WO2017109005A1 - Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche - Google Patents

Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche Download PDF

Info

Publication number
WO2017109005A1
WO2017109005A1 PCT/EP2016/082259 EP2016082259W WO2017109005A1 WO 2017109005 A1 WO2017109005 A1 WO 2017109005A1 EP 2016082259 W EP2016082259 W EP 2016082259W WO 2017109005 A1 WO2017109005 A1 WO 2017109005A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
piezoelectric
seed layer
piezoelectric layer
Prior art date
Application number
PCT/EP2016/082259
Other languages
English (en)
Inventor
Bruno Ghyselen
Ionut Radu
Jean-Marc Bethoux
Original Assignee
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soitec filed Critical Soitec
Priority to EP16819091.6A priority Critical patent/EP3394323A1/fr
Priority to SG11201805403RA priority patent/SG11201805403RA/en
Priority to KR1020187021277A priority patent/KR102654808B1/ko
Priority to US16/064,420 priority patent/US11600766B2/en
Priority to CN201680081355.5A priority patent/CN108603306A/zh
Priority to CN202111570629.6A priority patent/CN114242885A/zh
Priority to JP2018532615A priority patent/JP6812443B2/ja
Publication of WO2017109005A1 publication Critical patent/WO2017109005A1/fr
Priority to US18/179,071 priority patent/US20230217832A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02023Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02551Characteristics of substrate, e.g. cutting angles of quartz substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates

Definitions

  • the present invention relates to a method for manufacturing a layer of a monocrystalline piezoelectric material, in particular for application to a microelectronic, photonic or optical device.
  • a device may be a volume acoustic wave device or a surface acoustic wave device for radiofrequency applications.
  • SAW Surface Acoustic Wave
  • Surface acoustic wave filters typically comprise a thick piezoelectric layer (that is to say generally of several hundred ⁇ thickness) and two electrodes in the form of two interdigitated metal combs deposited on the surface of said piezoelectric layer .
  • An electrical signal typically a voltage variation, applied to an electrode is converted into an elastic wave propagating on the surface of the piezoelectric layer. The propagation of this elastic wave is favored if the frequency of the wave corresponds to the frequency band of the filter. This wave is again converted into an electrical signal by reaching the other electrode.
  • Volume acoustic wave filters typically comprise a thin piezoelectric layer (that is to say with a thickness generally well below 1 ⁇ ) and two electrodes arranged on each major face of said thin layer.
  • An electrical signal typically a voltage variation, applied to an electrode is converted into an elastic wave that propagates through the piezoelectric layer. The propagation of this elastic wave is favored if the frequency of the wave corresponds to the frequency band of the filter. This wave is again converted into electrical voltage by reaching the electrode on the opposite side.
  • the piezoelectric layer In the case of surface acoustic wave filters, the piezoelectric layer must have excellent crystalline quality so as not to cause attenuation of the surface wave. It will therefore be preferred here to use a monocrystalline layer.
  • suitable materials used industrially are quartz, LiNb0 3 or LiTa0 3 .
  • the piezoelectric layer is obtained by cutting an ingot of one of said materials, the precision required for the thickness of said layer being insignificant insofar as the waves must propagate essentially on its surface.
  • the piezoelectric layer In the case of volume acoustic wave filters, the piezoelectric layer must have a determined and uniform thickness over the entire layer, in precisely controlled manner. On the other hand, the crystalline quality passing in fact to the second order of the parameters of importance for the performance of the filter, compromises are currently made as regards the crystalline quality and a polycrystalline layer has long been considered as acceptable.
  • the piezoelectric layer is thus formed by deposition on a support substrate (for example a silicon substrate).
  • a support substrate for example a silicon substrate.
  • the materials used industrially for such a deposit are AIN, ZnO and PZT.
  • a first possibility would be to thin the thick layers cut from the ingots, by polishing and / or etching techniques.
  • polishing and / or etching techniques cause a significant loss of material and do not provide a layer of a few hundred nanometers thick with the required uniformity.
  • a second possibility would be to implement a Smart Cut TM layer transfer by creating an embrittlement zone in a quartz donor substrate, LiNb0 3 or LiTa0 3 so as to delimit the thin layer to be transferred, by bonding said layer to be transferred onto a support substrate and detaching the donor substrate along the embrittlement zone so as to transfer the thin layer onto the support substrate.
  • the creation of the zone of weakening by ion implantation in the donor substrate damages the transferred layer and deteriorates its piezoelectric properties.
  • the healing methods including annealing) known for the transfer of silicon layers do not always make it possible to completely repair the piezoelectric layer, because of the complex crystalline structure of said layer and the mechanisms of damage which seem different from those which intervene in silicon.
  • An object of the invention is to overcome the aforementioned drawbacks and in particular to design a method for manufacturing a substrate for a microelectronic device, photonic or optical, including but not limited to an acoustic wave device volume, or a device surface acoustic waves in a wider range of materials, in particular by making it possible to obtain thin layers (that is to say thickness less than 20 ⁇ , or even less than 1 ⁇ ) and uniform materials used for surface acoustic wave devices. Moreover, this method must also make it possible to use a greater variety of support substrates than in existing volume acoustic wave devices.
  • a method for manufacturing a layer of a monocrystalline piezoelectric material characterized in that it comprises:
  • the transfer of the seed layer comprises the following steps:
  • the bonding of the donor substrate to the recipient substrate, the seed layer to be transferred being at the interface
  • the weakening zone may be formed by ion implantation in the donor substrate.
  • the piezoelectric material is chosen from quartz and compounds of formula LiXO 3 , where X is chosen from niobium and tantalum.
  • part of the thickness of the transferred seed layer is removed on the receiving substrate.
  • the thickness of the monocrystalline piezoelectric layer at the end of the epitaxial step is between 0.2 and 20 ⁇ .
  • At least one electrically insulating layer and / or at least one electrically conductive layer is formed at the interface between the receiving substrate and the seed layer.
  • the method comprises, after epitaxy, the transfer of at least a portion of the monocrystalline piezoelectric layer onto a final substrate.
  • the process comprises, after said transfer onto the final substrate, removal of the seed layer.
  • the receiving substrate is of semiconductor material, and comprises an intermediate charge trapping layer located between the seed layer and the receiving substrate.
  • Another object relates to a substrate for a microelectronic device, photonic or optical, comprising a monocrystalline piezoelectric layer on a receiving substrate, characterized in that the piezoelectric layer has a first portion located at the interface with the receiving substrate, and a second portion extending from the first portion and in that the second portion has characteristics different from those of the first portion.
  • Another object relates to a method of manufacturing a bulk acoustic wave device, comprising the formation of electrodes on two opposite major faces of a piezoelectric layer, characterized in that it comprises the manufacture of said piezoelectric layer by a process as described above.
  • Another object relates to a volume acoustic wave device characterized in that it comprises a piezoelectric layer capable of being obtained by a method as described above, and two electrodes arranged on two opposite major faces of said layer.
  • Another object relates to a method for manufacturing a surface acoustic wave device, comprising the formation of two interdigital electrodes on the surface.
  • surface of a piezoelectric layer characterized in that it comprises the manufacture of said piezoelectric layer by a method as described above.
  • Another object relates to a surface acoustic wave device characterized in that it comprises a piezoelectric layer capable of being obtained by a method as described above, and two electrodes interdigitated on one side of said piezoelectric layer.
  • FIG. 1 is a principle view in section of a surface acoustic wave filter
  • FIG. 2 is a basic sectional view of a volume acoustic wave filter
  • FIGS. 3A to 3E illustrate successive steps of the method for manufacturing a monocrystalline piezoelectric layer according to one embodiment of the invention
  • FIGS. 3F to 3H illustrate subsequent optional steps of said method.
  • the elements illustrated are not necessarily represented on the scale.
  • the elements designated by the same reference signs in different figures are identical.
  • Figure 1 is a basic view of a surface acoustic wave filter.
  • Said filter comprises a piezoelectric layer 10 and two electrodes 12, 13 in the form of two interdigitated metal combs deposited on the surface of said piezoelectric layer. On the side opposite the electrodes 12, 13, the piezoelectric layer rests on a support substrate 1 1.
  • the piezoelectric layer 10 is monocrystalline, an excellent crystalline quality being indeed preferable so as not to cause attenuation of the surface wave.
  • Figure 2 is a basic view of a volume acoustic wave resonator.
  • the resonator comprises a thin piezoelectric layer (that is to say a thickness generally less than 2 ⁇ , preferably less than 0.2 ⁇ ) and two electrodes 12, 13 arranged on either side of said piezoelectric layer. 10 which, thanks to the manufacturing method according to the invention, is monocrystalline.
  • the piezoelectric layer 10 rests on a support substrate 1 1.
  • a Bragg mirror 14 can be interposed between the electrode 13 and the substrate 1 1. Alternatively (not shown), this insulation could be achieved by providing a cavity between the substrate and the layer piezoelectric.
  • the invention proposes the formation of the monocrystalline piezoelectric layer by means of a transfer of a monocrystalline seed layer of the piezoelectric material in question, said transfer being carried out from a donor substrate of the piezoelectric material to a receiving substrate. . Then, epitaxy is performed on the seed layer until the desired thickness is obtained for the monocrystalline piezoelectric layer.
  • the donor substrate may be a solid monocrystalline substrate of the piezoelectric material in question.
  • the donor substrate may be a composite substrate, that is to say formed of a stack of at least two layers of different materials, a surface layer of which is made of monocrystalline piezoelectric material.
  • the receiving substrate has a function of mechanical support of the seed layer. It can be of any kind adapted to the implementation of epitaxy (especially in terms of temperature resistance) and, advantageously but not imperatively, adapted to the intended application. It can be massive or composite.
  • At least one intermediate layer may be interposed between the receiving substrate and the seed layer.
  • an intermediate layer may be electrically conductive or electrically insulating.
  • Those skilled in the art are able to choose the material and the thickness of this layer depending on the properties it wishes to confer on the radiofrequency device intended to understand the piezoelectric layer.
  • the receiving substrate may be of semiconductor material. It may be for example a silicon substrate.
  • This conductive material comprises a trap-rich intermediate layer (which can be translated into French as a "charge trap” layer), which can be either formed on the receiving substrate or formed on the surface of the substrate. recipient.
  • Said trap-rich intermediate layer is thus located between the seed layer and the receiving substrate and improves the electrical insulation performance of the receiving substrate.
  • Said trap-rich intermediate layer may be formed by at least one of the polycrystalline, amorphous or porous materials, in particular polycrystalline silicon, amorphous silicon or porous silicon, without being limited to these materials.
  • the trap-rich intermediate layer for producing epitaxy, it may be advantageous to introduce an additional layer between the receiving substrate and said trap-type intermediate layer. -rich, to avoid recrystallization of the latter during a heat treatment.
  • the seed layer has the function of imposing the mesh parameter of the crystalline material that is grown on the receiving substrate.
  • the seed layer has a negligible thickness with respect to the thickness of the monocrystalline piezoelectric layer. Therefore, it is considered that it does not significantly affect the operation of the radiofrequency device incorporating the monocrystalline piezoelectric layer.
  • the seed layer typically has a thickness of less than 1 ⁇ , preferably less than 0.2 ⁇ .
  • the thickness of the epitaxial layer depends on the specifications of the device for incorporating the monocrystalline piezoelectric layer. In this respect, the thickness of the epitaxial layer is not limited either in terms of minimum value or maximum value.
  • the thickness of the final piezoelectric layer is typically between 0.2 ⁇ and 20 m.
  • the piezoelectric material is advantageously quartz or a compound of formula LiXO 3 , where X is chosen from niobium and tantalum.
  • X is chosen from niobium and tantalum.
  • the interest that can be brought to these materials is not limited to their piezoelectric character.
  • the invention makes it possible in particular to form a thin layer of a LiXO 3 compound which has an excellent crystalline quality, such as the massive substrates of these materials, with a thickness that is controlled over a wide range of thickness, and especially for a thickness less than 20 mm.
  • the epitaxy can be carried out by any appropriate technique, in particular by chemical vapor deposition (CVD), or liquid phase epitaxy (LPE), the acronym for the English term “Liquid Phase”. Epitaxy "), pulsed laser deposition (PLD), and so on.
  • CVD chemical vapor deposition
  • LPE liquid phase epitaxy
  • Epitaxy Epitaxy
  • PLD pulsed laser deposition
  • the transfer of the seed layer typically involves a step of bonding the donor substrate and the receiving substrate, the seed layer being at the bonding interface, then a step of thinning the recipient substrate so as to expose the seed layer for the purpose of subsequent epitaxy.
  • the bonding step can be carried out for example by direct molecular bonding of the "wafer bonding" type according to the English terminology, with or without an additional intermediate layer.
  • the transfer is carried out according to the Smart Cut TM process which is well known for the transfer of semiconductor thin films, in particular silicon.
  • a donor substrate 100 of the piezoelectric material is provided and, by ion implantation (schematized by the arrows), an embrittlement zone 101 is formed which delimits a piezoelectric single crystal layer 102 to be transferred. , intended to form the seed layer.
  • the donor substrate 100 is represented solid but, as indicated above, it could possibly be composite.
  • the implanted species are hydrogen or helium, alone or in combination.
  • the dose and implantation energy of these species to form the zone of weakness at a given depth which is typically less than 2 ⁇ m: typically and always according to the piezoelectric material and the implanted species considered, the dose is in the range of 2 E + 16 to 2 E + 17 ionic species / cm 2 , and the implantation energy is from 30keV to 500keV.
  • the buried embrittled layer can also be obtained by any other means known to those skilled in the art, for example by porosification of the material, or by laser irradiation.
  • the donor substrate 100 thus weakened is bonded to the recipient substrate 1 10, the surface of the donor substrate through which the implantation has been performed being at the bonding interface.
  • the donor substrate and / or the receiving substrate may be covered with an electrically insulating layer, for example of Si0 2 , or electrically conductive (not shown), which will be interposed between the receiving substrate and the layer germ after the transfer.
  • detachment of the donor substrate 100 is carried out along the embrittlement zone 101. Such detachment may be caused by any means known to those skilled in the art, for example thermal, mechanical, chemical, etc. .
  • the remainder of the donor substrate, which may optionally be recycled, is then recovered, which makes it possible to transfer the layer 102 onto the recipient substrate 1 10.
  • a surface portion of the transferred layer for example by mechanical polishing and / or chemical etching. This removal of material is intended to eliminate any defects related to implantation and detachment.
  • a layer 102 is obtained. thinned on the receiving substrate 1 10, which will serve as a seed layer in the next step.
  • the transferred layer 102 of Figure 3C can be used directly as a seed layer.
  • a monocrystalline piezoelectric layer 103 is grown epitaxially on the seed layer 102, the material of the epitaxial layer 104 being substantially the same as that of the seed layer 102.
  • the seed layer 102 imposes its mesh parameter and allows the growth of a monocrystalline material of good quality.
  • the epitaxial layer may be slightly different in nature with respect to the seed layer 102, in particular by the controlled introduction of slight levels of impurities for various purposes (doping, adjustment of piezoelectric properties, optimization of crystalline defect densities / dislocations, surfactant, etc.).
  • the growth is stopped when the desired thickness for the monocrystalline piezoelectric layer is reached.
  • the final piezoelectric layer 10 is formed of the stack of the seed layer 102 and the epitaxial layer 103.
  • the seed layer is considered as having no effect or a second-order effect on the operation of a radiofrequency device incorporating the epitaxial piezoelectric layer. Therefore, even if the implementation carried out for the implementation of the Smart Cut TM process damages said layer and disrupts its piezoelectric properties, these defects are not or little disadvantageous.
  • the transfer can be carried out, after bonding of the donor substrate and the receiving substrate, by removal of material, for example by mechanical polishing and / or chemical etching of the donor substrate until to expose the seed layer.
  • This variant is less advantageous insofar as it involves a consumption of the donor substrate, while the Smart Cut TM process allows a possible recycling of the donor substrate. On the other hand, this variant does not require implantation within the donor substrate.
  • a substrate is obtained for a surface acoustic wave device or a volume acoustic wave device, which comprises a receiver substrate 1 10 and a monocrystalline piezoelectric layer. 10 on said receiver substrate 1 10.
  • a substrate may also be useful for other applications, for example for photonics and integrated optics.
  • the layer 10 is characterized by the presence of two portions having different characteristics:
  • This substrate is advantageously used to fabricate a surface acoustic wave device as illustrated in FIG. 1 or a volume acoustic wave device as illustrated in FIG. 2, or any other microelectronic, photonic or optical device comprising a piezoelectric layer.
  • the recipient substrate on which the epitaxial growth occurred may not be optimal for the final application. Indeed, the receiving substrate to undergo the operating conditions of epitaxy, the choice of suitable materials is limited. In particular, the receiving substrate can not contain layers or elements liable to be damaged by the epitaxial temperature. It may then be advantageous to transfer the piezoelectric layer 10 to a final substrate 1 1 1 whose properties are chosen as a function of the intended application, by bonding it to said substrate 11 by means of the surface of the layer epitaxial 103 (see Figure 3F), and removing the receiving substrate (see Figure 3G). This transfer can be achieved by any transfer technique mentioned above.
  • Another advantage of this transfer on a final substrate is that the seed layer 102, which was buried in the structure resulting from the epitaxy, is then exposed and can optionally be removed (see FIG. 3H), in particular in the case where it present defects. Only the epitaxial layer 103 (or part of said layer) having the desired characteristics then remains on the final substrate 1 1 1.
  • a surface acoustic wave device In the case where it is desired to manufacture a surface acoustic wave device, it is deposited on the surface of the piezoelectric layer 10 opposite to the receiving substrate or, where appropriate, to the final substrate (whether it be the substrate receiver 1 10 or the final substrate 1 1 1, said substrate forms the support substrate denoted 1 1 in Figure 1), metal electrodes 12, 13 in the form of two interdigitated combs.
  • a first electrode is deposited on the free surface of the layer 102 to be transferred from the piezoelectric donor substrate, this first electrode (referenced 13 in FIG. finding buried in the final stack.
  • a second electrode is deposited on the free surface of the piezoelectric layer 10, opposite to the first electrode.
  • Another option is to transfer the piezoelectric layer to a final substrate as mentioned above and to form the electrodes before and after said transfer.
  • a isolation means which may be, for example, a Bragg mirror (as illustrated in Figure 2) or a cavity previously etched in the substrate 1 10 or in the final substrate 1 1 1 if necessary.
  • micro-sensors it will usually be a measure of a deformation generated by external stress.
  • micro-actuators we will seek to generate the deformation of an element or the displacement of a moving part through the application of an electric field, continuous or variable.
  • the use of the piezoelectric material makes it possible to connect mechanical deformation and electrical signal.
  • external stress is a pressure wave that deforms a membrane. It may be in the audible spectrum, and the objects typically referred to are the microphones (in sensor mode) and the speakers (in actuator mode).
  • piezo ultrasonic micro-transducers in English terminology PMUT for Piezo Micromachined Ultrasonic Transducers. It may also be static pressure sensors or inertial sensors (acceleration sensors, gyroscopes, etc.) for which the displacement of a moving mass set in motion by an acceleration is measured by virtue of the piezoelectric material .
  • the piezoelectric material composes the entirety of the deformed element (membrane, beam, cantilever, etc.) or advantageously only a part of it by stacking it with other materials such as silicon for example, to better ensure the mechanical properties of the deformable part.
  • the piezoelectric materials can control a very precise displacement and serve for example to expel ink from print cartridges, or microfluidic systems or to adjust a focal length of an optical microsystem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une couche (10) d'un matériau piézoélectrique monocristallin, caractérisé en ce qu'il comprend: - la fourniture d'un substrat donneur (100) dudit matériau piézoélectrique, - la fourniture d'un substrat receveur (110), - le transfert d'une couche dite «couche germe» (102) dudit substrat donneur (100) sur le substrat receveur (110), - la mise en œuvre d'une épitaxie du matériau piézoélectrique sur la couche germe (102) jusqu'à l'obtention de l'épaisseur souhaitée pour la couche piézoélectrique monocristalline (10).

Description

PROCEDE DE FABRICATION
D'UNE COUCHE PIEZOELECTRIQUE MONOCRISTALLINE
ET DISPOSITIF MICROELECTRONIQUE, PHOTONIQUE OU OPTIQUE
COMPRENANT UNE TELLE COUCHE
DOMAINE DE L'INVENTION
La présente invention concerne un procédé de fabrication d'une couche d'un matériau piézoélectrique monocristallin, notamment pour une application à un dispositif microélectronique, photonique ou optique. En particulier mais de manière non limitative, un tel dispositif peut être un dispositif à ondes acoustiques de volume ou un dispositif à ondes acoustiques de surface pour des applications radiofréquence.
ARRIERE PLAN DE L'INVENTION
Parmi les composants acoustiques utilisés pour le filtrage dans le domaine radiofréquence, on distingue deux catégories principales de filtres :
- d'une part, les filtres à ondes acoustiques de surface, connus sous l'acronyme SAW (du terme anglo-saxon « Surface Acoustic Wave ») ;
- d'autre part, les filtres et résonateurs à ondes acoustiques de volume, connus sous l'acronyme BAW (du terme anglo-saxon « Bulk Acoustic Wave »).
Pour une revue de ces technologies, on pourra se référer à l'article de W. Steichen et S. Ballandras, « Composants acoustiques utilisés pour le filtrage - Revue des différentes technologies », Techniques de l'Ingénieur, E2000, 2008.
Les filtres à ondes acoustiques de surface comprennent typiquement une couche piézoélectrique épaisse (c'est-à-dire d'épaisseur généralement de plusieurs centaines de μηι) et deux électrodes sous la forme de deux peignes métalliques interdigités déposés sur la surface de ladite couche piézoélectrique. Un signal électrique, typiquement une variation de tension électrique, appliqué à une électrode est converti en onde élastique qui se propage à la surface de la couche piézoélectrique. La propagation de cette onde élastique est favorisée si la fréquence de l'onde correspond à la bande de fréquence du filtre. Cette onde est à nouveau convertie en signal électrique en parvenant à l'autre électrode.
Les filtres à ondes acoustiques de volume comprennent quant à eux typiquement une couche piézoélectrique mince (c'est-à-dire d'épaisseur généralement bien inférieure à 1 μηι) et deux électrodes agencées sur chaque face principale de ladite couche mince. Un signal électrique, typiquement une variation de tension électrique, appliquée à une électrode est convertie en onde élastique qui se propage au travers de la couche piézoélectrique. La propagation de cette onde élastique est favorisée si la fréquence de l'onde correspond à la bande de fréquence du filtre. Cette onde est à nouveau convertie en tension électrique en parvenant à l'électrode située sur la face opposée.
Dans le cas des filtres à ondes acoustiques de surface, la couche piézoélectrique doit présenter une excellente qualité cristalline pour ne pas engendrer d'atténuation de l'onde de surface. On préférera donc ici utiliser une couche monocristalline. A l'heure actuelle, les matériaux adéquats utilisables industriellement sont le quartz, le LiNb03 ou le LiTa03. La couche piézoélectrique est obtenue par découpe d'un lingot de l'un desdits matériaux, la précision requise pour l'épaisseur de ladite couche étant peu importante dans la mesure où les ondes doivent se propager essentiellement à sa surface.
Dans le cas des filtres à ondes acoustiques de volume, la couche piézoélectrique doit présenter une épaisseur déterminée et uniforme sur l'ensemble de la couche, et ce de manière précisément contrôlée. En revanche, la qualité cristalline passant de fait au second ordre des paramètres d'importance pour les performances du filtre, des compromis sont actuellement faits en ce qui concerne la qualité cristalline et une couche polycristalline a longtemps été considérée comme acceptable. La couche piézoélectrique est donc formée par dépôt sur un substrat support (par exemple un substrat de silicium). A l'heure actuelle, les matériaux employés industriellement pour un tel dépôt sont l'AIN, le ZnO et le PZT.
Les choix de matériaux sont donc très limités dans les deux technologies.
Or, le choix d'un matériau résulte d'un compromis entre différentes propriétés du filtre, en fonction des spécifications du fabricant du filtre.
Pour offrir davantage de liberté dans le dimensionnement des filtres à ondes acoustiques de volume ou des filtres à ondes acoustiques de surface, il serait souhaitable de pouvoir utiliser davantage de matériaux que les matériaux listés plus haut. En particulier, les matériaux utilisés traditionnellement pour les filtres à ondes acoustiques de surface pourraient représenter des alternatives intéressantes pour des filtres à ondes acoustiques de volume.
Ceci impose toutefois de pouvoir obtenir des couches minces, uniformes et de bonne qualité de ces matériaux.
Une première possibilité serait d'amincir les couches épaisses découpées à partir des lingots, par des techniques de polissage et/ou de gravure. Toutefois, ces techniques entraînent une perte importante de matière et ne permettent pas d'obtenir une couche de quelques centaines de nanomètres d'épaisseur avec l'uniformité requise.
Une deuxième possibilité serait de mettre en œuvre un transfert de couche de type Smart Cut™ en créant une zone de fragilisation dans un substrat donneur de quartz, de LiNb03 ou de LiTa03 de sorte à délimiter la couche mince à transférer, en collant ladite couche à transférer sur un substrat support et en détachant le substrat donneur le long de la zone de fragilisation de sorte à transférer la couche mince sur le substrat support. Toutefois, la création de la zone de fragilisation par implantation ionique dans le substrat donneur endommage la couche transférée et détériorent ses propriétés piézoélectriques. Les procédés de guérison (notamment les recuits) connus pour le transfert de couches de silicium ne permettent pas toujours de réparer complètement la couche piézoélectrique, en raison de la structure cristalline complexe de ladite couche et des mécanismes d'endommagement qui semblent différents de ceux qui interviennent dans le silicium.
Enfin, il n'existe à ce jour pas de substrat adéquat, présentant notamment un paramètre de maille adapté, pour former par hétéroépitaxie une couche mince monocristalline de qualité suffisante de quartz, de LiNb03 ou de LiTa03, même si des substrats comme le saphir par exemple ont fait l'objet de plusieurs essais.
BREVE DESCRIPTION DE L'INVENTION
Un but de l'invention est de remédier aux inconvénients précités et notamment de concevoir un procédé de fabrication d'un substrat pour un dispositif microélectronique, photonique ou optique, notamment mais de manière non limitative un dispositif à ondes acoustiques de volume, ou un dispositif à ondes acoustiques de surface dans une gamme plus vaste de matériaux, en particulier en permettant d'obtenir des couches minces (c'est- à-dire d'épaisseur inférieure à 20 μηη, voire inférieure à 1 μηη) et uniformes des matériaux utilisés pour les dispositifs à ondes acoustiques de surface. Par ailleurs, ce procédé doit également permettre d'utiliser une plus grande variété de substrats supports que dans les dispositifs à ondes acoustiques de volume existants.
Conformément à l'invention, il est proposé un procédé de fabrication d'une couche d'un matériau piézoélectrique monocristallin, caractérisé en ce qu'il comprend :
- la fourniture d'un substrat donneur dudit matériau piézoélectrique,
- la fourniture d'un substrat receveur,
- le transfert d'une couche dite « couche germe » dudit substrat donneur sur le substrat receveur,
- la mise en œuvre d'une épitaxie du matériau piézoélectrique sur la couche germe jusqu'à l'obtention de l'épaisseur souhaitée pour la couche piézoélectrique monocristalline.
Selon un mode de réalisation, le transfert de la couche germe comprend les étapes suivantes :
- la formation d'une zone de fragilisation dans le substrat donneur de sorte à délimiter la couche germe à transférer,
- le collage du substrat donneur sur le substrat receveur, la couche germe à transférer étant à l'interface,
- le détachement du substrat donneur le long de la zone de fragilisation de sorte à transférer la couche germe sur le substrat receveur. La zone de fragilisation peut être formée par implantation ionique dans le substrat donneur.
De préférence, le matériau piézoélectrique est choisi parmi le quartz et les composés de formule LiX03, où X est choisi parmi le niobium et le tantale.
De manière avantageuse, lequel l'épaisseur de la couche germe est inférieure à
2 μηη, de préférence inférieure à 1 μηη.
Selon une forme d'exécution, avant l'étape d'épitaxie, on retire une partie de l'épaisseur de la couche germe transférée sur le substrat receveur.
De manière avantageuse, l'épaisseur de la couche piézoélectrique monocristalline à l'issue de l'étape d'épitaxie est comprise entre 0,2 et 20 μηι.
Selon un mode de réalisation, on forme au moins une couche électriquement isolante et/ou au moins une couche électriquement conductrice à l'interface entre le substrat receveur et la couche germe.
Selon une forme d'exécution particulière, le procédé comprend, après l'épitaxie, le transfert d'au moins une partie de la couche piézoélectrique monocristalline sur un substrat final.
De manière avantageuse, le procédé comprend, après ledit transfert sur le substrat final, le retrait de la couche germe.
De manière avantageuse, le substrat receveur est en matériau semi-conducteur, et comprend une couche intermédiaire de piégeage de charges située entre la couche germe et le substrat receveur.
Un autre objet concerne un substrat pour un dispositif microélectronique, photonique ou optique, comprenant une couche piézoélectrique monocristalline sur un substrat receveur, caractérisé en ce que la couche piézoélectrique présente une première portion située à l'interface avec le substrat receveur, et une seconde portion s'étendant à partir de la première portion et en ce que la seconde portion présente des caractéristiques différentes de celles de la première portion.
Un autre objet concerne un procédé de fabrication d'un dispositif à ondes acoustiques de volume, comprenant la formation d'électrodes sur deux faces principales opposées d'une couche piézoélectrique, caractérisé en ce qu'il comprend la fabrication de ladite couche piézoélectrique par un procédé tel que décrit ci-dessus.
Un autre objet concerne un dispositif à ondes acoustiques de volume caractérisé en ce qu'il comprend une couche piézoélectrique susceptible d'être obtenue par un procédé tel que décrit plus haut, et deux électrodes agencées sur deux faces principales opposées de ladite couche.
Un autre objet concerne un procédé de fabrication d'un dispositif à ondes acoustiques de surface, comprenant la formation de deux électrodes interdigitées sur la surface d'une couche piézoélectrique, caractérisé en ce qu'il comprend la fabrication de ladite couche piézoélectrique par un procédé tel que décrit ci-dessus.
Un autre objet concerne un dispositif à ondes acoustiques de surface caractérisé en ce qu'il comprend une couche piézoélectrique susceptible d'être obtenue par un procédé tel que décrit ci-dessus, et deux électrodes interdigitées sur une face de ladite couche piézoélectrique.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée qui va suivre, en référence aux dessins annexés sur lesquels :
la figure 1 est une vue de principe en coupe d'un filtre à ondes acoustiques de surface,
la figure 2 est une vue de principe en coupe d'un filtre à ondes acoustiques de volume,
- les figures 3A à 3E illustrent des étapes successives du procédé de fabrication d'une couche piézoélectrique monocristalline selon un mode de réalisation de l'invention, les figures 3F à 3H illustrent des étapes ultérieures optionnelles dudit procédé. Pour des raisons de lisibilité des figures, les éléments illustrés ne sont pas nécessairement représentés à l'échelle. Par ailleurs, les éléments désignés par les mêmes signes de référence sur différentes figures sont identiques.
DESCRIPTION DETAILLEE DE MODES DE REALISATION DE L'INVENTION
La figure 1 est une vue de principe d'un filtre à ondes acoustiques de surface.
Ledit filtre comprend une couche piézoélectrique 10 et deux électrodes 12, 13 sous la forme de deux peignes métalliques interdigités déposés sur la surface de ladite couche piézoélectrique. Du côté opposé aux électrodes 12, 13, la couche piézoélectrique repose sur un substrat support 1 1. La couche piézoélectrique 10 est monocristalline, une excellente qualité cristalline étant en effet préférable pour ne pas engendrer d'atténuation de l'onde de surface.
La figure 2 est une vue de principe d'un résonateur à ondes acoustiques de volume.
Le résonateur comprend une couche piézoélectrique mince (c'est-à-dire d'épaisseur généralement inférieure à 2 μηη, de préférence inférieure à 0,2 μηη) et deux électrodes 12, 13 agencées de part et d'autre de ladite couche piézoélectrique 10 qui, grâce au procédé de fabrication selon l'invention, est monocristalline. La couche piézoélectrique 10 repose sur un substrat support 1 1. Optionnellement, pour isoler le résonateur du substrat et éviter ainsi la propagation des ondes dans le substrat, un miroir de Bragg 14 peut être interposé entre l'électrode 13 et le substrat 1 1. De manière alternative (non illustrée), cette isolation pourrait être réalisée en ménageant une cavité entre le substrat et la couche piézoélectrique. Ces différentes dispositions sont connues de l'homme du métier et ne seront donc pas décrites en détail dans le présent texte.
D'une manière générale, l'invention propose la formation de la couche piézoélectrique monocristalline au moyen d'un transfert d'une couche germe monocristalline du matériau piézoélectrique considéré, ledit transfert étant effectué d'un substrat donneur du matériau piézoélectrique vers un substrat receveur. Ensuite, une épitaxie est réalisée sur la couche germe jusqu'à l'obtention de l'épaisseur souhaitée pour la couche piézoélectrique monocristalline.
Le substrat donneur peut être un substrat massif monocristallin du matériau piézoélectrique considéré. De manière alternative, le substrat donneur peut être un substrat composite, c'est-à-dire formé d'un empilement d'au moins deux couches de matériaux différents, dont une couche superficielle est constituée du matériau piézoélectrique monocristallin.
Le substrat receveur a une fonction de support mécanique de la couche germe. Il peut être de toute nature adaptée à la mise en œuvre d'une épitaxie (notamment en termes de tenue en température) et, de manière avantageuse mais non impérative, adaptée à l'application visée. Il peut être massif ou composite.
Eventuellement, au moins une couche intermédiaire peut être intercalée entre le substrat receveur et la couche germe. Par exemple, une telle couche intermédiaire peut être électriquement conductrice ou électriquement isolante. L'homme du métier est à même de choisir le matériau et l'épaisseur de cette couche en fonction des propriétés qu'il souhaite conférer au dispositif radiofréquence destiné à comprendre la couche piézoélectrique.
De manière avantageuse, le substrat receveur peut être en matériau semi- conducteur. Il peut s'agir par exemple d'un substrat en silicium. Ce matériau conducteur comprend une couche intermédiaire de type « trap-rich » (que l'on peut traduire en français par une couche à « piège de charges »), qui peut être soit formée sur le substrat receveur, soit formée en surface du substrat receveur. Ladite couche intermédiaire de type trap-rich est ainsi située entre la couche germe et le substrat receveur et permet d'améliorer les performances d'isolation électrique du substrat receveur. Ladite couche intermédiaire de type trap-rich peut être formée par au moins un des matériaux de type poly-cristallin, amorphe ou poreux, en particulier du silicium poly-cristallin, du silicium amorphe ou du silicium poreux, sans se limiter à ces matériaux. De plus, en fonction de la tenue en température de la couche intermédiaire de type trap-rich pour la réalisation de l'épitaxie, il peut s'avérer avantageux d'introduire une couche supplémentaire entre le substrat receveur et ladite couche intermédiaire de type trap-rich, afin d'éviter la recristallisation de cette dernière lors d'un traitement thermique. La couche germe a pour fonction d'imposer le paramètre de maille du matériau cristallin que l'on fait croître sur le substrat receveur. La couche germe présente une épaisseur négligeable par rapport à l'épaisseur de la couche piézoélectrique monocristalline. Par conséquent, on considère qu'elle n'influe pas significativement sur le fonctionnement du dispositif radiofréquence incorporant la couche piézoélectrique monocristalline.
La couche germe présente typiquement une épaisseur inférieure à 1 μηι, de préférence inférieure à 0,2 μηη.
L'épaisseur de la couche épitaxiale dépend des spécifications du dispositif destiné à incorporer la couche piézoélectrique monocristalline. A cet égard, l'épaisseur de la couche épitaxiale n'est pas limitée ni en termes de valeur minimale ni de valeur maximale. L'épaisseur de la couche piézoélectrique finale est typiquement comprise entre 0,2 μηη et 20 m.
A titre purement indicatif, le tableau ci-dessous donne des combinaisons d'épaisseur
Figure imgf000009_0001
Le matériau piézoélectrique est avantageusement du quartz ou un composé de formule LiX03, où X est choisi parmi le niobium et le tantale. Toutefois, l'intérêt que l'on peut porter à ces matériaux ne se limite pas à leur caractère piézoélectrique. Notamment pour d'autres applications, par exemple liées à l'optique intégrée, on pourra aussi s'y intéresser le cas échéant pour leur permittivité diélectrique, pour leurs indices de réfraction, ou encore pour leurs propriétés pyroélectriques, ferroélectriques ou encore ferromagnétiques par exemple et selon les cas.
Ainsi, l'invention permet notamment de former une couche mince d'un composé LiX03 qui présente une excellente qualité cristalline, comme les substrats massifs de ces matériaux, avec une épaisseur contrôlée dans une large gamme d'épaisseur, et notamment pour une épaisseur inférieure à 20 Mm.
L'épitaxie peut être réalisée par toute technique appropriée, notamment par dépôt chimique en phase vapeur (CVD, acronyme du terme anglo-saxon « Chemical Vapor Déposition »), épitaxie en phase liquide (LPE, acronyme du terme anglo-saxon « Liquid Phase Epitaxy »), dépôt par laser puisé (PLD, acronyme du terme anglo-saxon « Pulsed Laser Déposition »), etc.
L'homme du métier est en mesure de déterminer les réactifs et les conditions opératoires en fonction du matériau piézoélectrique à faire croître et de la technique choisie.
Le transfert de la couche germe implique typiquement une étape de collage du substrat donneur et du substrat receveur, la couche germe étant à l'interface de collage, puis une étape d'amincissement du substrat receveur de sorte à exposer la couche germe en vue de l'épitaxie ultérieure.
L'étape de collage peut être réalisée par exemple par collage moléculaire direct de type « wafer bonding » selon la terminologie anglo-saxonne, avec ou sans couche intermédiaire supplémentaire.
De manière particulièrement avantageuse, le transfert est réalisé selon le procédé Smart Cut™ qui est bien connu pour le transfert de couches minces semi-conductrices, notamment de silicium.
A cet effet, en référence à la figure 3A, on fournit un substrat donneur 100 du matériau piézoélectrique et l'on forme, par implantation ionique (schématisée par les flèches), une zone de fragilisation 101 qui délimite une couche piézoélectrique monocristalline 102 à transférer, destinée à former la couche germe. Sur cette figure, le substrat donneur 100 est représenté massif mais, comme indiqué plus haut, il pourrait éventuellement être composite. De manière avantageuse, et selon le matériau piézoélectrique considéré (LiNb03, LiTa03 ou quartz) les espèces implantées sont de l'hydrogène ou de l'hélium, seuls ou en combinaison. L'homme du métier est à même de déterminer la dose et l'énergie d'implantation de ces espèces pour former la zone de fragilisation à une profondeur déterminée, qui est typiquement inférieure à 2 pm : typiquement et toujours selon le matériau piézoélectrique et l'espèce implantée considérés, la dose est dans la gamme de 2 E+16 à 2 E+17 espèce ionique/cm2, et l'énergie d'implantation est de 30keV à 500keV. La couche fragilisée enterrée peut également être obtenue par tout autre moyen connu de l'homme du métier, par exemple par porosification du matériau, ou encore par irradiation laser.
En référence à la figure 3B, on colle le substrat donneur 100 ainsi fragilisé sur le substrat receveur 1 10, la surface du substrat donneur au travers de laquelle l'implantation a été réalisée étant à l'interface de collage. Eventuellement, avant le collage, le substrat donneur et/ou le substrat receveur peuvent être recouverts d'une couche électriquement isolante, par exemple de Si02, ou électriquement conductrice (non illustrée), qui se trouvera intercalée entre le substrat receveur et la couche germe après le transfert.
En référence à la figure 3C, on effectue un détachement du substrat donneur 100 le long de la zone de fragilisation 101. Un tel détachement peut être provoqué par tout moyen connu de l'homme du métier, par exemple thermique, mécanique, chimique, etc. On récupère ensuite le reliquat du substrat donneur, qui peut éventuellement être recyclé, ce qui permet de transférer la couche 102 sur le substrat receveur 1 10.
En référence à la figure 3D, on peut, de manière optionnelle, retirer une partie superficielle de la couche transférée, par exemple par polissage mécanique et/ou par gravure chimique. Ce retrait de matière a pour but d'éliminer d'éventuels défauts liés à l'implantation et au détachement. A l'issue de ce retrait, on obtient une couche 102 amincie sur le substrat receveur 1 10, qui servira de couche germe à l'étape suivante. De manière alternative, la couche transférée 102 de la figure 3C peut être directement utilisée comme couche germe.
En référence à la figure 3E, on fait croître par épitaxie une couche piézoélectrique monocristalline 103 sur la couche germe 102, le matériau de la couche épitaxiale 104 étant sensiblement le même que celui de la couche germe 102. Ainsi, la couche germe 102 impose son paramètre de maille et permet la croissance d'un matériau monocristallin de bonne qualité. La couche épitaxiale pourra être de nature légèrement différente par rapport à la couche germe 102, notamment par l'introduction contrôlée de légers niveaux d'impuretés dans des buts divers (dopage, ajustement des propriétés piézoélectriques, optimisation des densités de défauts cristallins/dislocations, surfactant, etc.). La croissance est stoppée lorsque l'épaisseur souhaitée pour la couche piézoélectrique monocristalline est atteinte. La couche piézoélectrique 10 finale est formée de l'empilement de la couche germe 102 et de la couche épitaxiale 103.
Comme indiqué plus haut, la couche germe est considérée comme n'ayant pas d'effet ou un effet de second ordre sur le fonctionnement d'un dispositif radiofréquence incorporant la couche piézoélectrique épitaxiale. Par conséquent, même si l'implantation réalisée pour la mise en œuvre du procédé Smart Cut™ endommage ladite couche et perturbe ses propriétés piézoélectriques, ces défauts ne sont pas ou peu pénalisants.
De manière alternative (non illustrée) au procédé Smart Cut™, le transfert peut être réalisé, après le collage du substrat donneur et du substrat receveur, par enlèvement de matière, par exemple par polissage mécanique et/ou gravure chimique du substrat donneur jusqu'à exposer la couche germe. Cette variante est moins avantageuse dans la mesure où elle implique une consommation du substrat donneur, alors que le procédé Smart Cut™ permet un recyclage éventuel du substrat donneur. En revanche, cette variante ne nécessite pas d'implantation au sein du substrat donneur.
Comme on le voit sur la figure 3E, on obtient, à l'issue du procédé, un substrat pour un dispositif à ondes acoustiques de surface ou un dispositif à ondes acoustiques de volume, qui comprend un substrat receveur 1 10 et un couche piézoélectrique monocristalline 10 sur ledit substrat receveur 1 10. Un tel substrat peut également se révéler utile pour d'autres applications, par exemple pour la photonique et l'optique intégrée.
La couche 10 se caractérise par la présence de deux portions présentant des caractéristiques différentes :
- une première portion 102 située à l'interface avec le substrat receveur 1 10, correspondant à la couche germe,
- une seconde portion (103) s'étendant à partir de la première portion 102, correspondant à la couche épitaxiale, qui peut présenter une qualité cristalline différente que la première portion, ladite qualité pouvant être ajustée et optimisée lors de l'étape d'épitaxie (notamment en vue d'obtenir une meilleure qualité que la couche germe) et/ou une composition différente (notamment si des impuretés ont été introduites lors de l'épitaxie), conférant éventuellement des propriétés particulières à la couche épitaxiale.
Ce substrat est avantageusement utilisé pour fabriquer un dispositif à ondes acoustiques de surface tel qu'illustré à la figure 1 ou un dispositif à ondes acoustiques de volume tel qu'illustré à la figure 2, ou tout autre dispositif microélectronique, photonique ou optique comprenant une couche piézoélectrique.
Dans certains cas, le substrat receveur sur lequel a eu lieu la croissance épitaxiale peut ne pas être optimal pour l'application finale. En effet, le substrat receveur devant subir les conditions opératoires de l'épitaxie, le choix de matériaux adaptés est limité. Notamment, le substrat receveur ne peut contenir de couches ou d'éléments susceptibles d'être endommagés par la température d'épitaxie. Il peut alors être avantageux de transférer la couche piézoélectrique 10 sur un substrat final 1 1 1 dont les propriétés sont choisies en fonction de l'application visée, en la collant sur ledit substrat 1 1 1 par l'intermédiaire de la surface de la couche épitaxiale 103 (cf. figure 3F), et en retirant le substrat receveur (cf. figure 3G). Ce transfert peut être réalisé par toute technique de transfert mentionnée plus haut. Un autre avantage de ce transfert sur un substrat final est que la couche germe 102, qui était enterrée dans la structure issue de l'épitaxie, est alors exposée et peut éventuellement être retirée (cf. figure 3H), notamment dans le cas où elle présenterait des défauts. Seule la couche épitaxiale 103 (ou une partie de ladite couche) présentant les caractéristiques souhaitées reste alors sur le substrat final 1 1 1 .
Dans le cas où l'on souhaite fabriquer un dispositif à ondes acoustiques de surface, on dépose, sur la surface de la couche piézoélectrique 10 opposée au substrat receveur ou, le cas échéant, au substrat final (qu'il s'agisse du substrat receveur 1 10 ou du substrat final 1 1 1 , ledit substrat forme le substrat support noté 1 1 sur la figure 1 ), des électrodes métalliques 12, 13 sous la forme de deux peignes interdigités.
Dans le cas où l'on souhaite fabriquer un dispositif à ondes acoustiques de volume, une adaptation du procédé décrit ci-dessus doit être effectuée. D'une part, on dépose, avant l'étape de collage illustrée sur la figure 3B, une première électrode sur la surface libre de la couche 102 à transférer du substrat donneur piézoélectrique, cette première électrode (référencée 13 sur la figure 2) se trouvant enterrée dans l'empilement final. Après l'étape de croissance épitaxiale illustrée sur la figure 3E, on dépose une seconde électrode (référencée 12 sur la figure 2) sur la surface libre de la couche piézoélectrique 10, opposée à la première électrode. Une autre option est de transférer la couche piézoélectrique sur un substrat final comme mentionné plus haut et de former les électrodes avant et après ledit transfert. D'autre part, en option, pour éviter la propagation des ondes acoustiques dans le substrat receveur 1 10, on peut intégrer à celui-ci un moyen d'isolation pouvant être, par exemple, un miroir de Bragg (comme illustré sur la figure 2) ou une cavité préalablement gravée dans le substrat 1 10 ou dans le substrat final 1 1 1 le cas échéant.
Un autre domaine d'applications particulièrement visé par le développement de telles solutions de matériaux piézoélectriques est celui des micro-capteurs et des micro- actuateurs. Pour les micro-capteurs, il s'agira en général de mesurer une déformation engendrée par une sollicitation extérieure. Pour les micro-actuateurs, au contraire on cherchera à engendrer la déformation d'un élément ou le déplacement d'une partie mobile grâce à l'application d'un champ électrique, continu ou variable. L'utilisation du matériau piézoélectrique permet de relier déformation mécanique et signal électrique. En acoustique par exemple, la sollicitation extérieure est une onde de pression qui vient déformer une membrane. Elle peut être dans le spectre audible, et les objets typiquement visés sont les microphones (en mode capteur) et les haut-parleurs (en mode actuateur). Elle peut aller au-delà en fréquence, par exemple pour la réalisation de micro- transducteurs ultrasons piézo (en terminologie anglo-saxonne PMUT pour Piezo Micromachined Ultrasonic Transducers). Il peut également s'agir de capteurs de pression statique ou encore de capteurs inertiels (capteurs d'accélération, gyroscopes, etc..) pour lesquels le déplacement d'une masse mobile mise en mouvement par une accélération subie est mesurée grâce au matériau piézoélectrique. Le matériau piézoélectrique compose l'intégralité de l'élément déformé (membrane, poutre, cantilever, etc..) ou avantageusement une partie seulement de celui-ci en l'empilant avec d'autres matériaux comme le silicium par exemple, pour mieux assurer les propriétés mécaniques de la partie déformable. Dans la catégorie actuateurs, les matériaux piézoélectriques peuvent commander un déplacement très précis et servent par exemple à expulser l'encre de cartouches d'impression, ou de systèmes micro-fluidiques ou encore à ajuster une distance focale d'un microsystème optique.
REFERENCES
W. Steichen et S. Ballandras, « Composants acoustiques utilisés pour le filtrage - Revue des différentes technologies », Techniques de l'Ingénieur, E2000, 2008

Claims

REVENDICATIONS
1 . Procédé de fabrication d'une couche (10) d'un matériau piézoélectrique monocristallin, caractérisé en ce qu'il comprend :
- la fourniture d'un substrat donneur (100) dudit matériau piézoélectrique,
- la fourniture d'un substrat receveur (1 10),
- le transfert d'une couche dite « couche germe » (102) dudit substrat donneur (100) sur le substrat receveur (1 10),
- la mise en œuvre d'une épitaxie du matériau piézoélectrique sur la couche germe (102) jusqu'à l'obtention de l'épaisseur souhaitée pour la couche piézoélectrique monocristalline (10).
2. Procédé selon la revendication 1 , dans lequel le transfert de la couche germe (102) comprend les étapes suivantes :
- la formation d'une zone de fragilisation (101 ) dans le substrat donneur (100) de sorte à délimiter la couche germe (102) à transférer,
- le collage du substrat donneur (100) sur le substrat receveur (1 10), la couche germe (102) à transférer étant à l'interface,
- le détachement du substrat donneur (100) le long de la zone de fragilisation (101 ) de sorte à transférer la couche germe (102) sur le substrat receveur (1 10).
3. Procédé selon la revendication 2, dans lequel la zone de fragilisation (101 ) est formée par implantation ionique dans le substrat donneur (100).
4. Procédé selon l'une des revendications 1 à 3, dans lequel le matériau piézoélectrique est choisi parmi le quartz et les composés de formule LiX03, où X est choisi parmi le niobium et le tantale.
5. Procédé selon l'une des revendications 1 à 4, dans lequel l'épaisseur de la couche germe (102) est inférieure à 2 μηη, de préférence inférieure à 1 μηη.
6. Procédé selon l'une des revendications 1 à 5, dans lequel, avant l'étape d'épitaxie, on retire une partie de l'épaisseur de la couche germe (102) transférée sur le substrat receveur (1 10).
7. Procédé selon l'une des revendications 1 à 6, dans lequel l'épaisseur de la couche piézoélectrique monocristalline (10) à l'issue de l'étape d'épitaxie est comprise entre 0,2 et 20 μηι.
8. Procédé selon l'une des revendications 1 à 7, dans lequel on forme au moins une couche électriquement isolante et/ou au moins une couche électriquement conductrice à l'interface entre le substrat receveur et la couche germe.
9. Procédé selon l'une des revendications 1 à 8, comprenant, après l'épitaxie, le transfert d'au moins une partie de la couche piézoélectrique monocristalline (10) sur un substrat final (1 1 1 ).
10. Procédé selon la revendication 9, comprenant, après ledit transfert sur le substrat final (1 1 1 ), le retrait de la couche germe (102).
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce que le substrat receveur est en matériau semi-conducteur, et comprend une couche de piégeage de charges située entre la couche germe et le substrat receveur.
12. Substrat pour un dispositif microélectronique, photonique ou optique, comprenant une couche piézoélectrique monocristalline (10) sur un substrat receveur (1 10), caractérisé en ce que la couche piézoélectrique (10) présente une première portion (102) située à l'interface avec le substrat receveur (1 10), et une seconde portion (103) s'étendant à partir de la première portion (102) et en ce que la seconde portion (103) présente des caractéristiques différentes de celles de la première portion (102).
13. Procédé de fabrication d'un dispositif à ondes acoustiques de volume, comprenant la formation d'électrodes (12, 13) sur deux faces principales opposées d'une couche piézoélectrique (10), caractérisé en ce qu'il comprend la fabrication de ladite couche piézoélectrique (10) par un procédé selon l'une des revendications 1 à 1 1 .
14. Dispositif à ondes acoustiques de volume, caractérisé en ce qu'il comprend une couche piézoélectrique (10) susceptible d'être obtenue par un procédé selon l'une des revendications 1 à 1 1 , et deux électrodes (12, 13) agencées sur deux faces principales opposées de ladite couche (10).
15. Procédé de fabrication d'un dispositif à ondes acoustiques de surface, comprenant la formation de deux électrodes (12, 13) interdigitées sur la surface d'une couche piézoélectrique (10), caractérisé en ce qu'il comprend la fabrication de ladite couche piézoélectrique par un procédé selon l'une des revendications 1 à 1 1 .
16. Dispositif à ondes acoustiques de surface, caractérisé en ce qu'il comprend une couche piézoélectrique (10) susceptible d'être obtenue par un procédé selon l'une des revendications 1 à 1 1 , et deux électrodes (12, 13) interdigitées sur une face de ladite couche piézoélectrique (10).
PCT/EP2016/082259 2015-12-22 2016-12-21 Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche WO2017109005A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16819091.6A EP3394323A1 (fr) 2015-12-22 2016-12-21 Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche
SG11201805403RA SG11201805403RA (en) 2015-12-22 2016-12-21 Method for fabrication of a monocrystalline piezoelectric layer and microelectronic, photonic or optical device comprising such a layer
KR1020187021277A KR102654808B1 (ko) 2015-12-22 2016-12-21 단결정 압전층의 제조 방법 및 이러한 층을 포함하는 미세전자소자, 포토닉 또는 광학 소자
US16/064,420 US11600766B2 (en) 2015-12-22 2016-12-21 Method for manufacturing a monocrystalline piezoelectric layer
CN201680081355.5A CN108603306A (zh) 2015-12-22 2016-12-21 单晶压电层的制造方法和包含该层的微电子、光子或光学器件
CN202111570629.6A CN114242885A (zh) 2015-12-22 2016-12-21 体声波器件或表面声波器件及其制造方法
JP2018532615A JP6812443B2 (ja) 2015-12-22 2016-12-21 単結晶圧電層、およびそのような層を含むマイクロエレクトロニクスデバイス、光子デバイスまたは光学デバイスの作製方法
US18/179,071 US20230217832A1 (en) 2015-12-22 2023-03-06 Composite substrates including epitaxial monocrystalline piezoelectric layers bonded to substrates, and acoustic wave devices formed with such composite substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563057A FR3045678B1 (fr) 2015-12-22 2015-12-22 Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche
FR1563057 2015-12-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/064,420 A-371-Of-International US11600766B2 (en) 2015-12-22 2016-12-21 Method for manufacturing a monocrystalline piezoelectric layer
US18/179,071 Continuation US20230217832A1 (en) 2015-12-22 2023-03-06 Composite substrates including epitaxial monocrystalline piezoelectric layers bonded to substrates, and acoustic wave devices formed with such composite substrates

Publications (1)

Publication Number Publication Date
WO2017109005A1 true WO2017109005A1 (fr) 2017-06-29

Family

ID=55590009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/082259 WO2017109005A1 (fr) 2015-12-22 2016-12-21 Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche

Country Status (8)

Country Link
US (2) US11600766B2 (fr)
EP (1) EP3394323A1 (fr)
JP (2) JP6812443B2 (fr)
KR (1) KR102654808B1 (fr)
CN (2) CN114242885A (fr)
FR (1) FR3045678B1 (fr)
SG (1) SG11201805403RA (fr)
WO (1) WO2017109005A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919290A (zh) * 2018-03-26 2020-11-10 Soitec公司 将压电层转移至载体衬底上的工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755214A1 (fr) * 2018-02-20 2020-12-30 IP2IPO Innovations Limited Appareil et procédé
FR3079345B1 (fr) * 2018-03-26 2020-02-21 Soitec Procede de fabrication d'un substrat pour dispositif radiofrequence
FR3108439B1 (fr) * 2020-03-23 2022-02-11 Soitec Silicon On Insulator Procede de fabrication d’une structure empilee
FR3137792A1 (fr) * 2022-07-07 2024-01-12 Soitec Procédé de fabrication d’une structure semi-conductrice ou piézoélectrique
CN117156947B (zh) * 2023-10-31 2024-02-20 北京青禾晶元半导体科技有限责任公司 一种复合压电衬底的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593212B1 (en) * 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
US20030199105A1 (en) * 2002-04-22 2003-10-23 Kub Francis J. Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
US20100141086A1 (en) * 2008-04-15 2010-06-10 Ngk Insulators, Ltd. Surface acoustic wave devices
EP2738939A1 (fr) * 2011-07-29 2014-06-04 Murata Manufacturing Co., Ltd. Dispositif piézoélectrique et procédé de fabrication de dispositif piézoélectrique

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019200A (en) 1975-06-11 1977-04-19 Rockwell International Corporation Monolithic surface acoustic wave signal storage device
JPH08153915A (ja) * 1994-11-30 1996-06-11 Matsushita Electric Ind Co Ltd 複合圧電基板とその製造方法
CN1048126C (zh) 1994-12-06 2000-01-05 株式会社村田制作所 表面声波器件的电极形成方法
US5935641A (en) * 1996-10-23 1999-08-10 Texas Instruments Incorporated Method of forming a piezoelectric layer with improved texture
US6120597A (en) 1998-02-17 2000-09-19 The Trustees Of Columbia University In The City Of New York Crystal ion-slicing of single-crystal films
US6540827B1 (en) 1998-02-17 2003-04-01 Trustees Of Columbia University In The City Of New York Slicing of single-crystal films using ion implantation
JP3704017B2 (ja) 2000-03-28 2005-10-05 ヤマハ株式会社 弾性表面波素子
US6555946B1 (en) 2000-07-24 2003-04-29 Motorola, Inc. Acoustic wave device and process for forming the same
FR2845523B1 (fr) 2002-10-07 2005-10-28 Procede pour realiser un substrat par transfert d'une plaquette donneuse comportant des especes etrangeres, et plaquette donneuse associee
FR2847076B1 (fr) 2002-11-07 2005-02-18 Soitec Silicon On Insulator Procede de detachement d'une couche mince a temperature moderee apres co-implantation
JP3774782B2 (ja) * 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 弾性表面波素子の製造方法
JPWO2005050836A1 (ja) 2003-11-19 2007-06-14 株式会社村田製作所 端面反射型弾性表面波装置及びその製造方法
JP4091641B2 (ja) * 2006-04-07 2008-05-28 富士フイルム株式会社 圧電素子とその製造方法、及びインクジェット式記録ヘッド
JP2008211277A (ja) 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd 弾性表面波素子
US7982363B2 (en) 2007-05-14 2011-07-19 Cree, Inc. Bulk acoustic device and method for fabricating
KR101196990B1 (ko) 2007-12-25 2012-11-05 가부시키가이샤 무라타 세이사쿠쇼 복합 압전 기판의 제조방법
FR2951336B1 (fr) 2009-10-09 2017-02-10 Commissariat A L'energie Atomique Dispositif a ondes acoustiques comprenant un filtre a ondes de surface et un filtre a ondes de volume et procede de fabrication
JP5429200B2 (ja) * 2010-05-17 2014-02-26 株式会社村田製作所 複合圧電基板の製造方法および圧電デバイス
JP2012106902A (ja) 2010-10-25 2012-06-07 Fujifilm Corp ペロブスカイト型酸化物膜及びそれを用いた強誘電体膜、強誘電体素子、ペロブスカイト型酸化物膜の製造方法
WO2012128268A1 (fr) 2011-03-22 2012-09-27 株式会社村田製作所 Dispositif piézoélectrique et son procédé de fabrication
CN102253451B (zh) 2011-05-13 2013-03-20 华中科技大学 一种铌酸锂光波导的制备方法
JP5836754B2 (ja) * 2011-10-04 2015-12-24 富士フイルム株式会社 圧電体素子及びその製造方法
FR2995136B1 (fr) 2012-09-04 2015-06-26 Soitec Silicon On Insulator Pseudo-substrat avec efficacite amelioree d'utilisation d'un materiau monocristallin
US9324931B2 (en) * 2013-05-14 2016-04-26 Tdk Corporation Piezoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6593212B1 (en) * 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
US20030199105A1 (en) * 2002-04-22 2003-10-23 Kub Francis J. Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
US20100141086A1 (en) * 2008-04-15 2010-06-10 Ngk Insulators, Ltd. Surface acoustic wave devices
EP2738939A1 (fr) * 2011-07-29 2014-06-04 Murata Manufacturing Co., Ltd. Dispositif piézoélectrique et procédé de fabrication de dispositif piézoélectrique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111919290A (zh) * 2018-03-26 2020-11-10 Soitec公司 将压电层转移至载体衬底上的工艺
CN111919290B (zh) * 2018-03-26 2024-03-01 Soitec公司 将压电层转移至载体衬底上的工艺

Also Published As

Publication number Publication date
CN108603306A (zh) 2018-09-28
FR3045678B1 (fr) 2017-12-22
CN114242885A (zh) 2022-03-25
US20230217832A1 (en) 2023-07-06
US20190006577A1 (en) 2019-01-03
FR3045678A1 (fr) 2017-06-23
JP6812443B2 (ja) 2021-01-13
JP2021048624A (ja) 2021-03-25
KR102654808B1 (ko) 2024-04-05
US11600766B2 (en) 2023-03-07
SG11201805403RA (en) 2018-07-30
JP7200199B2 (ja) 2023-01-06
EP3394323A1 (fr) 2018-10-31
JP2019506782A (ja) 2019-03-07
KR20180098344A (ko) 2018-09-03

Similar Documents

Publication Publication Date Title
WO2017109005A1 (fr) Procede de fabrication d'une couche piezoelectrique monocristalline et dispositif microelectronique, photonique ou optique comprenant une telle couche
FR3045677B1 (fr) Procede de fabrication d'une couche monocristalline, notamment piezoelectrique
EP2628243B1 (fr) Structure acoustique heterogene formee a partir d'un materiau homogene
EP3706180B1 (fr) Procede de realisation d'un systeme micro-electro-mecanique realise a partir d'une couche piezoelectrique ou ferroelectrique deposee
EP2591515B1 (fr) Procede d'implantation d'un materiau piezoelectrique
EP2341617B1 (fr) Résonateur acoustique comprenant un électret, et procédé de fabrication de ce résonateur, application aux filtres commutables à résonateurs couplés
EP2464006B1 (fr) Procédé de fabrication d'un résonateur à ondes acoustiques comprenant une membrane suspendue
EP3394908B1 (fr) Substrat pour un dispositif a ondes acoustiques de surface ou a ondes acoustiques de volume compense en temperature
EP4006998B1 (fr) Procede de fabrication d'un composant comprenant une couche en materiau monocristallin compatible avec des budgets thermiques eleves
EP2267893B1 (fr) Résonateur à ondes de volume avec des cavités partiellement remplies
EP3465787B1 (fr) Procede de guerison de defauts dans une couche obtenue par implantation puis detachement d'un substrat
WO2024084179A1 (fr) Procede de fabrication d'une couche piezoelectrique sur un substrat
EP3465788B1 (fr) Procede de fabrication d'une couche
EP2517354A1 (fr) Dispositif electromecanique a base d'electret mineral, et son procede de fabrication
EP4191878A1 (fr) Dispositif à onde acoustique de volume et procédé de réalisation d'un tel dispositif
FR3115399A1 (fr) Structure composite pour applications mems, comprenant une couche deformable et une couche piezoelectrique, et procede de fabrication associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201805403R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20187021277

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021277

Country of ref document: KR

Ref document number: 2016819091

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016819091

Country of ref document: EP

Effective date: 20180723