WO2017107998A1 - 一种负载于基材的铜纳米薄膜及其制备方法和应用 - Google Patents

一种负载于基材的铜纳米薄膜及其制备方法和应用 Download PDF

Info

Publication number
WO2017107998A1
WO2017107998A1 PCT/CN2016/111952 CN2016111952W WO2017107998A1 WO 2017107998 A1 WO2017107998 A1 WO 2017107998A1 CN 2016111952 W CN2016111952 W CN 2016111952W WO 2017107998 A1 WO2017107998 A1 WO 2017107998A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
substrate
solution
nano
loaded
Prior art date
Application number
PCT/CN2016/111952
Other languages
English (en)
French (fr)
Other versions
WO2017107998A8 (zh
Inventor
李�浩
Original Assignee
李�浩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�浩 filed Critical 李�浩
Publication of WO2017107998A1 publication Critical patent/WO2017107998A1/zh
Publication of WO2017107998A8 publication Critical patent/WO2017107998A8/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0551Flake form nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Definitions

  • the invention relates to the technical field of nano copper film preparation, in particular to a one-step method for preparing copper nano film supported on a substrate and a copper nano film supported on the substrate prepared by the method and the application thereof in catalytic degradation of methylene blue.
  • the size of a particle When the size of a particle enters the order of nanometers (1 to 100 nm), it itself has surface effects, volume effects, quantum size effects, and macroscopic quantum tunneling effects, thus exhibiting many peculiar physical properties not found in general solid materials, including Optical, electrical, magnetic, thermal, catalytic and mechanical properties.
  • nano-copper particle size reaches nanometer level, which will make its function more unique and more widely used.
  • Nano-copper is especially used in the field of catalysts and shows good application prospects.
  • the surface effect of nano-copper has the characteristics of large specific surface area, strong adsorption capacity, high reactivity and strong selectivity.
  • the surface atoms of the nano are different from the internal atomic state, and the surface atomic coordination is increased due to factors such as incomplete coordination of the surface atoms. These conditions make nano-copper a good catalyst.
  • the powdered nano-copper catalyst has high activity, it still has its own disadvantages. First, it is difficult to separate and reuse these powdered nano-copper catalysts from the reaction system (especially in the liquid phase reaction system). Secondly, the powdered nano-copper catalyst has a large specific surface area and is very easy to agglomerate, so it is particularly suitable in catalytic engineering. It is a decrease in catalytic activity during long-term operation.
  • One of the objects of the present invention is to overcome the deficiencies of the prior art and to provide a copper nano-film supported on a substrate, which solves the problem that the powdered nano-copper catalyst in the prior art cannot be separated and reused and the catalytic activity is decreased.
  • a second object of the present invention is to provide a method for preparing a copper nano film supported on a substrate by overcoming the above-mentioned deficiencies of the prior art.
  • a third object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a substrate-loaded copper nano-film for reducing the p-nitrophenol in hydrazine hydrate.
  • the technical solution adopted by the present invention is: a method for preparing a copper nano film supported on a substrate, the method comprising:
  • the substrate is rolled into a cylindrical shape and adhered to the inner wall of the reaction vessel, and reacted at 100-180 ° C for 1-8 hours. After the reaction, nano copper is uniformly deposited on the substrate to obtain the substrate-loaded substrate. Copper nanofilm.
  • the chelating agent is generally acidic and insoluble in water, it is necessary to add a first alkali solution to promote the chelating agent to dissolve in the divalent copper salt solution, thereby synthesizing a chelate compound containing divalent copper, and additionally, since the first alkali solution may The reaction with divalent copper produces a precipitate. Therefore, when the first alkali solution is added, the solution needs to be vigorously stirred. In fact, since the amount of the divalent copper salt is relatively small, the probability of precipitation is extremely low.
  • the reducing agent is hydrazine hydrate.
  • the hydrazine hydrate is extremely reductive, and in the reactor at 100-180 ° C, the divalent copper in the chelate can be rapidly reduced to nano copper.
  • the hydrazine hydrate is preferably hydrazine hydrate having a mass concentration of 50%.
  • the method further comprises: after the chelate solution is formed, adding a second base that enhances the reduction of the hydrazine hydrate Solution.
  • the hydrazine hydrate itself is a very strong reducing agent, and the greater the pH value in the environment, the stronger the reducing property. Therefore, the second alkali solution is added to increase the pH value of the solution, and further increase The reduction performance of hydrazine hydrate reduces the reduction of divalent copper in the chelate to nano copper.
  • the divalent copper salt solution is prepared by dissolving 3-200 mmol of a divalent copper salt in 40-400 mL of water;
  • the alkaline solution is prepared by dissolving 18-400 mmol of the base in 40 mL of water.
  • the chelating agent is diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), 1,2-two. At least one of aminocyclohexanetetraacetic acid (DCTA).
  • DTPA diethylenetriaminepentaacetic acid
  • EDTA ethylenediaminetetraacetic acid
  • DCTA aminocyclohexanetetraacetic acid
  • the addition of the chelating agent can be complexed with the divalent copper salt to control the reduction rate of the copper salt, so that the formed copper nanocrystals have a preferential growth orientation to form some non-spherical nanocrystals having a specific morphology.
  • the divalent copper salt is at least one of CuSO 4 ⁇ 5H 2 O, CuCl 2 , and Cu(NO 3 ) 2 .
  • the first alkali solution is a sodium hydroxide solution or a potassium hydroxide solution.
  • the second alkali solution is also a sodium hydroxide solution or a potassium hydroxide solution.
  • the substrate is a two-dimensional substrate having a length of 8 to 14 cm and a width of 3 to 6 cm.
  • the two-dimensional substrate is one of a titanium sheet, a copper foil, and a graphite paper.
  • the substrate is a titanium sheet having a length of 12 cm and a width of 5 cm.
  • the present invention further provides a substrate-loaded copper nano film prepared by the above method, the copper nano film is supported on a substrate, and the copper nano film is composed of a plurality of copper nanosheets, each copper nanometer The sheet has a length of 100 to 200 nm and a thickness of 4 to 6 nm.
  • the present invention also provides the above-mentioned substrate-loaded copper nano film in catalytic hydrazine hydrazine reduction to nitrate Application in phenols.
  • the method for preparing a substrate-loaded copper nano-film of the present invention comprises: mixing a divalent copper salt solution and a chelating agent, and slowly adding a first alkali solution under vigorous stirring to obtain a chelate solution; After adding a reducing agent to the solution, the mixture is stirred, and the obtained solution is transferred into the reaction vessel; the substrate is rolled into a cylindrical shape and closely attached to the inner wall of the reaction vessel, and reacted at 100-180 ° C for 1-8 hours.
  • the nano copper is uniformly deposited on the substrate to obtain the copper nano film supported on the substrate.
  • the method for preparing a copper nano film supported on a substrate of the present invention successfully supports a copper nanosheet on a two-dimensional substrate by a one-step synthesis method, and on the other hand, a chelating agent.
  • the complexation with the divalent copper salt controls the reduction rate of the copper salt, and the formed copper nanocrystals are preferentially grown to form a non-spherical nanocrystal having a specific morphology to obtain a copper thin film composed of nanosheets.
  • the copper nano film supported on the substrate of the present invention is conveniently separated and reused as a catalyst when the nano copper film is supported on the substrate, especially in a liquid phase reaction system.
  • the nano copper film is supported on the substrate, the phenomenon of agglomeration of the particles in the past is avoided, and therefore, there is no problem that the activity of the catalyst decreases with time.
  • the substrate-loaded copper nano-film of the present invention has the advantages of high reduction rate in catalyzing the reduction of p-nitrophenol by hydrazine hydrate.
  • curve (a) is an XRD spectrum of the titanium sheet substrate of Example 1
  • curve (b) is an XRD pattern of the copper nano film of Example 1.
  • Figure 3 is a high magnification SEM image of a substrate-loaded copper nanofilm prepared by the method of the present invention.
  • FIG. 4 is a diagram showing the effect of a copper nano film supported on a substrate prepared by the method of the present invention for catalyzing the reduction of p-nitrophenol by hydrazine hydrate.
  • the present invention is an embodiment of a method for preparing a copper nano film supported on a substrate.
  • the method of the embodiment includes the following steps:
  • the present invention is an embodiment of a method for preparing a copper nano film supported on a substrate.
  • the method of the embodiment includes the following steps:
  • the present invention is an embodiment of a method for preparing a copper nano film supported on a substrate.
  • the method of the embodiment includes the following steps:
  • the present invention is an embodiment of a method for preparing a copper nano film supported on a substrate.
  • the method of the embodiment includes the following steps:
  • the present invention is an embodiment of a method for preparing a copper nano film supported on a substrate.
  • the method of the embodiment includes the following steps:
  • the phase structure of the substrate-loaded copper nano-film prepared in Example 1 of the present invention was examined.
  • the titanium substrate in FIG. 1(a) was at a double diffraction angle of 35.0°, 38.4°, 40.1°, 53.0°, and 62.9°. Peaks at 70.6° and 76.1°, respectively corresponding to (100), (002), (101), (102), (110), (103) and (112) crystals of hexagonal close-packed crystalline titanium Surface diffraction (PDF #65-9622).
  • the two diffraction angles are 43.3°, 50.3° and 74.1° peaks, respectively corresponding to (111), (200), (220) of the face-centered cubic metal copper. Crystal face diffraction (PDF #89-2838).
  • XRD pattern analysis indicated that copper had been successfully deposited on the titanium sheet substrate.
  • Example 1 of the present invention The crystal phase and size of the substrate-loaded copper nanofilm prepared in Example 1 of the present invention were measured, as shown in the figure. 2 shows the low-magnification SEM image and the high-power SEM image shown in FIG. 3, FIG. 2 shows that the prepared copper nanosheet film has a rough surface, and FIG. 3 shows that the copper nanosheet film is composed of a plurality of copper nanosheets, and the thickness of the nanosheet is about It is 5 nm and has a length of about 100-200 nm.
  • the substrate-loaded copper nano-film prepared in Example 1 of the present invention is applied to catalytic hydrazine hydrazine to reduce p-nitrophenol, and the catalytic experiment process is: preparing a p-nitrophenol solution having a concentration of 2 ⁇ 10 -4 mol/L, and then A hydrazine/sodium hydroxide mixed solution was prepared in which the concentrations of hydrazine hydrate and sodium hydroxide were 2.5 mol/L and 10 mol/L, respectively. Pipette 16 ml of p-nitrophenol and 4 ml of hydrazine hydrate/sodium hydroxide mixed solution and mix and mix, and measure the initial absorbance of the mixture to A 0 .
  • the film was catalyzed by cutting 5 cm in length and 3 cm in width, and it was put into a beaker for reaction, and the solution was continuously stirred.
  • the absorbance of a sample test mixture is taken at intervals of A t at intervals, and the solution in the quartz tank is returned to the small beaker after the measurement.
  • the whole reaction process was controlled by a water bath at 30 °C.
  • a t /A 0 c/c 0 .
  • c 0 is the concentration of p-nitrophenol at the beginning of the reaction
  • c is the concentration of p-nitrophenol after the reaction for any period of time.
  • c/c 0 represents the ratio of the remaining concentration of p-nitrophenol concentration to its initial concentration during the reaction.
  • FIG. 4 is a catalytic effect diagram of the copper nano film supported on the substrate prepared in Example 1 of the present invention for catalytic reduction of p-nitrophenol by hydrazine hydrate. It can be seen that the reaction time is 24 minutes, p-nitrophenol. The reduction reached about 93%, indicating that the prepared copper nanosheet film has high catalytic activity.
  • the method for preparing a copper nano film supported on a substrate of the present invention successfully supports a copper nanosheet on a two-dimensional substrate by a one-step synthesis method, and on the other hand, a chelating agent.
  • the complexation with the divalent copper salt controls the reduction rate of the copper salt, and the formed copper nanocrystals are preferentially grown to form a non-spherical nanocrystal having a specific morphology to obtain a copper thin film composed of nanosheets.
  • the copper nano film supported on the substrate of the present invention is conveniently separated and reused as a catalyst when the nano copper film is supported on the substrate, especially in a liquid phase reaction system.
  • the nano copper film is supported on the substrate, the phenomenon of agglomeration of the particles in the past is avoided, and therefore, there is no problem that the activity of the catalyst decreases with time.
  • the substrate-loaded copper nano-film of the present invention has the advantages of high reduction rate in catalyzing the reduction of p-nitrophenol by hydrazine hydrate.

Abstract

一种负载于基材的铜纳米薄膜的制备方法,包括:将二价铜盐溶液和螯合剂混合,剧烈搅拌条件下,缓慢加入第一碱溶液,得螯合物溶液;在螯合物溶液中加入还原剂后搅拌,所得溶液转入反应釜中;将基材卷成圆柱形紧贴反应釜的内壁,在100-180℃下反应1-8小时,反应后即有纳米铜均匀地沉积在基材上即得。以及一种上述方法制备的薄膜及其在催化水合肼还原对硝基苯酚中的应用。在上述制备方法中,通过螯合剂和二价铜盐络合从而控制铜盐的还原速率,得到由纳米片组成的铜薄膜;且通过一步合成法将铜纳米片成功地负载在二维基材上。

Description

一种负载于基材的铜纳米薄膜及其制备方法和应用 技术领域
本发明涉及纳米铜薄膜制备技术领域,尤其涉及一种制备负载于基材的铜纳米薄膜的一步法和按照该方法制备的负载于基材的铜纳米薄膜及其在催化降解亚甲基蓝中的应用。
背景技术
当粒子的尺寸进入纳米数量级(1~100nm)时,其本身就会具有表面效应、体积效应、量子尺寸效应和宏观量子隧道效应,因而表现出许多一般固体材料所不具备的奇特物性,主要包括光学、电学、磁学、热学、催化和力学等性质。
纳米铜的粒径达到纳米级,将使它的功能更加独特,应用也更加广泛。纳米铜尤其被应用于催化剂领域,并显示出很好的应用前景。纳米铜的表面效应使其具有比表面积大、吸附能力强、反应活性高和选择性强等特点。另外,纳米的表面原子与内部原子状态不同,表面原子配位不全等因素使其表面活性位置增加。这些条件都使得纳米铜成为很好的催化剂。
粉末态纳米铜催化剂虽然活性高,但仍有自身缺点。首先,很难将这些粉末态纳米铜催化剂从反应体系中(特别是液相反应体系中)分离再利用;其次,粉末态纳米铜催化剂比表面积很大,非常容易团聚,因此在催化工程中特别是长时间的运行时其催化活性会下降。
因此,亟需对纳米铜作为催化剂的形式提出改进,以从源头上解决上述问题。
发明内容
本发明的目的之一在于克服上述现有技术的不足之处而提供一种负载于基材的铜纳米薄膜,解决现有技术中粉末态纳米铜催化剂无法分离再利用和催化活性下降的问题。
本发明的目的之二在于克服上述现有技术的不足之处而提供一种负载于基材的铜纳米薄膜的制备方法。
本发明的目的之三在于克服上述现有技术的不足之处而提供一种负载于基材的铜纳米薄膜在催化水合肼还原对硝基苯酚的应用。
为实现上述目的,本发明采取的技术方案为:一种负载于基材的铜纳米薄膜的制备方法,所述方法包括:
将二价铜盐溶液和螯合剂混合,剧烈搅拌条件下,缓慢加入第一碱溶液,得螯合物溶液;
在所述螯合物溶液中加入还原剂后搅拌,所得溶液转入反应釜中;
将基材卷成圆柱形紧贴所述反应釜的内壁,在100-180℃下反应1-8小时,反应后即有纳米铜均匀地沉积在基材上,得到所述负载于基材的铜纳米薄膜。
由于螯合剂一般为酸性,且不溶于水,需要加入第一碱溶液,以促使螯合剂溶于二价铜盐溶液,从而合成含二价铜的螯合物,另外,由于第一碱溶液可能与二价铜反应生成沉淀,因此,在加入第一碱溶液的时候,需要对溶液就行剧烈搅拌,事实上,由于二价铜盐的量相对较少,产生沉淀的几率是极低的。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述还原剂为水合肼。
所述水合肼的还原性极强,在所述反应釜100-180℃下,可将螯合物中二价铜迅速还原成纳米铜。
所述水合肼优选质量浓度为50%的水合肼。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述方法还包括:在所述螯合物溶液形成后,再加入增强所述水合肼还原作用的第二碱溶液。
所述水合肼本身是极强的还原剂,当其所处环境中PH值越大时,其还原性越强,因此,所述第二碱溶液的加入便是为了提高溶液PH值,进一步加大水合肼的还原性能,更快速的将螯合物中二价铜还原成纳米铜。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述二价铜盐溶液的配制方法为:取3-200mmol二价铜盐溶于40-400mL水中; 所述碱溶液的配制方法为:取18-400mmol碱溶于40mL水中。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述螯合剂和所述二价铜盐的摩尔比为螯合剂:二价铜盐=1:1~8:1。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述螯合剂和所述二价铜盐的摩尔比为螯合剂:二价铜盐=5:1~8:1。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述螯合剂为二乙烯三胺五乙酸(DTPA)、乙二胺四乙酸(EDTA)、1,2-二氨基环己烷四乙酸(DCTA)中的至少一种。
所述螯合剂的加入可以和所述二价铜盐络合从而控制铜盐的还原速率,使所生成的铜纳米晶有优先生长取向从而形成一些具有特定形貌的非球形纳米晶。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述二价铜盐为CuSO4·5H2O、CuCl2、Cu(NO3)2中的至少一种,所述第一碱溶液为氢氧化钠溶液或氢氧化钾溶液。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,第二碱溶液也为氢氧化钠溶液或氢氧化钾溶液。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述基材为二维基材,所述二维基材的长为8~14cm、宽为3~6cm,所述二维基材为钛片、铜箔、石墨纸中的一种。
作为本发明所述负载于基材的铜纳米薄膜的制备方法的优选实施方式,所述基材为长为12cm、宽为5cm的钛片。
其次,本发明还提供一种上述方法制备的负载于基材的铜纳米薄膜,所述铜纳米薄膜负载于基材上,且所述铜纳米薄膜由多个铜纳米片组成,每个铜纳米片的长度为100~200nm、厚度为4~6nm。
另外,本发明还提供上述负载于基材的铜纳米薄膜在催化水合肼还原对硝 基苯酚中的应用。
事实上,制备负载于基材上的铜纳米薄膜非常困难,因为纳米薄膜相较于球形粒子较大,其空间位阻也远大于球形纳米颗粒,不容易沉积在基材上。
发明有益效果
本发明的负载于基材的铜纳米薄膜的制备方法,包括:将二价铜盐溶液和螯合剂混合,剧烈搅拌条件下,缓慢加入第一碱溶液,得螯合物溶液;在所述螯合物溶液中加入还原剂后搅拌,所得溶液转入反应釜中;将基材卷成圆柱形紧贴所述反应釜的内壁,在100-180℃下反应1-8小时,反应后即有纳米铜均匀地沉积在基材上,得到所述负载于基材的铜纳米薄膜。
与现有技术相比,本发明的负载于基材的铜纳米薄膜的制备方法,一方面,通过一步合成法将铜纳米片成功地负载在二维基材上,另一方面,通过螯合剂和二价铜盐络合从而控制铜盐的还原速率,使所生成的铜纳米晶有优先生长取向从而形成一些具有特定形貌的非球形纳米晶,得到由纳米片组成的铜薄膜。
与现有技术相比,本发明的负载于基材的铜纳米薄膜,一方面,由于纳米铜薄膜负载于基材上,其作为催化剂应用时方便分离再利用,尤其在液相反应体系中,另一方面,由于纳米铜薄膜负载于基材上,避免了以往颗粒团聚的现象,因此,不会出现催化剂随时间延长而活性下降的问题。
与现有技术相比,本发明的负载于基材的铜纳米薄膜在催化水合肼还原对硝基苯酚中的应用,具有还原率高的优点。
附图说明
图1为XRD图谱,其中曲线(a)为实施例1的钛片基材的XRD谱图;曲线(b)为实施例1的铜纳米薄膜的XRD谱图。
图2为本发明所述方法制备的负载于基材的铜纳米薄膜的低倍SEM图。
图3为本发明所述方法制备的负载于基材的铜纳米薄膜的高倍SEM图。
图4为本发明所述方法制备的负载于基材的铜纳米薄膜用于催化水合肼还原对硝基苯酚的效果图。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合附图和具体实施例对本发明作进一步说明。
实施例1
本发明为一种负载于基材的铜纳米薄膜的制备方法的一种实施例,本实施例所述方法包括以下步骤:
取3mmol CuSO4·5H2O溶于40mL水中形成CuSO4溶液,然后加入取3.5mmol的二乙烯三胺五乙酸搅拌形成一悬浊液。取30mL浓度为0.6mol/L的氢氧化钠溶液和10mL的水合肼溶液(50%)依次加入上述悬浊液,搅拌,最终得到反应液转入水热反应釜中。将裁剪好的、长12cm、宽5cm的钛片卷成圆柱形紧贴水热反应釜的内壁。在140℃下反应4小时,即有纳米铜均匀地沉积在钛片上,得到负载于基材的铜纳米薄膜。
实施例2
本发明为一种负载于基材的铜纳米薄膜的制备方法的一种实施例,本实施例所述方法包括以下步骤:
取200mmol CuCl2溶于400mL水中形成CuCl2溶液,然后加入取的200mmol乙二胺四乙酸(EDTA)搅拌形成一悬浊液。取100mL浓度为2mol/L的氢氧化钠溶液和200mL的水合肼溶液(50%)依次加入上述悬浊液,搅拌,最终得到反应液转入水热反应釜中。将裁剪好的、长12cm、宽5cm的钛片卷成圆柱形紧贴水热反应釜的内壁。在180℃下反应1小时,即有纳米铜均匀地沉积在钛片上,得到负载于基材的铜纳米薄膜。
实施例3
本发明为一种负载于基材的铜纳米薄膜的制备方法的一种实施例,本实施例所述方法包括以下步骤:
取50mmol Cu(NO3)2溶于400mL水中形成Cu(NO3)2溶液,然后加入取的200mmol1,2-二氨基环己烷四乙酸(DCTA)搅拌形成一悬浊液。取20mL浓度为2mol/L的氢氧化钠溶液和50mL的水合肼溶液(50%)依次加入上述悬浊液,搅拌,最终得到反应液转入水热反应釜中。将裁剪好的、长12cm、宽5cm的 钛片卷成圆柱形紧贴反应釜的内壁。在100℃下反应8小时,即有纳米铜均匀地沉积在铜箔上,得到负载于基材的铜纳米薄膜。
实施例4
本发明为一种负载于基材的铜纳米薄膜的制备方法的一种实施例,本实施例所述方法包括以下步骤:
取10mmol Cu(NO3)2溶于160mL水中形成Cu(NO3)2溶液,然后加入取的80mmol1,2-二氨基环己烷四乙酸(DCTA)搅拌形成一悬浊液。取40mL浓度为2mol/L的氢氧化钠溶液和40mL的水合肼溶液(50%)依次加入上述悬浊液,搅拌,最终得到反应液转入反应釜中。将裁剪好的、长12cm、宽5cm的钛片卷成圆柱形紧贴反应釜的内壁。在120℃下反应6小时。
实施例5
本发明为一种负载于基材的铜纳米薄膜的制备方法的一种实施例,本实施例所述方法包括以下步骤:
取10mmol CuCl2溶于80mL水中形成CuCl2溶液,然后加入取的15mmol乙二胺四乙酸(EDTA)搅拌形成一悬浊液。取10mL浓度为2mol/L的氢氧化钠溶液和30mL的水合肼溶液(50%)依次加入上述悬浊液,搅拌,最终得到反应液转入水热反应釜中。将裁剪好的、长12cm、宽5cm的钛片卷成圆柱形紧贴水热反应釜的内壁。在160℃下反应2小时,即有纳米铜均匀地沉积在石墨纸上,得到负载于基材的铜纳米薄膜。
实施例测试结果分析:
检测本发明实施例1制备的负载于基材的铜纳米薄膜的物相结构,图1(a)中钛基材在二倍衍射角为35.0°、38.4°、40.1°、53.0°、62.9°、70.6°和76.1°处出峰,分别对应的是六方密堆积晶型金属钛的(100)、(002)、(101)、(102)、(110)、(103)和(112)晶面衍射(PDF#65-9622)。图1(b)中除了上述峰之外还在二倍衍射角为43.3°,50.3°和74.1°出峰,分别对应面心立方晶型金属铜的(111)、(200)、(220)的晶面衍射(PDF#89-2838)。XRD图谱分析表明铜已成功地沉积在钛片基材上。
检测本发明实施例1制备的负载于基材的铜纳米薄膜的晶相和尺寸,如图 2所示的低倍SEM图和图3所示的高倍SEM图可知,图2表明所制备的铜纳米片薄膜表面粗糙,图3表明铜纳米片薄膜由许多铜纳米片组成,纳米片厚度约为5nm,长度约为100-200nm。
实验仪器:采用岛津XD~3A X射线衍射仪分析样品的物相结构,采用日立S~4800型扫描电子显微镜观察样品的微观形貌。
试验例
将本发明实施例1制备的负载于基材的铜纳米薄膜应用于催化水合肼还原对硝基苯酚,其催化实验过程为:配制浓度为2x10-4mol/L的对硝基苯酚溶液,然后配置水合肼/氢氧化钠混合溶液,其中水合肼和氢氧化钠的浓度分别为2.5mol/L和10mol/L。用移液管各移取16ml对硝基苯酚和4ml水合肼/氢氧化钠混合溶液搅拌混合,测量混合液起始吸光度为A0。裁剪长5cm、宽3cm薄膜催化,将其投入烧杯中反应,不断搅拌溶液。每隔一段时间取一个样测试混合液的吸光度为At,测完后将石英槽中溶液到回小烧杯中。整个反应过程用水浴锅控温在30℃。
催化性能评估:At/A0=c/c0.其中c0为反应开始时的对硝基苯酚浓度,c为反应任意一段时间后的对硝基苯酚浓度。c/c0表示反应过程中对硝基苯酚浓度的剩余浓度和其初始浓度的比值。
如图4所示是本发明实施例1制备的负载于基材的铜纳米薄膜应用于催化水合肼还原对硝基苯酚的催化效果图,从中可知,反应时间为24分钟时,对硝基苯酚的还原达到约93%,表明所制备的铜纳米片薄膜具有很高的催化活性。
结论:
与现有技术相比,本发明的负载于基材的铜纳米薄膜的制备方法,一方面,通过一步合成法将铜纳米片成功地负载在二维基材上,另一方面,通过螯合剂和二价铜盐络合从而控制铜盐的还原速率,使所生成的铜纳米晶有优先生长取向从而形成一些具有特定形貌的非球形纳米晶,得到由纳米片组成的铜薄膜。
与现有技术相比,本发明的负载于基材的铜纳米薄膜,一方面,由于纳米铜薄膜负载于基材上,其作为催化剂应用时方便分离再利用,尤其在液相反应体系中,另一方面,由于纳米铜薄膜负载于基材上,避免了以往颗粒团聚的现象,因此,不会出现催化剂随时间延长而活性下降的问题。
与现有技术相比,本发明的负载于基材的铜纳米薄膜在催化水合肼还原对硝基苯酚中的应用,具有还原率高的优点。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种负载于基材的铜纳米薄膜的制备方法,其特征在于,所述方法包括:
    将二价铜盐溶液和螯合剂混合,剧烈搅拌条件下,缓慢加入第一碱溶液,得螯合物溶液;
    在所述螯合物溶液中加入还原剂后搅拌,所得溶液转入反应釜中;
    将基材卷成圆柱形紧贴所述反应釜的内壁,在100-180℃下反应1-8小时,反应后即有纳米铜均匀地沉积在基材上,得到所述负载于基材的铜纳米薄膜。
  2. 如权利要求1所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述还原剂为水合肼。
  3. 如权利要求2所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述方法还包括:在所述螯合物溶液形成后,再加入增强所述水合肼还原作用的第二碱溶液。
  4. 如权利要求1所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述二价铜盐溶液的配制方法为:取3-200mmol二价铜盐溶于40-400mL水中;所述碱溶液的配制方法为:取18-400mmol碱溶于40mL水中。
  5. 如权利要求4所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述螯合剂和所述二价铜盐的摩尔比为螯合剂:二价铜盐=1:1~8:1。
  6. 如权利要求1所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述螯合剂为二乙烯三胺五乙酸(DTPA)、乙二胺四乙酸(EDTA)、1,2-二氨基环己烷四乙酸(DCTA)中的至少一种。
  7. 如权利要求1所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述二价铜盐为CuSO4·5H2O、CuCl2、Cu(NO3)2中的至少一种,所述第一碱溶液为氢氧化钠溶液或氢氧化钾溶液。
  8. 如权利要求1所述负载于基材的铜纳米薄膜的制备方法,其特征在于,所述基材为二维基材,所述二维基材的长为8~14cm、宽为3~6cm,所述二维基材为钛片、铜箔、石墨纸中的一种。
  9. 一种如权利要求1~8任一所述方法制备的负载于基材的铜纳米薄膜,其特征在于,所述铜纳米薄膜负载于基材上,且所述铜纳米薄膜由多个铜纳米片组成,每个铜纳米片的长度为100~200nm、厚度为4~6nm。
  10. 一种如权利要求9所述负载于基材的铜纳米薄膜在催化水合肼还原对硝基苯酚中的应用。
PCT/CN2016/111952 2015-12-25 2016-12-24 一种负载于基材的铜纳米薄膜及其制备方法和应用 WO2017107998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511009736.6 2015-12-25
CN201511009736.6A CN105817616A (zh) 2016-05-30 2016-05-30 一种负载于基材的铜纳米薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
WO2017107998A1 true WO2017107998A1 (zh) 2017-06-29
WO2017107998A8 WO2017107998A8 (zh) 2017-09-21

Family

ID=56514952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111952 WO2017107998A1 (zh) 2015-12-25 2016-12-24 一种负载于基材的铜纳米薄膜及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN105817616A (zh)
WO (1) WO2017107998A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用
CN106807380B (zh) * 2017-01-13 2019-10-01 安徽师范大学 一种铜基三元复合金属氧化物空心纳米材料、制备方法及应用
CN108315771B (zh) * 2018-02-11 2019-09-13 中国工程物理研究院材料研究所 一种亚纳米尺寸铜粒子电催化剂的电化学制备方法
CN110075843B (zh) * 2019-04-08 2020-03-24 电子科技大学 一种纳米铜催化剂及其制法以及在合成乙酸或氨中的应用
CN114464815B (zh) * 2022-03-11 2024-03-26 广汽埃安新能源汽车有限公司 一种金属箔及其制备方法、金属集流体

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044590A1 (en) * 2005-08-26 2007-03-01 National Chung-Hsing University Method for producing metal nanoparticle
US20110088511A1 (en) * 2010-08-28 2011-04-21 Ghanavi Jalaledin Method for producing rod-shaped and branched metallic nano-structures by polyol compounds
CN102085575A (zh) * 2009-12-03 2011-06-08 中国科学院化学研究所 快速连续的制备尺寸及形貌可控的金属纳米粒子的方法
CN102205422A (zh) * 2011-01-17 2011-10-05 深圳市圣龙特电子有限公司 一种电子浆料用纳米铜粉及其制作工艺
CN102251278A (zh) * 2011-05-31 2011-11-23 常州大学 一种单晶铜纳米线的可控制备方法
JP4914705B2 (ja) * 2006-12-08 2012-04-11 ハリマ化成株式会社 微細な銅系配線パターンの形成方法
CN102513547A (zh) * 2011-12-29 2012-06-27 南京大学 一种抗信息泄漏材料的制法及其制备的纳米金属/膨胀石墨抗信息泄漏材料
CN105219999A (zh) * 2015-10-21 2016-01-06 云南大学 一种碳纳米纸纳米铜复合材料及其制备方法
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315604C (zh) * 2003-11-08 2007-05-16 桂林工学院 片状超细铜粉的化学制备方法
US20060090601A1 (en) * 2004-11-03 2006-05-04 Goia Dan V Polyol-based method for producing ultra-fine nickel powders
US20060090597A1 (en) * 2004-10-29 2006-05-04 Goia Dan V Polyol-based method for producing ultra-fine metal powders
US8470066B2 (en) * 2004-10-29 2013-06-25 Clarkson University Aqueous-based method for producing ultra-fine metal powders
WO2010026571A2 (en) * 2008-09-02 2010-03-11 Ramot At Tel-Aviv University Ltd. Metal nanowire thin-films
CN101391309B (zh) * 2008-11-05 2010-08-11 北京科技大学 Edta络合法制备纳米级弥散强化金属用预合金粉末的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044590A1 (en) * 2005-08-26 2007-03-01 National Chung-Hsing University Method for producing metal nanoparticle
JP4914705B2 (ja) * 2006-12-08 2012-04-11 ハリマ化成株式会社 微細な銅系配線パターンの形成方法
CN102085575A (zh) * 2009-12-03 2011-06-08 中国科学院化学研究所 快速连续的制备尺寸及形貌可控的金属纳米粒子的方法
US20110088511A1 (en) * 2010-08-28 2011-04-21 Ghanavi Jalaledin Method for producing rod-shaped and branched metallic nano-structures by polyol compounds
CN102205422A (zh) * 2011-01-17 2011-10-05 深圳市圣龙特电子有限公司 一种电子浆料用纳米铜粉及其制作工艺
CN102251278A (zh) * 2011-05-31 2011-11-23 常州大学 一种单晶铜纳米线的可控制备方法
CN102513547A (zh) * 2011-12-29 2012-06-27 南京大学 一种抗信息泄漏材料的制法及其制备的纳米金属/膨胀石墨抗信息泄漏材料
CN105219999A (zh) * 2015-10-21 2016-01-06 云南大学 一种碳纳米纸纳米铜复合材料及其制备方法
CN105817616A (zh) * 2016-05-30 2016-08-03 李�浩 一种负载于基材的铜纳米薄膜及其制备方法和应用

Also Published As

Publication number Publication date
WO2017107998A8 (zh) 2017-09-21
CN105817616A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2017107998A1 (zh) 一种负载于基材的铜纳米薄膜及其制备方法和应用
Fouad et al. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor
Zhang et al. Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications
Sui et al. Low temperature synthesis of Cu2O crystals: shape evolution and growth mechanism
Hu et al. Rapid controllable high-concentration synthesis and mutual attachment of silver nanowires
JP4018138B2 (ja) 長球的に集塊した塩基性炭酸コバルト(ii)及び長球的に集塊した水酸化コバルト(ii)、それらの製法及び使用法
Wang et al. Seed-mediated synthesis of shape-controlled CeO 2 nanocrystals
CN101570348A (zh) 一种致密晶型氢氧化钴的制备方法
JP4846280B2 (ja) オキシ水酸化コバルト粒子及びその製造方法
Lu et al. Strategies for tailoring the properties of chemically precipitated metal powders
Liu et al. Transformation of zincblende nanoparticles into wurtzite microrods by a dissolution–regrowth process: an intergrowth homojunction with enhanced photocatalytic activity
Lan et al. Nanoceria synthesis in the KC l‐LiCl salt system: crystal formation and properties
Zhou et al. Synthesis and catalytic property of facet-controlled Co 3 O 4 structures enclosed by (111) and (113) facets
JP2024515312A (ja) 埋め込まれたナノ粒子を含むナノチタン酸塩、ナノチタン酸、ナノTiO2の製造方法、及び金属ナノ粒子の製造方法
CN103128305B (zh) 一种制备Ag/Co磁性纳米复合材料的方法
Wu et al. Deep insights into the growth pattern of palladium nanocubes with controllable sizes
CN108579760A (zh) 一种碳包覆的镍铁合金纳米催化剂及其制备方法和用途
Chen et al. Facile synthesis of manganite nanowires: phase transitions and their electrocatalysis performance
JP2008094695A (ja) 針状酸化亜鉛の製造方法
Zhang et al. Preparation and optical properties of Cu2O hollow microsphere film and hollow nanosphere powder via a simple liquid reduction approach
WO2017107999A1 (zh) 一种氧化铜纳米线的制备方法
JP2014189433A (ja) セリウムとジルコニウムを含む金属酸化物とその製造方法
Sun et al. Synthesis of ZnS hollow nanoneedles via the nanoscale Kirkendall effect
Zhu et al. Influence of Au nanoparticle shape on Au@ Cu2O heterostructures
CN113996802A (zh) 一种立方体铜纳米粒子的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16877808

Country of ref document: EP

Kind code of ref document: A1