WO2017109917A1 - 超音波振動子 - Google Patents

超音波振動子 Download PDF

Info

Publication number
WO2017109917A1
WO2017109917A1 PCT/JP2015/086122 JP2015086122W WO2017109917A1 WO 2017109917 A1 WO2017109917 A1 WO 2017109917A1 JP 2015086122 W JP2015086122 W JP 2015086122W WO 2017109917 A1 WO2017109917 A1 WO 2017109917A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric elements
node
piezoelectric
piezoelectric element
ultrasonic transducer
Prior art date
Application number
PCT/JP2015/086122
Other languages
English (en)
French (fr)
Inventor
雅也 戸田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017540289A priority Critical patent/JP6261833B2/ja
Priority to PCT/JP2015/086122 priority patent/WO2017109917A1/ja
Priority to CN201580085414.1A priority patent/CN108430653B/zh
Priority to DE112015007231.4T priority patent/DE112015007231T5/de
Publication of WO2017109917A1 publication Critical patent/WO2017109917A1/ja
Priority to US16/012,042 priority patent/US11383271B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22027Features of transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320088Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with acoustic insulation, e.g. elements for damping vibrations between horn and surrounding sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect

Definitions

  • the present invention relates to an ultrasonic transducer.
  • An ultrasonic transducer mounted on a surgical instrument includes a laminate composed of a plurality of piezoelectric elements laminated in the thickness direction, and is designed so that a longitudinal vibration node is located in the laminate.
  • the ultrasonic vibrator Since the ultrasonic vibrator generates heat with vibration, the entire temperature of the ultrasonic vibrator gradually rises during use. Since the resonance frequency of the ultrasonic vibrator depends on temperature, if the resonance frequency of the ultrasonic vibrator changes due to temperature rise, the resonance frequency of the ultrasonic vibrator with respect to the frequency of the drive voltage supplied to the ultrasonic vibrator The deviation increases, and the output (vibration amplitude) of the ultrasonic transducer decreases. In order to continue to maintain a high output, the driving voltage must be increased, which causes further heat generation and makes the driving of the ultrasonic vibrator unstable.
  • the ultrasonic vibrator described in Patent Document 1 has a problem that it is difficult to stably drive the ultrasonic vibrator with high output because it is difficult to suppress heat generation.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an ultrasonic transducer that can suppress heat generation and can be stably driven with high output.
  • the present invention includes a plurality of piezoelectric elements that are stacked in the thickness direction and generate longitudinal vibration in the thickness direction, and the plurality of piezoelectric elements travel from the longitudinal side of the longitudinal vibration toward the node side of the longitudinal vibration.
  • the ultrasonic transducers are arranged so that the thicknesses increase in order.
  • longitudinal vibration in the thickness direction is generated in the entire plurality of piezoelectric elements by applying a voltage in the thickness direction to the plurality of stacked piezoelectric elements to vibrate the piezoelectric elements in the thickness direction. be able to.
  • the plurality of piezoelectric elements are arranged so that they are thicker as they are closer to the node and thinner as they are closer to the belly.
  • the thicker piezoelectric element has a smaller amount of flowing current
  • the thinner piezoelectric element has a larger amount of current flowing.
  • the node-side piezoelectric element has a small amount of displacement and therefore requires a small amount of current
  • the belly-side piezoelectric element has a large amount of displacement and therefore requires a large amount of current.
  • the output can be increased by arranging a thinner piezoelectric element on the ventral side.
  • the vibration speed differs between piezoelectric elements having different thicknesses. Therefore, by decreasing the thickness of the piezoelectric elements in order, it is possible to prevent a decrease in vibration transmission efficiency due to a difference in vibration speed between adjacent piezoelectric elements, and to further increase the output.
  • the plurality of piezoelectric elements may be arranged so that the thickness increases in order from the piezoelectric element located closest to the belly side toward the piezoelectric element located closest to the node side. Good.
  • the plurality of piezoelectric elements may be arranged so that a piezoelectric constant increases in order from the ventral side toward the nodal side, and the piezoelectric element located most on the ventral side most They may be arranged so that the piezoelectric constants increase in order toward the piezoelectric element located on the node side.
  • the Young's modulus may be arranged in order from the ventral side toward the node side, and the Young's modulus of the piezoelectric element located closest to the node side is the most ventral side. It may be arranged so as to be lower than the Young's modulus of the piezoelectric element located at the position. By doing so, it is possible to further increase the vibration generation efficiency and the vibration transmission efficiency while maintaining a high suppression effect of heat generation.
  • the plurality of piezoelectric elements have antinodes in the middle of the plurality of piezoelectric elements in the thickness direction, and the longitudinal vibrations have antinodes on both sides in the thickness direction of the plurality of piezoelectric elements. May be generated.
  • the piezoelectric elements disposed on one side and the other side in the thickness direction of the node may have different thicknesses. By doing in this way, the difference in thickness between two adjacent piezoelectric elements can be further suppressed, and the output can be further increased.
  • the plurality of piezoelectric elements may be arranged so that the thickness distribution is symmetric with respect to the node.
  • the number of the piezoelectric elements arranged on one side and the other side of the thickness direction of the node may be three or more.
  • FIG. 1 is an external view showing an overall configuration of an ultrasonic therapy apparatus according to an embodiment of the present invention. It is the (a) side view which shows the whole structure of the ultrasonic transducer
  • FIG. 1 is an external view showing the overall configuration of an ultrasonic therapy apparatus 101 according to an embodiment of the present invention.
  • the ultrasonic transducer 1 according to this embodiment is applied to an ultrasonic therapy apparatus 101.
  • the ultrasonic treatment apparatus 101 is connected to an ultrasonic treatment instrument 102 having an ultrasonic transducer 1 inside, and the treatment instrument 102 via a cable 109.
  • a control unit 103 for supplying a high-frequency drive voltage and controlling the drive voltage.
  • Reference numeral 105 denotes a probe whose base end is fixed to the ultrasonic transducer 1.
  • the treatment instrument 102 is provided with a hand switch 102a for instructing start and stop of supply of drive voltage from the control unit 103 to the ultrasonic transducer 1.
  • the driving voltage is supplied from the control unit 103 via the cable 109, so that the ultrasonic vibrator 1 generates ultrasonic vibration, and the ultrasonic vibration causes the probe 105 to move.
  • the tip of the probe 105 vibrates.
  • frictional heat is generated in the tissue in contact with the distal end portion of the probe 105 so that the tissue can be coagulated or incised.
  • a treatment instrument 102 that directly contacts a tissue with a horn provided at the tip of the ultrasonic transducer 1 may be employed.
  • the ultrasonic transducer 1 is a transducer main body (hereinafter simply referred to as “main body”) including a bolted Langevin type (BLT) transducer. ) 2 and a heat radiating tube 10 for housing the main body 2.
  • Reference numeral 14 denotes an electrically insulating outer cylinder that covers the outside of the ultrasonic transducer 1.
  • the main body 2 includes a horn 3, a first metal body 4, a multilayer body 5 composed of a plurality of piezoelectric elements, and a second metal body 6 in order along the longitudinal axis A from the distal end side. .
  • the main body 2 includes a bolt 7 and a nut 8 for fastening the first metal body 4, the laminated body 5 and the second metal body 6 together.
  • the horn 3 and the bolt 7 are a single member made of a metal having high ultrasonic wave propagation efficiency and high strength, and are preferably made of 64 titanium alloy (B348 Grade 5 of ASTM standard).
  • the horn 3 has a substantially conical shape that tapers toward the tip.
  • the bolt 7 extends straight along the longitudinal axis A from the base end face of the horn 3 toward the base end side.
  • the first metal body 4, the laminated body 5, and the second metal body 6 are formed with bolt holes 9 that penetrate along the longitudinal axis A and into which the bolts 7 are inserted.
  • the nut 8 is fastened to the base end portion of the bolt 7 protruding from the base end surface of the second metal body 6, whereby the laminate 5 is separated from both sides by the first metal body 4 and the second metal body 6. It is tightened firmly.
  • the nut 8 may be omitted, and the second metal body 6 may also serve as the nut 8 by having a female screw that is fastened to the bolt 7.
  • the laminate 5 When a high-frequency drive voltage from a high-frequency power source (not shown) mounted in the control unit 103 is applied to the laminate 5, the laminate 5 generates longitudinal vibration in the direction of the longitudinal axis A, and the generated longitudinal vibration is a bolt. 7, the tip of the horn 3 vibrates in the direction of the longitudinal axis A. At this time, the longitudinal vibration is amplified while it is transmitted from the proximal end of the horn 3 to the distal end, so that a vibration with a large amplitude is obtained at the distal end of the horn 3.
  • the frequency of the drive voltage is selected from the range of 20 kHz or more and 100 kHz or less so that the distal end, the intermediate position, and the proximal end of the main body 2 are antinodes of longitudinal vibration.
  • the first metal body 4 is a columnar member, and is formed from a metal material having high strength and elasticity such as a titanium alloy or an aluminum alloy.
  • the second metal body 6 is a columnar member and is formed from a metal material such as a titanium alloy or an aluminum alloy.
  • the metal bodies 4 and 6 may be formed from ceramics (for example, duralumin) whose main component is aluminum.
  • the laminated body 5 includes a plurality of plate-like piezoelectric elements 51, 52, 53, and 54 arranged in the longitudinal axis A direction.
  • the piezoelectric elements 51, 52, 53, 54 are made of a piezoelectric material such as lead titanium zirconate, barium titanate, or potassium sodium niobate, and are polarized in the thickness direction.
  • the plurality of piezoelectric elements 51, 52, 53, 54 may be formed of the same type of piezoelectric material or may be formed of different types of piezoelectric material.
  • the plurality of piezoelectric elements 51, 52, 53, and 54 may be formed of piezoelectric materials that are the same type but have different physical property values.
  • the laminated body 5 includes piezoelectric elements 51, 52, 53, 54 and thin plate electrodes (not shown) so that each piezoelectric element 51, 52, 53, 54 is sandwiched between two electrodes in the thickness direction. It has a stacked structure in which layers are stacked alternately in the thickness direction. In the laminate 5, the polarization directions of the piezoelectric elements 51, 52, 53, 54 are alternately reversed. An insulator (not shown) is sandwiched between the multilayer body 5 and the first metal body 4 and between the multilayer body 5 and the second metal body 6. The metal body 4 and the second metal body 6 are electrically insulated.
  • the electrodes constitute positive and negative electrodes alternately in the longitudinal axis A direction. All the electrodes are connected in parallel to a common high-frequency power source (not shown) in the control unit 103 via the electric cable 109, and a common alternating voltage is applied as a drive voltage from the high-frequency power source. .
  • a common high-frequency power source not shown
  • each piezoelectric element 51, 52, 53, 54 expands and contracts in the direction of the longitudinal axis A, and longitudinal vibration in the direction along the longitudinal axis A is generated in the entire laminate 5. It has become.
  • the ultrasonic transducer 1 is designed such that a longitudinal vibration node N appears at the center of the laminated body 5 in the longitudinal axis A direction, and an antinode appears on the distal end side and the proximal end side of the laminated body 5.
  • the plurality of piezoelectric elements 51, 52, 53, 54 are thicker in order from the distal end side toward the node N and in order from the proximal end side toward the node N. Is arranged so that the Further, the piezoelectric elements 51, 52, 53, 54 arranged on the distal end side of the node N have different thicknesses, and the piezoelectric elements 51, 52, 53, 54 arranged on the proximal end side of the node N are , Have different thicknesses. Further, the thickness distribution of the piezoelectric elements 51, 52, 53, and 54 is symmetrical with respect to the node N, and the node N is located between the two thickest piezoelectric elements 51 arranged in the center.
  • a total of eight piezoelectric elements 51, 52, 53, 54 are provided in the laminate 5.
  • the thickest piezoelectric element is referred to as a first piezoelectric element 51
  • the second thickest piezoelectric element is referred to as a second piezoelectric element 52
  • the third thickest piezoelectric element is referred to as a third piezoelectric element 53
  • the thinnest piezoelectric element is referred to as a fourth piezoelectric element 54.
  • the plurality of piezoelectric elements 51, 52, 53, and 54 increase in thickness sequentially from the piezoelectric element located on the most ventral side to the piezoelectric element located on the most node side. Thus, it is preferable that they are arranged.
  • an alternating voltage having a resonance frequency of the ultrasonic vibrator 1 or a frequency close to the resonance frequency is supplied from the high-frequency power source to the electric cable 109.
  • the piezoelectric elements 51, 52, 53 and 54 expand and contract in the longitudinal axis A direction, and longitudinal vibrations are generated in the laminate 5.
  • Longitudinal vibration generated in the laminate 5 is transmitted to the probe 105 through the first metal body 4 and the horn 3, and the tip of the probe 105 vibrates in the longitudinal axis A direction. Therefore, the living tissue can be treated by bringing the tip of the vibrating probe 105 into contact with the living tissue.
  • the distribution of the displacement amount is small at the position close to the node N, large at the position near the antinode, and zero at the position of the node N.
  • the broken line represents the amount of displacement at each position of the stacked body 5.
  • the magnitude of vibration generated by each piezoelectric element 51, 52, 53, 54 varies depending on the position in the stacked body 5.
  • the electric power supplied to all the piezoelectric elements 51, 52, 53, and 54 is equal regardless of the amount of displacement.
  • the electric power is the product of the alternating voltage and the current flowing through each piezoelectric element, and the current flowing through each piezoelectric element depends on the thickness of the piezoelectric element as will be described later. Therefore, in the piezoelectric element 51 on the node N side, the power is excessive and part of the power is converted into heat instead of vibration, or the required vibration speed is obtained in the abdominal piezoelectric element 54 due to insufficient power. It may not be possible.
  • the alternating voltage supplied to the node N side piezoelectric element 51 also increases, so the amount of heat generation increases.
  • the ratio of the work (the magnitude of generated vibration) to the input power of each piezoelectric element varies depending on the position of the piezoelectric element, the amount of power input to all the piezoelectric elements is equal. , Overs and shorts of power occur.
  • a thick first piezoelectric element 51 is disposed on the node N side that requires a small amount of displacement and requires a small amount of power
  • a thin fourth piezoelectric element that has a large amount of displacement and requires a large amount of power on the abdomen side. 54 is arranged. Therefore, the electric power required for each of the piezoelectric elements 51, 52, 53, 54 is input without excess or deficiency. Accordingly, there is an advantage that the output (vibration speed of the tip of the horn 3) is increased while suppressing heat generation, and the driving can be stably performed with a high output.
  • the thicker piezoelectric element when the magnitude of the alternating voltage applied to the piezoelectric elements 51, 52, 53, and 54 is equal, the thicker piezoelectric element, the smaller the electric power supplied. This is because the structure in which the piezoelectric element is sandwiched between the electrodes is equivalent to a capacitor, and each piezoelectric element has a capacitance. That is, the thicker the piezoelectric element, the smaller the capacitance and the smaller the current flowing through the piezoelectric element.
  • the thick piezoelectric element 51 on the node N side, it is possible to increase the conversion efficiency of the input electric power into mechanical vibration and suppress the heat generation at the node N.
  • the amount of heat generation is greatest at the node N in the ultrasonic transducer 1. This is because the closer to the node N, the easier the electric power is converted to heat and the greater the stress generated in the piezoelectric element. By suppressing the heat generation at the node N, the heat generation of the entire ultrasonic transducer 1 can be effectively suppressed.
  • the operation of the medical ultrasonic transducer 1 is limited so that the temperature rise during driving is maintained below a predetermined threshold (for example, 20 ° C.).
  • a predetermined threshold for example, 20 ° C.
  • the alternating voltage applied to the laminate 5 while keeping the temperature rise of the ultrasonic vibrator 1 below a predetermined threshold value. And the ultrasonic transducer 1 can be driven efficiently.
  • the front end of the laminated body 5 is an output end that outputs vibration to the first metal body 4.
  • the vibration speed at the front end of the laminated body 5 is increased. It becomes important. Therefore, according to this embodiment, the output of the ultrasonic transducer 1 can be effectively increased.
  • vibration transmission efficiency can be reduced due to the difference in vibration speed between piezoelectric elements having different thicknesses.
  • the difference in thickness and vibration speed between the two adjacent piezoelectric elements are reduced.
  • the vibration transmission efficiency is prevented from being lowered.
  • vibrator 1 can further be raised.
  • the difference in vibration speed between two adjacent piezoelectric elements can be sufficiently increased.
  • the output can be kept small, and a higher output can be obtained.
  • the piezoelectric elements 51 and 52 are arranged so that the Young's modulus decreases in order from the distal end side toward the node N and from the proximal end side toward the node N.
  • 53, 54 may be arranged.
  • the plurality of piezoelectric elements 51, 52, 53, 54 are arranged so that the Young's modulus of the piezoelectric element located closest to the node is lower than the Young's modulus of the piezoelectric element located closest to the belly side. It is preferable.
  • the Young's modulus represents the ratio of the Young's modulus of each piezoelectric element 51, 52, 53, 54 to the Young's modulus of the first metal body 4.
  • the difference in Young's modulus between two adjacent piezoelectric elements is preferably small.
  • the difference in Young's modulus between the adjacent metal body 4 or 6 and the piezoelectric element 54 is also small. Since the Young's modulus of the metal material is generally higher than that of the piezoelectric material, a material having a high Young's modulus is used as the material of the fourth piezoelectric element 54 adjacent to the metal bodies 4 and 6.
  • the first piezoelectric element 51 having a small input power is formed of a material having a low Young's modulus so that a larger vibration can be generated.
  • the plurality of piezoelectric elements 51, 52, 53, 54 are arranged so that the Young's modulus decreases in order from the distal end side and the node N and from the proximal end side toward the node N.
  • the Young's modulus decreases in order from the distal end side and the node N and from the proximal end side toward the node N.
  • the piezoelectric elements 51, 52, 53, and 54 are arranged so that the piezoelectric constants increase in order from the distal end side toward the node N and from the proximal end side toward the node N. May be.
  • the plurality of piezoelectric elements 51, 52, 53, 54 are arranged so that the thickness increases in order from the piezoelectric element located on the most ventral side to the piezoelectric element located on the most node side. Preferably it is.
  • the thicknesses of the piezoelectric elements 51, 52, 53, and 54 are all different on the distal end side and the proximal end side of the node N, but instead, the distal end side and the proximal end of the node N are changed.
  • Two or more piezoelectric elements having the same thickness on each of the end sides may be provided.
  • two or more piezoelectric elements having the same thickness are integrally joined to function as a set of piezoelectric elements, and the number of piezoelectric elements to be joined in each set from the ventral side to the node side
  • a plurality of sets of piezoelectric elements may be arranged adjacent to each other by increasing the number in order. When a plurality of sets of piezoelectric elements are arranged in this way, the set with the smallest thickness may be composed of a single piezoelectric element.
  • the thickness distribution of the piezoelectric elements 51, 52, 53, and 54 is symmetric with respect to the node N.
  • it may be asymmetric.
  • the piezoelectric element disposed on the distal end side of the node N and the piezoelectric element disposed on the proximal end side of the node N may have different thicknesses. Even if it does in this way, the suppression effect of heat_generation
  • the ultrasonic transducer 1 generates a longitudinal vibration having a node N at the center of the laminate 5 in the longitudinal axis A direction and having antinodes on both sides of the laminate 5 in the longitudinal axis A direction.
  • the node N and the position of the antinode of the longitudinal vibration are not limited to this, and may be changed as appropriate.
  • the ultrasonic transducer 1 may be designed so as to generate a longitudinal vibration having a node N on the distal end side of the stacked body 5 and an antinode on the proximal end side of the stacked body 5.
  • a plurality of piezoelectric elements may be arranged so that the thickness of the piezoelectric elements increases in order from the base end side toward the front end side.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Otolaryngology (AREA)
  • Dentistry (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Surgical Instruments (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)

Abstract

本発明の超音波振動子(1)は、厚さ方向に積層され、厚さ方向の縦振動を発生する複数の圧電素子(51,52,53,54)を備え、該複数の圧電素子(51,52,53,54)は、縦振動の腹側から縦振動の節(N)側に向かって順番に厚さが大きくなるように、配列されている。

Description

超音波振動子
 本発明は、超音波振動子に関するものである。
 従来、外科治療において、超音波振動子が発生する振動を利用して処置を行う外科用器具が使用されている(例えば、特許文献1参照。)。外科用器具に搭載される超音波振動子は、厚さ方向に積層された複数の圧電素子からなる積層体を備え、該積層体内に縦振動の節が位置するように設計される。
特表2010-535089号公報
 超音波振動子は振動に伴って発熱するため、超音波振動子の全体の温度が使用中に徐々に上昇する。超音波振動子の共振周波数は温度に依存するため、温度上昇によって超音波振動子の共振周波数が変化すると、超音波振動子に供給されている駆動電圧の周波数に対する超音波振動子の共振周波数のずれが大きくなり、超音波振動子の出力(振動振幅)が低下する。高出力を維持し続けるためには駆動電圧を増大しなければならず、さらなる発熱を招いたり超音波振動子の駆動が不安定になったりする。特許文献1に記載の超音波振動子は発熱を抑制することが難しいため、超音波振動子を高い出力で安定的に駆動し続けることが難しいという問題がある。
 本発明は、上述した事情に鑑みてなされたものであって、発熱を抑制し、高い出力で安定的に駆動し続けることができる超音波振動子を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明は、厚さ方向に積層され、前記厚さ方向の縦振動を発生する複数の圧電素子を備え、該複数の圧電素子は、前記縦振動の腹側から前記縦振動の節側に向かって順番に厚さが大きくなるように、配列されている超音波振動子を提供する。
 本発明によれば、積層された複数の圧電素子に厚さ方向に電圧を印加して圧電素子を厚さ方向に振動させることによって、複数の圧電素子全体に厚さ方向の縦振動を発生させることができる。
 この場合に、複数の圧電素子は、節に近いほど厚くなり、腹に近いほど薄くなるように、配列されている。複数の圧電素子に等しい大きさの電圧が印加されたときに、厚い圧電素子ほど、流れる電流量は少なくなり、薄い圧電素子ほど、流れる電流量は多くなる。超音波振動子のうち、節側の圧電素子は、変位量が小さいため、必要な電流量が少なく、腹側の圧電素子は、変位量が大きいため、必要な電流量が多い。
 したがって、節側により厚い圧電素子を配置することによって、過剰な電流の投入を防ぎ、節における発熱を抑制することができる。特に、超音波振動子のうち、節における発熱量が多い。したがって、節における発熱を抑制することで、超音波振動子全体の発熱を効果的に抑制し、高い出力で安定的に駆動し続けることができる。また、腹側により薄い圧電素子を配置することによって、出力を高めることができる。さらに、厚さが異なる圧電素子間において振動速度は異なる。そこで、圧電素子の厚さを順番に薄くまたは厚くすることによって、隣接する圧電素子間における振動速度の違いに伴う振動の伝達効率の低下を防ぎ、出力をさらに高めることができる。
 上記発明においては、前記複数の圧電素子は、最も前記腹側に位置する圧電素子から最も前記節側に位置する圧電素子に向かって、順番に厚さが大きくなるように、配列されていてもよい。
 上記発明においては、前記複数の圧電素子は、前記腹側から前記節側に向かって順番に圧電定数が高くなるように配列されていてもよく、最も前記腹側に位置する圧電素子から最も前記節側に位置する圧電素子に向かって圧電定数が順番に高くなるように、配列されていてもよい。
 また、上記発明においては、前記腹側から前記節側に向かって順番にヤング率が低くなるように配列されていてもよく、最も前記節側に位置する圧電素子のヤング率が最も前記腹側に位置する圧電素子のヤング率よりも低くなるように配列されていてもよい。
 このようにすることで、発熱の高い抑制効果を維持しながら、振動の発生効率および振動の伝達効率をさらに高めることができる。
 上記発明においては、前記複数の圧電素子が、該複数の圧電素子の前記厚さ方向の途中位置に腹を有し、前記複数の圧電素子の前記厚さ方向の両側に腹を有する前記縦振動を発生してもよい。
 上記発明においては、前記節の前記厚さ方向の一側および他側の各々に配置された前記圧電素子が、互いに異なる厚さを有していてもよい。
 このようにすることで、隣接する2つの圧電素子間の厚さの差をより小さく抑え、出力をさらに高めることができる。
 上記発明においては、前記複数の圧電素子は、前記節に対して前記厚さの分布が対称となるように、配列されていてもよい。
 このようにすることで、発熱の抑制効果が節の両側において対称的に生じるので、超音波振動子全体の発熱をさらに効果的に抑制することができる。
 上記発明においては、前記節の前記厚さ方向の一側および他側の各々に配置された前記圧電素子の数が、3以上であってもよい。
 このようにすることで、隣接する2つの圧電素子間の厚さの差をより小さく抑え、出力をさらに高めることができる。
 本発明によれば、発熱を抑制し、高い出力で安定的に駆動し続けることができるという効果を奏する。
本発明の一実施形態に係る超音波治療装置の全体構成を示す外観図である。 図1の超音波治療装置における超音波振動子の全体構成を示す(a)側面図および(b)基端側から長手軸方向に見た背面図である。 図3の超音波振動子の本体の全体構成図である。 図3の超音波振動子における圧電素子のヤング率の一例を示す図表である。
 本発明の一実施形態に係る超音波振動子1について図面を参照して説明する。
 図1は、本発明の一実施形態に係る超音波治療装置101の全体構成を示す外観図である。図1に示されるように、本実施形態に係る超音波振動子1は超音波治療装置101に適用される。
 超音波治療装置101は、図1に示されるように、超音波振動子1を内部に有する超音波処置具102と、該処置具102にケーブル109を介して接続され、超音波振動子1に高周波の駆動電圧を供給するとともにこの駆動電圧を制御する制御ユニット103とを備えている。符号105は、基端が超音波振動子1に固定されたプローブである。
 処置具102には、制御ユニット103から超音波振動子1への駆動電圧の供給の開始および停止を指示するためのハンドスイッチ102aが設けられている。ユーザによってハンドスイッチ102aがON操作されると、制御ユニット103からケーブル109を介して駆動電圧が供給されることによって超音波振動子1が超音波振動を発生し、その超音波振動がプローブ105を伝わって該プローブ105の先端部が振動する。これにより、プローブ105の先端部と接触している組織に摩擦熱を発生させ、組織を凝固または切開することができるようになっている。なお、処置具102として、超音波振動子1の先端に設けられたホーンを直接組織に接触させる方式のものを採用してもよい。
 本実施形態に係る超音波振動子1は、図2(a),(b)に示されるように、ボルト締めランジュバン型(BLT)振動子からなる振動子本体(以下、単に「本体」という。)2と、該本体2を収容する放熱管10とを備えている。符号14は、超音波振動子1の外側を被覆する電気絶縁性の外筒である。
 本体2は、先端側から長手軸Aに沿って順に、ホーン3と、第1の金属体4と、複数枚の圧電素子からなる積層体5と、第2の金属体6とを備えている。また、本体2は、第1の金属体4、積層体5および第2の金属体6を一体に締結するための、ボルト7とナット8とを備えている。
 ホーン3およびボルト7は、高い超音波伝播効率と高い強度とを有する金属からなる単一の部材であって、好ましくは、64チタン合金(ASTM規格のB348 Grade5)からなる。ホーン3は、先端に向かって先細となる略円錐状である。ボルト7は、ホーン3の基端面から基端側へ向かって長手軸Aに沿って真っ直ぐに延びている。
 第1の金属体4、積層体5および第2の金属体6には、長手軸Aに沿って貫通し、ボルト7が挿入されるボルト穴9が形成されている。ナット8は、第2の金属体6の基端面から突出するボルト7の基端部分に締結され、これによって、積層体5が第1の金属体4と第2の金属体6とによって両側から強固に締め付けられている。なお、ナット8を省略し、第2の金属体6が、ボルト7と締結する雌ねじを有することによってナット8を兼ねていてもよい。
 制御ユニット103内に搭載される図示しない高周波電源からの高周波の駆動電圧が積層体5に印加されると、積層体5が長手軸A方向の縦振動を発生し、発生された縦振動がボルト7を介してホーン3に伝達され、ホーン3の先端が長手軸A方向に振動する。このときに、縦振動が、ホーン3の基端から先端へ伝達する間に増幅されることによって、ホーン3の先端において大きな振幅の振動が得られる。ここで、駆動電圧の周波数は、本体2の先端、中間位置および基端が縦振動の腹となるように、20kHz以上100kHz以下の範囲内から選択される。
 第1の金属体4は、柱状の部材であり、チタン合金やアルミ合金のような高い強度および弾性を有する金属材料から形成されている。
 第2の金属体6は、柱状の部材であり、チタン合金やアルミ合金のような金属材料から形成されている。
 金属体4,6は、アルミニウムを主成分とするセラミックス(例えば、ジュラルミン)から形成されていてもよい。
 積層体5は、図3に示されるように、長手軸A方向に配列された複数の板状の圧電素子51,52,53,54を備えている。圧電素子51,52,53,54は、チタンジルコン酸鉛、チタン酸バリウムまたはニオブ酸カリウムナトリウム等の圧電材料から形成され、厚さ方向に分極している。複数の圧電素子51,52,53,54は、同一種類の圧電材料から形成されていてもよく、異なる種類の圧電材料から形成されていてもよい。あるいは、複数の圧電素子51,52,53,54は、同一種類であるが異なる物性値を有する圧電材料から形成されていてもよい。
 積層体5は、各圧電素子51,52,53,54が2枚の電極によって厚さ方向に挟まれるように、圧電素子51,52,53,54と薄板状の電極(図示略)とが厚さ方向に交互に積層された積層構造を有している。また、積層体5において、圧電素子51,52,53,54の分極方向は、交互に逆方向となっている。積層体5と第1の金属体4との間、および、積層体5と第2の金属体6との間には、図示しない絶縁体が挟まれており、積層体5は、第1の金属体4および第2の金属体6と電気的に絶縁されている。
 電極は、長手軸A方向に交互に正電極と負電極とを構成している。全ての電極は、電気ケーブル109を介して制御ユニット103内の共通の高周波電源(図示略)に並列に接続され、該高周波電源から共通の交番電圧が駆動電圧として印加されるようになっている。電極に交番電圧が印加されることによって、各圧電素子51,52,53,54が長手軸A方向に伸縮振動して積層体5全体に長手軸Aに沿う方向の縦振動が発生するようになっている。このときに、積層体5の長手軸A方向の中心に縦振動の節Nが現れ、積層体5の先端側および基端側に腹が現れるように、超音波振動子1は設計される。
 積層体5において、複数の圧電素子51,52,53,54は、先端側から節Nに向かって順番に厚さが大きくなるように、かつ、基端側から節Nに向かって順番に厚さが大きくなるように、配列されている。また、節Nの先端側に配置された圧電素子51,52,53,54は、互いに異なる厚さを有し、節Nの基端側に配置された圧電素子51,52,53,54は、互いに異なる厚さを有する。さらに、圧電素子51,52,53,54の厚さの分布は節Nに対して対称であり、中央に配置された最も厚い2枚の圧電素子51の間に節Nが位置している。
 図3に示される例においては、合計8枚の圧電素子51,52,53,54が積層体5に設けられている。以下、最も厚い圧電素子を第1圧電素子51、2番目に厚い圧電素子を第2圧電素子52、3番目に厚い圧電素子を第3圧電素子53、最も薄い圧電素子を第4圧電素子54という。ここで、図示されるように、複数の圧電素子51,52,53,54は、最も腹側に位置する圧電素子から最も節側に位置する圧電素子に向かって、順番に厚さが大きくなるように、配列されていることが好ましい。
 次に、このように構成された超音波振動子1の作用について説明する。
 本実施形態に係る超音波振動子1によって超音波振動を発生させるためには、高周波電源から、超音波振動子1の共振周波数または該共振周波数の近傍の周波数を有する交番電圧を電気ケーブル109を介して積層体5の電極に供給する。これにより、各圧電素子51,52,53,54が長手軸A方向に伸縮振動して積層体5に縦振動が発生する。積層体5に発生した縦振動は第1の金属体4およびホーン3を介してプローブ105に伝達され、プローブ105の先端が長手軸A方向に振動する。したがって、振動するプローブ105の先端を生体組織に接触させることによって、生体組織を処置することができる。
 ここで、縦振動する積層体5において、変位量の分布は、節Nに近い位置では小さく、腹に近い位置では大きく、節Nの位置ではゼロとなる。図3において、破線は、積層体5の各位置における変位量を表している。このように、各圧電素子51,52,53,54が発生する振動の大きさは、積層体5における位置に応じて異なる。
 仮に、圧電素子51,52,53,54の厚さが均一である場合、変位量が異なるにもかかわらず全ての圧電素子51,52,53,54に投入される電力は等しくなる。電力とは、交番電圧と各圧電素子に流れる電流との積であり、各圧電素子に流れる電流は、後述するように圧電素子の厚さに依存する。したがって、節N側の圧電素子51では、電力が過大となって電力の一部が振動ではなく熱に変換されたり、腹側の圧電素子54では電力が足りずに要求される振動速度を得ることができなったりし得る。腹側の圧電素子54の振動速度を高めるために交番電圧を増大すると、節N側の圧電素子51に供給される交番電圧も増大するので、発熱量が増大する。このように、圧電素子の位置に応じて、各圧電素子の、投入された電力に対する仕事(発生する振動の大きさ)の割合は異なるため、全ての圧電素子への電力の投入量が等しい場合、電力の過不足が生じる。
 本実施形態においては、変位量が小さく、小さな電力を必要とする節N側に厚い第1圧電素子51が配置され、変位量が大きく、大きな電力を必要とする腹側に薄い第4圧電素子54が配置されている。したがって、各圧電素子51,52,53,54に対してそれぞれが必要とする電力が過不足無く投入される。これにより、発熱を抑制しながら出力(ホーン3の先端の振動速度)を高め、高い出力で安定的に駆動し続けることができるという利点がある。
 具体的には、圧電素子51,52,53,54に印加される交番電圧の大きさが等しいときに、厚い圧電素子ほど投入される電力が小さくなる。これは、圧電素子が電極に挟まれた構造はコンデンサと等価であり、各圧電素子が静電容量を有するためである。すなわち、圧電素子が厚い程、静電容量が小さくなり、圧電素子に流れる電流が小さくなる。
 したがって、節N側に厚い圧電素子51を配置することによって、投入された電力の機械的振動への変換効率を高めて、節Nにおける発熱を抑制することができる。特に、発熱量は、超音波振動子1の内、節Nにおいて最も多くなる。これは、節Nに近い位置ほど、電力が熱に変換され易く、また、圧電素子に生じる応力が大きくなるためである。節Nにおける発熱を抑制することによって、超音波振動子1全体の発熱を効果的に抑制することができる。
 また、医療用の超音波振動子1は、駆動中の温度上昇が所定の閾値(例えば20℃)以下に維持されるように動作が制限される。このような制限下で超音波振動子1を効率良く駆動するためには、超音波振動子1の温度上昇が閾値を超えない範囲で交番電圧の大きさを増大することが重要である。本実施形態によれば、超音波振動子1の温度上昇が効果的に抑制されるので、超音波振動子1の温度上昇を所定の閾値以下に維持しながら、積層体5に印加する交番電圧を増大して、超音波振動子1を効率良く駆動することができる。
 また、腹側である積層体5の先端に薄い圧電素子54を配置することによって、積層体5の先端において大きな振動速度が得られる。積層体5の先端は、第1の金属体4に振動を出力する出力端であり、第1の金属体4の先端における振動速度を高めるためには、積層体5の先端における振動速度を高めることが重要となる。したがって、本実施形態によれば、超音波振動子1の出力を効果的に高めることができる。
 さらに、厚さが異なる圧電素子間では、振動速度の違いに起因して振動の伝達効率が低下し得る。ただし、節Nから先端側および基端側に向かって圧電素子51,52,53,54を漸次薄くすることによって、隣接する2枚の圧電素子間の厚さの差および振動速度の差が小さく抑制され、振動の伝達効率の低下が防止される。これにより、超音波振動子1の出力をさらに高めることができる。特に、節Nの先端側に3枚以上の圧電素子を設け、節Nの基端側に3枚以上の圧電素子を設けることによって、隣接する2枚の圧電素子間の振動速度の差を十分に小さく抑えることができ、より高い出力を得ることができる。
 本実施形態においては、図4に示されるように、先端側から節Nに向かって、また、基端側から節Nに向かって、順番にヤング率が小さくなるように、圧電素子51,52,53,54が配列されていてもよい。ここで、複数の圧電素子51,52,53,54は、最も節側に位置する圧電素子のヤング率が最も腹側に位置する圧電素子のヤング率よりも低くなるように、配列されていることが好ましい。図4において、ヤング率は、第1の金属体4のヤング率に対する各圧電素子51,52,53,54のヤング率の比を表している。
 ヤング率が異なる2枚の圧電素子間においては伸縮速度が異なるため、2枚の圧電素子間の振動の伝達効率が低下し得る。したがって、隣接する2枚の圧電素子間のヤング率の差は小さいことが好ましい。同じ理由で、隣接する金属体4または6と圧電素子54との間のヤング率の差も小さいことが好ましい。金属材料のヤング率は一般に圧電材料のヤング率よりも高いので、金属体4,6に隣接する第4圧電素子54の材料には、ヤング率の高いものが使用される。一方、投入される電力が小さい第1圧電素子51は、より大きな振動を発生することができるように、ヤング率の低い材料から形成されることが好ましい。
 以上の理由から、先端側および節Nに向かって、また、基端側から節Nに向かって順番にヤング率が低くなるように、複数の圧電素子51,52,53,54を配列することで、振動の発生効率および振動の伝達効率を高めて、さらに高い出力を得ることができる。
 本実施形態においては、先端側から節Nに向かって、また、基端側から節Nに向かって、順番に圧電定数が大きくなるように、圧電素子51,52,53,54が配列されていてもよい。ここで、複数の圧電素子51,52,53,54は、最も腹側に位置する圧電素子から最も節側に位置する圧電素子に向かって、順番に厚さが大きくなるように、配列されていることが好ましい。
 このようにすることで、特に第1圧電素子51による振動の発生効率を高めて、さらに高い出力を得ることができるという利点がある。
 また、超音波振動子1の振動特性に関係する他のパラメータ(例えば比誘電率)を、圧電定数や厚さ等に応じて適宜調整してもよい。
 本実施形態においては、節Nの先端側および基端側の各々において圧電素子51,52,53,54の厚さが全て異なることとしたが、これに代えて、節Nの先端側および基端側の各々において等しい厚さを有する2枚以上の圧電素子が設けられていてもよい。
 この場合、等しい厚さを有する2枚以上の圧電素子を一体的に接合することで一組の圧電素子として機能するようにし、腹側から節側に向かって各組の接合する圧電素子の枚数を順番に増やすことで、複数組の圧電素子を隣接して配置するようにしてもよい。このように複数組の圧電素子を配置する場合、最も厚みの小さい組は、単一の圧電素子から構成されていてもよい。
 本実施形態においては、節Nに対して圧電素子51,52,53,54の厚さの分布が対称であることとしたが、これに代えて、非対称であってもよい。例えば、節Nの先端側に配置された圧電素子と、節Nの基端側に配置された圧電素子とが、互いに異なる厚さを有していてもよい。
 このようにしても、節N側に厚い圧電素子を配置し、腹側に薄い圧電素子を配置することによる、発熱の抑制効果を得ることができる。
 本実施形態においては、超音波振動子1が、積層体5の長手軸A方向の中央に節Nを有し、積層体5の長手軸A方向の両側に腹を有する縦振動を発生することとしたが、縦振動の節Nおよび腹の位置はこれに限定されるものではなく、適宜変更してもよい。
 例えば、積層体5の先端側に節Nを有し、積層体5の基端側に腹を有する縦振動を発生するように、超音波振動子1が設計されてもよい。この場合には、基端側から先端側に向かって順番に圧電素子の厚さが大きくなるように、複数の圧電素子を配列すればよい。
1 超音波振動子
4 第1の金属体
5 積層体
6 第2の金属体
51,52,53,54 圧電素子
N 節

Claims (10)

  1.  厚さ方向に積層され、前記厚さ方向の縦振動を発生する複数の圧電素子を備え、
     該複数の圧電素子は、前記縦振動の腹側から前記縦振動の節側に向かって順番に厚さが大きくなるように、配列されている超音波振動子。
  2.  前記複数の圧電素子は、最も前記腹側に位置する圧電素子から最も前記節側に位置する圧電素子に向かって、順番に厚さが大きくなるように、配列されている請求項1に記載の超音波振動子。
  3.  前記複数の圧電素子は、前記腹側から前記節側に向かって順番に圧電定数が高くなるように、配列されている請求項1または請求項2に記載の超音波振動子。
  4.  前記複数の圧電素子は、最も前記腹側に位置する圧電素子から最も前記節側に位置する圧電素子に向かって圧電定数が順番に高くなるように、配列されている請求項1から請求項3のいずれかに記載の超音波振動子。
  5.  前記複数の圧電素子は、前記腹側から前記節側に向かって順番にヤング率が低くなるように、配列されている請求項1または請求項2に記載の超音波振動子。
  6.  前記複数の圧電素子は、最も前記節側に位置する圧電素子のヤング率が最も前記腹側に位置する圧電素子のヤング率よりも低くなるように、配列されている請求項1、請求項2または請求項5に記載の超音波振動子。
  7.  前記複数の圧電素子が、該複数の圧電素子の前記厚さ方向の途中位置に腹を有し、前記複数の圧電素子の前記厚さ方向の両側に腹を有する前記縦振動を発生する請求項1から請求項6のいずれかに記載の超音波振動子。
  8.  前記節の前記厚さ方向の一側および他側の各々に配置された前記圧電素子が、互いに異なる厚さを有する請求項7に記載の超音波振動子。
  9.  前記複数の圧電素子は、前記節に対して前記厚さの分布が対称となるように、配列されている請求項7または請求項8に記載の超音波振動子。
  10.  前記節の前記厚さ方向の一側および他側の各々に配置された前記圧電素子の数が、3以上である請求項1から請求項9のいずれかに記載の超音波振動子。
PCT/JP2015/086122 2015-12-24 2015-12-24 超音波振動子 WO2017109917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017540289A JP6261833B2 (ja) 2015-12-24 2015-12-24 超音波振動子、超音波処置具、および超音波治療装置
PCT/JP2015/086122 WO2017109917A1 (ja) 2015-12-24 2015-12-24 超音波振動子
CN201580085414.1A CN108430653B (zh) 2015-12-24 2015-12-24 超声波振子
DE112015007231.4T DE112015007231T5 (de) 2015-12-24 2015-12-24 Ultraschallwandler
US16/012,042 US11383271B2 (en) 2015-12-24 2018-06-19 Ultrasound transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086122 WO2017109917A1 (ja) 2015-12-24 2015-12-24 超音波振動子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/012,042 Continuation US11383271B2 (en) 2015-12-24 2018-06-19 Ultrasound transducer

Publications (1)

Publication Number Publication Date
WO2017109917A1 true WO2017109917A1 (ja) 2017-06-29

Family

ID=59091045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086122 WO2017109917A1 (ja) 2015-12-24 2015-12-24 超音波振動子

Country Status (5)

Country Link
US (1) US11383271B2 (ja)
JP (1) JP6261833B2 (ja)
CN (1) CN108430653B (ja)
DE (1) DE112015007231T5 (ja)
WO (1) WO2017109917A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108065964A (zh) * 2018-01-16 2018-05-25 中国科学院苏州生物医学工程技术研究所 一种超声成像方法、装置、设备及超声成像探头
WO2020044513A1 (ja) * 2018-08-30 2020-03-05 オリンパス株式会社 超音波振動子、超音波処置具、及び超音波振動子の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070043A1 (ja) * 2016-10-14 2018-04-19 オリンパス株式会社 超音波トランスデューサ
US11217392B2 (en) 2019-01-17 2022-01-04 Samsung Electronics Co., Ltd. Composite piezoelectric capacitor
WO2022256787A1 (en) * 2021-06-01 2022-12-08 Provisio Medical, Inc Transducer for ultrasound measuring systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254952A (ja) * 1990-03-06 1991-11-13 Brother Ind Ltd 印字エレメント
US8334635B2 (en) * 2009-06-24 2012-12-18 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126618A (en) 1990-03-06 1992-06-30 Brother Kogyo Kabushiki Kaisha Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver
JP2508575B2 (ja) * 1993-01-28 1996-06-19 日本電気株式会社 圧電磁器トランスとその駆動方法
CN1663534A (zh) * 2005-02-05 2005-09-07 黄晶 介入式超声组织硬度获取法及介入超声硬度检测仪
CN2772441Y (zh) * 2005-04-07 2006-04-19 黄晶 介入超声心肌硬度彩色成像仪
JP2008191007A (ja) * 2007-02-05 2008-08-21 Denso Corp センサ装置の取り付け構造
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
JP2014226318A (ja) 2013-05-22 2014-12-08 オリンパス株式会社 超音波治療装置
JP5963811B2 (ja) 2014-07-18 2016-08-03 オリンパス株式会社 治療用超音波振動子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254952A (ja) * 1990-03-06 1991-11-13 Brother Ind Ltd 印字エレメント
US8334635B2 (en) * 2009-06-24 2012-12-18 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108065964A (zh) * 2018-01-16 2018-05-25 中国科学院苏州生物医学工程技术研究所 一种超声成像方法、装置、设备及超声成像探头
CN108065964B (zh) * 2018-01-16 2021-04-20 中国科学院苏州生物医学工程技术研究所 一种超声成像方法、装置、设备及超声成像探头
WO2020044513A1 (ja) * 2018-08-30 2020-03-05 オリンパス株式会社 超音波振動子、超音波処置具、及び超音波振動子の製造方法
JPWO2020044513A1 (ja) * 2018-08-30 2021-08-26 オリンパス株式会社 超音波振動子、超音波処置具、及び超音波振動子の製造方法
JP7119099B2 (ja) 2018-08-30 2022-08-16 オリンパス株式会社 超音波振動子、超音波処置具、及び超音波振動子の製造方法

Also Published As

Publication number Publication date
DE112015007231T5 (de) 2018-10-04
JP6261833B2 (ja) 2018-01-17
CN108430653B (zh) 2021-04-27
CN108430653A (zh) 2018-08-21
US20180297079A1 (en) 2018-10-18
JPWO2017109917A1 (ja) 2017-12-28
US11383271B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
US11383271B2 (en) Ultrasound transducer
JP6091712B1 (ja) 超音波振動子の製造方法および超音波振動子
WO2007099746A1 (ja) マイクロマシンプロセスにより製造された超音波振動子、超音波振動子装置、その体腔内超音波診断装置、及びその制御方法
JP2002542690A (ja) 超音波トランスデューサを同調するための装置および方法
JP2013135301A (ja) 超音波振動デバイスおよび超音波医療装置
WO2013084727A1 (ja) 超音波振動デバイスおよび超音波医療装置
US10420599B2 (en) Ultrasonic vibrator and ultrasonic treatment device
JP2014011737A (ja) 超音波振動デバイス、超音波振動デバイスの製造方法および超音波医療装置
JP6270506B2 (ja) 積層型超音波振動デバイスおよび超音波医療装置
JP6086742B2 (ja) 超音波振動デバイスおよび超音波医療装置
JP6270505B2 (ja) 積層型超音波振動デバイス、積層型超音波振動デバイスの製造方法および超音波医療装置
JP7119099B2 (ja) 超音波振動子、超音波処置具、及び超音波振動子の製造方法
WO2016051486A1 (ja) 超音波振動子及び超音波医療装置
JPH08140984A (ja) 超音波治療装置
JP6108753B2 (ja) 超音波処置装置
WO2013179776A1 (ja) 超音波振動デバイス、超音波振動デバイスの製造方法および超音波医療装置
JP2014000525A (ja) 超音波処置具および超音波処置システム
JP2005110792A (ja) 超音波トランスデューサアレイ及び超音波送受信装置
JP2014108326A (ja) 超音波処置装置
JP2015144788A (ja) 超音波振動デバイスおよび超音波医療装置
IT202100014489A1 (it) Elemento a vibrazione assiale-precessionale per manipoli ultrasonici
JPH0299045A (ja) 超音波振動子
WO2017195265A1 (ja) 超音波医療装置
JP2001104328A (ja) トリムマスを用いた超音波トランスデユーサを同調するための装置および方法
Kukic et al. High Power Low Impedance Therapeutic Intracavitary Phased Array

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017540289

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911355

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015007231

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911355

Country of ref document: EP

Kind code of ref document: A1