outer shape of the base body 20. Since the base body 20 has a rectangular outer shape, the ground via conductor 21 is also disposed along the rectangular shape. That is, each ground via conductor 21 is arranged so that the distance from each side constituting the outline of the base body 20 to the ground via conductor 21 is the same. In the plan view of FIG. 1, the arrangement position of the ground via conductor 21 is indicated by a broken-line circle.
  • the three ground via conductors 21 shown in the sectional view of FIG. 2 are the three ground via conductors 21 arranged at equal intervals in the horizontal direction on the upper side in FIG. Are arranged so that the imaginary straight line connecting them is parallel to the long side of the base body 20.
  • ground via conductors 21 arranged in the vertical direction on the left side in the drawing have a virtual straight line connecting the centers parallel to the short side of the base body 20.
  • the two ground via conductors 21 arranged horizontally in the lower side of the drawing are arranged so that a virtual straight line connecting the centers is parallel to the long side of the base body 20. .
  • ground via conductors 21 surround the first housing recess 20a and the second housing recess 20b outside the first housing recess 20a and the second housing recess 20b, and the base body. 20 are arranged along a rectangle which is the outer shape. Of the four corners of the rectangle, ground via conductors 21 are disposed at three corners, respectively, and are not disposed at the remaining one corner.
  • the arrangement position of the ground via conductor 21 is determined based on the distance from the first housing recess 20a and the distance from the second housing recess 20b. As described above, since unnecessary electric charge that causes noise flows into the ground via conductor 21 when entering the signal wiring conductor, the ground via conductor 21 and the signal wiring formed in the measurement sensor package 1 are used. The distance from the conductor 23 (including the inside of the base body 20 and the bonding wire) is made larger than a predetermined distance to reduce unnecessary charges from entering the signal wiring conductor 23 from the ground via conductor 21. .
  • the ground via is located at a position where the distance from the first receiving recess 20a or the second receiving recess 20b, in other words, the distance from the signal wiring conductor 23 is smaller than a predetermined distance.
  • the conductor 21 may not be provided.
  • the ground via conductor 21 is not provided at one corner because the distance between the corner and the signal wiring conductor 23 is smaller than a predetermined distance.
  • the ground via conductor 21 may have a low electrical resistance in order to induce unnecessary charges as described above to be released to the outside of the package. To reduce the electrical resistance, the ground via conductor 21 may have a larger diameter. Good. However, if the diameter is too large, the distance from the signal wiring conductor is reduced, and unnecessary charges may enter the signal wiring conductor from the ground via conductor 21. Therefore, considering these, for example, the size of the ground via conductor 21 may be such that the diameter D is 10 ⁇ m to 500 ⁇ m.
  • the annular ground conductor layer 22 is a conductor layer provided in an annular shape on one main surface of the base body 20 so as to surround the opening of the first housing recess 20a and the opening of the second housing recess 20b.
  • the annular conductor layer electrically connects each end face 21 a of the ground via conductor 21 exposed on the one main surface of the base body 20.
  • the annular grounding conductor layer 22 is used for joining the lid 3 to the base body 2, such as solder, Au—Sn, brazing filler metal or other molten metal joint material, or epoxy, silicon, thermoplastic resin, anisotropic
  • the ground conductor layer 4 is joined by a resin-based joining material such as a conductive resin, a conductive epoxy resin, or a conductive silicon resin.
  • the plurality of ground via conductors 21 are disposed along a rectangle that is the outer shape of the base body 20, and each one end surface 21 a is also formed on one main surface of the base body 20 along the rectangle that is the outer shape of the base body 20. Exposed.
  • the annular ground conductor layer 22 for electrically connecting the respective one end faces 21 a is also provided in a rectangular shape according to the arrangement positions thereof.
  • the annular ground conductor layer 22 has a land portion 22a connected to one end face 21a of the ground via conductor 21, and a connection line portion 22b connecting each land portion 22a.
  • the land portion 22a is formed larger than the one end surface 21a in order to reliably connect with the one end surface 21a of the ground via conductor 21 with low resistance.
  • the land portion 22a has a width or diameter of 1 ⁇ D to 3 ⁇ D (1 to 3 times the diameter) with respect to the diameter D of the one end face 21a of the ground via conductor 21.
  • the connection line portion 22b is thinner than the land portion 22a and has a constant line width.
  • the signal wiring conductor 23 is electrically connected to the light emitting element or the light receiving element, the electric signal input to the light emitting element is transmitted, and the electric signal output from the light receiving element is transmitted.
  • the signal wiring conductor 23 in this embodiment includes a bonding wire that is a connection member connected to the light emitting element or the light receiving element, a connection pad 23a to which the bonding wire is connected, and a connection pad 23a that is electrically connected to the connection pad 23a.
  • the signal via conductor 23 b extends in a straight line from directly below to the other main surface of the base body 20 and an external connection terminal 24.
  • the external connection terminal 24 is electrically connected to a connection terminal of an external mounting substrate on which the measurement sensor including the measurement sensor package 1 is mounted by a bonding material such as solder.
  • the annular ground conductor layer 22 and the external connection terminal 24 are, for example, a nickel layer having a thickness of 0.5 to 10 ⁇ m and a thickness of 0 in order to improve wettability with a bonding material such as solder and improve corrosion resistance.
  • a gold layer of 5 to 5 ⁇ m may be sequentially deposited by a plating method.
  • the dielectric layer of the base body 20 is made of a ceramic insulating material.
  • the signal wiring conductor 23 and the like may be a ceramic wiring board made of a conductive material, and the dielectric layer may be an organic wiring board made of a resin insulating material.
  • each conductor is formed on a dielectric layer made of a ceramic material.
  • the ceramic wiring board is formed from a plurality of ceramic dielectric layers.
  • Examples of the ceramic material used in the ceramic wiring board include an aluminum oxide sintered body, a mullite sintered body, a silicon carbide sintered body, an aluminum nitride sintered body, a silicon nitride sintered body, or a glass ceramic sintered body. A ligature etc. are mentioned.
  • the substrate 2 is an organic wiring substrate
  • a wiring conductor is formed on an insulating layer made of an organic material.
  • the organic wiring board is formed from a plurality of organic dielectric layers.
  • the organic wiring substrate may be any material in which a dielectric layer such as a printed wiring substrate, a build-up wiring substrate, or a flexible wiring substrate is made of an organic material.
  • a dielectric layer such as a printed wiring substrate, a build-up wiring substrate, or a flexible wiring substrate is made of an organic material.
  • the organic material used in the organic wiring board include an epoxy resin, a polyimide resin, a polyester resin, an acrylic resin, a phenol resin, and a fluorine resin.
  • the lid 3 is joined to one main surface of the base body 20 and covers the first housing recess 20a and the second housing recess 20b.
  • the lid 3 is a plate-like member made of an insulating material.
  • the lid 3 is configured such that light emitted from the light emitting element accommodated in the first accommodating recess 20a is transmitted and light received by the light receiving element accommodated in the second accommodating recess 20b is transmitted.
  • the surface of the lid 3 is irradiated with light emitted from the light emitting element in a state where, for example, a finger as a measurement object is applied.
  • the lid 3 is made of a conductive material, when the finger is brought into contact with the lid 3, the above-mentioned unnecessary charges are released from the finger, and the charge flows into the base 2 through the lid 3 and noise. Occurs.
  • the lid 3 By configuring the lid 3 with an insulating material, it is possible to prevent unnecessary charges from flowing through the lid 3.
  • the lid 3 needs to transmit the irradiation light and scattered light to the object to be measured. Since the characteristics of the irradiation light and the scattered light are determined by the light emitting element to be mounted, it is sufficient that the lid 3 is configured to transmit at least light emitted from the light emitting element to be mounted.
  • the insulating material constituting the lid 3 may have a transmittance of light of the wavelength of 70% or more with respect to the wavelength of light emitted from the light emitting element, and has a transmittance of 90% or more. It is preferable.
  • a transparent ceramic material such as sapphire, a glass material or a resin material
  • a glass material borosilicate glass, crystallized glass, quartz, soda glass, or the like
  • the resin material polycarbonate resin, unsaturated polyester resin, epoxy resin, or the like can be used.
  • the lid 3 requires a predetermined strength because an object to be measured such as a finger is in direct contact.
  • the strength of the lid 3 depends on the strength and thickness of the constituent material. If it is a transparent ceramic material and a glass material as mentioned above, sufficient intensity
  • the ground conductor layer 4 is disposed on the main surface of the lid 3 that faces the first receiving recess 20a and the second receiving recess 20b, that is, the main surface that is opposite to the main surface that contacts the fingers. , Connected to ground potential.
  • the ground conductor layer 4 is provided with a first opening 4a through which light emitted from the light emitting element passes and a second opening 4b through which light received by the light receiving element passes, and is electrically connected to the plurality of ground via conductors 21. Connected to.
  • the ground conductor layer 4 has the first opening 4a and the second opening 4b so that unnecessary light is not emitted from the first housing recess 20a to the outside and so that unnecessary light does not enter the second housing recess 20b from the outside. It functions as a provided mask member.
  • the ground conductor layer 4 also functions as an electromagnetic shield for suppressing electromagnetic waves coming from the outside from entering the first housing recess 20a and the second housing recess 20b.
  • the signal wiring conductor 23, particularly the bonding wire receives the entering electromagnetic wave as an antenna and causes noise.
  • the influence of noise can be suppressed and the measurement accuracy can be improved.
  • the ground conductor layer 4 is electrically connected to the ground via conductor 21 and the annular ground conductor layer 22 and given a ground potential.
  • the lid 3 made of a transparent ceramic material or a glass material.
  • Metal materials such as Ni, W, and alloys thereof, and alloys thereof can be formed as a metal thin film by vapor deposition, sputtering, baking, or the like.
  • the layer thickness of the ground conductor layer 4 is, for example, 500 mm to 4000 mm.
  • the ground conductor layer 4 may be a single layer or may be formed by overlapping a plurality of layers.
  • FIG. 4 is a cross-sectional view of the measurement sensor package 1A corresponding to the cross-sectional view shown in FIG. 2
  • FIG. 5 is a cross-sectional view of the measurement sensor package 1A corresponding to the cross-sectional view shown in FIG.
  • the measurement sensor package 1A of the present embodiment is different from the measurement sensor package 1 of the above-described embodiment in that the base 2 further includes an internal ground conductor layer 25, and the other configurations are the same. Therefore, the same reference numerals as those of the measurement sensor package 1 are attached to the same components, and detailed description thereof is omitted.
  • the internal ground conductor layer 25 is connected to the ground potential, and is disposed between the bottom of the second housing recess 20b and the other main surface of the base body 20.
  • the internal ground conductor layer 25 is electrically connected to the ground via conductor 21 inside the base body 20 and is applied with a ground potential.
  • the amount of light received by the light receiving element is relatively small, so the electrical signal output from the light receiving element is weak and noise compared to the electrical signal for light emission control input to the light emitting element. It is greatly affected by.
  • the measurement sensor is mounted and used on an external mounting board, and electromagnetic waves caused by signals flowing through the wiring of the external mounting board enter the measurement sensor package 1 from the other main surface side of the base body 20. As a result, noise may be mixed in the signal flowing through the signal wiring conductor 23.
  • the bottom and the other main surface of the second housing recess 20b in which the light receiving element is housed In order to suppress the influence of noise from the external mounting substrate, the bottom and the other main surface of the second housing recess 20b in which the light receiving element is housed.
  • An internal ground conductor layer 25 is provided between the two.
  • the internal ground conductor layer 25 is positioned between the second housing recess 20b and the external mounting substrate, and functions as an electromagnetic shield.
  • the measurement sensor package 1A of the present embodiment includes the internal ground conductor layer 25, thereby suppressing the influence of noise and further improving the measurement accuracy.
  • the base body 2 is produced in the same manner as a known multilayer wiring board manufacturing method.
  • the substrate 2 is a ceramic wiring board and the ceramic material is alumina
  • it is suitable for a raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), calcia (CaO), magnesia (MgO), etc.
  • An organic solvent and a solvent are added and mixed to form a slurry, which is formed into a sheet by a known doctor blade method, calendar roll method, or the like to obtain a ceramic green sheet (hereinafter also referred to as a green sheet).
  • the green sheet is punched into a predetermined shape, and an organic solvent and a solvent are added to and mixed with the raw material powder such as tungsten (W) and a glass material to form a metal paste.
  • the via conductor is provided with a through hole in the green sheet, and the metal paste is filled into the through hole by screen printing or the like.
  • a plurality of the green sheets obtained in this way are stacked, and these are co-fired at a temperature of about 1600 ° C., thereby producing the substrate 2.
  • a lid 3 obtained by cutting a glass material into a predetermined shape by cutting, cutting or the like is prepared, and a ground conductor layer 4 made of a metal thin film is formed on the main surface by vapor deposition, sputtering, baking, or the like.
  • the first opening 4a and the second opening 4b can be formed by patterning the metal thin film by a photolithography (wet etching) method, a dry etching method, or the like.
  • FIG. 6 is a cross-sectional view showing the configuration of the measurement sensor 100.
  • the measurement sensor 100 includes the above-described measurement sensor packages 1 and 1A, the light emitting element 30 accommodated in the first accommodating recess 20a, and the light receiving element 31 accommodated in the second accommodating recess 20b.
  • the light emitting element 30 and the light receiving element 31 are mounted on the measurement sensor package 1, these elements are connected to the connection pads 23 a by the bonding wires 32, and then the lid 3 is bonded to the base body 20. Obtained.
  • the light emitting element 30 can be a semiconductor laser element such as a VCSEL, and the light receiving element 31 can be a variety of photodiodes such as a silicon photodiode, a GaAs photodiode, an InGaAs photodiode, or a germanium photodiode.
  • the light emitting element 30 and the light receiving element 31 may be appropriately selected depending on the type of the object to be measured, the type of parameter to be measured, and the like.
  • the VCSEL that is the light emitting element 30 When measuring the blood flow, for example, as long as the VCSEL that is the light emitting element 30 is capable of emitting laser light having a wavelength of 850 nm in order to measure using the Doppler effect of light.
  • the light emitting element 30 that emits laser light having a wavelength according to the measurement purpose may be selected.
  • the light receiving element 31 may be any element that can receive the light emitted from the light emitting element 30 when the received light has no wavelength change from the laser light emitted from the light emitting element 30. If there is a wavelength change, It is sufficient if it can receive light of a wavelength of.
  • the light emitting element 30, the light receiving element 31, and the connection pad 23a are electrically connected by, for example, the bonding wire 32, but flip chip connection, bump connection, connection using an anisotropic conductive film, or the like. Other connection methods may be used.
  • the measurement sensor 100 is used by being mounted on an external mounting board.
  • an external mounting substrate for example, a control element that controls light emission of the light emitting element 30, an arithmetic element that calculates a blood flow velocity and the like from an output signal of the light receiving element 31, and the like are mounted.
  • a light emitting element control current is input from the external mounting substrate to the measurement sensor 100 via the external connection terminal 24 with the fingertip of the finger as the object to be measured being in contact with the surface of the lid 3.
  • Light is input to the light emitting element 30 through the via conductor 23 b and the connection pad 23 a, and measurement light is emitted from the light emitting element 30.
  • the emitted light passes through the first opening 4a, passes through the lid 3 and is irradiated onto the fingertip, it is scattered by blood cells in the blood.
  • an electrical signal corresponding to the amount of received light is output from the light receiving element 31.
  • the output signal passes through the connection pad 23a and the signal via conductor 23b, and is output from the measurement sensor 100 to the external mounting board via the external connection terminal 24.
  • the signal output from the measurement sensor 100 is input to the arithmetic element, and for example, the frequency of the irradiation light that is the light emitted from the light emitting element 30 and the scattered light that is the light received by the light receiving element 31.
  • the blood flow velocity can be calculated on the basis of the frequency.
  • the ground via conductor 21 is configured to be formed in a straight line in the vertical direction within the base body 20, but electrically from one main surface of the base body 20 to the external connection terminal 24 on the other main surface. As long as they are connected, they may not be straight, but may be shifted in the base body 20 by the inner layer wiring, the inner ground conductor layer 25, or the like.
  • the annular ground conductor layer 22 is not an essential component, and is configured so that the ground conductor layer 4 formed on the lid 3 and the ground via conductor 21 are directly joined and electrically connected. May be.
  • the internal ground conductor layer 25 further extends in the surface direction from between the bottom of the second housing recess 20b and the other main surface of the base body 20, and between the bottom of the first housing recess 20a and the other main surface. It may be arranged.
  • a measurement sensor package (dielectric layer is made of alumina, length 3 mm, width 4.5 mm, thickness 1.2 mm) having the same configuration as the measurement sensor package 1 shown in FIGS.
  • a VCSEL having a near-infrared wavelength and a silicon photodiode having a light receiving diameter of ⁇ 200 ⁇ m as the light receiving element 31 are mounted in a measurement sensor package to obtain a measurement sensor according to an embodiment of the present invention.
  • a measurement sensor of a comparative example was obtained in the same manner as in the example except that the ground via conductor 21 was not provided.
  • the power spectrum was measured as follows. The light generated from the VCSEL is irradiated on the object to be measured, and the current generated by receiving the diffused light returned by the photodiode is used as an output signal. Since the output signal is weak, it was amplified using an amplifier circuit, then AD (analog-digital) converted, and the converted digital signal was Fourier transformed to obtain a power spectrum.
  • FIG. 7 is a diagram showing measurement results of the power spectrum of the example and the comparative example.
  • Fig.7 (a) shows the result of a comparative example
  • FIG.7 (b) shows the result of an Example.
  • the upper graph is a result in a state where the finger is not brought into contact with the lid 3
  • the lower graph is a result in a state where the finger is brought into contact with the lid.
  • noise was generated at frequencies of 9 kHz to 10 kHz and 16 kHz when the finger was in contact.
  • no output change was observed below 2 kHz due to scattering by blood flow that should be detected.
  • FIG. 8 is a diagram showing the evaluation results of Examples and Comparative Examples.
  • the maximum noise amount was used as the evaluation result.
  • the maximum noise amount is calculated by the difference between the maximum output value and the minimum output value at a frequency of 2 kHz or more in the power spectrum. It can be evaluated that the larger the maximum amount of noise is, the more remarkable the occurrence of noise is, and the smaller the maximum amount of noise is, the more suppressed the generation of noise.
  • the maximum noise amount is small in both the example and the comparative example, and the example is smaller than the comparative example. It can be seen that minute noise in a state in which is not in contact with the lid 3 is also suppressed. In addition, the maximum noise amount in the comparative example was larger in the state where the finger was in contact with the lid 3 than in the state where the finger was not in contact, whereas it was only slightly larger in the example.

Abstract

本発明は、ノイズの影響を抑制して高精度の計測が可能な計測センサ用パッケージおよび計測センサに関する。計測センサ用パッケージ1は、基体2、蓋体3および接地導体層4を含む。基体2は、発光素子および受光素子を収容するものであり、基体本体20と、複数の接地ビア導体21と、環状接地導体層22と、信号配線導体23と、外部接続端子24と、を含む。接地ビア導体21は、接地電位に接続されるビア導体であり、平面視で、基体本体20の、第1収容凹部20aおよび第2収容凹部20bよりも外方に配設される。

Description

計測センサ用パッケージおよび計測センサ
 本発明は、計測センサ用パッケージおよび計測センサに関する。
 血流等の生体情報を簡単に、かつ高速に測定できる計測センサが求められている。例えば血流は、光のドップラー効果を利用して計測することができる。血液に光を照射すると、赤血球等の血球細胞で光が散乱される。照射光の周波数と散乱光の周波数とから血球細胞の移動速度が算出される。
 血流を計測する計測センサは、例えば、特許文献1に自発光型計測センサとして記載されており、基板上に、血液に光を照射する照射部と散乱光を受光する受光部とが配置され、各々を取り囲む遮光性の接着部によって基板に前面板が接着されている。
 血流を測定する場合、例えば測定箇所である手指の先を前面板の表面に接触させて測定する。人間の指先は、コンデンサのように働き、計測センサに接触すると、指先に溜まっていた電荷が放出される。この電荷の放出によって、発光素子に入力される電流、受光素子から出力される電流にノイズが混入し、このノイズの影響により測定精度が低下する。
特許第5031895号公報
 本発明の一つの態様の計測センサ用パッケージは、基体と、蓋体と、接地導体層と、を含む。前記基体は、基体本体と、接地ビア導体と、を有する。前記基体本体は、複数の誘電体層が積層されて成り、矩形板状であって、発光素子を収容する第1収容凹部および受光素子を収容する第2収容凹部が、第1面に設けられている。前記接地ビア導体は、複数あり、平面視で、前記基体本体の、前記第1収容凹部および前記第2収容凹部よりも外方に配設され、接地電位に接続される。前記蓋体は、前記第1収容凹部および前記第2収容凹部を覆う、絶縁材料からなる板状であって、前記第1収容凹部に収容される前記発光素子から出射される光が透過し、前記第2収容凹部に収容される前記受光素子が受光する光が透過する。前記接地導体層は、前記蓋体の、前記第1収容凹部および前記第2収容凹部に対向する側の面に配設され、接地電位に接続される。前記接地導体層には、前記発光素子から出射される光が通過する第1開口および前記受光素子が受光する光が通過する第2開口が設けられており、前記複数の接地ビア導体と電気的に接続される。
 また、本発明の一つの態様の計測センサは、上記の計測センサ用パッケージと、前記第1収容凹部に収容される発光素子と、前記第2収容凹部に収容される受光素子と、を含む。
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の実施形態に係る計測センサ用パッケージ1を示す平面図である。 図1の切断面線A-Aで切断した断面図である。 図1の切断面線B-Bで切断した断面図である。 図2に示した断面図に対応する計測センサ用パッケージ1Aの断面図である。 図3に示した断面図に対応する計測センサ用パッケージ1Aの断面図である。 計測センサ100の構成を示す断面図である。 実施例および比較例のパワースペクトルの測定結果を示す図である。 実施例および比較例の評価結果を示す図である。
 図1は、本発明の実施形態に係る計測センサ用パッケージ1を示す平面図であり、図2は、図1の切断面線A-Aで切断した断面図であり、図3は、図1の切断面線B-Bで切断した断面図である。なお、図1の平面図では、蓋体3を省略して図示している。
 計測センサ用パッケージ1は、基体2、蓋体3および接地導体層4を含む。基体2は、発光素子および受光素子を収容するものであり、基体本体20と、複数の接地ビア導体21と、環状接地導体層22と、信号配線導体23と、外部接続端子24と、を含む。
 本実施形態の基体本体20は、矩形板状であって、複数の誘電体層が積層されて形成されている。また、この基体本体20には、少なくとも2つの凹部が設けられており、2つの凹部のうちの一方は、発光素子を収容する第1収容凹部20aであり、2つの凹部のうちの他方は、受光素子を収容する第2収容凹部20bである。第1収容凹部20aおよび第2収容凹部20bは、基体本体20の同一の第1面(一方主面)に開口するように設けられている。
 本実施形態の計測センサ用パッケージ1は、光のドップラー効果を利用して、血流等の流体の流れを計測する計測センサに好適に用いられる。光のドップラー効果を利用するために、計測センサは、被計測物に光を照射する発光素子と、被計測物によって散乱された光を受光する受光素子とを備える。特に、血流を計測する場合には、例えば手指等の身体の一部に外部から光を照射し、皮膚下の血管を流れる血液に含まれる血球細胞によって散乱された光を受光して、周波数の変化から血流を測定する。そのため、計測センサ用パッケージ1においては、照射光と散乱光の位置関係に基づいて、発光素子と受光素子とを所定の間隔で配置する。第1収容凹部20aおよび第2収容凹部20bは、これらの素子の位置関係に応じて設けられる。
 第1収容凹部20aの大きさ、第2収容凹部20bの大きさは、収容しようとする発光素子および受光素子の大きさに応じて適宜設定すればよい。例えば、発光素子として、垂直共振器面発光レーザ素子(VCSEL)を用いる場合、第1収容凹部20aの開口は、その形状が、例えば矩形であっても正方形であってもよい。第1収容凹部20aの開口の大きさは、例えば、縦方向長さが0.3mm~2.0mm、横方向長さが0.3mm~2.0mmであり、第1収容凹部20aの深さは、0.3mm~1.0mmである。また、受光素子として、面入射フォトダイオードを用いる場合、第2収容凹部20bの開口は、その形状が、例えば矩形であっても正方形であってもよい。第2収容凹部20bの開口の大きさは、例えば、縦方向長さが0.3mm~2.0mm、横方向長さが0.3mm~2.0mmであり、第2収容凹部20bの深さは、0.4mm~1.5mmである。
 第1収容凹部20aおよび第2収容凹部20bは、開口形状が、例えば、円形状、正方形状、矩形状等であってもよく、その他の形状であってもよい。また、第1収容凹部20aおよび第2収容凹部20bは、基体本体20の主面に平行な断面の断面形状が深さ方向に一様な形状であってもよい。第1収容凹部20aおよび第2収容凹部20bは、図3の断面図に示すように、所定の深さまでは、断面形状が開口形状と同じで一様であり、所定の深さ以降は、断面形状が小さくなって底部まで一様であるような、段差付きの凹部であってもよい。本実施形態のように段差付きの凹部である場合は、凹部の底部に発光素子または受光素子が実装され、段差表面には、発光素子または受光素子と電気的に接続するための接続端子が設けられる。
 接地ビア導体21は、接地電位に接続されるビア導体であり、平面視で、基体本体20の、第1収容凹部20aおよび第2収容凹部20bよりも外方に1または複数配設される。接地ビア導体21は、基体本体20を構成する各誘電体層を厚み方向に貫通する貫通導体が、基体本体20の厚み方向に複数連なって構成される。接地ビア導体21は、本実施形態では、例えば図2に示すように、基体本体20全体を厚み方向に貫通しており、平面視では、各誘電体層に設けられる貫通導体の位置が同一である。すなわち、接地ビア導体21は、基体本体20の一方主面から第2面(他方主面)にまで一直線状に貫通しており、接地ビア導体21の一方端面21aが、基体本体20の一方主面に露出し、他方端面21bが、基体本体20の他方主面に露出している。
 接地ビア導体21の一方端面21aは、後述の環状接地導体層22を介して蓋体3に配設された接地導体層に接続される。接地ビア導体21の他方端面21bは、基体本体20の他方主面に配設される外部接続端子24に接続される。このような接地ビア導体21によって、蓋体3に配設された接地導体層、環状接地導体層22および接地ビア導体21には、電気的に接続され、同じ接地電位が与えられる。
 このような接地ビア導体21を設けることによって、計測センサ用パッケージ1を備える計測センサで血流を計測する場合に、被計測物の一つである人の手指が計測センサに接触したときに放出される電荷は、基体2の一方主面から接地ビア導体21を流れ、基体2の下方主面に到達し、外部へと放出される。
 接地ビア導体21が設けられていない従来の構成では、人から放出された電荷は、発光素子または受光素子と計測センサ用パッケージ1とを電気的に接続する接続体、例えばボンディングワイヤ等から信号配線導体に進入しノイズを引き起こす。
 本実施形態では、接地ビア導体21によって、人から放出された電荷が流れ易い経路を計測センサ用パッケージ1内に形成することで、この経路に電荷を誘導して外部へと電荷を逃がし、信号配線導体に進入することを防止している。
 本実施形態において、接地ビア導体21は、基体本体20の外形に沿って、配設される。基体本体20は、矩形状の外形を有するので、接地ビア導体21も、矩形状に沿って配設される。すなわち、基体本体20の外形線を構成する各辺から接地ビア導体21までの距離が同様の距離となるように、各接地ビア導体21が配設されている。図1の平面図においては、接地ビア導体21の配設位置を破線の円で示している。例えば、図2の断面図において示される3つの接地ビア導体21は、図1において、図面向かって上側に横方向に等間隔で並ぶ3つの接地ビア導体21であり、各接地ビア導体21の中心を結ぶ仮想直線が基体本体20の長辺に平行となるように配設されている。他の接地ビア導体21についても同様であり、例えば、図1において、図面向かって左側に上下方向に並ぶ2つの接地ビア導体21は、中心を結ぶ仮想直線が基体本体20の短辺に平行となるように配設されており、図面向かって下側に横方向に並ぶ2つの接地ビア導体21は、中心を結ぶ仮想直線が基体本体20の長辺に平行となるように配設されている。
 本実施形態では、合計5つの接地ビア導体21が、第1収容凹部20aおよび第2収容凹部20bよりも外方で、第1収容凹部20aおよび第2収容凹部20bを取り囲むように、かつ基体本体20の外形である矩形に沿って配設されている。矩形の4つの隅部のうち3つの隅部には、接地ビア導体21がそれぞれ配設されており、残り1つの隅部には、配設されていない。
 接地ビア導体21の配設位置は、第1収容凹部20aとの距離および第2収容凹部20bとの距離に基づいて決定される。前述のように、接地ビア導体21には、信号配線導体に進入してしまうとノイズの原因となる不要な電荷が流れるので、接地ビア導体21と、計測センサ用パッケージ1に形成される信号配線導体23(基体本体20内およびボンディングワイヤを含む)との距離を予め定める距離以上に大きくして、接地ビア導体21から信号配線導体23に不要な電荷が進入してしまうことを低減している。
 本実施形態で矩形の4つの隅部のうち、第1収容凹部20aまたは第2収容凹部20bとの距離、言い換えれば信号配線導体23との距離が予め定める距離よりも小さくなる位置には接地ビア導体21を設けなくてもよい。本実施形態において、1つの隅部に、接地ビア導体21を設けていないのは、当該隅部と信号配線導体23との距離が予め定める距離よりも小さいからである。
 接地ビア導体21は、上記のように不要な電荷を誘導してパッケージ外部に放出させるために、電気抵抗を低くしてもよく、電気抵抗を低くするためには、直径をより大きくしてもよい。しかしながら、直径を大きくし過ぎると、信号配線導体との距離が小さくなり、接地ビア導体21から信号配線導体に不要な電荷が進入するおそれがある。したがって、これらを考慮して、例えば、接地ビア導体21の大きさは、直径Dが、10μm~500μmとすればよい。
 環状接地導体層22は、基体本体20の一方主面に、第1収容凹部20aの開口および第2収容凹部20bの開口を取り囲むように環状に設けられる導体層である。この環状の導体層は、基体本体20の一方主面に露出した接地ビア導体21の各一方端面21aを電気的に接続する。環状接地導体層22は、蓋体3を基体2に接合するために、はんだ、Au-Sn、ろう材等の金属溶湯物系接合材、またはエポキシ系、シリコン系、熱可塑性樹脂、異方性導電樹脂、導電性エポキシ樹脂、導電性シリコン樹脂等の樹脂系接合材によって接地導体層4と接合される。
 複数の接地ビア導体21は、基体本体20の外形である矩形に沿って配設されており、各一方端面21aも基体本体20の外形である矩形に沿って、基体本体20の一方主面に露出している。本実施形態では、図1に示すように、各一方端面21aを電気的に接続するための環状接地導体層22も、これらの配置位置に応じて、矩形状に設けている。環状接地導体層22は、接地ビア導体21の一方端面21aと接続するランド部分22aと、各ランド部分22aを接続する接続線部分22bとを有する。ランド部分22aは、接地ビア導体21の一方端面21aと確実に、かつ低抵抗で接続するために、一方端面21aよりも大きく形成されている。例えば、接地ビア導体21の一方端面21aの直径Dに対して、ランド部分22aは、1×D~3×D(直径の1~3倍)の幅または直径を有する。接続線部分22bは、ランド部分22aよりも細く、一定の線幅に形成されている。
 信号配線導体23は、発光素子または受光素子と電気的に接続され、発光素子に入力される電気信号が伝送され、受光素子から出力される電気信号が伝送される。本実施形態における信号配線導体23は、発光素子または受光素子と接続する接続部材であるボンディングワイヤと、ボンディングワイヤが接続される接続パッド23aと、接続パッド23aに電気的に接続して接続パッドの直下から基体本体20の他方主面にまで一直線状に延びる信号ビア導体23bと、外部接続端子24とから成る。外部接続端子24は、計測センサ用パッケージ1を備える計測センサが実装される外部実装基板の接続端子とはんだ等の接合材料によって電気的に接続される。
 環状接地導体層22および外部接続端子24は、はんだ等の接合材との濡れ性を向上させ、耐食性を向上させるために、例えば、厚さが0.5~10μmのニッケル層と厚さが0.5~5μmの金層とをめっき法によって順次被着させてもよい。
 基体2は、発光素子および受光素子を収容可能であり、接地ビア導体21および信号配線導体23等を備えるものであれば、基体本体20の誘電体層がセラミック絶縁材料からなり、接地ビア導体21および信号配線導体23等が導体材料からなるセラミック配線基板であってもよく、誘電体層が樹脂絶縁材料からなる有機配線基板であってもよい。
 基体2が、セラミック配線基板の場合、セラミック材料から成る誘電体層に各導体が形成される。セラミック配線基板は、複数のセラミック誘電体層から形成される。
 セラミック配線基板で用いられるセラミック材料としては、例えば、酸化アルミニウム質焼結体、ムライト質焼結体、炭化珪素質焼結体、窒化アルミニウム質焼結体、窒化珪素質焼結体またはガラスセラミックス焼結体等が挙げられる。
 また、基体2が、有機配線基板の場合、有機材料から成る絶縁層に配線導体が形成される。有機配線基板は、複数の有機誘電体層から形成される。
 有機配線基板は、例えば、プリント配線基板、ビルドアップ配線基板またはフレキシブル配線基板等の誘電体層が有機材料から成るものであればよい。有機配線基板で用いられる有機材料としては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、アクリル樹脂、フェノール樹脂またはフッ素系樹脂等が挙げられる。
 蓋体3は、基体本体20の一方主面に接合されて、第1収容凹部20aおよび第2収容凹部20bを覆う。蓋体3は、絶縁材料からなる板状部材である。蓋体3は、第1収容凹部20aに収容される発光素子から出射される光が透過し、第2収容凹部20bに収容される受光素子が受光する光が透過するように構成される。
 本実施形態の計測センサ用パッケージ1を備える計測センサでは、蓋体3の表面に、例えば被計測物である手指を当てた状態で発光素子から出射した光を照射する。蓋体3が導電性を有する材料で構成されていると、蓋体3に手指を接触させたときに、前述の不要な電荷が手指から放出され、蓋体3を通して基体2に電荷が流れ込みノイズが発生する。蓋体3を絶縁材料で構成することにより、蓋体3を通して不要な電荷が流れ込むことを抑制することができる。
 また、蓋体3は、被計測物への照射光および散乱光を透過する必要がある。照射光および散乱光の特性は、搭載する発光素子によって決まるので、蓋体3は、少なくとも搭載する発光素子が出射する光が透過するように構成されていればよい。蓋体3を構成する絶縁材料は、発光素子から出射される光の波長に対して、当該波長の光の透過率が70%以上であればよく、90%以上の透過率を有していることが好ましい。
 蓋体3を構成する絶縁材料としては、例えばサファイア等の透明セラミック材料、ガラス材料または樹脂材料等を用いることができる。ガラス材料としては、ホウケイ酸ガラス、結晶化ガラス、石英、ソーダガラス等を用いることができる。樹脂材料としては、ポリカーボネート樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等を用いることができる。
 蓋体3は、手指等の被計測物が直接接触するため、所定の強度を要する。蓋体3の強度は、構成する材料の強度、板厚みによる。上記のように透明セラミック材料やガラス材料であれば、所定の厚み以上とすることで十分な強度が得られる。蓋体3の構成材料としてガラス材料を用いる場合は、例えば厚みを0.05mm~5mmとすればよい。
 接地導体層4は、蓋体3の、第1収容凹部20aおよび第2収容凹部20bに対向する側の主面、すなわち手指が接触する側の主面とは反対側の主面に配設され、接地電位に接続される。接地導体層4には、発光素子から出射される光が通過する第1開口4aおよび受光素子が受光する光が通過する第2開口4bが設けられており、複数の接地ビア導体21と電気的に接続される。
 接地導体層4は、不要な光が第1収容凹部20aから外部に出射しないよう、また不要な光が外部から第2収容凹部20bに進入しないように、第1開口4aおよび第2開口4bが設けられたマスク部材として機能する。
 さらに、接地導体層4は、外部から到来する電磁波が第1収容凹部20aおよび第2収容凹部20bに進入することを抑制するための電磁シールドとしても機能する。電磁波が第1収容凹部20aおよび第2収容凹部20bに進入すると、信号配線導体23、特にボンディングワイヤがアンテナとなって進入した電磁波を受信してしまいノイズ発生の原因となる。蓋体3の主面に、光を通過させるための第1開口4aおよび第2開口4bを除いて接地導体層4を設けることで、電磁波の進入を抑制し、ノイズの発生を低減することができる。
 このように、蓋体3に接地導体層4を設けることで、ノイズによる影響を抑制し、計測精度を向上させることができる。
 接地導体層4は、接地ビア導体21および環状接地導体層22と電気的に接続され、接地電位が付与される。
 接地導体層4は、透明セラミック材料またはガラス材料からなる蓋体3の表面に、例えば、Cr、Ti、Al、Cu、Co、Ag、Au、Pd、Pt、Ru、Sn、Ta、Fe、In、Ni、Wなどの金属及びこれらの合金等の金属材料を蒸着、スパッタ、焼付け等による金属薄膜として形成することができる。接地導体層4の層厚みは、例えば、500Å~4000Åである。接地導体層4は単一層でも良く、複数層を重ねて形成しても良い。
 次に、本発明の他の実施形態について説明する。図4は、図2に示した断面図に対応する計測センサ用パッケージ1Aの断面図であり、図5は、図3に示した断面図に対応する計測センサ用パッケージ1Aの断面図である。
 本実施形態の計測センサ用パッケージ1Aは、上記の実施形態の計測センサ用パッケージ1に対して、基体2が、さらに内部接地導体層25を有する点で異なっており、その他については、同様の構成であるので、同様の構成には計測センサ用パッケージ1と同じ参照符号を付して詳細な説明は省略する。
 内部接地導体層25は、接地電位に接続され、基体本体20の、第2収容凹部20bの底部と他方主面との間に配設される。内部接地導体層25は、接地ビア導体21と、基体本体20の内部において電気的に接続されており、接地電位が付与される。
 血流の計測等に用いられる計測センサでは、受光素子による受光量が比較的小さいので、受光素子から出力される電気信号は弱く、発光素子に入力される発光制御用の電気信号に比べてノイズによって受ける影響が大きい。
 計測センサは、外部実装基板上に実装されて使用されるが、この外部実装基板の配線を流れる信号等に起因する電磁波が、基体本体20の他方主面側から計測センサ用パッケージ1内に進入して、信号配線導体23を流れる信号にノイズが混入するおそれがある。
 上記のように、特に受光素子側は、ノイズの影響を大きく受けるので、外部実装基板からのノイズの影響を抑制するために、受光素子が収容される第2収容凹部20bの底部と他方主面との間に内部接地導体層25を設けている。第2収容凹部20bと外部実装基板との間に内部接地導体層25が位置し、電磁シールドとして機能する。
 本実施形態の計測センサ用パッケージ1Aは、内部接地導体層25を有することで、ノイズによる影響を抑制し、計測精度をさらに向上させることができる。
 計測センサ用パッケージ1の製造方法について説明する。まず、基体2を公知の多層配線基板の製造方法と同様にして作製する。基体2が、セラミック配線基板であり、セラミック材料がアルミナである場合は、まずアルミナ(Al)やシリカ(SiO)、カルシア(CaO)、マグネシア(MgO)等の原料粉末に適当な有機溶剤、溶媒を添加混合して泥漿状とし、これを周知のドクターブレード法やカレンダーロール法等によってシート状に成形してセラミックグリーンシート(以下、グリーンシートともいう)を得る。その後、グリーンシートを所定形状に打ち抜き加工するとともに、タングステン(W)とガラス材料等の原料粉末に有機溶剤、溶媒を添加混合して金属ペーストとし、これをグリーンシート表面にスクリーン印刷等の印刷法でパターン印刷する。また、ビア導体は、グリーンシートに貫通孔を設け、スクリーン印刷等によって金属ペーストを貫通孔に充填させる。こうして得られたグリーンシートを複数枚積層し、これを約1600℃の温度で同時焼成することによって基体2が作製される。
 一方、ガラス材料を、切削、切断等により所定の形状に切り出した蓋体3を準備し、主面上に、蒸着、スパッタ、焼付け等によって金属薄膜からなる接地導体層4を形成する。このとき、フォトリソグラフィ(ウェットエッチング)法、ドライエッチング法等によって金属薄膜にパターン加工することにより、第1開口4aおよび第2開口4bを形成することができる。
 次に、本発明の他の実施形態である計測センサ100について説明する。図6は、計測センサ100の構成を示す断面図である。計測センサ100は、上記の計測センサ用パッケージ1,1Aと、第1収容凹部20aに収容される発光素子30と、第2収容凹部20bに収容される受光素子31と、を含む。計測センサ100は、計測センサ用パッケージ1に発光素子30と、受光素子31とを実装し、ボンディングワイヤ32でこれらの素子と接続パッド23aと接続した後、蓋体3を基体本体20に接合して得られる。
 発光素子30は、VCSEL等の半導体レーザ素子を用いることができ、受光素子31は、シリコンフォトダイオード、GaAsフォトダイオード、InGaAsフォトダイオード、ゲルマニウムフォトダイオード等の各種フォトダイオードを用いることができる。発光素子30および受光素子31は、被計測物の種類、計測するパラメータの種類等により適宜選択すればよい。
 血流を測定する場合は、例えば、光のドップラー効果を利用して測定するために、発光素子30であるVCSELとして波長が850nmのレーザ光を出射可能なものであればよい。その他の測定を行う場合は、測定目的に応じた波長のレーザ光を出射する発光素子30を選択すればよい。受光素子31は、受光する光が発光素子30から出射されるレーザ光から波長の変化が無い場合、発光素子30の出射光を受光できるものであればよく、波長の変化が有る場合、変化後の波長の光を受光できるものであればよい。
 発光素子30および受光素子31と接続パッド23aとは、本実施形態では、例えば、ボンディングワイヤ32によって電気的に接続されるが、フリップチップ接続、バンプ接続、異方性導電フィルムを用いた接続等他の接続方法であってもよい。
 計測センサ100は、外部実装基板に実装されて使用される。外部実装基板には、例えば、発光素子30の発光を制御する制御素子、受光素子31の出力信号から血流速度等を算出する演算素子等も実装される。
 測定する場合には、被計測物として手指の指先を蓋体3の表面に接触させた状態で、外部実装基板から外部接続端子24を介して発光素子制御電流が計測センサ100に入力され、信号ビア導体23b、接続パッド23aを通って発光素子30に入力されて発光素子30から計測用の光が出射される。出射された光が、第1開口4aを通過し、蓋体3を透過して指先に照射されると、血液中の血球細胞で散乱される。蓋体3を透過し、第2開口4bを通過した散乱光が、受光素子31で受光されると、受光量に応じた電気信号が受光素子31から出力される。出力された信号は、接続パッド23a、信号ビア導体23bを通り、外部接続端子24を介して計測センサ100から外部実装基板へと出力される。
 外部実装基板では、計測センサ100から出力された信号が、演算素子に入力され、例えば、発光素子30から出射された光である照射光の周波数と、受光素子31が受光した光である散乱光の周波数とに基づいて血流速度を算出することができる。
 なお、上記では、接地ビア導体21は、基体本体20内で上下方向に一直線状に形成される構成としているが、基体本体20の一方主面から他方主面の外部接続端子24まで電気的に接続されていれば、一直線状でなく、基体本体20内で、内層配線や内部接地導体層25等によってずれて形成されていてもよい。
 また、本実施形態において、環状接地導体層22は、必須構成ではなく、蓋体3に形成された接地導体層4と接地ビア導体21とを直接接合して電気的に接続するように構成してもよい。
 また、内部接地導体層25は、基体本体20の、第2収容凹部20bの底部と他方主面との間からさらに面方向に延びて、第1収容凹部20aの底部と他方主面との間に配設されてもよい。
 図4,5に示した計測センサ用パッケージ1と同様の構成の計測センサ用パッケージ(誘電体層がアルミナからなり、縦3mm、横4.5mm、厚み1.2mm)を作製し、発光素子30として近赤外線波長のVCSELを、受光素子31として受光径がφ200μmのシリコンフォトダイオードをそれぞれ計測センサ用パッケージに実装して本発明の実施例である計測センサを得た。
 接地ビア導体21を有しないこと以外は、実施例と同様にして比較例の計測センサを得た。
 実施例および比較例の計測センサそれぞれにおいて、蓋体3に手指を接触させない状態で受光素子から出力される信号(パワースペクトル)と、蓋体3に手指を接触させた状態で受光素子から出力される信号(パワースペクトル)と、を測定した。パワースペクトルの測定方法は次のとおりとした。VCSELから発光した光が被測定物に照射され、返ってきた拡散光をフォトダイオードで受光して発生する電流を出力信号とする。出力信号は微弱なため、増幅回路を用いて増幅した後に、AD(アナログ-デジタル)変換し、変換後のデジタル信号をフーリエ変換して、パワースペクトルを得た。
 図7は、実施例および比較例のパワースペクトルの測定結果を示す図である。図7(a)は、比較例の結果を示し、図7(b)は、実施例の結果を示す。また、それぞれの結果において、上側のグラフは、蓋体3に手指を接触させない状態の結果であり、下側のグラフは、蓋体に手指を接触させた状態の結果である。
 図7(a)、図7(b)の上側のグラフに示すように、手指を蓋体3に接触させない状態では、実施例および比較例いずれもノイズは発生しなかった。
 図7(a)の下側のグラフに示すように、接地ビア導体21を有していない比較例では、手指が接触した状態では、周波数9kHz~10kHz付近、および16kHZ付近にノイズが発生した。また、本来検出されるべき血流による散乱に起因する2kHz未満での出力変化は観測されなかった。
 これに対して図7(b)の下側のグラフに示すように、接地ビア導体21を有する実施例では、比較例のようなノイズは発生せず、2kHz以下での出力変化が観測された。
 図8は、実施例および比較例の評価結果を示す図である。評価結果として、最大ノイズ量を用いた。最大ノイズ量は、パワースペクトルにおいて、2kHz以上の周波数で最大出力値と最小出力値との差分で算出される。最大ノイズ量が大きいほどノイズの発生が顕著であり、最大ノイズ量が小さいほどノイズの発生が抑制されていると評価できる。
 図8に示すように、手指を蓋体3に接触させない状態では、実施例および比較例いずれも最大ノイズ量は小さく、さらに実施例のほうが比較例よりも小さくいことから、実施例は、手指を蓋体3に接触させない状態での微小なノイズも抑制されていることがわかる。また、手指を蓋体3に接触させた状態では、接触させない状態に比べて比較例の最大ノイズ量が大きくなったのに対し、実施例ではわずかに大きくなっただけであった。
 上記のように、実施例では、接地ビア導体21を有することにより、被計測物の接触によるノイズの発生を抑制し、高精度で血流の計測が可能であることがわかった。
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のものである。
 1,1A   計測センサ用パッケージ
 2   基体
 3   蓋体
 4   接地導体層
 4a  第1開口
 4b  第2開口
 20  基体本体
 20a 第1収容凹部
 20b 第2収容凹部
 21  接地ビア導体
 21a 一方端面
 21b 他方端面
 22  環状接地導体層
 22a ランド部分
 22b 接続線部分
 23  信号配線導体
 23a 接続パッド
 23b 信号ビア導体
 24  外部接続端子
 25  内部接地導体層
 30  発光素子
 31  受光素子
 32  ボンディングワイヤ
 100 計測センサ

Claims (5)

  1.  複数の誘電体層が積層されて成る、矩形板状の基体本体であって、発光素子を収容する第1収容凹部および受光素子を収容する第2収容凹部が、第1面に設けられている基体本体と、平面視で、該基体本体の、前記第1収容凹部および前記第2収容凹部よりも外方に配設され、接地電位に接続される1または複数の接地ビア導体と、を有する基体と、
     前記第1収容凹部および前記第2収容凹部を覆う、絶縁材料からなる板状の蓋体であって、前記第1収容凹部に収容される前記発光素子から出射される光が透過し、前記第2収容凹部に収容される前記受光素子が受光する光が透過する蓋体と、
     該蓋体の、前記第1収容凹部および前記第2収容凹部に対向する側の面に配設される、接地電位に接続される接地導体層であって、前記発光素子から出射される光が通過する第1開口および前記受光素子が受光する光が通過する第2開口が設けられており、前記複数の接地ビア導体と電気的に接続される接地導体層と、を含むことを特徴とする計測センサ用パッケージ。
  2.  前記基体には、接地ビア導体が複数配設され
     複数の接地ビア導体は、前記基体本体の第1面の外周に沿って配設され、一方の端面がそれぞれ前記基体の第1面に露出しており、
     前記基体は、前記基体本体の前記第1面に、前記第1収容凹部の開口および前記第2収容凹部の開口を取り囲むように環状に設けられる、前記複数の接地ビア導体の各一方の端面を電気的に接続する環状導体層を有することを特徴とする請求項1記載の計測センサ用パッケージ。
  3.  前記基体は、前記基体本体の、前記第2収容凹部の底部と前記第1面とは反対側の第2面との間に配設される、接地電位に接続される内部接地導体層を有することを特徴とする請求項1または2記載の計測センサ用パッケージ。
  4.  前記誘電体層は、セラミックス材料を含むことを特徴とする請求項1~3のいずれか1つに記載の計測センサ用パッケージ。
  5.  請求項1~4のいずれか1つに記載の計測センサ用パッケージと、
     前記第1収容凹部に収容される発光素子と、
     前記第2収容凹部に収容される受光素子と、を含むことを特徴とする計測センサ。
PCT/JP2016/083435 2015-12-22 2016-11-10 計測センサ用パッケージおよび計測センサ WO2017110291A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/770,658 US11166642B2 (en) 2015-12-22 2016-11-10 Measurement sensor package and measurement sensor
EP21205560.2A EP4026493A1 (en) 2015-12-22 2016-11-10 Measuring sensor package and measurement sensor
CN201680060515.8A CN108135516B (zh) 2015-12-22 2016-11-10 测量传感器用封装体以及测量传感器
JP2017557785A JP6483859B2 (ja) 2015-12-22 2016-11-10 計測センサ用パッケージおよび計測センサ
EP16878189.6A EP3395242B1 (en) 2015-12-22 2016-11-10 Measuring sensor package and measuring sensor
KR1020187010706A KR102136538B1 (ko) 2015-12-22 2016-11-10 계측 센서용 패키지 및 계측 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015250656 2015-12-22
JP2015-250656 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110291A1 true WO2017110291A1 (ja) 2017-06-29

Family

ID=59090416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083435 WO2017110291A1 (ja) 2015-12-22 2016-11-10 計測センサ用パッケージおよび計測センサ

Country Status (6)

Country Link
US (1) US11166642B2 (ja)
EP (2) EP4026493A1 (ja)
JP (1) JP6483859B2 (ja)
KR (1) KR102136538B1 (ja)
CN (2) CN108135516B (ja)
WO (1) WO2017110291A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090883A1 (ja) * 2018-10-30 2020-05-07 京セラ株式会社 光学センサ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410127A4 (en) * 2016-01-25 2019-08-28 Kyocera Corporation MEASUREMENT SENSOR HOUSING, AND MEASUREMENT SENSOR
US10582864B2 (en) * 2016-04-04 2020-03-10 Kyocera Corporation Measurement sensor package and measurement sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146596B2 (ja) * 1972-09-06 1976-12-09
JPS63194638A (ja) * 1987-02-10 1988-08-11 松下電器産業株式会社 光電式脈波検出器
JP2001284488A (ja) * 2000-03-30 2001-10-12 Ngk Spark Plug Co Ltd 配線基板
JP2004041482A (ja) * 2002-07-12 2004-02-12 Seiko Epson Corp 脈波検出装置及び生体電位検出装置
JP2005260877A (ja) * 2004-03-15 2005-09-22 Kyocera Corp 高周波モジュール及び無線通信装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031895B1 (ja) 1971-03-16 1975-10-16
US6300659B1 (en) * 1994-09-30 2001-10-09 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and fabrication method for same
KR100309957B1 (ko) * 1997-09-08 2002-08-21 신꼬오덴기 고교 가부시키가이샤 반도체장치
US6486534B1 (en) * 2001-02-16 2002-11-26 Ashvattha Semiconductor, Inc. Integrated circuit die having an interference shield
JP4061409B2 (ja) * 2004-11-09 2008-03-19 国立大学法人九州大学 センサ部及び生体センサ
CN2879968Y (zh) * 2006-02-17 2007-03-21 杭州大力神医疗器械有限公司 光电指脉传感器
JP4708214B2 (ja) * 2006-02-23 2011-06-22 浜松ホトニクス株式会社 光送受信デバイス
JP5031895B2 (ja) 2008-05-12 2012-09-26 パイオニア株式会社 自発光型センサ装置及びその製造方法
CN102026575B (zh) * 2008-05-12 2013-12-18 日本先锋公司 自发光传感器装置
JP5549104B2 (ja) * 2008-05-29 2014-07-16 株式会社リコー 発光装置、光走査装置及び画像形成装置
WO2010003134A2 (en) * 2008-07-03 2010-01-07 Masimo Laboratories, Inc. Protrusion, heat sink, and shielding for improving spectroscopic measurement of blood constituents
KR101307212B1 (ko) 2009-04-30 2013-09-11 가부시키가이샤 무라타 세이사쿠쇼 생체 센서 장치
JP2010264174A (ja) * 2009-05-18 2010-11-25 Hitachi Cable Ltd 表面筋電位センサ
US8199518B1 (en) * 2010-02-18 2012-06-12 Amkor Technology, Inc. Top feature package and method
US8258012B2 (en) * 2010-05-14 2012-09-04 Stats Chippac, Ltd. Semiconductor device and method of forming discontinuous ESD protection layers between semiconductor die
US9490239B2 (en) * 2011-08-31 2016-11-08 Micron Technology, Inc. Solid state transducers with state detection, and associated systems and methods
TWI453923B (zh) * 2012-06-22 2014-09-21 Txc Corp Light sensing chip package structure
PL2931121T3 (pl) * 2012-12-14 2017-08-31 Koninklijke Philips N.V. Urządzenie do pomiaru parametru fizjologicznego użytkownika
EP2803315B1 (en) * 2013-05-15 2019-10-02 Polar Electro Oy Heart activity sensor structure
JP5907200B2 (ja) * 2014-03-18 2016-04-26 セイコーエプソン株式会社 光検出ユニット及び生体情報検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146596B2 (ja) * 1972-09-06 1976-12-09
JPS63194638A (ja) * 1987-02-10 1988-08-11 松下電器産業株式会社 光電式脈波検出器
JP2001284488A (ja) * 2000-03-30 2001-10-12 Ngk Spark Plug Co Ltd 配線基板
JP2004041482A (ja) * 2002-07-12 2004-02-12 Seiko Epson Corp 脈波検出装置及び生体電位検出装置
JP2005260877A (ja) * 2004-03-15 2005-09-22 Kyocera Corp 高周波モジュール及び無線通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3395242A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090883A1 (ja) * 2018-10-30 2020-05-07 京セラ株式会社 光学センサ装置
CN112912984A (zh) * 2018-10-30 2021-06-04 京瓷株式会社 光学传感器装置
JPWO2020090883A1 (ja) * 2018-10-30 2021-10-14 京セラ株式会社 光学センサ装置
JP7134246B2 (ja) 2018-10-30 2022-09-09 京セラ株式会社 光学センサ装置

Also Published As

Publication number Publication date
US11166642B2 (en) 2021-11-09
CN112168146A (zh) 2021-01-05
CN108135516B (zh) 2020-11-20
JP6483859B2 (ja) 2019-03-13
EP4026493A1 (en) 2022-07-13
EP3395242A4 (en) 2019-09-04
EP3395242B1 (en) 2021-11-10
EP3395242A1 (en) 2018-10-31
KR20180053383A (ko) 2018-05-21
KR102136538B1 (ko) 2020-07-22
US20180310836A1 (en) 2018-11-01
CN108135516A (zh) 2018-06-08
JPWO2017110291A1 (ja) 2018-08-16

Similar Documents

Publication Publication Date Title
JP7061990B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6483859B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6659377B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6999407B2 (ja) 光学センサ装置
JP2018100934A (ja) センサ装置
JP6942211B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6718339B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6462904B2 (ja) 計測センサ用パッケージおよび計測センサ
JP7054609B2 (ja) 計測センサ用パッケージ及び計測センサ
JP2018196571A (ja) 計測センサ用パッケージ及び計測センサ
JP6666191B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6666192B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6753729B2 (ja) 計測センサ用パッケージおよび計測センサ
JP6753731B2 (ja) 計測センサ用パッケージおよび計測センサ
JP2019058451A (ja) 光学センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557785

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010706

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15770658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE