WO2017110004A1 - 対象物移動方法及び装置 - Google Patents

対象物移動方法及び装置 Download PDF

Info

Publication number
WO2017110004A1
WO2017110004A1 PCT/JP2015/086441 JP2015086441W WO2017110004A1 WO 2017110004 A1 WO2017110004 A1 WO 2017110004A1 JP 2015086441 W JP2015086441 W JP 2015086441W WO 2017110004 A1 WO2017110004 A1 WO 2017110004A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
head
tip
adapter
liquid
Prior art date
Application number
PCT/JP2015/086441
Other languages
English (en)
French (fr)
Inventor
伊藤 三郎
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2015/086441 priority Critical patent/WO2017110004A1/ja
Priority to JP2017557671A priority patent/JP6450476B2/ja
Publication of WO2017110004A1 publication Critical patent/WO2017110004A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a method for moving a minute object such as a cell aggregate to a desired position and an apparatus therefor.
  • a chip that has a tip opening that sucks and discharges the target liquid including the target and can hold the target liquid may be used.
  • the chip is dispensed when it is moved from a first container for storing cell aggregates to a second container for selecting and examining the cell aggregates. Used as a chip.
  • the dispensing tip aspirates a plurality of cell aggregates together with the medium liquid from the first container, and discharges the medium liquid containing the aspirated cell aggregates onto the well plate of the second container (for example, patent) Reference 1).
  • the dispensing tip does not aspirate the cell aggregates individually, but aspirates the number of cell aggregates to be processed in one batch from the first container. Then, the medium liquid is discharged from the nozzle-shaped tip opening. For this reason, when the medium liquid is discharged to the well plate, a plurality of cell aggregates may be carried in a dense state on the well plate. In this case, since a plurality of cell aggregates overlap, it is difficult to observe the state of individual cell aggregates. In addition, it becomes difficult to individually pick the necessary cell aggregates from the well plate.
  • An object of the present invention is an object moving method excellent in dispersibility of an object discharged from the chip when the object is moved using a chip for sucking and discharging a target liquid containing a plurality of objects. And providing an apparatus.
  • An object moving method is a method of moving an object using a chip that has a tip opening that sucks and discharges a target liquid including a plurality of objects and can hold the target liquid.
  • a dispersion adapter having a surface and a cavity accommodating at least the tip opening of the chip, and integrating the chip and the dispersion adapter in a state where the dispersion surface is located below the tip opening And a step of immersing at least the dispersion surface of the dispersion adapter in a receiving liquid to which the object is moved, and the dispersion surface is immersed in the receiving liquid.
  • a step of discharging the liquid of interest held in the tip from the tip opening In state, while oscillating the dispersion adapter, and a step of discharging the liquid of interest held in the tip from the tip opening.
  • An object moving device includes a first container that stores a target liquid that includes a plurality of objects, a second container that stores a receiving liquid that is a destination of the object, and the plurality of objects.
  • a tip opening that sucks and discharges the liquid containing the target object, a tip capable of holding the liquid, a dispersion surface having a plurality of dispersion openings having a size capable of passing the target object, and at least the above
  • a dispersion adapter having a cavity for accommodating the tip opening of the chip, a storage unit for storing the dispersion adapter, the chip is mounted, and suction force and discharge force are generated at the tip opening of the mounted chip.
  • a head including an advance / retreat mechanism, a head movement mechanism that moves the head in the vertical direction and the horizontal direction, and a control unit that controls operations of the advance / retreat mechanism and the head movement mechanism,
  • the control unit moves the head to the position of the first container, immerses the tip opening of the tip in the target liquid and generates a suction force at the tip opening, and puts the target liquid in the tip.
  • First control to be held, and the head is moved to the position of the storage unit, and the dispersion adapter is attached to the head on which the chip is mounted in a state where the dispersion surface of the dispersion adapter is located below the tip opening.
  • a second control for mounting the dispersion adapter for mounting the dispersion adapter, a third control for moving the head to the position of the second container and immersing at least the dispersion surface of the dispersion adapter in the receiving liquid, and the dispersion surface being the receiving liquid.
  • a fourth control is performed in which the dispersion adapter is swung and a discharge force is generated at the tip opening of the chip.
  • FIG. 1 is a diagram showing a configuration of a cell transfer device to which the present invention is applied.
  • FIG. 2 is a perspective view of the sorting container.
  • FIG. 3 is a top view of the well plate. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view of the dispensing tip.
  • FIG. 6 is a diagram schematically showing the structure of the head and its moving mechanism.
  • FIG. 7 is a perspective view showing an example of a distributed adapter.
  • FIG. 8 is a block diagram showing an electrical configuration of the cell transfer device.
  • FIGS. 9A to 9D are diagrams showing a comparative example with respect to the present embodiment and showing a flow of a cell migration method without using a dispersion adapter.
  • FIG. 9A to 9D are diagrams showing a comparative example with respect to the present embodiment and showing a flow of a cell migration method without using a dispersion adapter.
  • FIG. 10 is a diagram showing a dispersion state of cell aggregates on the well plate when the cell migration method of the comparative example is performed.
  • 11 is a cross-sectional view taken along line XI-XI in FIG. 12A (A) to 12 (C) are diagrams showing a process of attaching the dispersion adapter in the cell migration method of the present embodiment.
  • FIG. 12B is a diagram illustrating another mounting example of the distributed adapter.
  • FIG. 13 is a diagram illustrating a swinging state of the distributed adapter.
  • FIG. 14 is a diagram showing a dispersion state of cell aggregates on the well plate when the cell migration method of the present embodiment is performed.
  • 15 is a cross-sectional view taken along line XV-XV in FIG. FIG.
  • FIG. 16 (A) is a photograph of the upper surface of the well plate after the cell migration method of the comparative example is performed, and FIG. 16 (B) is a white dot showing a place where one cell aggregate is contained in one well. It is an image.
  • FIG. 17A is a photograph of the upper surface of the well plate after the cell migration method of this embodiment is performed, and FIG. 17B is a white dot showing a place where one cell aggregate is contained in one well. It is an image.
  • 18A is a perspective view of a dispensing container, and FIG. 18B is a plan view of a bottom plate of the dispensing container provided with a grid.
  • FIG. 19A is a diagram showing a photographing state of the bottom plate of the dispensing container, and FIG.
  • FIG. 19B is a diagram showing a photographed image thereof.
  • FIG. 20 is a diagram showing the state of suction of cell aggregates by the dispensing tip.
  • FIG. 21 is a flowchart showing the operation of the cell transfer device.
  • FIG. 22 is a flowchart showing the operation of the cell transfer device.
  • FIGS. 23A to 23C are diagrams showing modifications of the distributed adapter.
  • FIG. 24 is a diagram illustrating a cell discharge operation using a dispersion adapter that does not include an air vent hole.
  • FIG. 25 is a diagram illustrating a cell discharge operation using a dispersion adapter that does not include an air vent hole.
  • FIG. 26 is a diagram illustrating a cell discharge operation using a dispersion adapter that does not include an air vent hole.
  • FIG. 24 is a diagram illustrating a cell discharge operation using a dispersion adapter that does not include an air vent hole.
  • FIG. 27A is a longitudinal sectional view showing a modified example of the dispensing tip
  • FIG. 27B is a bottom view thereof.
  • FIG. 28 is a diagram illustrating a usage example of the dispensing tip according to the modification.
  • FIG. 29 is a view showing a modified example of the dispensing container.
  • the object is not particularly limited, but in the present embodiment, a cell derived from a living body, particularly a cell aggregate (spheroid) is exemplified as the object.
  • a cell aggregate derived from a living body is formed by aggregation of several to several hundred thousand cells. Therefore, the size of the cell aggregate is various.
  • Cell aggregates formed by living cells are almost spherical, but if some of the cells that make up the cell aggregates are altered or become dead cells, the shape of the cell aggregate is distorted, or The density may be non-uniform.
  • the target objects are small electronic parts and mechanical parts, liquids such as organic or inorganic fragments and particles, pellets, eggs used in in vitro fertilization and IVF (in vitro fertilization), small fish such as zebrafish, Plant seeds may be used.
  • FIG. 1 is a diagram showing a configuration of a cell moving device S (object moving device) to which the object moving method according to the present invention is applied.
  • a cell moving device S that moves the cell aggregate C from the first container to the second container is illustrated.
  • the cell transfer device S includes a dispensing container 1 (first container), a sorting container 2 (second container) having a well plate (plate), a dispensing chip 4 (chip), a head unit 5 having a head 52, A distributed adapter 6 and a camera unit 7 are provided.
  • the dispensing container 1 is a container for storing a cell culture solution L1 (target liquid) containing a large amount (plurality) of cell aggregates C as a source of movement.
  • the dispensing container 1 is a cylindrical container having a flat bottom plate 11 (bottom surface) for supporting the cell aggregate C and having an open top surface.
  • the cell culture solution L1 contains contaminants in addition to various cell aggregates C before selection.
  • the dispensing container 1 is made of a translucent resin material or glass. This is because the cell aggregate C that has settled on the bottom plate 11 can be observed by the camera unit 7 disposed below the dispensing container 1.
  • the cell culture solution L1 is not particularly limited as long as it does not deteriorate the properties of the cell aggregate, and can be appropriately selected depending on the type of cell aggregate (the same applies to the medium L2 described later).
  • Examples of the cell culture medium L1 include basal medium, synthetic medium, eagle medium, RPMI medium, Fischer medium, Ham medium, MCDB medium, medium such as serum (cell culture medium), glycerol added before cryopreservation, cell Examples include cell frozen solutions such as bunker (manufactured by Toji Field Co., Ltd.), formalin, reagents for fluorescent staining, antibodies, purified water, physiological saline and the like.
  • BxPC-3 human pancreatic adenocarcinoma cell
  • FBS Fetal Bovine Serum
  • % Supplemented with supplements such as antibiotics and sodium pyruvate as necessary.
  • the sorting container 2 is a container for storing the culture medium L2 (receiving liquid) to which the cell clumps C are moved, and holds the well plate 3 for cell sorting immersed in the culture medium L2.
  • the well plate 3 is a plate that carries the cell aggregate C, and has a compartment (well 30) that can individually accommodate the cell aggregate C on the surface (upper surface).
  • the sorting container 2 has a cylindrical shape (may be rectangular), and has a rectangular upper opening 2H on the upper surface side thereof.
  • the upper opening 2H is an opening for loading the cell aggregate C and picking up the selected cell aggregate C.
  • the well plate 3 is disposed below the upper opening 2H. As the sorting container 2 and the well plate 3, those made of a translucent resin material or glass are used. Similarly, the cell aggregate C carried on the well plate 3 can be observed by the camera unit 7 disposed below the sorting container 2.
  • FIG. 2 is a perspective view of the sorting container 2
  • FIG. 3 is a top view of the well plate 3
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • the sorting container 2 includes a bottom plate 21, an outer peripheral wall 22, an inner peripheral wall 23, and a top wall 24.
  • the bottom dish 21 is a cylindrical dish member having an upper surface opening that constitutes the bottom of the sorting container 2.
  • the outer peripheral wall 22, the inner peripheral wall 23, and the top wall 24 constitute a lid member that covers the bottom plate 21.
  • the outer peripheral wall 22 is a portion larger in diameter than the side peripheral wall of the bottom plate 21, and the inner peripheral wall 23 is a rectangular tube-shaped portion disposed inside the outer peripheral wall 22.
  • the top wall 24 is a plate member that covers a region other than the upper opening 2 ⁇ / b> H on the upper surface side of the sorting container 2.
  • the inner peripheral wall 23 is a wall that partitions the upper opening 2H, and is inclined so that the opening area gradually decreases from the upper opening 2H downward.
  • the ceiling wall 24 has a work hole 25 made of a through hole in the vertical direction. Through this working hole 25, operations such as injection of the medium L2 into the cavity of the sorting container 2, injection of chemicals, liquid absorption or waste liquid of the medium L2, and the like are performed. Furthermore, a pipe connection port 26 for adjusting the atmospheric pressure in the cavity of the sorting container 2 is installed on the top wall 24.
  • the well plate 3 includes a plate main body 300 and a plurality of wells 30 (partitions for individually storing objects) formed in the plate main body 300.
  • the plate body 300 is made of a flat plate member having a predetermined thickness, and has an upper surface 301 and a lower surface 302.
  • the upper surface 301 is provided with a plurality of wells 30 (compartments for individually storing objects) that carry the cell aggregate C.
  • the well plate 3 is held at the lower end portion of the inner peripheral wall 23 with the lower surface 302 spaced from the bottom plate 21 of the sorting container 2.
  • the well plate 3 is immersed in the medium L2 in the sorting container 2. That is, the culture medium L2 is poured into the sorting container 2 so that the upper surface 301 of the well plate 3 is positioned below the liquid surface of the culture medium L2.
  • Each well 30 includes an opening 31, a bottom 32, a cylindrical wall 33, a hole 34 and a boundary 35.
  • the opening 31 is a square opening provided on the upper surface 301 and has a size that allows entry of a sorting chip (not shown).
  • the bottom 32 is located inside the plate body 300 and near the lower surface 302.
  • the bottom 32 is an inclined surface that is gently inclined downward toward the center (the center of the square).
  • the cylindrical wall surface 33 is a wall surface extending vertically downward from the opening 31 toward the bottom 32.
  • the hole 34 is a through hole that vertically penetrates between the center of the bottom 32 and the lower surface 302.
  • the shape of the hole 34 is square when viewed from above, and is concentric with the opening 31.
  • the boundary portion 35 is located on the upper surface 301 and serves as an opening edge of each well 30 and is a ridge line that partitions the wells 30.
  • the well 30 may have a round shape, a triangular shape, a pentagonal shape, a hexagonal shape, and the like, and these may be arranged on the plate main body 300 in a honeycomb shape, a linear shape, or at random. Alternatively, the well plate 3 having only one well 30 may be used.
  • each well 30 defines an accommodation space 3H that accommodates the cell aggregate C. It is intended that one cell aggregate C is generally accommodated in the accommodation space 3H. Therefore, the well 30 is set according to the size of the target cell aggregate C. However, in the actual dispensing operation, a plurality of cell aggregates C may enter one well 30 as described later.
  • the hole 34 is provided in order to allow small cell aggregates and impurities other than the desired size to escape from the accommodation space 3H. Therefore, the size of the hole 34 is selected so that the cell aggregate C having a desired size cannot pass therethrough and a small cell aggregate or impurities other than the desired size are allowed to pass through. As a result, the cell aggregate C to be sorted is trapped in the well 30, while impurities and the like fall from the hole 34 to the bottom plate 21 of the sorting container 2.
  • FIG. 5 is a cross-sectional view of the dispensing tip 4. Here, the dispensing tip 4 in a state of being mounted on a mounting portion 53 of the head 52 described later is shown.
  • the dispensing tip 4 is an elongated tube-shaped member, and includes a base end portion 41 fitted into the mounting portion 53, a tip end portion 42 having a tip opening 4H for sucking and discharging the cell culture solution L1 at the lower end edge, and both And an intermediate portion 43 extending therebetween.
  • the intermediate portion 43 has a tapered shape in which the outer diameter gradually decreases from the proximal end portion 41 side toward the distal end portion 42 side.
  • the hollow portion 40 in the dispensing tip 4 is an air passage that generates the suction and discharge air pressures, and is a space that holds the cell culture solution L1.
  • the base end portion 41 can be attached to and detached from the mounting portion 53. That is, the dispensing tip 4 can be attached to and detached from the head 52.
  • the head unit 5 includes a head main body 51 and a head 52.
  • the head main body 51 holds the head 52 so as to be able to advance and retreat in the vertical direction, and is movable in the left-right direction along the guide rail 54.
  • the head body 51 is also movable in a direction (front-rear direction) orthogonal to the paper surface of FIG.
  • the head 52 is a hollow rod capable of moving back and forth between a lowered position extending downward from the head body 51 and an elevated position where most of the head body 51 is accommodated.
  • a dispensing tip 4 and a dispersion adapter 6 to be described later are attached to the head 52.
  • the head 52 is provided with an advancing / retreating mechanism for generating a suction force and a discharge force at the tip opening 4H of the dispenser tip 4 attached.
  • FIG. 6 is a diagram schematically showing the structure of the head 52 and its moving mechanism and advancing / retreating mechanism.
  • the head 52 includes a columnar head internal space 52H therein.
  • a piston member 55 is accommodated in the head inner space 52H.
  • the piston member 55 includes a piston head 551 having a seal surface in contact with the inner peripheral wall of the head inner space 52H, and a piston rod 552 having a lower end coupled to the piston head 551.
  • the lower end portion of the head 52 is a mounting portion 53 to which the base end portion 41 of the dispensing tip 4 is mounted.
  • the mounting portion 53 is a portion whose outer diameter is slightly reduced compared to the main body portion of the head 52.
  • the dispersion adapter 6 is attached to a portion of the main body portion of the head 52 adjacent to the upper portion of the attachment portion 53.
  • the head main body 51 includes a head lifting motor M1 (head moving mechanism) that lifts and lowers the head 52 between the lowered position and the raised position, and a piston lifting motor M2 that lifts and lowers the piston member 55 in the head inner space 52H ( Advance and retreat mechanism).
  • the head 52 is moved by the head lifting motor M1 and is moved along the guide rail 54, so that the head 52 can move in the vertical direction and the horizontal direction. Further, when the piston head 551 is raised by the piston lifting motor M2, a negative pressure is generated at the head 52, and when the piston head 551 is lowered, a positive pressure is generated at the head 52.
  • the dispersion adapter 6 is a member that is attached to the head 52 to which the dispensing tip 4 is attached so as to surround the dispensing tip 4.
  • the dispersion adapter 6 serves to disperse the cell agglomerates C discharged from the dispensing tip 4 and carry them on the well plate 3.
  • the dispersion adapter 6 includes a main body portion 600 having a cylindrical shape, and includes a dispersion surface 61 disposed on the lower end side of the main body portion 600 and a fitting portion 62 disposed on the upper end side of the main body portion 600.
  • the internal space of the main body 600 is a cavity 6H that accommodates the dispensing tip 4.
  • FIG. 1 illustrates the cavity 6H that accommodates the entire dispensing tip 4, the cavity 6H only needs to accommodate at least the tip opening 4H of the dispensing tip 4.
  • FIG. 7 is a perspective view showing an example of the distributed adapter 6.
  • the main body portion 600 includes an upper cylindrical portion 601 and a lower cone portion 602.
  • the cylindrical portion 601 is a cylindrical portion, and has a circular upper end opening 603 at the upper end.
  • a part of the cylindrical portion 601 close to the upper end opening 603 is a fitting portion 62 that is fitted into the lower end portion of the head 52.
  • the cone portion 602 is a portion having a cylindrical shape whose outer diameter gradually increases downward, and has a circular lower end opening 604 at the lower end.
  • an air vent hole 63 that allows the cavity 6H to communicate with the outside is formed in the peripheral wall of the cone portion 602.
  • the dispersion surface 61 is a surface that is attached to the lower end opening 604 and has a plurality of dispersion openings 611 having a size that allows the cell aggregate C to pass therethrough.
  • the dispersion opening 611 may be the same size as these, or an opening having a size about 5% to 50% larger than these.
  • FIG. 7 illustrates a dispersion surface 61 formed of a mesh surface in which dispersion openings 611 are arranged in a matrix. This mesh surface can be formed, for example, by arranging weft yarns and warp yarns at predetermined intervals.
  • the formation form of the dispersion opening 611 is arbitrary, and may be a circular punching hole, for example. Further, the arrangement of the dispersion openings 611 is not limited to the matrix arrangement, and may be, for example, a honeycomb arrangement, a concentric arrangement, a random arrangement, or the like.
  • the distributed adapter 6 is stored in the storage unit 60.
  • the storage unit 60 is preferably arranged on a path along which the head unit 5 moves from the dispensing container 1 to the sorting container 2.
  • the dispensing tip 4 that sucks and holds the cell culture solution L1 containing the cell aggregate C is moved onto the storage unit 60 and stored in the storage unit 60 in the head 52 to which the dispensing tip 4 is attached.
  • the dispersion adapter 6 is attached (integration of the dispensing tip 4 and the dispersion adapter 6). In this mounted state, the dispersion surface 61 is located at a predetermined interval below the tip opening 4H of the dispensing tip 4.
  • the camera unit 7 includes a camera lens 71, and an image of the cell aggregate C that has settled on the bottom plate 11 of the dispensing container 1 or the cell aggregate C that is held in the well 30 of the well plate 3 in the sorting container 2.
  • Image The camera unit 7 includes an image sensor such as a CCD image sensor.
  • the camera lens 71 forms an optical image of the cell aggregate C on the light receiving surface of the image sensor.
  • the camera unit 7 is arranged below these so that the camera lens 71 faces the lower surfaces of the dispensing container 1 and the sorting container 2. That is, an image of the cell aggregate C in the dispensing container 1 and the sorting container 2 is taken from the lower surface side. This is because the head unit 5 is disposed above the dispensing container 1 and the sorting container 2 and is requested to avoid interference. As shown in FIG. 1, the camera unit 7 can move in the horizontal direction between the lower part of the dispensing container 1 and the lower part of the sorting container 2 along the guide rail 72.
  • the dispensing tip 4 is mounted on the head 52 of the head unit 5.
  • the dispensing tip 4 is stored in an upright state in which a proximal end portion 41 is located above a dispensing tip stock portion (not shown).
  • the head unit 5 is moved over the dispensing tip stock portion, and the head 52 is lowered toward one dispensing tip 4 to fit the mounting portion 53 into the base end portion 41. Thereafter, the head 52 is raised.
  • the head unit 5 located at the position P1 in FIG. 1 shows a state where the dispensing tip 4 is mounted on the mounting portion 53 of the head 52 through such a process.
  • the head unit 5 is moved to a position P2 above the dispensing container 1, and a step of causing the dispensing tip 4 to suck the cell culture solution L1 containing the cell aggregate C is executed.
  • a step of imaging the dispensing container 1 with the camera unit 7 and recognizing the distribution of the cell aggregate C on the bottom plate 11 is executed (a specific example will be described later with reference to FIGS. 18 to 20).
  • the head lifting motor M1 (FIG. 6) is driven and the head 52 is lowered.
  • the lowering of the head 52 is continued until the tip opening 4H of the dispensing tip 4 enters the cell culture solution L1 of the dispensing container 1 and the tip opening 4H comes close to the cell aggregate C settling on the bottom plate 11. The Then, the piston lifting motor M2 is driven to generate a suction force at the tip opening 4H. Thereby, the cell aggregate C carried on the bottom plate 11 is sucked from the tip opening 4H together with the surrounding cell culture liquid L1, and the cell culture liquid L1 containing the cell aggregate C is held in the dispensing tip 4. Is done.
  • the head unit 5 located at the position P2 in FIG. 1 shows a state in which the head 52 is raised to the raised position after the suction.
  • the head unit 5 is moved to a position P3 above the storage unit 60, and a step of attaching the dispersion adapter 6 to the head 52 to which the dispensing tip 4 is attached is executed.
  • the head unit 5 is moved so that one dispersion adapter 6 of the storage unit 60 and the head 52 attached with the dispensing tip 4 holding the cell culture solution L1 are aligned on the vertical line.
  • the head unit 5 located at the position P3 in FIG. 1 shows a state where the dispersion adapter 6 and the head 52 are aligned. Thereafter, the head 52 is lowered, and the lower end portion of the head 52 is fitted into the fitting portion 62 of the dispersion adapter 6. Thereby, the dispensing tip 4 is accommodated in the cavity 6H of the dispersion adapter 6, and the dispersion surface 61 is located below the tip opening 4H. Thereafter, the head 52 is raised.
  • the head unit 5 is moved to a position P4 above the sorting container 2.
  • the dispersion surface 61 of the dispersion adapter 6 and the upper opening 2H of the sorting container 2 are aligned.
  • the head 52 is lowered, and the step of immersing the dispersion surface 61 and the tip opening 4H in the culture medium L2 of the sorting container 2 through the upper opening 2H is executed.
  • the head unit 5 located at position P4 in FIG. 1 shows a state immediately before this immersion is performed. By the immersion, the dispersion surface 61 is positioned above the upper surface 301 (surface) of the well plate 3.
  • At least the dispersion surface 61 may be immersed in the medium L2, but the tip opening 4H is also immersed in the medium L2 so that the cell aggregate C quickly settles on the dispersion surface 61 in the subsequent discharge step. It is desirable to make it.
  • the step of discharging the cell culture solution L1 held in the dispensing tip 4 from the tip opening 4H is performed while the dispersion adapter 6 is swung.
  • the dispersion adapter 6 is swung by the head body 51 being slightly moved in the left-right direction along the guide rail 54.
  • the swing range of the dispersion adapter 6 is within the range where the well plate 3 exists.
  • the head main body 51 may be slightly swung not only in the left-right direction (X direction) but also in the Y direction orthogonal thereto. For example, moving the head main body 51 in the XY directions so that the tip opening 4H substantially forms a circular orbit is a preferred mode of oscillation. Further, the head 52 may be slightly moved in the vertical direction.
  • the cell aggregates C are dispersed. 61 is distributed on the surface. Thereafter, the cell aggregate C is diffused from the dispersion opening 611 of the dispersion surface 61 to the medium L2, and is supported on the well plate 3 in the medium L2 in a dispersed state. Therefore, the cell aggregate C discharged from the dispensing tip 4 is not concentrated in one place, and the dispersibility of the cell aggregate C on the well plate 3 can be improved.
  • the dispensing tip 4 and the dispersion adapter 6 are raised until the dispersion surface 61 is separated upward from the liquid surface of the culture medium L2. Thereafter, the head 52 is lowered until the dispersion surface 61 is immersed in the culture medium L2, and the operation of swinging the dispersion adapter 6 is executed again.
  • the cell aggregate C has various shapes, and depending on the shape, it may not be able to pass through the dispersion opening 611 smoothly. As described above, once the dispersion surface 61 is spaced upward from the liquid surface of the medium L2, the medium L2 and the cell aggregate C in the cavity 6H are discharged using gravity, and remain on the dispersion surface 61. The cell aggregate C that is caught in the cell aggregate C or the dispersion opening 611 can be reliably diffused into the medium L2 through the dispersion opening 611.
  • FIG. 8 is a block diagram showing an electrical configuration of the cell transfer device S.
  • the cell moving device S includes a control unit 8 that controls movement of the head unit 5, raising and lowering of the head 52, the suction and discharge operations by the head 52, and the operation of the camera unit 7.
  • the cell moving device S includes a head unit shaft driving unit 56 (head moving mechanism) as a mechanism for moving the head unit 5 horizontally, a mechanism for moving the head 52 up and down, and a head driving unit 57 (as a mechanism for performing suction and discharge operations). (Head movement mechanism and advance / retreat mechanism), and a camera axis drive unit 73 and a display unit 74 as a mechanism for moving the camera unit 7 horizontally.
  • the head unit shaft drive unit 56 includes a drive motor that moves the head unit 5 (head body 51) along the guide rail 54.
  • a ball screw is laid along the guide rail 54, the head body 51 is attached to a nut member screwed to the ball screw, and the drive motor rotates the ball screw forward or backward. In this mode, the head body 51 is moved to the target position.
  • the head main body 51 is moved in two directions XY, the first ball screw (X direction) along the guide rail 54 and the movement attached to the first nut member screwed to the first ball screw.
  • a second ball screw (Y direction) mounted on the plate is used. In this case, the head main body 51 is attached to a second nut member screwed into the second ball screw.
  • the head drive unit 57 corresponds to the head lifting motor M1 (head moving mechanism) and the piston lifting motor M2 (advance / retreat mechanism) described with reference to FIG. As described above, the head lifting motor M1 moves the head 52 up and down.
  • the piston elevating motor M2 raises and lowers the piston member 55 in the head inner space 52H, thereby generating a suction force and a discharge force at the tip opening 4H of the dispensing tip 4 attached to the head 52.
  • the camera shaft drive unit 73 includes a drive motor that moves the camera unit 7 along the guide rail 72. Similar to the head unit shaft drive unit 56, a preferred mode is a mode including a ball screw and a drive motor that rotates the ball screw.
  • the display unit 74 is composed of a liquid crystal display or the like, and displays an image taken by the camera unit 7, an image subjected to image processing by the control unit 8, and the like.
  • the control unit 8 includes a microcomputer and functionally includes an axis control unit 81, a head control unit 82, a dispersion control unit 83, an imaging control unit 84, an image processing unit 85, and a suction area setting unit 86.
  • the axis control unit 81 controls operations of the head unit axis driving unit 56 and the camera axis driving unit 73. That is, the axis control unit 81 controls the axis driving units 56 and 57 to move the head unit 5 and the camera unit 7 to predetermined horizontal target positions.
  • the head control unit 82 controls the head driving unit 57 (head lifting motor M1, piston lifting motor M2).
  • the head controller 82 moves the head 52 to be controlled up and down toward a predetermined target position by controlling the head lifting motor M1. Further, the head controller 82 controls the piston lifting motor M2 for the head 52 to be controlled, so that suction force or discharge is applied to the tip 4H of the dispensing tip 4 attached to the head 52 at a predetermined timing. Generate power.
  • the dispersion control unit 83 controls the head unit shaft driving unit 56 and the period during which the cell culture solution L1 is discharged from the dispensing chip 4 in a state where the dispensing chip 4 and the dispersion adapter 6 are attached to the head 52. Alternatively, control is performed to slightly swing the head unit 5 in the horizontal direction including the period before and after that.
  • the imaging control unit 84 controls the imaging operation of the camera unit 7. Specifically, the imaging control unit 84 controls an operation of causing the camera unit 7 to capture an image of the cell aggregate C in the dispensing container 1 and the sorting container 2.
  • the image processing unit 85 performs image processing on the image data captured by the camera unit 7.
  • the image processing unit 85 includes, for example, processing for recognizing the presence of the cell aggregate C on the image, processing for recognizing the distribution of the cell aggregate C, processing for recognizing the shape of the recognized cell aggregate C, and cell aggregate A process for determining whether C is acceptable or not is executed using an image processing technique.
  • the suction area setting unit 86 performs processing for specifying the suction area on the bottom plate 11 to be sucked by the dispensing tip 4 based on the distribution of the cell aggregate C in the bottom plate 11 of the dispensing container 1 (FIGS. 18 to FIG. 18). 20).
  • FIGS. 9A to 9D are diagrams showing a comparative example for the present embodiment and showing the flow of the cell migration method without using the dispersion adapter 6. Also in the cell transfer device of the comparative example, the dispensing tip 4 is attached to the head 52 as shown in FIG. 9A, as described above with reference to FIG. Thereafter, as shown in FIG. 9 (B), the head 52 is moved above the dispensing container 1 and the head 52 is lowered, and the cell culture solution L1 containing the cell aggregate C from the tip opening 4H of the dispensing tip 4. Is sucked.
  • the head 52 is raised.
  • the dispensing tip 4 holds the cell culture solution L1 containing the cell aggregate C.
  • the head 52 is moved above the sorting container 2.
  • the head 52 is lowered, and the tip opening 4H is immersed in the medium L2 in the sorting container 2 through the upper opening 2H.
  • a discharge force is generated at the tip opening 4H, and the cell aggregate C held in the dispensing tip 4 is discharged together with the cell culture solution L1.
  • the cell aggregate C is spread on the well plate 3.
  • FIG. 10 is a top view showing an example of the state of dispersion of the cell aggregate C on the well plate 3 when the cell migration method of the comparative example is performed
  • FIG. 11 is a cross-sectional view taken along the line XI-XI of FIG. .
  • a plurality of cell aggregates C are discharged from one narrow opening called the tip opening 4H of the dispensing tip 4.
  • the discharged cell agglomerates C tend to be carried in a dense state in a narrow region on the well plate 3.
  • the cell aggregate C is carried on the well plate 3 in a state of being densely packed in the region of three wells 30 adjacent to each other in one well row. Therefore, a plurality of cell aggregates C have entered one well 30.
  • the state of dispersion of the cell aggregate C on the well plate 3 is poor, the following problem occurs.
  • the well plate 3 is imaged by the camera unit 7 from below the sorting container 2 and the cell aggregate C carried on the well 30 is observed.
  • the present embodiment includes a step for improving the dispersibility of the cell aggregate C.
  • This step includes attaching the dispersion adapter 6 to the head 52 so as to be integrated with the dispensing tip 4 after the cell culture solution L1 is sucked by the dispensing tip 4, and cell culture while swinging the head 52. And a step of discharging the liquid L1 onto the well plate 3.
  • FIGS. 9A to 9C are diagrams showing a process of attaching the dispersion adapter 6 to the head 52 in the cell movement method of the present embodiment.
  • the dispensing tip 4 attached to the head 52 holds the cell culture solution L1 containing the cell aggregate C.
  • the steps prior to this are the same as those described above with reference to FIGS. 9A to 9C.
  • the head 52 is moved above the storage unit 60 of the distribution adapter 6. This is a state in which the head unit 5 is moved to the position P3 shown in FIG.
  • the axis control unit 81 of the control unit 8 controls the head unit shaft driving unit 56 to hold the axis of the dispersion adapter 6 to be mounted in the storage unit 60 and the cell culture medium L1.
  • the head unit 5 is moved so that the center of the head 52 to which the note chip 4 is mounted is aligned with the vertical line.
  • the head controller 82 controls the head driver 57 to start the head 52 to descend.
  • the head controller 82 continues to lower the head 52 until the lower end portion of the head 52 is fitted into the fitting portion 62 of the dispersion adapter 6 as shown in FIG. 12A (B).
  • the shape of the inner peripheral surface of the fitting portion 62 is set in accordance with the shape of the peripheral surface of the lower end portion of the head 52, and both can be closely fitted.
  • the dispersion adapter 6 is integrated with the head 52 to which the dispensing tip 4 is attached.
  • the distance between the dispersion surface 61 of the dispersion adapter 6 and the tip opening 4H of the dispensing tip 4 is set so that the cell aggregate C discharged from the tip opening 4H has a margin that can float between them. Is done.
  • the head controller 82 raises the head 52 to a predetermined raised position.
  • the dispensing tip 4 is accommodated in the cavity 6H of the dispersion adapter 6, and the dispersion surface 61 is located below the tip opening 4H at a predetermined interval.
  • the shaft control unit 81 controls the head unit shaft driving unit 56 to move the head unit 5 over the sorting container 2.
  • the size of the fitting portion 62 of the dispersion adapter 6 may be matched with the size of the mounting portion 53, and the fitting portion 62 may be fitted into the mounting portion 53.
  • the dispensing tip 4 is fitted into the mounting portion 53, and the fitting portion 62 of the dispersion adapter 6 is fitted thereon. 12B, by moving up and down a cylindrical rod (not shown) fitted to the mounting portion 53, the dispensing tip 4 and the dispersion adapter 6 fitted to the mounting portion 53 are pushed out at once and discarded. It becomes possible to do.
  • FIG. 13 is a view showing a state in which the cell culture solution L1 is being discharged from the dispensing tip 4 onto the well plate 3.
  • 13 is a state in which the head unit 5 has been moved to the position P4 in FIG. From this state, the head controller 82 starts to lower the head 52.
  • the head control unit 82 moves the head 52 through the upper opening 2H of the sorting container 2 until the dispersion surface 61 is immersed in the medium L2, and the tip opening 4H of the dispensing tip 4 reaches below the liquid level LH of the medium L2. Lower.
  • FIG. 13 shows a state where the lowering of the head 52 is finished.
  • the dispersion surface 61 is opposed to the well plate 3 at a predetermined interval.
  • the air vent hole 63 is a hole for allowing the culture medium L2 to enter the cavity 6H when the dispersion surface 61 is immersed in the culture medium L2.
  • the step of minutely swinging the dispersion adapter 6 in the left-right direction and the step of discharging the cell aggregate C together with the cell culture solution L1 from the dispensing tip 4 are performed simultaneously.
  • each process may be started after both of them are slightly changed.
  • only the rocking process may be continued for a certain period.
  • the dispersion control unit 83 controls the head unit shaft driving unit 56 and, for example, moves the head main body 51 (head 52) along the guide rail 54 in the lateral direction within the width of the well plate 3. Move back and forth. As a result, the dispensing tip 4 and the dispersion adapter 6 are slightly swung in the left-right direction. As described above, the dispersion control unit 83 may control the head unit shaft driving unit 56 so as to slightly move the head body 51 in the XY direction or draw a circular orbit.
  • the dispersion control unit 83 controls the head driving unit 57 (head lifting motor M1) so that the tip opening 4H does not come off the liquid level LH of the culture medium L2, or does not interfere with the sorting container 2, or
  • the head 52 may be slightly swung in the vertical direction as long as the cell aggregate C carried on the well plate 3 is not crushed.
  • the head control unit 82 controls the head drive unit 57 (piston lifting motor M2) to lower the piston member 55 by a predetermined length, thereby generating a discharge force at the tip opening 4H.
  • the cell culture solution L1 containing the plurality of cell aggregates C is discharged from the tip opening 4H into the culture medium L2 of the sorting container 2. Since the dispersion adapter 6 is oscillating, the cell aggregate C immediately after being discharged from the tip opening 4H floats in the liquid in the dispersion adapter 6 immersed in the medium L2, and on the dispersion surface 61. scatter.
  • the air vent hole 63 also functions to prevent the internal pressure in the cavity 6H of the dispersion adapter 6 from increasing due to this discharge.
  • the cell aggregate C settles on the upper surface of the dispersion surface 61 and falls from the dispersion opening 611 (FIG. 7) of the dispersion surface 61.
  • the dropped cell aggregate C is carried on the well plate 3 located below the dispersion surface 61.
  • the cell aggregate C has already reached a dispersed state from a dense state. For this reason, the cell agglomerate C falls not from a part of the dispersion surface 61 but from substantially the entire surface. Accordingly, the plurality of cell aggregates C land on the upper surface 301 of the well plate 3 in a dispersed state and enter the well 30.
  • the head controller 82 raises the head 52.
  • the dispersion control unit 83 temporarily stops the swing of the head 52.
  • the head controller 82 raises the head 52 from the state shown in FIG. 13 until the dispersion surface 61 is separated upward from the liquid level LH of the culture medium L2.
  • the cell aggregate C remaining on the dispersion surface 61 the cell aggregate C remaining in the liquid without landing on the dispersion surface 61, or the dispersion opening 611.
  • the cell clumps C that are caught in the water easily fall through the dispersion openings 611. Further, the dispersion of the cell aggregate C by the force of the liquid flow also contributes to the promotion of the fall of the cell aggregate C.
  • the head controller 82 lowers the head 52 until at least the dispersion surface 61 is positioned below the liquid level LH. Thereafter, the dispersion control unit 83 resumes the swinging of the head 52. Thereby, the cell aggregate C remaining in the dispersion adapter 6 is diffused from the dispersion opening 611.
  • the entire amount of the cell culture solution L1 that is held is not discharged from the dispensing tip 4 at a stretch, but in accordance with the lifting and re-immersion cycle of the dispersion adapter 6 from the liquid level LH.
  • the cell culture solution L1 may be discharged from the dispensing tip 4 in small portions.
  • FIG. 14 is a top view showing an example of the state of dispersion of the cell aggregate C on the well plate 3 when the cell migration method of the present embodiment is performed
  • FIG. 15 is a cross-sectional view taken along the line XV-XV in FIG. is there.
  • the plurality of cell aggregates C discharged from the tip opening 4H of the dispensing tip 4 are attached by mounting the dispersion adapter 6 on the head 52 and swinging the dispersion adapter 6. Distributed.
  • the discharged cell aggregate C is carried in a state of being dispersed in a relatively wide area on the well plate 3.
  • FIGS. 14 and 15 the cell aggregate C is supported on the well plate 3 in a state of being dispersed in a wider area than the comparative example shown in FIG. 10. Therefore, only one cell aggregate C has entered one well 30.
  • FIG. 16A is a photograph of the upper surface of an actual well plate 3 after performing the cell migration method of the comparative example
  • FIG. 16B is one cell aggregate C in one well 30 in the comparative example.
  • This is an image in which white spots are indicated by white spots in image processing.
  • a portion indicated by a white dot is a portion that can be favorably observed for the cell aggregate C, can perform the pass / fail judgment, and can be picked up individually.
  • white spots are distributed only in a substantially circular region near the center of the well plate 3. Also, the total number of white spots is small. This is because the rate at which a plurality of cell aggregates C enter one well 30 is high.
  • FIG. 17A is a photograph of the upper surface of the actual well plate 3 after the cell migration method of the present embodiment
  • FIG. 17B is one cell aggregate C in one well 30. It is the image which showed the part where is entered with the white point. According to the present embodiment, it can be seen that the white spots are spread over the entire well plate 3 and the cell aggregates C are supported on the well plate 3 in a well dispersed state. Further, the total number of white spots is larger than that of the comparative example. This is because the rate at which a plurality of cell aggregates C enter one well 30 is low.
  • the state of dispersion of the cell aggregate C on the well plate 3 can be improved. For this reason, it is possible to reduce the probability that a plurality of cell aggregates C overlap in one well 30. Therefore, it is easy to individually observe the state of the cell aggregate C carried on the well plate 3. Further, it becomes easy to suck the necessary cell aggregates C from the well plate 3 individually with the suction tip.
  • FIG. 18A is a perspective view of the dispensing container 1
  • FIG. 18B is a plan view of the bottom plate 11 of the dispensing container 1.
  • the dispensing container 1 is a cylindrical translucent container having a flat bottom plate 11 at the lower end and an upper surface opening 12 at the upper end. On the bottom plate 11, a grid 13 is drawn with a solid line.
  • the size of one grid of the grid 13 is set according to the angle of view of the camera lens 71 used for photographing. For example, when a 4 ⁇ objective lens is used, the size is 2 mm. For example, if the size of the target cell aggregate C is about 100 ⁇ m in diameter, a grid having a grid of 2 mm size is drawn to accommodate about 100 to 200 cell aggregates C in one grid. Can do. This is an example. In short, when the dispensing tip 4 is caused to perform a suction operation at the position of one cell, it is possible to roughly associate how many cell aggregates C can be sucked, It suffices if a grid is drawn.
  • FIG. 19 (A) is a diagram showing a photographing state of the bottom plate 11 of the dispensing container 1 by the camera unit 7, and FIG. 19 (B) is a diagram showing a photographed image thereof.
  • the dispensing container 1 stores the cell culture solution L1, and the cell aggregate C is sedimented on the bottom plate 11.
  • the camera unit 7 captures an image of the bottom plate 11 from the lower side of the dispensing container 1. Since the grid 13 is drawn on the bottom plate 11, as shown in FIG. 19B, the obtained image is superimposed with the grid 13 and a large number of cell aggregates C distributed on the bottom plate 11. It is an image. In addition, even if the grid 13 is not actually drawn on the bottom plate 11, a similar grid line may be virtually drawn in image processing, and this may be superposed on the image of the bottom plate 11.
  • the distribution of the cell aggregate C carried on the bottom plate 11 can be roughly grasped by identifying the cell on which the cell aggregate C is placed and the cell on which the cell aggregate C is not placed by image processing.
  • the number of cell aggregates C sucked by the dispensing tip 4 can be determined by the number of cells. For example, when the size of one cell is approximately the same as the size of one cell aggregate C, if the dispensing tip 4 performs a suction operation at the position of one cell, one cell aggregate C is separated. When the tip 4 is sucked, it can be handled. In this case, when 20 cell agglomerates C are to be aspirated by the dispensing tip 4 by a single aspiration operation, the positions of the 20 cell agglomerates C on which the cell agglomerates C are placed are specified (specification of the suction area). ) To perform the suction operation.
  • a predetermined number of mesh portions can be designated as the suction area 13A in the region. Then, a desired number of cell aggregates C can be sucked into the dispensing tip 4 by causing the dispensing tip 4 to perform a suction operation in the region of the suction area 13A.
  • FIG. 20 is a diagram showing the state of suction of cell aggregates by the dispensing tip 4.
  • the suction operation in the cell transfer device S will be described with reference to FIG.
  • the imaging control unit 84 of the control unit 8 controls the camera unit 7 to capture an image of the bottom plate 11 of the dispensing container 1 in which the cell aggregate C is sedimented.
  • the image processing unit 85 performs image processing on the image data of the bottom plate 11 acquired by the camera unit 7.
  • the image processing unit 85 recognizes the distribution of the cell aggregate C on the bottom plate 11 using the grid 13.
  • the suction area setting unit 86 specifies the suction area 13 ⁇ / b> A on the bottom plate 11 to be sucked by the dispensing tip 4 based on the distribution of the cell aggregate C recognized by the image processing unit 85.
  • the shaft control unit 81 controls the head unit shaft driving unit 56 to move the head 52 (head body 51) located at the standby position P11 to the position P12 above the suction area 13A of the dispensing container 1.
  • the head control unit 82 controls the head driving unit 57 (head lifting motor M1), and the tip opening 4H of the dispensing tip 4 is one cell of the suction area 13A on the bottom plate 11 (the cell serving as a suction starting point).
  • the head 52 is lowered so as to approach the upper side of the head.
  • the head control unit 82 controls the head driving unit 57 (piston lifting motor M2) to raise the piston member 55, thereby generating a suction force at the tip opening 4H. While generating this suction force, the shaft controller 81 moves the head 52 in the horizontal direction so that the tip opening 4H passes all over the remaining squares of the suction area 13A.
  • the head controller 82 raises the head 52.
  • the head 52 at the position P13 shows a state where the ascent is finished. Thereafter, the process proceeds to the step of attaching the distribution adapter 6 shown in FIG.
  • the distribution state of the cell aggregate C in the bottom plate 11 of the dispensing container 1 can be grasped on the image based on the grid 13, and the cell aggregate C with the number of grids of the grid 13. It is possible to set the number of suctions. For this reason, an appropriate amount of cell aggregate C can be sucked into the dispensing tip 4. Therefore, it is possible to avoid a situation where the cell aggregate C is likely to be concentrated on the well plate 3 because the cell aggregate C discharged from the tip opening 4H is inherently large. Further, it is possible to avoid a situation in which the cell aggregate C discharged from the tip opening 4H is inherently too small.
  • the control unit 8 accepts designation of the number of cell aggregates C to be sucked into the dispensing tip 4 by a single suction operation from an unillustrated input unit (step S1). Further, the control unit 8 designates the suction speed when the cells (cell culture solution L1 containing the cell aggregate C) are sucked into the dispensing tip 4 from the input unit (Step S2), and from the dispensing tip 4. The designation of the ejection speed for ejecting the cells (step S3) is accepted.
  • the suction speed is preferably set to a relatively high speed. If the suction speed is too slow, the cell aggregate C being sucked from the tip opening 4H may fall by its own weight. On the other hand, the discharge speed is set to a relatively slow speed.
  • the axis control unit 81 controls the camera axis driving unit 73 to move the camera unit 7 below the dispensing container 1 (step S4).
  • the imaging control part 84 controls the camera unit 7, and the image of the bottom plate 11 of the dispensing container 1 in which the cell aggregate C has settled is imaged (step S5).
  • the obtained image data of the bottom plate 11 is sent to the image processing unit 85.
  • the image processing unit 85 performs image processing for recognizing the cell aggregate C and image processing for recognizing the grid 13 on the acquired image data.
  • the cell aggregate C carried on the bottom plate 11 is performed.
  • the number of individuals is counted (step S6).
  • the counted number of individuals of the cell aggregate C is compared with the number of individuals designated in step S1 (step S7). If the number of cell aggregates C counted is smaller than the specified number of individuals (NO in step S7), the absolute number of cell aggregates C is insufficient, and the control unit 8 displays an error on the display unit 74. Is performed (step S8).
  • This error display is, for example, a display prompting the user to add the cell aggregate C to the dispensing container 1.
  • the image processing unit 85 recognizes the distribution of the cell aggregates C on the bottom plate 11 based on the grid 13 by image processing. . Then, the suction area setting unit 86 specifies the grid 13 of the grid 13 to be suctioned by the dispensing tip 4, that is, the suction area 13A on the bottom plate 11 (step S9).
  • the suction area setting unit 86 calculates the liquid suction amount when the dispensing tip 4 performs a suction operation in the suction area 13A (step S10). This calculation is a calculation of multiplying the amount of cell culture solution L1 that is required to suck the cell aggregate C for one grid of the grid 13 by the number of grids belonging to the suction area 13A. Thereby, the suction
  • the suction area setting unit 86 confirms whether or not the determined suction amount is within the suction capacity range of the dispensing tip 4 (step S12).
  • the control unit 8 displays an error on the display unit 74 (step S13).
  • This error display is a display for notifying the user that the suction capacity is over, and is a display for prompting reduction of the suction area 13A or a prompt for performing suction in a plurality of times.
  • the shaft control unit 81 replaces the head unit 5 with the unillustrated portion where the new dispensing tip 4 is placed. Note: The tip stock part is moved to the sky (step S14). Subsequently, the head control unit 82 lowers the head 52 toward one dispensing tip 4, thereby fitting the mounting portion 53 at the lower end of the head 52 into the proximal end portion 41 of the dispensing tip 4 (step S15). ). As a result, the dispensing tip 4 is attached to the head 52.
  • the head control unit 82 raises the head 52, and the shaft control unit 81 moves the head unit 5 over the dispensing container 1 (step S16). At this time, the tip opening 4H of the dispensing tip 4 is aligned on the vertical line of one square that is the suction start point of the suction area 13A specified in step S9.
  • the head controller 82 lowers the head 52, immerses the tip opening 4H in the cell culture solution L1 of the dispensing container 1, and performs control to generate a suction force at the tip opening 4H (step S17).
  • the shaft controller 81 moves the head 52 in the horizontal direction so that the tip opening 4H passes all over the remaining squares of the suction area 13A.
  • the cell aggregate C carried on the bottom plate 11 is sucked from the tip opening 4H together with the surrounding cell culture liquid L1, and the cell culture liquid L1 containing the cell aggregate C is held in the dispensing tip 4. (First control).
  • the axis control unit 81 moves the head unit 5 to the sky above the storage unit 60 of the distributed adapter 6 (step S18).
  • one dispersion adapter 6 of the storage unit 60 and the head 52 to which the dispensing tip 4 holding the cell culture solution L1 is attached are moved so as to be aligned on the vertical line.
  • the head controller 82 lowers the head 52 and attaches the dispersion adapter 6 to the head 52 (step S19).
  • the dispensing tip 4 and the dispersion adapter 6 are integrated, and the dispersion surface 61 is positioned below the tip opening 4H (second control).
  • the shaft control unit 81 moves the head unit 5 to the sky of the sorting container 2 (step S20). At this time, the dispersion surface 61 of the dispersion adapter 6 and the upper opening 2H of the sorting container 2 are aligned. Then, prior to the step of discharging the cell culture solution L1 from the dispensing tip 4, a process of allowing the culture medium L2 to become familiar with the dispersion surface 61 of the dispersion adapter 6 is performed. Specifically, the head controller 82 lowers the head 52 and immerses only the dispersion surface 61 of the dispersion adapter 6 in the culture medium L2 of the sorting container 2 (step S21).
  • the head controller 82 raises the head 52 and moves the dispersion surface 61 above the liquid level LH of the culture medium L2 (step S22).
  • the lowering of step S21 and the rising of step S22 are repeated a predetermined number of times (step S23). By this operation, the medium L2 can be infiltrated to the upper surface of the dispersion surface 61.
  • the head controller 82 lowers the head 52 and immerses the dispersion surface 61 of the dispersion adapter 6 and the tip opening 4H of the dispensing tip 4 in the culture medium L2 of the sorting container 2 (step S24). By the immersion, the dispersion surface 61 faces the upper surface 301 of the well plate 3 from above (third control).
  • the dispersion control unit 83 starts an operation of reciprocating the head 52 minutely in the horizontal direction (step S25).
  • the dispensing tip 4 and the dispersion adapter 6 are slightly swung in the left-right direction.
  • the head controller 82 lowers the piston member 55 by a predetermined length, and generates a discharge force at the tip opening 4H (step S26).
  • the cell culture solution L1 containing the plurality of cell aggregates C is discharged from the tip opening 4H (fourth control).
  • the cell aggregate C is dispersed by the cooperation of the operation of step S25 and the operation of step S26, and falls from the dispersion surface 61 onto the well plate 3. Thereafter, the head control unit 82 raises the head 52 and moves the dispersion surface 61 to above the liquid level LH of the culture medium L2 (step S27). With the liquid flow generated at this time, the cell aggregate C remaining on the dispersion surface 61 can be positively dropped through the dispersion opening 611 (fifth control).
  • step S28 it is confirmed whether or not the head 52 has been lowered and raised a predetermined number of times (step S28). If the specified number of times has not been executed (NO in step S28), the process returns to step S24 and is repeated.
  • step S26 is skipped in the second and subsequent processing repetitions, and the head 52 by the dispersion control unit 83 is used during the immersion. Only the minute oscillation (step S25). On the other hand, when the cell culture solution L1 is discharged from the dispensing tip 4 in small portions, step S26 is executed also in the repetition of the second and subsequent processes.
  • Dispensing tip 4 and dispersion adapter 6 are discarded after one batch of use. For this reason, when the head 52 is lowered and raised a specified number of times (YES in step S28), the axis control unit 81 moves the head unit 5 to a disposal position where a disposal box or the like (not shown) is disposed ( Step S29). Then, an operation of detaching the dispersion adapter 6 from the head 52 (step S30) and an operation of detaching the dispensing tip 4 from the head 52 (step S31) are executed. This detachment operation can be realized by lowering a cylindrical rod (not shown) fitted on the head 52 and pressing the upper end edges of the dispensing tip 4 and the dispersion adapter 6.
  • FIGS. 23A to 23C are diagrams showing modifications of the distributed adapter.
  • a dispersion adapter 6A shown in FIG. 23A has a conical dispersion surface 61A.
  • the dispersion surface 61A is inclined downward from the vicinity of the center portion 612 facing the axis AX of the tip opening 4H of the dispensing tip 4 toward the peripheral edge portion 613 thereof.
  • the cell aggregate C tends to be dense when the cell culture solution L1 is discharged from the tip opening 4H.
  • the dispersion adapter 6 is swung, if the flat dispersion surface 61 is used, a relatively large amount of the cell aggregate C falls from the dispersion opening 611 near the center thereof, and the cell aggregates on the well plate 3. There is a concern that a dense part of the mass C may be formed.
  • the conical dispersion surface 61A by using the conical dispersion surface 61A, the cell aggregate C discharged near the center portion 612 is guided to the peripheral portion 613 along the inclination of the cone, so that dispersion is promoted. That is, the dispersive surface 61A has a structure in which the cell aggregate C is more likely to escape from the peripheral portion 613 than the vicinity of the central portion 612 facing the tip opening 4H, that is, the vicinity of the central portion 612 where the cell aggregate C is likely to be dense. . Therefore, the cell aggregate C can be more easily dispersed.
  • the dispersion adapter 6B shown in FIG. 23B has a dispersion surface 61B in which the opening density of the dispersion openings 611 is different.
  • the density of the dispersion opening 611 in the vicinity of the center portion 614 facing the axis AX of the tip opening 4H of the dispensing tip 4 is rough, and the density of the dispersion opening 611 in the peripheral portion 615 is near the center portion 614. It is dense compared to.
  • Such a dispersion surface 61B also has a structure in which the cell aggregate C is more likely to escape from the peripheral portion 615 than in the vicinity of the central portion 614 where the cell aggregate C tends to be dense. Therefore, the cell aggregate C can be more easily dispersed.
  • the dispersion adapter 6C shown in FIG. 23C has a rectangular dispersion surface 61C in plan view.
  • the well plate 3 is square or rectangular.
  • the cell aggregate C can be easily dispersed in the well plate 3 evenly.
  • the dispersion surface 61C has a rectangular shape similar to the rectangular upper opening 2H in the sorting container 2.
  • the dispersion adapter 6S is made to approach the sorting container 2 through the upper opening 2H, and the dispersion surface 61 is immersed in the medium L2 stored in the sorting container 2. In this case, since the dispersion adapter 6S does not include the air vent hole 63, the culture medium L2 cannot enter the cavity 6H through the dispersion surface 61.
  • the cell culture solution L1 discharged from the tip opening 4H of the dispensing tip 4 may not easily fall. For example, it may continue to adhere as a liquid ball to the tip opening 4H.
  • the air vent hole 63 as in the above-described embodiment, the permeation of the culture medium L2 from the dispersion surface 61 can be generally ensured, but sometimes the permeation is hindered by the water repellency of the dispersion surface 61.
  • the cavity 6H can be set to a negative pressure by using the dispersion adapter 6S that does not include the air vent hole 63, the culture medium L2 can surely enter the cavity 6H. .
  • FIG. 27A is a longitudinal sectional view showing a dispensing tip 4A according to a modification
  • FIG. 27B is a bottom view thereof.
  • the dispensing tip 4A has a tip opening 4H that is open to the side.
  • a bottom plate 44 is provided at the tip (lower end) of the dispensing tip 4A, and a semicircular cutout 45 is formed in the bottom plate 44. In the notch 45, a part of the tip of the dispensing tip 4A is also notched. Thereby, the tip opening 4H opened to the side is formed.
  • FIG. 28 is a diagram showing a usage example of the dispensing tip 4A according to the modification.
  • the tip of the dispensing tip 4A enters the dispensing container 1 that stores the cell culture solution L1 and the cell aggregate C.
  • the bottom plate 44 is in contact with the bottom plate 11 of the dispensing container 1. In this state, a suction force is generated in the tip opening 4H while moving the dispensing tip 4A to the side. Thereby, the suction efficiency of the cell aggregate C that has settled on the bottom plate 11 can be increased.
  • FIG. 29 is a view showing a dispensing container 10 according to a modification.
  • the dispensing container 1 shown in FIG. 1 and the like it is assumed that a large amount of cell aggregate C is stored in the cell culture solution L1. Therefore, as described above with reference to FIGS. 18 to 20, the number of cell aggregates C to be sucked into the dispensing tip 4 by one suction operation, that is, sorting from the dispensing tip 4 by one ejection operation. An example of adjusting the number of cell aggregates C to be discharged into the container 2 was shown.
  • the dispensing container 10 here is, for example, a bottomed tube, a single well provided in a microplate, or the like. If such a dispensing container 10 is used, the suction operation of the cell aggregate C to the dispensing tip 4 can be efficiently performed.
  • An object moving method is a method of moving an object using a chip that has a tip opening that sucks and discharges a target liquid including a plurality of objects and can hold the target liquid.
  • a dispersion adapter having a surface and a cavity accommodating at least the tip opening of the chip, and integrating the chip and the dispersion adapter in a state where the dispersion surface is located below the tip opening And a step of immersing at least the dispersion surface of the dispersion adapter in a receiving liquid to which the object is moved, and the dispersion surface is immersed in the receiving liquid.
  • a step of discharging the liquid of interest held in the tip from the tip opening In state, while oscillating the dispersion adapter, and a step of discharging the liquid of interest held in the tip from the tip opening.
  • the dispersion adapter is integrated with the chip before the target liquid is discharged.
  • the dispersion surface of the dispersion adapter is positioned below the tip opening of the chip. Then, in a state where the dispersion surface is immersed in the receiving liquid, the target liquid held in the tip is discharged from the tip opening while the dispersion adapter is swung. For this reason, the object discharged from the tip opening is dispersed on the surface of the dispersion surface, and then is diffused into the receiving liquid from the dispersion opening of the dispersion surface. Therefore, the objects discharged from the chip do not concentrate at one place, and the dispersibility in the receiving liquid can be improved.
  • a plate having on its surface a section for individually storing the object is disposed in the receiving liquid, and the dispersion surface is immersed above the surface of the plate, and the dispersion
  • the adapter is preferably swung within a range where the plate exists.
  • the dispersion adapter since the dispersion adapter is swung within the existing range of the plate, the object can be carried on the plate in a good dispersion state.
  • the tip and the dispersion adapter are raised until the dispersion surface is separated upward from the liquid surface of the receiving liquid, and then the dispersion surface is immersed. It is desirable to re-execute the step and the operation of swinging the dispersion adapter in at least the discharging step.
  • the target liquid is accommodated in a container including a flat bottom surface that supports the object, and the tip sucks the object supported on the bottom surface together with surrounding liquids.
  • the object is a cell
  • the object liquid and the receiving liquid are culture media. According to this method, the present invention can be applied to medical and biological research applications.
  • An object moving device includes a first container that stores a target liquid that includes a plurality of objects, a second container that stores a receiving liquid that is a destination of the object, and the plurality of objects.
  • a tip opening that sucks and discharges the liquid containing the target object, a tip capable of holding the liquid, a dispersion surface having a plurality of dispersion openings having a size capable of passing the target object, and at least the above
  • a dispersion adapter having a cavity for accommodating the tip opening of the chip, a storage unit for storing the dispersion adapter, the chip is mounted, and suction force and discharge force are generated at the tip opening of the mounted chip.
  • a head including an advance / retreat mechanism, a head movement mechanism that moves the head in the vertical direction and the horizontal direction, and a control unit that controls operations of the advance / retreat mechanism and the head movement mechanism,
  • the control unit moves the head to the position of the first container, immerses the tip opening of the tip in the target liquid and generates a suction force at the tip opening, and puts the target liquid in the tip.
  • First control to be held, and the head is moved to the position of the storage unit, and the dispersion adapter is attached to the head on which the chip is mounted in a state where the dispersion surface of the dispersion adapter is located below the tip opening.
  • a second control for mounting the dispersion adapter for mounting the dispersion adapter, a third control for moving the head to the position of the second container and immersing at least the dispersion surface of the dispersion adapter in the receiving liquid, and the dispersion surface being the receiving liquid.
  • a fourth control is performed in which the dispersion adapter is swung and a discharge force is generated at the tip opening of the chip.
  • the second control for mounting the dispersion adapter on the head on which the chip is mounted is executed.
  • the dispersion surface of the dispersion adapter is positioned below the tip opening of the chip.
  • the fourth control is performed to generate a discharge force at the tip opening of the chip holding the target liquid while swinging the dispersion adapter.
  • the object ejected from the tip opening by the ejection force is dispersed on the surface of the dispersion surface, and then diffused into the receiving liquid from the dispersion opening of the dispersion surface. Therefore, the objects discharged from the chip do not concentrate at one place, and the dispersibility in the receiving liquid can be improved.
  • control unit performs fifth control to raise the head until the dispersion surface of the dispersion adapter is separated upward from the liquid surface of the receiving liquid after the fourth control. After the execution, it is desirable to execute again the third control and at least the operation of swinging the distributed adapter in the fourth control.
  • the fifth control for temporarily separating the dispersion surface upward from the liquid level of the receiving liquid is executed, so that the object remaining on the dispersion surface by using gravity. Objects or objects that are caught in the dispersion opening can be reliably diffused into the receiving liquid through the dispersion opening.
  • the dispersion surface of the dispersion adapter is a mesh surface in which the dispersion openings are arranged in a matrix. According to this apparatus, the dispersion surface can be constructed with a simple configuration.
  • the dispersion surface of the dispersion adapter has a shape inclined downward from the vicinity of the center facing the tip opening of the chip toward the peripheral edge.
  • the dispersion surface of the dispersion adapter has a density of the dispersion opening in the vicinity of the center facing the tip opening of the chip, and a density of the dispersion opening in the peripheral edge near the center. It is desirable to be dense compared to the vicinity.
  • the dispersion surface has a structure in which the object is more likely to come out from the peripheral portion than the vicinity of the central portion facing the tip opening of the chip, that is, the vicinity of the central portion where the objects are likely to be dense. Therefore, it is possible to facilitate the dispersion of the object.
  • the first container is a light-transmitting container including a flat bottom surface, and the chip sucks the object supported on the bottom surface together with surrounding liquid.
  • the bottom surface is a surface on which a grid capable of recognizing the distribution of the supported object is drawn as a solid line or virtually.
  • the distribution state of the object on the bottom surface of the first container can be grasped from the outside based on the grid, so that an appropriate amount of the object can be sucked into the chip. Therefore, it is possible to avoid a situation in which the objects are likely to be dense because there are inherently many objects ejected from the tip opening of the chip. In addition, it is possible to avoid a situation in which the number of objects discharged from the tip opening of the chip is inherently too small.
  • the dispersibility of the object discharged from the chip is improved. can do. Therefore, it is possible to smoothly observe the state of the object after ejection and to perform individual picking of the object.

Abstract

先端開口(4H)を有するチップ(4)を用いて対象物(C)を移動させる方法は、次の手順を備える。先端開口(4H)から対象物(C)を含む対象液体(L1)を吸引させ、チップ(4)内に対象液体(L1)を保持させる。対象物(C)を通過させ得る分散開口(611)を複数有する分散面(61)を備えた分散アダプタ(6)を準備し、分散面(61)が先端開口(4H)の下方に位置する状態で、チップ(4)と分散アダプタ(6)とを一体化させる。対象物(C)の移動先となる受容液体(L2)中に、分散面(61)を浸漬させる。分散面(61)が受容液体(L2)中に浸漬された状態で、分散アダプタ(6)を揺動させつつ、チップ(4)内に保持された対象液体(L1)を先端開口(4H)から吐出させる。

Description

対象物移動方法及び装置
 本発明は、例えば細胞凝集塊のような微小な対象物を所望の位置へ移動させる方法、及びその装置に関する。
 微小な対象物を移動させるために、対象物を含む対象液体を吸引及び吐出する先端開口を有し、前記対象液体を保持可能なチップが用いられることがある。例えば医療や生物学的な研究の用途では、前記チップは、細胞凝集塊を貯留する第1容器から、その細胞凝集塊の選別や検査を行うための第2容器へ移動させる際の、分注チップとして用いられる。この場合、前記分注チップは、前記第1容器から培地液体と共に複数の細胞凝集塊を吸引し、吸引した細胞凝集塊を含む培地液体を前記第2容器のウェルプレート上に吐出する(例えば特許文献1参照)。
 前記分注チップは、細胞凝集塊を個別に吸引するのではなく、1バッチで処理する数の細胞凝集塊を第1容器から吸引する。そして、培地液体はノズル状の先端開口から吐出される。このため、培地液体がウェルプレートに吐出されると、複数の細胞凝集塊が当該ウェルプレート上において密集した状態で担持されることがある。この場合、複数の細胞凝集塊が重なり合うので、個々の細胞凝集塊の状態を観察するのは困難となる。また、ウェルプレートから必要な細胞凝集塊を個別にピッキングすることが困難となる。
特開2009-34013号公報
 本発明の目的は、複数の対象物を含む対象液体を吸引及び吐出するチップを用いて前記対象物を移動させる場合において、前記チップから吐出された対象物の分散性に優れた対象物移動方法及び装置を提供することにある。
 本発明の一局面に係る対象物移動方法は、複数の対象物を含む対象液体を吸引及び吐出する先端開口を有し、前記対象液体を保持可能なチップを用いて前記対象物を移動させる方法であって、前記チップの前記先端開口から前記対象液体を吸引させ、前記チップ内に前記対象液体を保持させる工程と、前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタを準備し、前記分散面が前記先端開口の下方に位置する状態で、前記チップと前記分散アダプタとを一体化させる工程と、前記対象物の移動先となる受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる工程と、前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップ内に保持された前記対象液体を前記先端開口から吐出させる工程と、を含む。
 本発明の他の局面に係る対象物移動装置は、複数の対象物を含む対象液体を貯留する第1容器と、前記対象物の移動先となる受容液体を貯留する第2容器と、前記複数の対象物を含む液体を吸引及び吐出する先端開口を有し、前記液体を保持可能なチップと、前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタと、前記分散アダプタを保管する保管部と、前記チップが装着され、装着された前記チップの前記先端開口に吸引力及び吐出力を発生させる進退機構を備えたヘッドと、前記ヘッドを上下方向及び水平方向に移動させるヘッド移動機構と、前記進退機構及び前記ヘッド移動機構の動作を制御する制御部と、を備え、前記制御部は、前記ヘッドを前記第1容器の位置に移動させ、前記チップの前記先端開口を前記対象液体に浸漬させると共に前記先端開口に吸引力を発生させ、前記チップ内に前記対象液体を保持させる第1制御と、前記ヘッドを前記保管部の位置に移動させ、前記分散アダプタの前記分散面が前記先端開口の下方に位置する状態で、前記チップが装着された前記ヘッドに前記分散アダプタを装着させる第2制御と、前記ヘッドを前記第2容器の位置に移動させ、前記受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる第3制御と、前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップの前記先端開口に吐出力を発生させる第4制御と、を実行する。
 本発明の目的、特徴及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。
図1は、本発明が適用される細胞移動装置の構成を示す図である。 図2は、選別容器の斜視図である。 図3は、ウェルプレートの上面図である。 図4は、図3のIV-IV線断面図である。 図5は、分注チップの断面図である。 図6は、ヘッドの構造及びその移動機構を模式的に示す図である。 図7は、分散アダプタの一例を示す斜視図である。 図8は、上記細胞移動装置の電気的構成を示すブロック図である。 図9(A)~(D)は、本実施形態に対する比較例を示し、分散アダプタを用いない細胞移動方法の流れを示す図である。 図10は、比較例の細胞移動方法を実施した場合における、ウェルプレート上の細胞凝集塊の分散状況を示す図である。 図11は、図10のXI-XI線断面図である。 図12A(A)~(C)は、本実施形態の細胞移動方法における、分散アダプタの装着プロセスを示す図である。 図12Bは、分散アダプタの他の装着例を示す図である。 図13は、分散アダプタの揺動状況を示す図である。 図14は、本実施形態の細胞移動方法を実施した場合における、ウェルプレート上の細胞凝集塊の分散状況を示す図である。 図15は、図14のXV-XV線断面図である。 図16(A)は、比較例の細胞移動方法を実施した後のウェルプレート上面の写真、図16(B)は、一つのウェルに一つの細胞凝集塊が入った箇所を白点で示した画像である。 図17(A)は、本実施形態の細胞移動方法を実施した後のウェルプレート上面の写真、図17(B)は、一つのウェルに一つの細胞凝集塊が入った箇所を白点で示した画像である。 図18(A)は、分注容器の斜視図、図18(B)は、グリッドを備えた前記分注容器の底板の平面図である。 図19(A)は、分注容器の底板の撮影状態を示す図、図19(B)は、その撮影画像を示す図である。 図20は、分注チップによる細胞凝集塊の吸引状況を示す図である。 図21は、細胞移動装置の動作を示すフローチャートである。 図22は、細胞移動装置の動作を示すフローチャートである。 図23(A)~(C)は、分散アダプタの変形例を示す図である。 図24は、空気抜き孔を具備しない分散アダプタを用いた細胞吐出動作を示す図である。 図25は、空気抜き孔を具備しない分散アダプタを用いた細胞吐出動作を示す図である。 図26は、空気抜き孔を具備しない分散アダプタを用いた細胞吐出動作を示す図である。 図27(A)は、分注チップの変形例を示す縦断面図、図27(B)はその下面図である。 図28は、変形例に係る分注チップの使用例を示す図である。 図29は、分注容器の変形例を示す図である。
 以下、本発明に係る対象物移動方法及び装置の実施形態について説明する。本発明において、対象物について特に制限はないが、本実施形態では、対象物として生体由来の細胞、特に細胞凝集塊(スフェロイド;spheroid)を例示する。生体由来の細胞凝集塊は、細胞が数個~数十万個凝集して形成されている。そのため、細胞凝集塊の大きさは様々である。生きた細胞が形成する細胞凝集塊は略球形であるが、細胞凝集塊を構成する細胞の一部が変質したり、死細胞となっていたりすると、細胞凝集塊の形状は歪になる、あるいは密度が不均一となる場合がある。バイオ関連技術や医薬の分野における試験において、種々の形状を呈する複数の細胞凝集塊を本実施形態の移動装置にて選別ステージへ移動させ、試験に適した形状の細胞凝集塊のみを選別する作業を行うことは、本発明の好適な用途である。なお、対象物は、小型の電子部品や機械部品、有機又は無機の破砕片や粒子、ペレット等の液体、体外受精やIVF(in vitro fertilization)等で用いられる卵、ゼブラフィッシュ等の小魚、植物種子などであっても良い。
 [細胞移動装置の構成]
 図1は、本発明に係る対象物移動方法が適用される細胞移動装置S(対象物移動装置)の構成を示す図である。ここでは、細胞凝集塊Cを第1容器から第2容器へ移動させる細胞移動装置Sを例示している。細胞移動装置Sは、分注容器1(第1容器)、ウェルプレート(プレート)を備えた選別容器2(第2容器)、分注チップ4(チップ)、ヘッド52を備えたヘッドユニット5、分散アダプタ6及びカメラユニット7を備えている。
 分注容器1は、移動元となる、多量の(複数の)細胞凝集塊Cを含む細胞培養液L1(対象液体)を貯留する容器である。分注容器1は、細胞凝集塊Cを担持する平坦な底板11(底面)を有し、上面が開口した円筒状容器である。細胞培養液L1には、選別前の様々な細胞凝集塊Cに加え、夾雑物が含まれている。分注容器1は、透光性の樹脂材料やガラスで作製されている。これは、分注容器1の下方に配置されたカメラユニット7により、底板11上に沈降した細胞凝集塊Cを観察可能とするためである。
 細胞培養液L1は、細胞凝集塊の性状を劣化させないものであれば特に限定されず、細胞凝集塊の種類により適宜選定することができる(後述する培地L2も同じ)。細胞培養液L1としては、たとえば基本培地、合成培地、イーグル培地、RPMI培地、フィッシャー培地、ハム培地、MCDB培地、血清などの培地(細胞培養液)のほか、冷凍保存前に添加するグリセロール、セルバンカー(十慈フィールド(株)製)等の細胞凍結液、ホルマリン、蛍光染色のための試薬、抗体、精製水、生理食塩水などを挙げることができる。たとえば、細胞凝集塊として生体由来の細胞であるBxPC-3(ヒト膵臓腺癌細胞)を用いる場合には、細胞培養液L1としてはRPMI-1640培地に牛胎児血清FBS(Fetal Bovine Serum)を10%混ぜたものに、必要に応じて抗生物質、ピルビン酸ナトリウムなどのサプリメントを添加したものを用いることができる。
 選別容器2は、細胞凝集塊Cの移動先となる培地L2(受容液体)を貯留する容器であり、細胞選別用のウェルプレート3を、培地L2に浸漬させた状態で保持している。ウェルプレート3は、細胞凝集塊Cを担持するプレートであり、細胞凝集塊Cを個別に収容することが可能な区画(ウェル30)を表面(上面)に有している。選別容器2は、円柱形の形状(矩形であっても良い)を備え、その上面側に矩形の上部開口2Hを備えている。上部開口2Hは、細胞凝集塊Cの投入、並びに、選別された細胞凝集塊Cをピックアップするための開口である。ウェルプレート3は、上部開口2Hの下方に配置されている。選別容器2及びウェルプレート3としても、透光性の樹脂材料やガラスで作製されたものが用いられる。同様に、選別容器2の下方に配置されたカメラユニット7により、ウェルプレート3に担持された細胞凝集塊Cを観察可能とするためである。
 図2は、選別容器2の斜視図、図3は、ウェルプレート3の上面図、図4は、図3のIV-IV線断面図である。選別容器2は、底皿21、外周壁22、内周壁23及び天壁24を備える。底皿21は、選別容器2の底部を構成する上面開口の円柱型の皿部材である。外周壁22、内周壁23及び天壁24は、底皿21に被せられる蓋部材を構成している。外周壁22は底皿21の側周壁よりも径大の部分、内周壁23は、外周壁22の内部に配置された角筒状の部分である。天壁24は、選別容器2の上面側において、上部開口2H以外の領域を覆う板部材である。
 内周壁23は、上部開口2Hを区画する壁であり、上部開口2Hから下方に向けて開口面積が徐々に縮小するように傾斜している。天壁24には、上下方向への貫通孔からなる作業孔25が穿孔されている。この作業孔25を通して、選別容器2のキャビティへの培地L2の注液、薬品類の注液、若しくは培地L2の吸液又は廃液などの作業が行われる。さらに天壁24には、選別容器2のキャビティ内の気圧調整を行うための配管接続口26が設置されている。
 ウェルプレート3は、プレート本体300と、該プレート本体300に形成される複数のウェル30(対象物を個別に収容する区画)とを備えている。プレート本体300は、所定の厚みを有する平板状の部材からなり、上面301と下面302とを有する。上面301には、細胞凝集塊Cを担持する複数のウェル30(対象物を個別に収容する区画)が設けられている。ウェルプレート3は、下面302が選別容器2の底皿21に対して間隔を置いた状態で、内周壁23の下端部において保持される。ウェルプレート3は、選別容器2内の培地L2中に浸漬されている。つまり、ウェルプレート3の上面301が培地L2の液面よりも下方に位置するよう、選別容器2に培地L2が注液される。
 ウェル30の各々は、開口部31、底部32、筒状の壁面33、孔部34及び境界部35を含む。本実施形態では、上面視で正方形のウェル30がマトリクス状に配列されている例を示している。開口部31は、上面301に設けられた正方形の開口であり、選別用のチップ(図示せず)の進入を許容するサイズを有する。底部32は、プレート本体300の内部であって、下面302の近くに位置している。底部32は、中心(前記正方形の中心)に向けて緩く下り傾斜する傾斜面である。筒状の壁面33は、開口部31から底部32に向けて鉛直下方に延びる壁面である。孔部34は、底部32の前記中心と下面302との間を鉛直に貫通する貫通孔である。孔部34の形状は上面視で正方形であり、開口部31と同心である。境界部35は、上面301に位置し、各ウェル30の開口縁となる部分であって、ウェル30同士を区画する稜線である。なお、ウェル30の上面視形状は、丸形、三角形、五角形、六角形等であってもよく、これらがハニカム状、直線状、ランダムにプレート本体300へ配置されていても良い。或いは、一つのウェル30だけが備えられているウェルプレート3としても良い。
 各ウェル30の底部32及び筒状の壁面33は、細胞凝集塊Cを収容する収容空間3Hを区画している。収容空間3Hには、一般的には1個の細胞凝集塊Cが収容されることが企図されている。従って、ウェル30は、ターゲットとする細胞凝集塊Cのサイズに応じて設定される。但し、実際の分注作業では、後述するように一つのウェル30に複数の細胞凝集塊Cが入り込んでしまう場合がある。孔部34は、所望のサイズ以外の小さな細胞凝集塊や夾雑物を収容空間3Hから逃がすために設けられている。従って、孔部34のサイズは、所望のサイズの細胞凝集塊Cは通過できず、所望のサイズ以外の小さな細胞凝集塊や夾雑物を通過させるサイズに選ばれている。これにより、選別対象となる細胞凝集塊Cはウェル30にトラップされる一方で、夾雑物等は孔部34から選別容器2の底皿21に落下する。
 分注チップ4は、分注容器1から細胞凝集塊Cを含む細胞培養液L1を吸引し、これを保持し、その後、選別容器2に保持している細胞培養液L1を吐出する。図5は、分注チップ4の断面図である。ここでは、後述するヘッド52の装着部53に装着された状態の分注チップ4を示している。分注チップ4は、細長いチューブ状の部材であり、装着部53に嵌め込まれる基端部41と、細胞培養液L1を吸引及び吐出する先端開口4Hを下端縁に備えた先端部42と、両者の間に延在する中間部43とを含む。中間部43は、基端部41側から先端部42側に向けて、外径が徐々に縮小するテーパ形状を備えている。分注チップ4内の中空部40は、前記吸引及び吐出の空気圧を発生させる空気通路であり、且つ、細胞培養液L1を保持する空間である。基端部41は、装着部53に着脱可能である。つまり、分注チップ4は、ヘッド52に対して装着及び取り外しが可能である。
 ヘッドユニット5は、ヘッド本体51とヘッド52とを備える。ヘッド本体51は、ヘッド52を上下方向に進退可能に保持し、ガイドレール54に沿って左右方向に移動可能である。なお、図1では図示していないが、ヘッド本体51は、図1の紙面と直交する方向(前後方向)にも移動可能である。
 ヘッド52は、ヘッド本体51から下方に延び出した下降位置と、ヘッド本体51に大部分が収容された上昇位置のとの間で進退動作が可能な、中空ロッドである。ヘッド52には、分注チップ4と、後述する分散アダプタ6とが取り付けられる。ヘッド52には、装着された分注チップ4の先端開口4Hに、吸引力及び吐出力を発生させる進退機構が付設されている。
 図6は、ヘッド52の構造と、その移動機構及び進退機構とを模式的に示す図である。ヘッド52は、その内部に円柱型のヘッド内空間52Hを備えている。ヘッド内空間52Hには、ピストン部材55が収容されている。ピストン部材55は、ヘッド内空間52Hの内周壁に接するシール面を備えたピストンヘッド551と、ピストンヘッド551に下端が連結されたピストンロッド552とを含む。ヘッド52の下端部分が、分注チップ4の基端部41が装着される装着部53である。装着部53は、ヘッド52の本体部分に比べて、外径がやや縮小された部分である。なお、分散アダプタ6は、ヘッド52の本体部分の、装着部53の上方に隣接する部分に装着される。
 ヘッド本体51には、ヘッド52を前記下降位置と前記上昇位置のとの間で昇降させるヘッド昇降モータM1(ヘッド移動機構)と、ピストン部材55をヘッド内空間52Hにおいて昇降させるピストン昇降モータM2(進退機構)とが備えられている。ヘッド52は、ヘッド昇降モータM1によって移動され、また、ガイドレール54に沿って移動されることで、上下方向及び水平方向に移動が可能である。さらに、ピストン昇降モータM2によってピストンヘッド551が上昇されるとヘッド52に負圧が発生し、下降されるとヘッド52に正圧が発生する。分注チップ4が装着部53に装着された状態では、前記負圧によって、分注チップ4の先端開口4Hに吸引力が発生し、前記正圧によって先端開口4Hに吐出力が発生することになる。
 分散アダプタ6は、分注チップ4が取り付けられたヘッド52に、当該分注チップ4を取り囲むように取り付けられる部材である。分散アダプタ6は、分注チップ4から吐出される細胞凝集塊Cを分散させて、ウェルプレート3に担持させる役目を果たす。分散アダプタ6は、円筒形状からなる本体部600を備え、本体部600の下端側に配置された分散面61と、本体部600の上端側に配置された嵌合部62とを有する。本体部600の内部空間は、分注チップ4を収容するキャビティ6Hである。なお、図1では、分注チップ4の全体を収容するキャビティ6Hを例示しているが、キャビティ6Hは少なくとも分注チップ4の先端開口4Hを収容するものであれば良い。
 図7は、分散アダプタ6の一例を示す斜視図である。本体部600は、上方の筒部601と、下方のコーン部602とからなる。筒部601は、円筒型の部分であり、上端には円形の上端開口部603を備えている。筒部601の、上端開口部603に近い一部が、ヘッド52の下端部に嵌め込まれる嵌合部62となる。コーン部602は、下方に向けて外径が徐々に大きくなる円筒形状を備えた部分であり、下端には円形の下端開口部604を備えている。また、コーン部602の周壁には、キャビティ6Hと外部とを連通させる空気抜き孔63が穿孔されている。
 分散面61は、下端開口部604に取り付けられ、細胞凝集塊Cを通過させることが可能なサイズを有する分散開口611を複数有する面である。ターゲットとする細胞凝集塊Cの大きさが40μm~400μm程度である場合、分散開口611はこれらと同程度、或いは、これらよりも5%~50%程度大きいサイズの開口とすれば良い。図7では、分散開口611がマトリクス状に配列されたメッシュ面からなる分散面61を例示している。このメッシュ面は、例えば横糸と縦糸とを、所定の間隔で配列することによって形成することができる。分散開口611の形成態様は任意であり、例えば円形の打ち抜き孔であっても良い。また、分散開口611の配置はマトリクス配置に限られず、例えばハニカム状の配置、同心円型の配置、ランダムな配置等であっても良い。
 分散アダプタ6は、保管部60に保管されている。保管部60は、好ましくはヘッドユニット5が分注容器1から選別容器2へ移動する経路上に配置される。細胞凝集塊Cを含む細胞培養液L1を吸引、保持した分注チップ4が保管部60上に移動され、その分注チップ4が装着されたヘッド52に、保管部60にて保管されている分散アダプタ6が装着される(分注チップ4と分散アダプタ6との一体化)。この装着の状態では、分散面61が、分注チップ4の先端開口4Hの下方に所定間隔を置いて位置することになる。
 カメラユニット7は、カメラレンズ71を備え、分注容器1の底板11に沈降している細胞凝集塊C、又は選別容器2においてウェルプレート3のウェル30に保持されている細胞凝集塊Cの画像を撮像する。カメラユニット7は、CCDイメージセンサのような撮像素子を備える。カメラレンズ71は、前記撮像素子の受光面に、細胞凝集塊Cの光像を結像させる。
 カメラユニット7は、カメラレンズ71が分注容器1及び選別容器2の各下面と対向するように、これらの下方に配置されている。つまり、分注容器1及び選別容器2中の細胞凝集塊Cの画像を、これらの下面側から撮像する。これは、分注容器1及び選別容器2の上空にはヘッドユニット5が配置されており、干渉を避ける要請による。カメラユニット7は、図1に示すように、ガイドレール72に沿って、分注容器1の下方と選別容器2の下方との間を水平方向に移動可能である。
 [細胞凝集塊を移動する手順]
 図1に基づいて、本実施形態の細胞移動装置Sによる、細胞凝集塊Cの移動手順を概略的に説明する。まず、ヘッドユニット5のヘッド52に、分注チップ4が装着される。分注チップ4は、図略の分注チップストック部に、基端部41が上方に位置する立設状態で保管されている。前記分注チップストック部の上空にヘッドユニット5が移動され、ヘッド52を一つの分注チップ4に向けて下降させることで、装着部53を基端部41に嵌め込む。その後、ヘッド52が上昇される。図1のポジションP1に位置するヘッドユニット5は、このようなプロセスを経て、分注チップ4がヘッド52の装着部53に装着された状態を示している。
 次に、ヘッドユニット5は、分注容器1の上空のポジションP2に移動され、分注チップ4に細胞凝集塊Cを含む細胞培養液L1を吸引させる工程が実行される。この吸引の前に、カメラユニット7により分注容器1を撮像し、底板11上における細胞凝集塊Cの分布を認識する工程が実行される(具体例は図18~図20に基づき後述する)。その後、細胞凝集塊Cの前記分布に基づき定められた位置にヘッド52が位置合わせされた上で、ヘッド昇降モータM1(図6)が駆動され、ヘッド52が下降される。
 ヘッド52の下降は、分注チップ4の先端開口4Hが分注容器1の細胞培養液L1中に突入され、先端開口4Hが底板11に沈降している細胞凝集塊Cに近接するまで続行される。そして、ピストン昇降モータM2が駆動され、先端開口4Hに吸引力を発生させる。これにより、底板11に担持されている細胞凝集塊Cが、その周囲の細胞培養液L1と共に先端開口4Hから吸引され、分注チップ4内には細胞凝集塊Cを含む細胞培養液L1が保持される。図1のポジションP2に位置するヘッドユニット5は、前記吸引の後、ヘッド52が上昇位置まで上昇された状態を示している。
 続いてヘッドユニット5は、保管部60の上空のポジションP3に移動され、分注チップ4が装着されているヘッド52に分散アダプタ6を装着させる工程が実行される。ヘッドユニット5は、保管部60の一つの分散アダプタ6と、細胞培養液L1を保持している分注チップ4が装着されたヘッド52とが、鉛直線上に位置合わせされるよう移動される。図1のポジションP3に位置するヘッドユニット5は、分散アダプタ6とヘッド52とが位置合わせされた状態を示している。その後、ヘッド52が下降され、ヘッド52の下端部分が分散アダプタ6の嵌合部62に嵌め込まれる。これにより、分注チップ4は分散アダプタ6のキャビティ6H内に収容され、先端開口4Hの下方には分散面61が位置する状態となる。しかる後、ヘッド52は上昇される。
 その後、ヘッドユニット5は、選別容器2の上空のポジションP4に移動される。この際、分散アダプタ6の分散面61と選別容器2の上部開口2Hとが位置合わせされる。そして、ヘッド52が下降され、上部開口2Hを通して、分散面61及び先端開口4Hを選別容器2の培地L2に浸漬させる工程が実行される。図1のポジションP4に位置するヘッドユニット5は、この浸漬が行われる直前の状態を示している。当該浸漬によって、分散面61がウェルプレート3の上面301(表面)の上方に位置することとなる。この浸漬する工程では、少なくとも分散面61が培地L2に浸漬されれば良いが、後の吐出工程において細胞凝集塊Cが速やかに分散面61上に沈降するよう、先端開口4Hも培地L2に浸漬させることが望ましい。
 続いて、分散アダプタ6を揺動させつつ、分注チップ4内に保持された細胞培養液L1を先端開口4Hから吐出させる工程が実行される。具体的には、ヘッド本体51がガイドレール54に沿って微小に左右方向に移動されることで、分散アダプタ6が揺動される。分散アダプタ6の揺動範囲は、ウェルプレート3が存在する範囲内である。ヘッド本体51を左右方向(X方向)だけでなく、これと直交するY方向に微小揺動させても良い。例えば、先端開口4Hが実質的に円軌道を描くように、ヘッド本体51をXY方向に移動させることは、好ましい揺動の一態様である。さらに、ヘッド52を上下方向に微小移動させても良い。
 このように、分注チップ4に一体化された分散アダプタ6を揺動させつつ、先端開口4Hから複数の細胞凝集塊Cを含む細胞培養液L1を吐出させると、細胞凝集塊Cは分散面61の面上で分散される。その後、細胞凝集塊Cは、分散面61の分散開口611から培地L2に放散され、分散した状態で培地L2中のウェルプレート3に担持される。従って、分注チップ4から吐出された細胞凝集塊Cが一箇所に密集することはなく、ウェルプレート3上の細胞凝集塊Cの分散性を良好なものとすることができる。
 好ましい実施形態では、上記の吐出させる工程の後、分散面61が培地L2の液面から上方に離間するまで、分注チップ4及び分散アダプタ6(ヘッド52)を上昇させる。その後、分散面61が培地L2に浸漬されるまでヘッド52を下降させ、分散アダプタ6を揺動させる動作を再度実行させる。細胞凝集塊Cは様々な形状を有しており、形状によっては分散開口611をスムースに通り抜けることができない場合がある。上記のように、一旦分散面61を培地L2の液面から上方に離間させることで、重力を利用してキャビティ6H内の培地L2及び細胞凝集塊Cを排出し、分散面61上に残存している細胞凝集塊C若しくは分散開口611に引っ掛かっているような細胞凝集塊Cを、分散開口611を通して確実に培地L2中に放散させることができる。
 [細胞移動装置の電気的構成]
 図8は、細胞移動装置Sの電気的構成を示すブロック図である。細胞移動装置Sは、ヘッドユニット5の移動、ヘッド52の昇降、ヘッド52による前記吸引及び吐出動作、並びにカメラユニット7の動作を制御する制御部8を備える。また、細胞移動装置Sは、ヘッドユニット5を水平移動させる機構としてヘッドユニット軸駆動部56(ヘッド移動機構)、ヘッド52を昇降させる機構並びに吸引及び吐出動作を行わせる機構としてヘッド駆動部57(ヘッド移動機構及び進退機構)、カメラユニット7を水平移動させる機構としてカメラ軸駆動部73、及び表示部74を備えている。
 ヘッドユニット軸駆動部56は、ガイドレール54に沿ってヘッドユニット5(ヘッド本体51)を移動させる駆動モータを含む。好ましい態様は、ガイドレール54に沿ってボールねじが敷設され、該ボールねじに螺合されたナット部材にヘッド本体51が取り付けられ、前記駆動モータが前記ボールねじを正回転又は逆回転させることにより、ヘッド本体51を目標位置へ移動させる態様である。なお、ヘッド本体51をXYの2方向に移動させる場合は、ガイドレール54に沿った第1ボールねじ(X方向)と、第1ボールねじに螺合された第1ナット部材に装着された移動板に搭載された第2ボールねじ(Y方向)とを用いる。この場合、ヘッド本体51は第2ボールねじに螺合された第2ナット部材に装着される。
 ヘッド駆動部57は、図6に基づき説明したヘッド昇降モータM1(ヘッド移動機構)及びピストン昇降モータM2(進退機構)が相当する。上述の通り、ヘッド昇降モータM1はヘッド52を昇降させる。ピストン昇降モータM2は、ピストン部材55をヘッド内空間52Hにおいて昇降させることで、ヘッド52に装着された分注チップ4の先端開口4Hに、吸引力及び吐出力を発生させる。
 カメラ軸駆動部73は、ガイドレール72に沿ってカメラユニット7を移動させる駆動モータを含む。ヘッドユニット軸駆動部56と同様に、好ましい態様は、ボールねじと、これを回転させる駆動モータとを備える態様である。
 表示部74は、液晶ディスプレイ等からなり、カメラユニット7により撮影された画像や、制御部8によって画像処理等がなされた画像などを表示する。
 制御部8は、マイクロコンピュータ等からなり、機能的に、軸制御部81、ヘッド制御部82、分散制御部83、撮像制御部84、画像処理部85及び吸引エリア設定部86を備えている。
 軸制御部81は、ヘッドユニット軸駆動部56及びカメラ軸駆動部73の動作を制御する。すなわち、軸制御部81は、これら軸駆動部56、57を制御することで、ヘッドユニット5及びカメラユニット7の水平方向の所定の目標位置へ移動させる。
 ヘッド制御部82は、ヘッド駆動部57(ヘッド昇降モータM1、ピストン昇降モータM2)を制御する。ヘッド制御部82は、ヘッド昇降モータM1を制御することにより、制御対象とするヘッド52を所定の目標位置に向けて昇降させる。また、ヘッド制御部82は、制御対象とするヘッド52についてのピストン昇降モータM2を制御することにより、所定のタイミングで当該ヘッド52に装着されている分注チップ4先端開口4Hに吸引力又は吐出力を発生させる。
 分散制御部83は、ヘッドユニット軸駆動部56を制御して、ヘッド52に分注チップ4及び分散アダプタ6が装着された状態で、分注チップ4から細胞培養液L1が吐出されている期間、或いはその前後の期間を含めて、ヘッドユニット5を微小に水平方向に揺動させる制御を行う。
 撮像制御部84は、カメラユニット7の撮像動作を制御する。具体的には撮像制御部84は、分注容器1及び選別容器2中の細胞凝集塊Cの画像をカメラユニット7に撮像させる動作を制御する。
 画像処理部85は、カメラユニット7が撮像した画像データを画像処理する。画像処理部85は、例えば、細胞凝集塊Cの存在を画像上で認識する処理、細胞凝集塊Cの分布を認識する処理、認識された細胞凝集塊Cの形状を認識する処理、細胞凝集塊Cの良否を判定する処理などを、画像処理技術を用いて実行する。
 吸引エリア設定部86は、分注容器1の底板11における細胞凝集塊Cの分布に基づき、分注チップ4により吸引を行わせる底板11上の吸引エリアを特定する処理を行う(図18~図20に基づき後述する)。
 [比較例の説明]
 図9(A)~(D)は、本実施形態に対する比較例を示し、分散アダプタ6を用いない細胞移動方法の流れを示す図である。比較例の細胞移動装置においても、先に図1に基づき説明したと同様に、図9(A)に示す通り、分注チップ4がヘッド52に装着される。その後、図9(B)に示す通り、ヘッド52が分注容器1の上空に移動されると共にヘッド52が下降され、分注チップ4の先端開口4Hから細胞凝集塊Cを含む細胞培養液L1が吸引される。
 続いて、図9(C)に示す通り、ヘッド52が上昇される。このとき、分注チップ4には細胞凝集塊Cを含む細胞培養液L1が保持されている。このヘッド52は、選別容器2の上空に移動される。その後、図9(D)に示す通り、ヘッド52が下降され、先端開口4Hが上部開口2Hを通して、選別容器2内の培地L2内に浸漬される。そして、先端開口4Hに吐出力が発生され、分注チップ4に保持されていた細胞凝集塊Cが、細胞培養液L1と共に吐出される。これにより、細胞凝集塊Cがウェルプレート3上に撒かれることになる。
 図10は、比較例の細胞移動方法を実施した場合における、ウェルプレート3上の細胞凝集塊Cの分散状況の一例を示す上面図、図11は、図10のXI-XI線断面図である。比較例の細胞移動方法では、分注チップ4の先端開口4Hという一つの狭小な開口から複数の細胞凝集塊Cが吐出される。このため、吐出された細胞凝集塊Cは、ウェルプレート3上の狭い領域に密集した状態で担持される傾向が出てしまう。図10、図11に示す通り、細胞凝集塊Cは、1つのウェル列の互いに隣接する3つのウェル30の領域内に密集した状態で、ウェルプレート3に担持されている。それゆえ、一つのウェル30には、複数の細胞凝集塊Cが進入している。
 このように、細胞凝集塊Cのウェルプレート3上における分散状態が悪いと、次のような問題が生じる。まず、複数の細胞凝集塊Cが一つのウェル30内で重なり合うので、個々の細胞凝集塊Cの状態を観察するのは困難となる。すなわち、本実施形態では、選別容器2の下方からカメラユニット7でウェルプレート3を撮像して、ウェル30に担持された細胞凝集塊Cを観察する。しかし、複数の細胞凝集塊Cが重なり合っていると、一つの細胞凝集塊Cの全体像が把握し難く、その選別の評価を正確に行うことができない。
 また、一つのウェル30に複数の細胞凝集塊Cが存在していると、ウェルプレート3から必要な細胞凝集塊Cを個別にピッキングすることが困難となる。例えば、図10、図11に示すような状態で2~3個の細胞凝集塊Cを担持している一つのウェル30に、細胞凝集塊Cを吸引する吸引チップを接近させて吸引動作を行うとする。この場合、担持されている複数の細胞凝集塊Cのうち、1個だけを吸引させるのは非常に困難であり、どうしても複数の細胞凝集塊Cが前記吸引チップ内に吸引されてしまう。従って、細胞凝集塊Cを個別に取り出して評価等を行うことができない。
 [本実施形態における細胞分散のための工程の詳細]
 上述の問題に鑑みて、本実施形態では細胞凝集塊Cの分散性を向上させるための工程を含む。この工程は、分注チップ4による細胞培養液L1の吸引の後、分注チップ4と一体化するように分散アダプタ6をヘッド52に装着する工程と、そのヘッド52を揺動させながら細胞培養液L1をウェルプレート3上に吐出させる工程とを含む。
 図12A(A)~(C)は、本実施形態の細胞移動方法における、分散アダプタ6をヘッド52へ装着させるプロセスを示す図である。図12A(A)において、ヘッド52に装着されている分注チップ4には、細胞凝集塊Cを含む細胞培養液L1が保持されている。これよりも前段階の工程は、先に図9(A)~(C)に基づいて説明した工程と同じである。図9(C)に示す工程の後、ヘッド52は分散アダプタ6の保管部60の上空に移動される。これは、図1に示すポジションP3にヘッドユニット5が移動された状態である。
 制御部8(図8)の軸制御部81は、ヘッドユニット軸駆動部56を制御して、保管部60における装着対象の分散アダプタ6の軸心と、細胞培養液L1を保持している分注チップ4が装着されたヘッド52の中心とが、鉛直線上に位置合わせされるようにヘッドユニット5を移動させる。その後、図12A(A)に示すように、ヘッド制御部82がヘッド駆動部57を制御して、ヘッド52の下降を開始させる。
 ヘッド制御部82は、図12A(B)に示すように、ヘッド52の下端部分が分散アダプタ6の嵌合部62に嵌め込まれるまで、ヘッド52の下降を継続する。なお、ヘッド52の下端部分の周面の形状に合わせて、嵌合部62の内周面の形状が設定されており、両者は密に嵌合することができる。これにより、分注チップ4が装着されたヘッド52に、分散アダプタ6が一体化される。分散アダプタ6の分散面61と分注チップ4の先端開口4Hとの間の距離は、先端開口4Hから吐出された細胞凝集塊Cが、両者の間で浮遊できる程度の余裕を持つように設定される。
 次いで、ヘッド制御部82は、図12A(C)に示すように、ヘッド52を所定の上昇位置まで上昇させる。このとき、分注チップ4は分散アダプタ6のキャビティ6H内に収容され、先端開口4Hの下方には所定間隔を置いて分散面61が位置している。その後、軸制御部81は、ヘッドユニット軸駆動部56を制御して、ヘッドユニット5を選別容器2の上空へ移動させる。
 なお、図12Bに示すように、分散アダプタ6の嵌合部62のサイズを、装着部53のサイズにマッチさせたものとし、嵌合部62を装着部53に嵌め込むようにしても良い。この場合、装着部53に分注チップ4が嵌め込まれ、その上に分散アダプタ6の嵌合部62が嵌め込まれる。図12Bの態様とすれば、装着部53に外嵌された筒状ロッド(図略)を上下動させることで、装着部53に嵌め込まれた分注チップ4及び分散アダプタ6を一度に押し出し廃棄することが可能となる。
 図13は、分注チップ4から細胞培養液L1をウェルプレート3上に吐出させている状況を示す図である。図13の前段の状態は、図1のポジションP4にヘッドユニット5が移動された状態である。この状態から、ヘッド制御部82はヘッド52の下降を開始する。ヘッド制御部82は、選別容器2の上部開口2Hを通して、分散面61が培地L2に浸漬され、さらに分注チップ4の先端開口4Hが培地L2の液面LHより下方に至るまで、ヘッド52を下降させる。図13は、このヘッド52の下降を終えた状態を示している。分散面61は、ウェルプレート3に対して、所定の間隔を置いて対向している。空気抜き孔63は、分散面61が培地L2に浸漬される際、培地L2がキャビティ6H内に進入できるようにするための孔である。
 その後、分散アダプタ6を左右方向へ微小に揺動させる工程と、分注チップ4から細胞培養液L1と共に細胞凝集塊Cを吐出させる工程とが同時に実行される。もちろん、両者が多少前後して、各工程が開始されても良い。また、吐出する工程を終えた後、揺動させる工程だけを一定期間継続させるようにしても良い。
 前記揺動のために、分散制御部83は、ヘッドユニット軸駆動部56を制御し、例えばヘッド本体51(ヘッド52)をガイドレール54に沿って、ウェルプレート3の幅員内において左右方向へ微小に往復移動させる。これにより、分注チップ4及び分散アダプタ6は左右方向へ微小に揺動する。既述の通り、ヘッド本体51をXY方向に微小に移動させるよう、若しくは円軌道を描くよう、分散制御部83がヘッドユニット軸駆動部56を制御する態様としても良い。或いは、分散制御部83がヘッド駆動部57(ヘッド昇降モータM1)を制御して、先端開口4Hが培地L2の液面LHから脱しない範囲で、又は、選別容器2に干渉しない範囲で、或いは、ウェルプレート3に担持された細胞凝集塊Cを潰さない範囲で、ヘッド52を上下方向に微小に揺動させるようにしても良い。
 前記吐出のために、ヘッド制御部82は、ヘッド駆動部57(ピストン昇降モータM2)を制御して、ピストン部材55を所定長だけ下降させることによって、先端開口4Hに吐出力を発生させる。これにより、先端開口4Hから複数の細胞凝集塊Cを含む細胞培養液L1が、選別容器2の培地L2内へ吐出される。分散アダプタ6が揺動しているので、先端開口4Hから吐出された直後の細胞凝集塊Cは、培地L2に浸漬された状態の分散アダプタ6内の液中で遊動し、分散面61上において分散する。空気抜き孔63は、この吐出が行われることにより、分散アダプタ6のキャビティ6H内の内圧が上昇することを防止する機能も果たす。
 やがて、細胞凝集塊Cは分散面61の上面に沈降し、分散面61の分散開口611(図7)から落下する。落下した細胞凝集塊Cは、分散面61の下方に位置するウェルプレート3に担持される。細胞凝集塊Cは、既に密集状態から分散状態に至っている。このため、分散面61の一部からではなく、概ね全面から、細胞凝集塊Cは落下する。従って、複数の細胞凝集塊Cは、分散した状態でウェルプレート3の上面301に着地し、ウェル30内に進入することになる。前記揺動及び吐出の工程を終えると、ヘッド制御部82はヘッド52を上昇させる。
 既述の通り、前記吐出の工程の後、一旦分散面61を空中まで引き上げ、再度培地L2に浸漬させて、前記揺動の工程を実行させることが好ましい。この場合、分散制御部83は、ヘッド52の揺動を一時的に停止する。ヘッド制御部82は、図13に示す状態から、分散面61が培地L2の液面LHから上方に離間するまで、ヘッド52を上昇させる。この際に分散開口611を通して発生する液流によって、分散面61上に残存している細胞凝集塊C、分散面61に着地せず液中で浮遊していた細胞凝集塊C、若しくは分散開口611に引っ掛かっているような細胞凝集塊Cは、分散開口611を通して落下し易くなる。また、前記液流の力によって細胞凝集塊Cが分散されることも、細胞凝集塊Cの落下の促進に貢献する。
 その後、ヘッド制御部82は、少なくとも分散面61が液面LHより下方に位置するまで、ヘッド52を下降させる。しかる後、分散制御部83は、ヘッド52の揺動を再開させる。これにより、分散アダプタ6内に残存していた細胞凝集塊Cは、分散開口611から放散される。なお、前記吐出の工程の際、保持している細胞培養液L1の全量を一気に分注チップ4から吐出させず、上記の分散アダプタ6の液面LHからの引き上げ及び再浸漬のサイクルに合わせて、小分けして細胞培養液L1を分注チップ4から吐出させるようにしても良い。
 図14は、本実施形態の細胞移動方法を実施した場合における、ウェルプレート3上の細胞凝集塊Cの分散状況の一例を示す上面図、図15は、図10のXV-XV線断面図である。本実施形態の細胞移動方法では、上述の通り分散アダプタ6のヘッド52への装着及び該分散アダプタ6の揺動によって、分注チップ4の先端開口4Hから吐出された複数の細胞凝集塊Cは分散される。このため、吐出された細胞凝集塊Cは、ウェルプレート3上の比較的広い領域に分散した状態で担持される。図14、図15に示す通り、細胞凝集塊Cは、図10に示した比較例に比べて広い領域に分散した状態で、ウェルプレート3に担持されている。それゆえ、一つのウェル30には、一つの細胞凝集塊Cだけが進入している。
 図16(A)は、比較例の細胞移動方法を実施した後の実際のウェルプレート3上面の写真、図16(B)は、比較例において一つのウェル30に一つの細胞凝集塊Cが入った箇所を、画像処理にて白点で示した画像である。この白点で示す箇所が、細胞凝集塊Cの観察を良好に行え、その良否判定を実行で、且つ、細胞凝集塊Cを個別にピックアップできる候補となる箇所である。比較例では、白点がウェルプレート3の中央付近の略円形領域にのみ分布している。また、白点の総数も少ない。これは、一つのウェル30に複数の細胞凝集塊Cが進入している割合が高いからである。
これに対し、図17(A)は、本実施形態の細胞移動方法を実施した後の実際のウェルプレート3上面の写真、図17(B)は、一つのウェル30に一つの細胞凝集塊Cが入った箇所を白点で示した画像である。本実施形態によれば、白点がウェルプレート3の全体に行き渡っており、細胞凝集塊Cが良好に分散した状態でウェルプレート3に担持されていることが判る。また、白点の総数は比較例に比べて多い。これは、一つのウェル30に複数の細胞凝集塊Cが進入している割合が低いからである。
 このように、本実施形態によれば、細胞凝集塊Cのウェルプレート3上における分散状態を良好にすることができる。このため、複数の細胞凝集塊Cが一つのウェル30内で重なり合う確率を低くすることができる。従って、ウェルプレート3に担持された細胞凝集塊Cの状態を個別に観察し易い。また、ウェルプレート3から必要な細胞凝集塊Cを、前記吸引チップで個別に吸引させることが容易となる。
 [細胞吸引方法の具体例]
 続いて、分注容器1から必要量の細胞凝集塊Cを分注チップ4に吸引させる方法について説明する。図18(A)は、分注容器1の斜視図、図18(B)は、分注容器1の底板11の平面図である。分注容器1は、下端に平坦な底板11を有し、上端に上面開口12を有する円筒型の透光性容器である。底板11には、グリッド13が実線で描かれている。
 グリッド13の一つの升目の大きさは、撮影に使用するカメラレンズ71の画角に応じて設定される。例えば、4倍の対物レンズが用いられる場合は、2mmサイズの升目とされる。例えば、ターゲットの細胞凝集塊Cのサイズが直径100μm程度であるならば、2mmサイズの升目を有するグリッドが描かれることにより、100~200個程度の細胞凝集塊Cを一つの升目に収容することができる。これは一例であり、要するに、一つの升目の位置において分注チップ4に吸引動作を行わせると、何個の細胞凝集塊Cを吸引可能であるかを概略的に対応付けることができるように、グリッドが描かれていれば良い。
 図19(A)は、分注容器1の底板11のカメラユニット7による撮影状態を示す図、図19(B)は、その撮影画像を示す図である。分注容器1は、細胞培養液L1を貯留し、底板11上には細胞凝集塊Cが沈降している。図19(A)に示す通り、カメラユニット7は、分注容器1の下側から底板11の画像を撮像する。底板11にはグリッド13が描かれているので、得られる画像は、図19(B)に示す通り、グリッド13と、底板11上に分散している多数個の細胞凝集塊Cとが重畳された画像である。なお、グリッド13は、実際に底板11に描かれていなくとも、画像処理上で同様なグリッドラインを仮想的に描き、これを底板11の画像に重ね合せる態様としても良い。
 図19(B)の画像によれば、グリッド13に基づいて、底板11上に担持された細胞凝集塊Cの分布を把握することが可能となる。つまり、画像処理によって、細胞凝集塊Cが載っている升目と、載っていない升目とを識別することで、細胞凝集塊Cの底板11上における分布を概略的に把握することができる。
 さらに、分注チップ4に吸引させる細胞凝集塊Cの数を、升目の数で決定することができる。例えば、一つの升目のサイズが一つの細胞凝集塊Cのサイズと概ね一致している場合、一つの升目の位置で分注チップ4に吸引動作を行わせると、一つの細胞凝集塊Cが分注チップ4に吸引されると扱うことができる。この場合、20個の細胞凝集塊Cを一回の吸引動作で分注チップ4に吸引させたい場合、細胞凝集塊Cが載っている20個の升目分の位置と特定し(吸引エリアの特定)で吸引動作を行わせれば良い。細胞凝集塊Cと升目とが概ね1対1で対応している領域があれば、図19に示す通り、その領域において所定数の升目の部分を吸引エリア13Aに指定することができる。そして、吸引エリア13Aの領域において分注チップ4に吸引動作を行わせることで、所望数の細胞凝集塊Cを分注チップ4に吸引させることができる。
 図20は、分注チップ4による細胞凝集塊の吸引状況を示す図である。図8も参照しつつ、細胞移動装置Sにおける吸引動作を説明する。制御部8の撮像制御部84は、カメラユニット7を制御して、細胞凝集塊Cが沈降している分注容器1の底板11の画像を撮像させる。画像処理部85は、カメラユニット7により取得された底板11の画像データを画像処理する。画像処理部85は、グリッド13を利用して、細胞凝集塊Cの底板11上における分布を認識する。そして、吸引エリア設定部86は、画像処理部85により認識された細胞凝集塊Cの分布に基づき、分注チップ4により吸引を行わせる底板11上の吸引エリア13Aを特定する。
 その後、軸制御部81は、ヘッドユニット軸駆動部56を制御して、待機ポジションP11に位置しているヘッド52(ヘッド本体51)を、分注容器1の吸引エリア13Aの上空のポジションP12へ移動させる。次いで、ヘッド制御部82がヘッド駆動部57(ヘッド昇降モータM1)を制御して、分注チップ4の先端開口4Hが、底板11上における吸引エリア13Aの一つの升目(吸引起点となる升目)の上方に接近するよう、ヘッド52を下降させる。
 続いて、ヘッド制御部82がヘッド駆動部57(ピストン昇降モータM2)を制御して、ピストン部材55を上昇させることによって、先端開口4Hに吸引力を発生させる。この吸引力を発生しつつ、軸制御部81は、先端開口4Hが吸引エリア13Aの残りの升目の上方を全て通過するように、ヘッド52を水平方向へ移動させる。この動作が終了すると、図20に示す通り、吸引エリア13Aの細胞凝集塊Cは分注チップ4内に吸引され、当該吸引エリア13Aは細胞凝集塊Cが空白の領域となる。その後、ヘッド制御部82はヘッド52を上昇させる。ポジションP13のヘッド52は、その上昇を終えた状態を示している。この後、図12(A)に示す、分散アダプタ6を装着する工程に移行することになる。
 上記の吸引方法を実行すれば、分注容器1の底板11における細胞凝集塊Cの分布状態を、グリッド13に基づいて画像上で把握することができ、グリッド13の升目数をもって細胞凝集塊Cの吸引数を設定することが可能となる。このため、分注チップ4に適正な量の細胞凝集塊Cを吸引させることができる。従って、先端開口4Hから吐出される細胞凝集塊Cが本来的に多い故に当該細胞凝集塊Cがウェルプレート3上において密集し易い、という状況を回避することができる。また、先端開口4Hから吐出される細胞凝集塊Cが本来的に少なすぎるという事態も回避できる。
 [細胞移動装置の動作フローの説明]
 図21及び図22は、細胞移動装置Sの動作の一例を示すフローチャートである。制御部8は、図略の入力部から、一回当たりの吸引動作で分注チップ4に吸引させる細胞凝集塊Cの数の指定を受け付ける(ステップS1)。また、制御部8は、前記入力部から、分注チップ4に細胞(細胞凝集塊Cを含む細胞培養液L1)を吸引させる際の吸引速度の指定(ステップS2)と、分注チップ4から細胞を吐出させる際の吐出速度の指定(ステップS3)とを受け付ける。吸引速度は、比較的早い速度に設定されることが望ましい。吸引速度が遅すぎると、先端開口4Hから吸引されつつある細胞凝集塊Cが、自重で落下することがある。一方、吐出速度は、比較的遅い速度に設定される。
 続いて、軸制御部81がカメラ軸駆動部73を制御し、カメラユニット7を分注容器1の下方に移動させる(ステップS4)。そして、撮像制御部84がカメラユニット7を制御して、細胞凝集塊Cが沈降している分注容器1の底板11の画像を撮像させる(ステップS5)。得られた底板11の画像データは、画像処理部85に送られる。
 画像処理部85は、取得された画像データについて、細胞凝集塊Cを認識する画像処理、及びグリッド13を認識する画像処理などを実行して、先ずは底板11に担持されている細胞凝集塊Cの個体数をカウントする処理を行う(ステップS6)。そして、カウントされた細胞凝集塊Cの個体数と、ステップS1で指定された個体数とが比較される(ステップS7)。指定個体数よりカウントされた細胞凝集塊Cの方が少ない場合(ステップS7でNO)、細胞凝集塊Cの絶対数が不足していることになるので、制御部8は表示部74にエラー表示を行う(ステップS8)。このエラー表示は、例えばユーザーに対し、分注容器1へ細胞凝集塊Cを追加することを促す表示である。
 指定個体数よりカウントされた細胞凝集塊Cの方が多い場合(ステップS7でYES)、画像処理部85は、画像処理によって、グリッド13に基づき細胞凝集塊Cの底板11上における分布を認識する。そして、吸引エリア設定部86は、分注チップ4により吸引を行わせるグリッド13の升目、つまり底板11上の吸引エリア13Aを特定する(ステップS9)。
 その後、吸引エリア設定部86は、吸引エリア13Aにおいて分注チップ4に吸引動作を行わせた場合の液体吸引量を算出する(ステップS10)。この算出は、グリッド13の一つの升目について細胞凝集塊Cを吸引させるために必要な細胞培養液L1の吸引量と、吸引エリア13Aに属する升目の数とを乗算する算出である。これにより、分注チップ4における一回当たりの細胞培養液L1の吸引量が決定される(ステップS11)。
 次いで、吸引エリア設定部86は、決定された吸引量が、分注チップ4の吸引容量の範囲内であるか否かを確認する(ステップS12)。決定された吸引量が分注チップ4の吸引容量を超過している場合(ステップS12でNO)、制御部8は表示部74にエラー表示を行う(ステップS13)。このエラー表示は、吸引容量オーバーである旨をユーザーに通知する表示であり、吸引エリア13Aの縮減を促す表示、若しくは、複数回に分けて吸引を行うことを促す表示である。
 決定された吸引量が分注チップ4の吸引容量の範囲内である場合(ステップS12でYES)、軸制御部81はヘッドユニット5を、新品の分注チップ4の置き場である図略の分注チップストック部の上空へ移動させる(ステップS14)。続いて、ヘッド制御部82は、ヘッド52を一つの分注チップ4に向けて下降させることで、ヘッド52の下端の装着部53を分注チップ4の基端部41に嵌め込む(ステップS15)。これにより、ヘッド52に分注チップ4が装着される。
 その後、ヘッド制御部82がヘッド52を上昇させ、軸制御部81がヘッドユニット5を分注容器1の上空へ移動させる(ステップS16)。この際、分注チップ4の先端開口4Hが、ステップS9で特定された吸引エリア13Aの吸引起点となる一つの升目の鉛直線上に位置合わせされる。
 その後、ヘッド制御部82はヘッド52を下降させ、先端開口4Hを分注容器1の細胞培養液L1に浸漬させると共に、先端開口4Hに吸引力を発生させる制御を行う(ステップS17)。この際、軸制御部81は、先端開口4Hが吸引エリア13Aの残りの升目の上方を全て通過するように、ヘッド52を水平方向へ移動させる。これにより、底板11に担持されている細胞凝集塊Cが、その周囲の細胞培養液L1と共に先端開口4Hから吸引され、分注チップ4内には細胞凝集塊Cを含む細胞培養液L1が保持される(第1制御)。
 次に、軸制御部81は、ヘッドユニット5を分散アダプタ6の保管部60の上空へ移動させる(ステップS18)。この際、保管部60の一つの分散アダプタ6と、細胞培養液L1を保持している分注チップ4が装着されたヘッド52とが、鉛直線上に位置合わせされるよう移動される。その後、ヘッド制御部82はヘッド52を下降させ、ヘッド52に分散アダプタ6を装着させる(ステップS19)。これにより、分注チップ4と分散アダプタ6とが一体化された状態となり、先端開口4Hの下方には分散面61が位置する状態となる(第2制御)。
 続いて、軸制御部81は、ヘッドユニット5を選別容器2の上空へ移動させる(ステップS20)。この際、分散アダプタ6の分散面61と選別容器2の上部開口2Hとが位置合わせされる。そして、細胞培養液L1を分注チップ4から吐出させる工程に先立って、分散アダプタ6の分散面61に培地L2を馴染ませる処理が行われる。具体的には、ヘッド制御部82がヘッド52を下降させ、分散アダプタ6の分散面61だけを選別容器2の培地L2へ浸漬させる(ステップS21)。所定時間の経過後、ヘッド制御部82がヘッド52を上昇させ、分散面61を培地L2の液面LHの上空へ移動させる(ステップS22)。このステップS21の下降及びステップS22の上昇が、予め指定された回数だけ繰り返される(ステップS23)。この動作により、分散面61の上面まで、培地L2が浸透した状態とすることができる。
 しかる後、細胞培養液L1を吐出させる工程に移行する。ヘッド制御部82がヘッド52を下降させ、分散アダプタ6の分散面61及び分注チップ4の先端開口4Hを、選別容器2の培地L2へ浸漬させる(ステップS24)。当該浸漬によって、分散面61がウェルプレート3の上面301に上方から対向することになる(第3制御)。
 そして、分散制御部83が、ヘッド52を水平方向へ微小に往復移動させる動作を開始させる(ステップS25)。これにより、分注チップ4及び分散アダプタ6は左右方向へ微小に揺動する。この状態で、ヘッド制御部82がピストン部材55を所定長だけ下降させ、先端開口4Hに吐出力を発生させる(ステップS26)。これにより、先端開口4Hから複数の細胞凝集塊Cを含む細胞培養液L1が吐出される(第4制御)。
 ステップS25の動作とステップS26の動作との連携により細胞凝集塊Cは分散され、分散面61からウェルプレート3に落下する。その後、ヘッド制御部82がヘッド52を上昇させ、分散面61を培地L2の液面LHの上空へ移動させる(ステップS27)。この際に生じる液流によって、分散面61上に残存している細胞凝集塊Cを、積極的に分散開口611を通して落下させることができる(第5制御)。
 そして、予め指定された回数だけ、ヘッド52の下降及び上昇が実行されたか否かが確認される(ステップS28)。指定回数だけ実行されていない場合(ステップS28でNO)、ステップS24に戻って処理が繰り返される。一回目の浸漬の際に分注チップ4に保持された細胞培養液L1を全量吐出させた場合は、二回目以降の処理の繰り返しにおいてステップS26はスキップされ、浸漬時に分散制御部83によるヘッド52の微小揺動(ステップS25)だけが実行される。一方、小分けして細胞培養液L1を分注チップ4から吐出させる場合は、二回目以降の処理の繰り返しにおいてもステップS26が実行される。
 分注チップ4及び分散アダプタ6は、1バッチの使用で廃棄される。このため、ヘッド52の下降及び上昇が指定回数だけ実行されると(ステップS28でYES)、軸制御部81は、ヘッドユニット5を図略の廃棄ボックス等が配置された廃棄位置へ移動させる(ステップS29)。そして、分散アダプタ6をヘッド52から離脱させる動作(ステップS30)と、分注チップ4をヘッド52から離脱させる動作(ステップS31)とが実行される。この離脱動作は、ヘッド52に外嵌されている図略の筒状ロッドを下降させ、分注チップ4及び分散アダプタ6の上端縁を押圧することによって実現することができる。
 [各種の変形例]
 <分散アダプタの変形例>
 図23(A)~(C)は、分散アダプタの変形例を示す図である。図23(A)に示す分散アダプタ6Aは、円錐型の分散面61Aを有している。分散面61Aは、分注チップ4の先端開口4Hの軸心AXと対向する中心部612付近から、その周縁部613に向けて下方に傾斜している。先端開口4Hと対向する中心部612の付近は、該先端開口4Hから細胞培養液L1が吐出された際に細胞凝集塊Cが密集し易い。このため、分散アダプタ6を揺動させるとはいえ、平坦な分散面61であると、その中心部付近の分散開口611から細胞凝集塊Cが比較的多く落下し、ウェルプレート3上に細胞凝集塊Cの密集部を形成してしまう懸念がある。
 しかし、円錐型の分散面61Aとすることで、中心部612付近に吐出された細胞凝集塊Cは、その円錐の傾斜に沿って周縁部613へ誘導されるので、分散が促進される。つまり、分散面61Aが、先端開口4Hと対向する中心部612付近、すなわち細胞凝集塊Cが密集し易い中心部612付近よりも、周縁部613の方から細胞凝集塊Cが抜け出し易い構造を有する。従って、細胞凝集塊Cをより分散させ易くすることができる。
 図23(B)に示す分散アダプタ6Bは、分散開口611の開口密度を異ならせた分散面61Bを有している。分散面61Bは、分注チップ4の先端開口4Hの軸心AXと対向する中心部614付近における分散開口611の密度が粗で、その周縁部615における分散開口611の密度が、中心部614付近に比較して密とされている。このような分散面61Bもまた、細胞凝集塊Cが密集し易い中心部614付近よりも、周縁部615の方から細胞凝集塊Cが抜け出し易い構造となる。従って、細胞凝集塊Cをより分散させ易くすることができる。
 図23(C)に示す分散アダプタ6Cは、平面視で矩形形状の分散面61Cを有している。一般に、ウェルプレート3は正方形若しくは矩形状である。矩形の分散面61Cとすることで、満遍なくウェルプレート3に細胞凝集塊Cを分散させ易くすることができる。なお、分散面61Cは、選別容器2における矩形の上部開口2Hに相似な矩形形状とすることが望ましい。
 <空気抜き孔を具備しない分散アダプタ>
 上記実施形態では、空気抜き孔63を備える分散アダプタ6を用いる例を示したが、あえて空気抜き孔63を具備しない分散アダプタを用いるオペレーションも可能である。図24~図26は、空気抜き孔63を具備しない分散アダプタ6Sを用いた細胞吐出動作を示す図である。分散アダプタ6Sは、分注チップ4と共にヘッド52に装着されている。分注チップ4には、細胞凝集塊Cを含む細胞培養液L1が吸引されている。
 図24に示すように、分散アダプタ6Sを、上部開口2Hを通して選別容器2にアプローチさせ、その分散面61を選別容器2に貯留されている培地L2に浸漬させる。この場合、分散アダプタ6Sは空気抜き孔63を具備しないので、培地L2は分散面61を通してキャビティ6Hへ進入することができない。
 続いて、図25に示す通り、分注チップ4に吸引力を発生させる。これにより、分注チップ4の先端開口4Hから、キャビティ6H内に存在する空気が吸引され、キャビティ6Hは負圧となる。従って、培地L2が、分散面61を浸透してキャビティ6Hへ入り込むようになる。その後、図26に示すように、分注チップ4及び分散アダプタ6Sを揺動させつつ、分注チップ4から細胞凝集塊Cを含む細胞培養液L1が吐出される。
 分散アダプタ6Sのキャビティ6H内に液体(培地L2)が浸透していないと、分注チップ4の先端開口4Hから吐出された細胞培養液L1が落下し難い場合がある。例えば、先端開口4Hに液玉となって付着し続けることがある。上述の実施形態の如く空気抜き孔63を設けることで、分散面61からの培地L2の浸透を概ね確保できるが、時に分散面61の撥水性によって、前記浸透が妨げられる場合が起こり得る。これに対し、本変形実施形態によれば、空気抜き孔63を具備しない分散アダプタ6Sを用いることでキャビティ6Hを負圧にすることができるので、培地L2を確実にキャビティ6Hへ進入させることができる。
 <分注チップの変形例>
 図27(A)は、変形例に係る分注チップ4Aを示す縦断面図、図27(B)はその下面図である。分注チップ4Aは、側方に開口した先端開口4Hを有している。分注チップ4Aの先端(下端)には、底板44が備えられ、該底板44には半円形の切り欠き45が形成されている。この切り欠き45の部分において、分注チップ4Aの先端の一部も切り欠かれている。これにより、側方に開口した先端開口4Hが形成されている。
 図28は、変形例に係る分注チップ4Aの使用例を示す図である。分注チップ4Aの先端が、細胞培養液L1及び細胞凝集塊Cを貯留する分注容器1に進入している。そして、底板44が分注容器1の底板11に接面している。この状態で、分注チップ4Aを側方に移動させつつ、先端開口4Hに吸引力を発生させる。これにより、底板11に沈殿した細胞凝集塊Cの吸引効率を高めることができる。
 <分注容器の変形例>
 図29は、変形例に係る分注容器10を示す図である。図1などに示した分注容器1では、細胞培養液L1中に多量の細胞凝集塊Cを貯留することを想定している。それゆえ、先に図18~図20に基づき説明した通り、一回の吸引動作にて分注チップ4に吸引させる細胞凝集塊Cの数、つまり1回の吐出動作で分注チップ4から選別容器2に吐出させる細胞凝集塊Cの数を調整する例を示した。これに対し、図29の分注容器10は、1回の吐出動作で分注チップ4から吐出させる数の細胞凝集塊Cを含む細胞培養液L1だけを貯留している。ここでの分注容器10は、例えば有底のチューブ、マイクロプレートに備えられている一つのウェル等である。このような分注容器10を用いれば、分注チップ4への細胞凝集塊Cの吸引動作を効率的に行わせることができる。
 なお、上述した具体的実施形態には以下の構成を有する発明が主に含まれている。
 本発明の一局面に係る対象物移動方法は、複数の対象物を含む対象液体を吸引及び吐出する先端開口を有し、前記対象液体を保持可能なチップを用いて前記対象物を移動させる方法であって、前記チップの前記先端開口から前記対象液体を吸引させ、前記チップ内に前記対象液体を保持させる工程と、前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタを準備し、前記分散面が前記先端開口の下方に位置する状態で、前記チップと前記分散アダプタとを一体化させる工程と、前記対象物の移動先となる受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる工程と、前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップ内に保持された前記対象液体を前記先端開口から吐出させる工程と、を含む。
 この方法によれば、チップに対象液体を吸引させた後、当該対象液体を吐出させる前に、前記チップに対して分散アダプタが一体化される。この際、分散アダプタの分散面が前記チップの先端開口の下方に位置する。そして、前記分散面が受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、チップ内に保持された前記対象液体がその先端開口から吐出される。このため、先端開口から吐出された対象物は、前記分散面の面上で分散され、その後に前記分散面の分散開口から前記受容液体中に放散される。従って、チップから吐出された対象物が、一箇所に密集することはなく、前記受容液体中における分散性を良好なものとすることができる。
 上記の対象物移動方法において、前記受容液体中には、前記対象物を個別に収容する区画を表面に有するプレートが配置され、前記分散面は、前記プレートの表面の上方に浸漬され、前記分散アダプタは、前記プレートが存在する範囲内で揺動されることが望ましい。
 この方法によれば、分散アダプタがプレートの存在範囲内で揺動されるので、前記プレート上に対象物を良好な分散状態で担持させることができる。
 上記の対象物移動方法において、前記吐出させる工程の後、前記分散面が前記受容液体の液面から上方に離間するまで、前記チップ及び前記分散アダプタを上昇させ、その後、前記分散面を浸漬させる工程と、少なくとも前記吐出させる工程のうちの前記分散アダプタを揺動させる動作とを再度実行させることが望ましい。
 この方法によれば、一旦分散面を受容液体の液面から上方に離間させることで、重力を利用して前記分散面上に残存している対象物若しくは分散開口に引っ掛かっているような対象物を、分散開口を通して確実に前記受容液体中に放散させることができる。
 上記の対象物移動方法において、前記対象液体は、前記対象物を担持する平坦な底面を含む容器に収容され、前記チップは前記底面上に担持された前記対象物を周囲の液体と共に吸引するものであって、前記底面に担持された前記対象物の分布を認識する工程と、前記対象物の分布に基づいて、前記チップにより前記吸引を行わせる、前記底面上のエリアを特定する工程と、をさらに備えることが望ましい。
 この方法によれば、前記底面上における対象物の分布状態が予め把握されるので、チップに適正な量の対象物を吸引させることができる。従って、チップの先端開口から吐出される対象物が本来的に多い故に当該対象物が密集し易い、という状況を回避することができる。また、チップの先端開口から吐出される対象物が本来的に少なすぎるという事態も回避できる。
 上記の対象物移動方法において、前記対象物が細胞であり、前記対象液体及び前記受容液体が培地であることが望ましい。この方法によれば、本発明を医療や生物学的な研究の用途に適用することができる。
 本発明の他の局面に係る対象物移動装置は、複数の対象物を含む対象液体を貯留する第1容器と、前記対象物の移動先となる受容液体を貯留する第2容器と、前記複数の対象物を含む液体を吸引及び吐出する先端開口を有し、前記液体を保持可能なチップと、前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタと、前記分散アダプタを保管する保管部と、前記チップが装着され、装着された前記チップの前記先端開口に吸引力及び吐出力を発生させる進退機構を備えたヘッドと、前記ヘッドを上下方向及び水平方向に移動させるヘッド移動機構と、前記進退機構及び前記ヘッド移動機構の動作を制御する制御部と、を備え、前記制御部は、前記ヘッドを前記第1容器の位置に移動させ、前記チップの前記先端開口を前記対象液体に浸漬させると共に前記先端開口に吸引力を発生させ、前記チップ内に前記対象液体を保持させる第1制御と、前記ヘッドを前記保管部の位置に移動させ、前記分散アダプタの前記分散面が前記先端開口の下方に位置する状態で、前記チップが装着された前記ヘッドに前記分散アダプタを装着させる第2制御と、前記ヘッドを前記第2容器の位置に移動させ、前記受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる第3制御と、前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップの前記先端開口に吐出力を発生させる第4制御と、を実行する。
 この装置によれば、チップに対象液体を吸引させた後、当該対象液体を吐出させる前に、前記チップが装着されたヘッドに対して分散アダプタを装着する第2制御が実行される。この際、分散アダプタの分散面が前記チップの先端開口の下方に位置する。そして、前記分散面が受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記対象液体を保持したチップの先端開口に吐出力を発生させる第4制御が実行される。前記吐出力によって先端開口から吐出された対象物は、前記分散面の面上で分散され、その後に前記分散面の分散開口から前記受容液体中に放散される。従って、チップから吐出された対象物が、一箇所に密集することはなく、前記受容液体中における分散性を良好なものとすることができる。
 上記の対象物移動装置において、前記制御部は、前記第4制御の後に、前記分散アダプタの前記分散面が前記受容液体の液面から上方に離間するまで、前記ヘッドを上昇させる第5制御を実行し、しかる後、前記第3制御と、少なくとも前記第4制御のうちの前記分散アダプタを揺動させる動作とを再度実行させることが望ましい。
 この装置によれば、第4制御の後に、一旦分散面を受容液体の液面から上方に離間させる第5制御が実行されるので、重力を利用して前記分散面上に残存している対象物若しくは分散開口に引っ掛かっているような対象物を、分散開口を通して確実に前記受容液体中に放散させることができる。
 上記の対象物移動装置において、前記分散アダプタの前記分散面は、前記分散開口がマトリクス状に配列されたメッシュ面からなることが望ましい。この装置によれば、分散面を簡易な構成で構築することができる。
 上記の対象物移動装置において、前記分散アダプタの前記分散面は、前記チップの先端開口と対向する中心部付近から、その周縁部に向けて下方に傾斜した形状を有することが望ましい。
 或いは、前記分散アダプタの前記分散面は、前記チップの先端開口と対向する中心部付近における前記分散開口の密度が粗で、前記中心部付近の周縁部における前記分散開口の密度が、前記中心部付近に比較して密であることが望ましい。
 これらの装置によれば、分散面が、チップの先端開口と対向する中心部付近、つまり対象物が密集し易い中心部付近よりも、周縁部の方から対象物が抜け出しやすい構造を有する。従って、対象物をより分散させ易くすることができる。
 上記の対象物移動装置において、前記第1容器は、平坦な底面を含む透光性の容器であり、前記チップは前記底面上に担持された前記対象物を周囲の液体と共に吸引するものであって、前記底面は、担持された前記対象物の分布を認識させることが可能なグリッドが、実線若しくは仮想的に描かれる面であることが望ましい。
 この装置によれば、第1容器の底面上における対象物の分布状態を、グリッドに基づいて外部から把握することが可能となるので、チップに適正な量の対象物を吸引させることができる。従って、チップの先端開口から吐出される対象物が本来的に多い故に当該対象物が密集し易い、という状況を回避することができる。また、チップの先端開口から吐出される対象物が本来的に少なすぎるという事態も回避できる。
 以上の通り、本発明によれば、複数の対象物を含む対象液体を吸引及び吐出するチップを用いて前記対象物を移動させる場合において、前記チップから吐出された対象物の分散性を良好にすることができる。従って、吐出後の対象物の状態観察や、対象物の個別ピッキングのスムースな実行を可能にする。
 

Claims (11)

  1.  複数の対象物を含む対象液体を吸引及び吐出する先端開口を有し、前記対象液体を保持可能なチップを用いて前記対象物を移動させる方法であって、
     前記チップの前記先端開口から前記対象液体を吸引させ、前記チップ内に前記対象液体を保持させる工程と、
     前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタを準備し、前記分散面が前記先端開口の下方に位置する状態で、前記チップと前記分散アダプタとを一体化させる工程と、
     前記対象物の移動先となる受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる工程と、
     前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップ内に保持された前記対象液体を前記先端開口から吐出させる工程と、
    を含む対象物移動方法。
  2.  請求項1に記載の対象物移動方法において、
     前記受容液体中には、前記対象物を個別に収容する区画を表面に有するプレートが配置され、
     前記分散面は、前記プレートの表面の上方に浸漬され、
     前記分散アダプタは、前記プレートが存在する範囲内で揺動される、対象物移動方法。
  3.  請求項1又は2に記載の対象物移動方法において、
     前記吐出させる工程の後、前記分散面が前記受容液体の液面から上方に離間するまで、前記チップ及び前記分散アダプタを上昇させ、
     その後、前記分散面を浸漬させる工程と、少なくとも前記吐出させる工程のうちの前記分散アダプタを揺動させる動作とを再度実行させる、対象物移動方法。
  4.  請求項1~3のいずれか1項に記載の対象物移動方法において、
     前記対象液体は、前記対象物を担持する平坦な底面を含む容器に収容され、前記チップは前記底面上に担持された前記対象物を周囲の液体と共に吸引するものであって、
     前記底面に担持された前記対象物の分布を認識する工程と、
     前記対象物の分布に基づいて、前記チップにより前記吸引を行わせる、前記底面上のエリアを特定する工程と、をさらに備える、対象物移動方法。
  5.  請求項1~4のいずれか1項に記載の対象物移動方法において、
     前記対象物が細胞であり、前記対象液体及び前記受容液体が培地である、対象物移動方法。
  6.  複数の対象物を含む対象液体を貯留する第1容器と、
     前記対象物の移動先となる受容液体を貯留する第2容器と、
     前記複数の対象物を含む液体を吸引及び吐出する先端開口を有し、前記液体を保持可能なチップと、
     前記対象物を通過させることが可能なサイズを有する分散開口を複数有する分散面と、少なくとも前記チップの先端開口を収容するキャビティとを備えた分散アダプタと、
     前記分散アダプタを保管する保管部と、
     前記チップが装着され、装着された前記チップの前記先端開口に吸引力及び吐出力を発生させる進退機構を備えたヘッドと、
     前記ヘッドを上下方向及び水平方向に移動させるヘッド移動機構と、
     前記進退機構及び前記ヘッド移動機構の動作を制御する制御部と、を備え、
     前記制御部は、
      前記ヘッドを前記第1容器の位置に移動させ、前記チップの前記先端開口を前記対象液体に浸漬させると共に前記先端開口に吸引力を発生させ、前記チップ内に前記対象液体を保持させる第1制御と、
      前記ヘッドを前記保管部の位置に移動させ、前記分散アダプタの前記分散面が前記先端開口の下方に位置する状態で、前記チップが装着された前記ヘッドに前記分散アダプタを装着させる第2制御と、
      前記ヘッドを前記第2容器の位置に移動させ、前記受容液体中に、少なくとも前記分散アダプタの前記分散面を浸漬させる第3制御と、
      前記分散面が前記受容液体中に浸漬された状態で、前記分散アダプタを揺動させつつ、前記チップの前記先端開口に吐出力を発生させる第4制御と、
    を実行する対象物移動装置。
  7.  請求項6に記載の対象物移動装置において、
     前記制御部は、前記第4制御の後に、前記分散アダプタの前記分散面が前記受容液体の液面から上方に離間するまで、前記ヘッドを上昇させる第5制御を実行し、
     しかる後、前記第3制御と、少なくとも前記第4制御のうちの前記分散アダプタを揺動させる動作とを再度実行させる、対象物移動装置。
  8.  請求項6又は7に記載の対象物移動装置において、
     前記分散アダプタの前記分散面は、前記分散開口がマトリクス状に配列されたメッシュ面からなる、対象物移動装置。
  9.  請求項6~8のいずれか1項に記載の対象物移動装置において、
     前記分散アダプタの前記分散面は、前記チップの先端開口と対向する中心部付近から、その周縁部に向けて下方に傾斜した形状を有する、対象物移動装置。
  10.  請求項6~8のいずれか1項に記載の対象物移動装置において、
     前記分散アダプタの前記分散面は、前記チップの先端開口と対向する中心部付近における前記分散開口の密度が粗で、前記中心部付近の周縁部における前記分散開口の密度が、前記中心部付近に比較して密である、対象物移動装置。
  11.  請求項6~10のいずれか1項に記載の対象物移動装置において、
     前記第1容器は、平坦な底面を含む透光性の容器であり、前記チップは前記底面上に担持された前記対象物を周囲の液体と共に吸引するものであって、
     前記底面は、担持された前記対象物の分布を認識させることが可能なグリッドが、実線若しくは仮想的に描かれる面である、対象物移動装置。
     
PCT/JP2015/086441 2015-12-25 2015-12-25 対象物移動方法及び装置 WO2017110004A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/086441 WO2017110004A1 (ja) 2015-12-25 2015-12-25 対象物移動方法及び装置
JP2017557671A JP6450476B2 (ja) 2015-12-25 2015-12-25 対象物移動方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086441 WO2017110004A1 (ja) 2015-12-25 2015-12-25 対象物移動方法及び装置

Publications (1)

Publication Number Publication Date
WO2017110004A1 true WO2017110004A1 (ja) 2017-06-29

Family

ID=59089846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086441 WO2017110004A1 (ja) 2015-12-25 2015-12-25 対象物移動方法及び装置

Country Status (2)

Country Link
JP (1) JP6450476B2 (ja)
WO (1) WO2017110004A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019124540A1 (ja) * 2017-12-22 2019-06-27 国立大学法人京都大学 細胞培養装置、培養液アスピレータ及び細胞培養方法
WO2019163270A1 (ja) * 2018-02-20 2019-08-29 ヤマハ発動機株式会社 生体対象物のピックアップ装置
WO2020080453A1 (ja) * 2018-10-20 2020-04-23 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
JPWO2021019623A1 (ja) * 2019-07-26 2021-02-04
WO2023233464A1 (ja) * 2022-05-30 2023-12-07 ヤマハ発動機株式会社 細胞移動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077423A1 (ja) * 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
WO2015087371A1 (ja) * 2013-12-12 2015-06-18 ヤマハ発動機株式会社 対象物の移動装置
WO2016002066A1 (ja) * 2014-07-04 2016-01-07 ヤマハ発動機株式会社 対象物の移動装置
WO2016020992A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 培養装置、これを用いた培養方法及び細胞凝集塊の選別方法
WO2016020989A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 対象物の保持装置
WO2016020988A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 対象物の保持装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077423A1 (ja) * 2011-11-25 2013-05-30 国立大学法人京都大学 多能性幹細胞の培養方法
WO2015087371A1 (ja) * 2013-12-12 2015-06-18 ヤマハ発動機株式会社 対象物の移動装置
WO2016002066A1 (ja) * 2014-07-04 2016-01-07 ヤマハ発動機株式会社 対象物の移動装置
WO2016020992A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 培養装置、これを用いた培養方法及び細胞凝集塊の選別方法
WO2016020989A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 対象物の保持装置
WO2016020988A1 (ja) * 2014-08-05 2016-02-11 ヤマハ発動機株式会社 対象物の保持装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624049B2 (en) 2017-12-22 2023-04-11 Orizuru Therapeutics, Inc. Cell culturing apparatus, culture solution aspirator, and cell culturing method
TWI821230B (zh) * 2017-12-22 2023-11-11 日商千紙鶴治療公司 細胞培養裝置、培養液吸引器及細胞培養方法
WO2019124540A1 (ja) * 2017-12-22 2019-06-27 国立大学法人京都大学 細胞培養装置、培養液アスピレータ及び細胞培養方法
CN111868224A (zh) * 2017-12-22 2020-10-30 国立大学法人京都大学 细胞培养装置,培养液抽吸器及细胞培养方法
JPWO2019124540A1 (ja) * 2017-12-22 2020-12-24 国立大学法人京都大学 細胞培養装置、培養液アスピレータ及び細胞培養方法
JP7267607B2 (ja) 2017-12-22 2023-05-02 オリヅルセラピューティクス株式会社 細胞培養装置、培養液アスピレータ及び細胞培養方法
WO2019163270A1 (ja) * 2018-02-20 2019-08-29 ヤマハ発動機株式会社 生体対象物のピックアップ装置
JPWO2019163270A1 (ja) * 2018-02-20 2021-01-07 ヤマハ発動機株式会社 生体対象物のピックアップ装置
JP2020065444A (ja) * 2018-10-20 2020-04-30 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
JP7271903B2 (ja) 2018-10-20 2023-05-12 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
WO2020080453A1 (ja) * 2018-10-20 2020-04-23 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
JP7255687B2 (ja) 2019-07-26 2023-04-11 株式会社島津製作所 細胞ピッキング装置
WO2021019623A1 (ja) * 2019-07-26 2021-02-04 株式会社島津製作所 細胞ピッキング装置
JPWO2021019623A1 (ja) * 2019-07-26 2021-02-04
WO2023233464A1 (ja) * 2022-05-30 2023-12-07 ヤマハ発動機株式会社 細胞移動装置

Also Published As

Publication number Publication date
JP6450476B2 (ja) 2019-01-09
JPWO2017110004A1 (ja) 2018-05-24

Similar Documents

Publication Publication Date Title
JP6450476B2 (ja) 対象物移動方法及び装置
CN107058097B (zh) 对象物的移动装置
JP6883648B2 (ja) 細胞ハンドリング装置
WO2017017990A1 (ja) 対象物移動方法及び装置
JP6148407B2 (ja) シリンダチップ装着用ヘッド、これを用いたヘッド装置及び移動装置
EP3159396B1 (en) Object moving device
WO2017110005A1 (ja) 対象物のピックアップ方法
EP3156478B1 (en) Object-holding device
CN1572877A (zh) 向细胞注射物质的系统和设备
US10429403B2 (en) Head device for mounting dispensing tip thereon, and movement device using same
WO2019163270A1 (ja) 生体対象物のピックアップ装置
US20160067705A1 (en) Pipette device having a micro-dosing unit
JP6279743B2 (ja) 対象物の保持装置
JP6387427B2 (ja) 対象物の移動装置
US20200339935A1 (en) Pretreatment method for cell migration and cell migration device
WO2018074086A1 (ja) 細胞移動装置
CN1166516C (zh) 一种注墨装置及通过施加正、负压力实现向墨盒注墨的方法
JP2006025767A (ja) 反応処理装置
JP7486160B2 (ja) 細胞培養装置および細胞培養方法
WO2023233464A1 (ja) 細胞移動装置
JP7254413B2 (ja) 生体対象物の処理装置
JP2021185749A (ja) 細胞培養装置および細胞培養方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557671

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911436

Country of ref document: EP

Kind code of ref document: A1