WO2017104401A1 - 制御装置、監視システム、制御プログラムおよび記録媒体 - Google Patents

制御装置、監視システム、制御プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2017104401A1
WO2017104401A1 PCT/JP2016/085364 JP2016085364W WO2017104401A1 WO 2017104401 A1 WO2017104401 A1 WO 2017104401A1 JP 2016085364 W JP2016085364 W JP 2016085364W WO 2017104401 A1 WO2017104401 A1 WO 2017104401A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
control
unit
control device
machine
Prior art date
Application number
PCT/JP2016/085364
Other languages
English (en)
French (fr)
Inventor
智史 小山
陽平 高山
古川 智久
古田 勝久
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/751,876 priority Critical patent/US20180232294A1/en
Priority to EP16875385.3A priority patent/EP3392727A4/en
Priority to CN201680047768.1A priority patent/CN107924183A/zh
Publication of WO2017104401A1 publication Critical patent/WO2017104401A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3055Monitoring arrangements for monitoring the status of the computing system or of the computing system component, e.g. monitoring if the computing system is on, off, available, not available
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/056Programming the PLC
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0232Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on qualitative trend analysis, e.g. system evolution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3024Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3041Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is an input/output interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • G06F16/2358Change logging, detection, and notification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37435Vibration of machine

Definitions

  • the present invention relates to a control device such as a programmable logic controller (PLC), a monitoring system using the control device, a control program, and a recording medium.
  • a control device such as a programmable logic controller (PLC)
  • PLC programmable logic controller
  • Control devices such as PLC are used to control machines (control objects) installed in factories.
  • the control device has a plurality of input / output functions, for example, sequentially reads values output from sensors attached to the machine and holds data (hereinafter, machine data).
  • machine data data
  • the retained machine data is used for machine control.
  • Patent Document 1 describes a control device that is connected to a database and accumulates stored machine data in the database.
  • Patent Document 2 discloses an inspection device that can be used for such confirmation, which measures vibration and sound with a measuring instrument, analyzes the waveform of the analog signal, and inspects whether the machine or the like is normal. Are listed.
  • control device accumulates machine data, it does not cooperate with the inspection device, and the control device and the inspection device acquire data at their respective timings. Therefore, in order to check the machine data when abnormal vibration or sound is generated, extract the machine data of the time when abnormal vibration or sound is generated from the accumulated machine data, It is necessary to perform complicated work such as re-plotting in accordance with the timing of data acquisition by the inspection apparatus.
  • the present invention has been made in view of the above problems, and its object is to change the data of the measuring instrument indicating the operation state of the controlled object (machine) acquired by the measuring instrument and control for controlling the controlled object. It is an object of the present invention to provide a control device capable of easily confirming a relationship with data (machine data) and, in turn, grasping a sign of abnormality in a controlled object and identifying the cause of the abnormality.
  • a control device that outputs a control command to the control target based on a plurality of control data acquired from the control target. Obtained by an instruction from the measuring instrument data acquisition instructing unit for instructing acquisition of data at a timing that can be arbitrarily set with respect to a measuring instrument that measures a value indicating the target operating state. At least one of the data of the measuring instrument and the feature amount calculated from the data, the plurality of control data acquired at the same time as the data of the measuring instrument, and the date and time when the data of the measuring instrument was acquired And a storage instructing unit that stores information in a storage device in association with each other.
  • a monitoring system generates and displays a trend graph of a monitoring index determined based on the stored data by accessing the control device, the storage device, and the storage device. And an information processing apparatus having a trend graph creation / display unit to be displayed on the apparatus.
  • control device may be realized by a computer.
  • a control program that causes a computer to function as the measuring instrument data acquisition instruction unit and the storage instruction unit of the control device, and a recording medium that records the control program are also included in the scope of the present invention.
  • the present invention it is possible to easily confirm a relationship between a change in data of a measuring instrument indicating an operation state of a controlled object acquired by the measuring instrument and control data for controlling the controlled object.
  • a control device that can easily grasp the sign of abnormality and specify the cause of the abnormality in the control target.
  • FIG. 1 is a block diagram showing a configuration example of a monitoring system 1 including a control device 10 according to an embodiment of the present invention. First, an overview of the monitoring system 1 will be described with reference to FIG.
  • the collection 1 includes a control device 10 that controls a machine 5 to be controlled, a machine data measurement unit 20, a DB (database) 30, and a PC (personal computer, information processing device) 40. And a vibration collecting unit (measuring instrument, vibration measuring instrument) 3 and a sound collecting unit (measuring instrument, sound measuring instrument) 7.
  • the DB 30 is described as hardware different from the PC 40, but the DB 30 may be the same hardware as the PC 40.
  • the control device 10 is an industrial control device such as a PLC (Programmable Logic Controller).
  • the control device 10 controls each part of the machine 5 by transmitting a control command to the machine 5 based on machine data (control data) described later received from the machine 5.
  • the machine 5 is a manufacturing apparatus installed in a factory, for example.
  • the machine 5 includes an X-axis servo motor (not shown), a Y-axis servo motor (not shown), and a ⁇ -axis servo motor (axis).
  • the machine data measuring unit 20 is interposed between the control device 10 and the machine 5 and sequentially measures machine data necessary for the control device 10 to control the machine 5.
  • the machine data measurement unit 20 includes an X-axis servo driver 21, a Y-axis servo driver 22, a ⁇ -axis servo driver 23, an input / output terminal 24, an image processing system 25, and a displacement sensor 26. Is included.
  • the X-axis / Y-axis / ⁇ -axis servo drivers 21 to 23 are responsible for driving the X-axis / Y-axis / ⁇ -axis servo motors provided in the machine 5, respectively.
  • the Y-axis servo driver 22 transmits the Y-axis feedback current position to the control device 10 as one piece of machine data.
  • the ⁇ -axis servo driver 23 transmits the ⁇ -axis feedback current torque to the control device 10 as one of machine data.
  • each X-axis / Y-axis / ⁇ -axis servomotor is provided with a thermocouple.
  • the input / output terminal 24 measures the temperature of each servo motor as one piece of machine data and transmits it to the control device 10.
  • the displacement sensor 26 measures a position change amount of a predetermined axis, for example, the Y axis, as one piece of machine data, and transmits it to the control device 10.
  • the image processing system 25 captures an image, and calculates a separation distance based on the positional relationship between predetermined members in the machine 5 from the image.
  • the image processing system 25 transmits the calculated separation distance to the control device 10 as one piece of machine data. In the present embodiment, the distance between them is calculated from an image obtained by photographing the positional relationship between the disk 5a and the contact pin 5b.
  • the image processing system 25 receives data acquisition date / time information described later from the control device 10, the image processing system 25 transmits image data of the data acquisition date / time indicated by the information to the DB 30 as one of the monitoring data. To do.
  • the vibration collection unit 3 acquires the detection value of the vibration sensor 3a arranged on the machine 5 side and acquires the vibration waveform data.
  • the vibration collection unit 3 transmits a part of the acquired waveform data to the control device 10 and transmits the entire waveform data to the DB 30 as one of the monitoring data.
  • the acquisition timing (sampling period) of the vibration waveform data of the vibration collection unit 3 is, for example, 25.6 kHz.
  • the sound collection unit 7 When the sound collection unit 7 is instructed to start acquisition of sound data from the control device 10, the sound collection unit 7 acquires sound data of the sound collected by the microphone 7a arranged on the machine 5 side. The sound collection unit 7 transmits the acquired sound data to the DB 30 as one of the monitoring data.
  • the control device 10 performs sequence control for controlling ON / OFF of the actuator (each X-axis / Y-axis / ⁇ -axis servomotor) of the machine 5 in accordance with machine data sequentially measured by the machine data measuring unit 20. And motion control for continuously controlling the operation displacement and operation speed of the actuator.
  • the machine data includes the X-axis / Y-axis / ⁇ -axis servo motor temperature, the Y-axis position change amount, the separation distance between the disk 5a and the contact pin 5b, and the Y-axis feedback. Get the current position and the current feedback torque of the ⁇ -axis.
  • control device 10 sends vibration waveform data, sound as monitoring data to the vibration collection unit 3, the sound collection unit 7, and the image processing system 25 at a predetermined timing (monitoring data acquisition timing). Data and image data are acquired, and the acquired monitoring data is correlated with machine data and data acquisition date / time information acquired at the same timing. Further, the control device 10 calculates a waveform feature amount based on the vibration waveform data acquired by the vibration collection unit 3, and similarly correlates the waveform feature amount as one of the monitoring data.
  • the PC 40 includes a monitor 51, a speaker 52, a keyboard (not shown), a mouse (not shown), and the like.
  • the PC 40 stores the machine data received from the control device 10 in the DB 30 in accordance with an instruction from the control device 10.
  • the PC 40 refers to the DB 30 to create a trend graph indicating a trend with respect to the waveform feature amount and the machine data, and displays the trend graph on the monitor 51. Also, the vibration at the designated data acquisition date and time is displayed. The analysis result of the waveform data is displayed, and the image data and sound data at the specified data acquisition date and time are reproduced.
  • the DB 30 stores machine data and waveform feature amounts transmitted from the control device 10 via the PC 40, and monitoring data transmitted from the vibration collection unit 3, the sound collection unit 7, and the image processing system.
  • FIG. 2 is a block diagram showing the detailed configuration of the control device 10, DB 30 and PC 40 included in the monitoring system 1, and the data flow in the monitoring system 1. Next, with reference to FIG. 2, the detailed configuration of each unit and the data flow in the monitoring system 1 will be described.
  • control device 10 includes a machine data collection unit 11, a monitoring data acquisition instruction unit (measuring instrument data acquisition instruction unit) 12, a waveform feature amount calculation unit 13, and a storage instruction unit 14. ing.
  • the machine data collection unit 11 receives and collects sequentially measured machine data from the machine data measurement unit 20.
  • the monitoring data acquisition instruction unit 12 instructs the vibration collection unit 3 and the sound collection unit 7 to start acquisition of vibration waveform data and sound data at the monitoring data acquisition timing for acquiring the monitoring data.
  • the monitoring data acquisition instruction unit 12 adds the data acquisition date / time information including the monitoring data acquisition start time to instruct the start.
  • the monitoring data acquisition instruction unit 12 transmits the data acquisition date / time information to the image processing system 25 of the machine data collection unit 11, the waveform feature amount calculation unit 13, and the machine data measurement unit 20 at the monitoring data acquisition timing.
  • the monitoring data acquisition timing can be arbitrarily set by the user.
  • an arbitrary setting is made from a monitoring data acquisition timing setting unit 46 described later provided in the PC 40.
  • the machine data collection unit 11 When the machine data collection unit 11 receives the data acquisition date / time information from the monitoring data acquisition instruction unit 12, the machine data collection unit 11 extracts machine data corresponding to the data acquisition date / time information from the collected machine data, and stores it in the storage instruction unit 14. Send. The machine data collection unit 11 adds the data acquisition date / time information and transmits the machine data.
  • the waveform feature value calculation unit 13 When the waveform feature value calculation unit 13 receives vibration waveform data for several frames from the vibration collection unit 3, the waveform feature value calculation unit 13 performs a filter process, an FFT process, a feature value calculation process, and the like to calculate a waveform feature value.
  • the waveform feature quantity computing unit 13 transmits the calculated waveform feature quantity to the storage instruction unit 14 with the data acquisition date / time information added.
  • the storage instructing unit 14 correlates the machine data received from the machine data collecting unit 11, the waveform feature received from the waveform feature calculating unit 13, and the same data acquisition date / time information added thereto. It transmits to PC40 and instruct
  • the vibration collection unit 3 When the vibration collection unit 3 is instructed to start acquisition of vibration waveform data together with the data acquisition date / time information from the monitoring data acquisition instruction unit 12 of the control device 10, the vibration collection unit 3 measures and acquires the vibration waveform data for a predetermined time.
  • the vibration collecting unit 3 transmits a part of the acquired vibration waveform data, for example, five frames to the control device 10 for calculating the waveform feature amount. Further, the vibration collection unit 3 transmits the entire acquired vibration waveform data to the DB 30 in association with the data acquisition date / time information received together with the acquisition start instruction, and stores it. Specifically, the file name of the vibration waveform data is set as the data acquisition date.
  • the sound collection unit 7 acquires sound data for a predetermined time when an instruction to start acquisition of sound data is given from the monitoring data acquisition instruction unit 12 of the control device 10.
  • the sound collection unit 7 transmits the stored sound data for a predetermined time to the DB 30 in association with the data acquisition date / time information received together with the acquisition start instruction, and stores it.
  • the file name of the audio data is the data acquisition date.
  • the image processing system 25 When the image processing system 25 receives the data acquisition date / time information from the monitoring data acquisition instruction unit 12 of the control device 10, the image processing system 25 associates image data for a predetermined time from the time indicated by the data acquisition date / time with the received data acquisition date / time information. To the DB 30 for storage. Specifically, the file name of the image data is set as the data acquisition date.
  • the DB 30 includes a waveform feature table 31, a machine data table 32, a torque table 33, a vibration waveform data storage unit 34, an image data storage unit 35, and a sound data storage unit 36.
  • the vibration waveform data storage unit 34 stores vibration waveform data transmitted from the vibration collection unit 3 and having a data acquisition date and time as a file name.
  • the image data storage unit 35 stores image data transmitted from the image processing system 25 and having a data acquisition date and time as a file name.
  • the sound data storage unit 36 stores sound data transmitted from the sound collection unit 7 and having the data acquisition date and time attached to the file name.
  • the PC 40 includes a database processing unit 41, a sign management unit 42, a waveform analysis display unit 47, an image display unit (output unit) 48, and a sound output unit (output unit) 49.
  • the database processing unit 41 When the database processing unit 41 receives the machine data, the waveform feature amount, and the data acquisition date / time information associated with each other from the storage instruction unit 14 according to the instruction of the storage instruction unit 14 of the control device 10, the database processing unit 41 stores them in the DB 30. .
  • the waveform feature quantity is stored in the waveform feature quantity table 31 in association with the data acquisition date and time.
  • the temperature of each X-axis / Y-axis / ⁇ -axis servo motor, the Y-axis position change amount, the separation distance between the disk 5a and the contact pin 5b, and the current feedback position of the Y-axis are the data acquisition date and time.
  • the ⁇ -axis feedback current torque of the machine data is stored in the torque table 33 in association with the data acquisition date and time.
  • the sign management unit 42 includes a trend graph creation display unit 43, a threshold setting unit 44, an alarm output unit 45, and a monitoring data acquisition timing setting unit 46.
  • the trend graph creation / display unit 43 refers to the waveform feature amount table 31, the machine data table 32, and the torque table 33 in the DB 30, and indicates a monitoring index indicating the degree of normality / abnormality of the machine 5 by a deviation amount from a reference value.
  • Each trend graph (see FIG. 5) is created and displayed on the monitor 51 (see FIG. 1).
  • a trend graph is a graph that represents a monitoring index along a time series for each data acquisition date and time, and represents a change in the monitoring index.
  • the trend graph creation display unit 43 creates 42 types of trend graphs using, for example, 42 types of monitoring indicators, and displays them in a single window in a scrollable manner.
  • the breakdown of 42 types includes 35 types of waveform feature values (effective values, peak amplitudes A to E, impact levels A to E, specific frequency components by frequency analysis, etc.), and machine data as X axis / Y axis / ⁇ .
  • the threshold value setting unit 44 sets a threshold value for each monitoring index, that is, for each trend graph.
  • the threshold setting unit 44 has a function of automatically setting a threshold using, for example, the average value or deviation of the monitoring index.
  • the threshold value setting unit 44 displays a threshold value setting screen 64 (see FIG. 4), which will be described later, for setting the threshold value on the monitor 51, and accepts settings by the user using the screen. Further, when a failure of the machine 5 is found, the user inputs the failure occurrence time to the control device 10, and the threshold setting unit 44 determines an allowable range based on the inputted monitoring index value at the failure occurrence time.
  • a threshold may be set.
  • an upper limit forecast threshold and a lower limit forecast threshold for issuing a forecast before the alarm are also set.
  • the threshold value is displayed so as to overlap the trend graph G as will be described later.
  • the alarm output unit 45 displays an alarm on an alarm display screen 63 (see FIG. 4) described later on the monitor 51.
  • an alarm sound can be generated or a pre-registered transmission destination can be notified by e-mail.
  • the monitoring data acquisition timing setting unit 46 receives the setting of monitoring data acquisition timing in the control device 10.
  • the monitoring data acquisition timing setting unit 46 displays a setting screen (not shown) for setting the monitoring data acquisition timing on the monitor 51, and the user sets from the screen.
  • the monitoring data acquisition timing setting unit 46 transmits the set monitoring data acquisition timing to the monitoring data acquisition instruction unit 12 of the control device 10.
  • the monitoring data acquisition timing can be set in association with a control instruction to the machine 5 or a change in machine data as a result thereof, in addition to setting by a date and time such as a predetermined time every other day.
  • the timing of outputting a control command for changing the rotation speed of the X-axis servo motor from A to B, or machine data indicating that the rotation speed of the X-axis servo motor has actually changed from A to B has changed.
  • the timing at which the machine data indicating that the Y axis has actually returned to the initial position has changed.
  • the monitoring data acquisition timing in association with a control command to the machine 5 or a change in the machine data as a result, the moment when the machine 5 is loaded, or the machine 5 has a specific (predetermined) operation. It is possible to make settings in association with an operation that the machine 5 has failed in the past or when it has started, and it is possible to obtain effective data with a smaller amount of data by grasping abnormal signs.
  • the waveform analysis display unit 47 refers to the vibration waveform data storage unit 34 of the DB 30 and acquires the vibration waveform data having the file name of the data acquisition date and time when the analysis is instructed. This is analyzed, and a vibration waveform analysis screen 70 (see FIG. 6) described later including the analysis result is displayed on the monitor 51 (see FIG. 1).
  • the image display unit 48 refers to the image data storage unit 35 of the DB 30 to acquire the image data having the file name of the data acquisition date and time when the analysis is instructed, and the monitor 51 (see FIG. 1). ).
  • the sound output unit 49 refers to the sound data storage unit 36 of the DB 30 to acquire sound data having the file name of the data acquisition date and time for which analysis has been instructed, and the speaker 52 (see FIG. 1). ) To output sound.
  • FIG. 3 is a flowchart showing processes of the control device 10, the vibration collection unit 3, the sound collection unit 7, the image processing system 25, and the PC 40 included in the monitoring system 1. Next, with reference to FIG. 3, the process flow of each unit in the monitoring system 1 will be described.
  • control device 10 always determines whether or not it is the monitoring data acquisition timing (S1).
  • the control device 10 receives and collects machine data sequentially measured from the machine data measurement unit 20 while making the determination in S1.
  • control device 10 determines in S1 that it is the monitoring data acquisition timing, the control device 10 proceeds to S2, and adds the data acquisition date / time information to the vibration collection unit 3 and the sound collection unit 7 to start acquisition of vibration waveform data and sound data. Instruct. In addition, the control device 10 transmits data acquisition date information to the image processing system 25.
  • the vibration collection unit 3 and the sound collection unit 7 always determine whether or not the start of data acquisition has been instructed (S11, S21). If the vibration collection unit 3 and the sound collection unit 7 determine through S2 of the control device 10 that they are instructed in S11 and S21, the process proceeds to S12 and S22, and vibration measurement and sound collection are started. Vibration measurement and sound collection are performed for a predetermined time after the start. During this time, the vibration collection unit 3 transmits a predetermined number of frames of the acquired vibration waveform data to the control device 10 for waveform feature amount calculation (S13).
  • the control device 10 When the control device 10 receives vibration waveform data for several frames from the vibration collection unit 3 through S13 of the vibration collection unit 3, the control device 10 calculates a waveform feature amount (S3). Next, the control device 10 transmits the calculated waveform feature amount and the machine data corresponding to the date / time of the data acquisition date / time information transmitted in S2 to the PC 40 in association with the data acquisition date / time information transmitted in S2. Then, storage to the DB 30 is instructed (S4).
  • the process proceeds to S14 and S23, and the acquired vibration waveform data and sound data are set to the date and time of the data acquisition date and time information received in S11.
  • a file name is assigned and transmitted to the DB 30 to instruct storage.
  • the image processing system 25 always determines whether or not the data acquisition date / time information has been received from the control device 10 while sequentially capturing images to acquire machine data (S31) (S32). If the image processing system 25 determines in S32 that the data acquisition date / time information has been acquired, the process proceeds to S33, and the image data corresponding to the date / time of the received data acquisition date / time information is set to the date / time of the data acquisition date / time information received in S31. A file name is assigned and transmitted to the DB 30 to instruct storage. Here, if the image data transmitted to the DB 30 is a moving image, the image data has the same length as the time measured and collected by the vibration collection unit 3 and the sound collection unit 7 in S12 and S22.
  • the PC 40 receives the data acquisition date / time information, the machine data, and the waveform feature amount that are associated with each other from the control device 10, and always determines whether or not storage has been instructed (S41). If YES is determined in S ⁇ b> 41, the process proceeds to S ⁇ b> 42, and the data acquisition date / time information, the machine data, and the waveform feature amount associated with each other are stored in the DB 30.
  • FIG. 4 is a diagram showing an example of the trend graph display screen 60 displayed on the monitor 51 of the PC 40.
  • 42 types of trend graphs G1 to G42 created using the 42 types of monitoring indicators described above are arranged vertically and scrollably displayed.
  • the scroll bar 62 provided in the window 65 By operating the scroll bar 62 provided in the window 65, all of the 42 types of trend graphs G1 to G42 can be confirmed.
  • the 42 types of trend graphs can be rearranged.
  • the trend graphs G1 to G42 are displayed in the order stored in the DB 30 until the rearrangement is instructed.
  • the display order is rearranged in descending order of the amount of change from the previous measurement.
  • an alarm display screen 63 is displayed beside the window 65, and a prediction alarm and a warning alarm for each of the whole alarm and the monitoring index are displayed on the screen 63.
  • the alarm output unit 45 sets the forecast alarm of the monitoring index (trend graph) to ON display.
  • the alarm alarm of the monitoring index (trend graph) is turned ON.
  • the alarm output unit 45 displays the entire alarm ON when any one of the monitoring index values reaches the upper limit alarm threshold or the lower limit alarm threshold. By turning on the overall alarm, it is possible to confirm at a glance that the upper limit alarm threshold or the lower limit alarm threshold has been reached in any of the 42 types of monitoring indicators.
  • the alarm output unit 45 displays the entire alarm OFF when all the monitoring indices are in a state where neither the upper limit alarm threshold nor the lower limit alarm threshold is exceeded.
  • the warning level and warning alarm are switched between warning levels, for example, by setting the forecast to yellow and the warning to red.
  • the above-described threshold setting screen 64 is displayed below the alarm display screen 63, and each monitor index can be set and changed using the screen 64.
  • FIG. 5 is a diagram illustrating an example of the trend graph G displayed on the trend graph display screen 60.
  • the trend graph G is represented by a monitoring index value on the vertical axis and a time axis on the data acquisition date and time on the horizontal axis.
  • the monitoring index value starts to rise at the point A as a boundary.
  • the time axis on the horizontal axis is common between the trend graphs G1 to G42.
  • the date and time of data acquisition can be specified by moving the mouse cursor to the plotted point.
  • buttons for instructing waveform analysis, image display, and sound reproduction are displayed in a dialog.
  • the waveform analysis display unit 47 (FIG. 2) analyzes the vibration waveform data of the data acquisition date and time at the cursor position, and a vibration waveform analysis screen 70 (see FIG. 6) described later is displayed. indicate.
  • Clicking the image display button displays the image data at the data acquisition date and time indicated by the cursor position
  • clicking the sound playback button plays the sound data at the data acquisition date and time indicated by the cursor position. Is done.
  • the trend graph G is line-displayed with an upper limit alarm threshold value and a lower limit alarm threshold value, and an upper limit forecast threshold value and a lower limit forecast threshold value. If any one of the trend graphs G1 to G42 reaches the upper warning threshold or the lower warning threshold, the warning alarm for that monitoring indicator is turned ON, and an alarm mail prompting the inspection of the monitoring indicator is sent. Sent.
  • the message includes the name of the monitoring index in which the alarm has occurred, for example, “Monitoring index XX has reached the alarm value, please check.”
  • FIG. 6 is a diagram illustrating an example of the vibration waveform analysis screen 70 displayed on the monitor 51 of the PC 40.
  • the vibration waveform analysis screen 70 includes the entire vibration waveform data (reference numeral 71) corresponding to the date and time of data acquisition, and vibration waveform data (reference data) of several frames used for calculating the waveform feature amount.
  • Reference numeral 72 FFT graph (reference numeral 73), FFT intensity graph (reference numeral 74), FFT3D graph (reference numeral 75), and the like are displayed.
  • the display unit 48 and the sound output unit 49 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or by software using a CPU (Central Processing Unit). Good.
  • control device 10 and the PC 40 include a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU). ) Or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) that expands the program, and the like.
  • recording media a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via any transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • any transmission medium such as a communication network or a broadcast wave
  • one embodiment of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the control device 10 and the PC 40 according to the embodiment of the present invention may be realized by a computer.
  • the control device 10 is operated by causing the computer to operate as each unit (software element) included in the control device 10.
  • the monitoring program of the control device 10 that realizes the above in a computer and a computer-readable recording medium that records the monitoring program also fall within the scope of the present invention.
  • the waveform feature amount calculation unit 13 is mounted on the control device 10, but may be configured to be mounted on the PC 40 side.
  • the waveform feature quantity calculation unit 13 is not essential.
  • the sound volume is regarded as a feature quantity
  • the feature quantity is sent from the sound collection unit 7 to the DB
  • the machine data transmitted from the control device 10 is mutually connected.
  • the configuration may be related.
  • the waveform feature amount calculation unit 13 may extract a waveform feature from the sound data acquired by the sound collection unit 7.
  • the machine data, the waveform feature amount, and the data acquisition date / time information associated with each other are stored in the DB 30 via the PC 40 from the control device 10, but without passing through the PC 40.
  • the storage instruction unit 14 of the control device 10 may be configured to directly transmit to the DB 30 for storage.
  • the machine data collected from the machine data measurement unit 20 is stored in a storage unit (not shown) included in the control device 10, but may be configured to be sent to the DB 30 for storage. .
  • the machine data collection unit 11 extracts the machine data of the data acquisition date and time that the monitoring data acquisition instruction unit 12 has instructed acquisition from the machine data collected by the machine data collection unit 11.
  • the unit 12 may be configured to instruct the machine data measurement unit 20 to acquire data, similarly to the vibration collection unit 3 and the like.
  • the machine data and the waveform feature amount stored in the DB 30 are directly associated as the monitoring index of the trend graph created by the trend graph creation display unit 43.
  • a certain machine What calculated data and a certain waveform feature-value is good also as a monitoring index of a trend graph.
  • the monitoring data acquisition instructing unit 12 provides the vibration collection unit 3, the sound collection unit 8, the image processing system 25, the machine data collection unit 11, and the waveform feature amount calculation unit 13 with “ “Data acquisition date / time information" is transmitted, and the "data acquisition date / time” is used as a file name when stored in the DB 30, so that machine data, waveform features, and monitoring data (vibration waveform data, sound data, image data, etc.) ,
  • the data acquisition ID information necessary for associating these data with each other is not limited to the data acquisition date and time, but may be data acquisition date and time + serial number or serial number. However, when the data acquisition ID information is a serial number, it is necessary to associate the serial number with the data acquisition date / time information.
  • the configuration in which the various types of data acquired in the DB 30 are stored along the time series is illustrated.
  • the acquired various types of data are not only stored along the time series. It is also possible to divide each process of the machine 5 at the time of acquisition and store the data as time-series data for each process.
  • the control device is a control device that outputs a control command to the control target based on a plurality of control data acquired from the control target, and the operation state of the control target
  • a measuring instrument data acquisition instructing unit for instructing acquisition of data at an arbitrarily settable timing, and a measuring instrument acquired by an instruction from the measuring instrument data acquisition instructing unit At least one of data and a feature amount calculated from the data, the plurality of control data acquired at the same time as the data of the measuring instrument, and information that can specify the date and time when the data of the measuring instrument is acquired
  • a storage instructing unit that causes the storage device to store the information.
  • control data required for control of a control object and the data of the measuring machine which show the operation state of the control object measured with measuring machines other than this control data are acquired at the same time, and are acquired.
  • the timing of data acquisition by the measuring instrument can be arbitrarily set, by setting the acquisition timing appropriately, it is possible to obtain data effective for grasping an abnormality sign with a small amount of data.
  • the measurement device further measures a sound as a vibration measuring device that measures vibration as a value indicating the operation state of the control target, or a sound as a value indicating the operation state of the control target. It can also be set as the structure which is a sound measuring device.
  • the measuring instrument it is preferable to use a vibration measuring instrument that measures vibration or a sound measuring instrument that measures sound.
  • the control device may further include a waveform feature amount calculation unit that calculates a waveform feature amount from vibration waveform data or sound waveform data.
  • the waveform feature amount can be calculated from the vibration waveform data or the sound waveform data.
  • the control device is preferably configured such that the timing is set in association with the control command or the control data.
  • the data acquisition timing of the measuring instrument is set in relation to the control command or control data. For example, when a load is applied to the control target or when an operation with the control target is started Alternatively, it is possible to make settings in association with an operation in which a control target has failed in the past, and effective data can be obtained with a smaller amount of data by grasping an abnormality sign.
  • a monitoring system generates and displays a trend graph of a monitoring index determined based on the stored data by accessing the control device, the storage device, and the storage device. And an information processing apparatus having a trend graph creation / display unit to be displayed on the apparatus.
  • the information processing apparatus stores data stored in the storage device, that is, control data and measuring instrument data acquired at the same time, or feature amount data calculated from measuring instrument data.
  • a trend graph of the monitoring index determined from the above is created and displayed. Therefore, by confirming such a trend graph, it is possible to more easily grasp an abnormality sign and identify an abnormal part. That is, it is possible to accurately identify the optimal time for detecting an abnormality, specify an index effective for detecting the abnormality, and determine and review a threshold effective for detecting the abnormality.
  • the information processing device further includes an output unit that outputs data of the measuring device corresponding to the time of the designated point when the point is designated on the trend graph. It can also be set as the structure provided.
  • the control processing device displays data of a measuring instrument corresponding to the time of the designated point, for example, vibration waveform data, Play sound data and output sound.
  • control device may be realized by a computer.
  • a control program that causes a computer to function as the measuring instrument data acquisition instruction unit and the storage instruction unit of the control device, and a recording medium that records the control program are also included in the scope of the present invention.
  • Monitoring system Vibration collection unit (measuring machine) 5 machine (control target) 7 Sound collection unit (measuring machine) DESCRIPTION OF SYMBOLS 10
  • Control apparatus 11 Machine data collection part 12 Monitoring data acquisition instruction
  • Storage Instruction Unit 20 Machine Data Measurement Unit 21 X Axis Servo Driver 22 Y Axis Servo Driver 23 ⁇ Axis Servo Driver 24 Input / Output Terminal 25 Image Processing System 26 Displacement Sensor 30 DB (Storage Device) 31 waveform feature table 32 machine data table 33 torque table 34 vibration waveform data storage unit 35 image data storage unit 36 sound data storage unit 40 PC (information processing apparatus) 41 Database processing unit 43 Trend graph creation display unit 47 Waveform analysis display unit (output unit) 48 Image display unit (output unit) 49 Sound output part (output part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

制御対象の制御に必要な制御データ以外の制御対象の動作状態を示す値を計測機にて計測した計測機データの変化と制御対象の制御に必要な機械データとの関係を容易に確認することができる制御装置を提供する。マシンから取得した複数のマシンデータに基づいてマシンを制御する制御装置(10)では、監視データ取得指示部(12)が、振動収集ユニット(3)および音収集ユニット(7)に対して、任意に設定可能なタイミングでデータの取得を指示し、格納指示部(14)が、取得されたデータあるいは該データより算出される特徴量の少なくとも一方と、同時刻に取得された複数のマシンデータと、データを取得した日時の情報とを相互に関連付けてDB(30)に格納をさせる。

Description

制御装置、監視システム、制御プログラムおよび記録媒体
 本発明は、プログラマブルロジックコントローラ(PLC:Programmable Logic Controller)などの制御装置並びに該制御装置を用いた監視システム、制御プログラム、記録媒体に関する。
 PLC等の制御装置は、工場に設置される機械(制御対象)の制御に用いられている。制御装置は、複数の入出力機能を有しており、例えば、機械に取り付けられたセンサなどから出力される値を逐次、読み込んでデータ(以下、機械データ)を保持する。保持された機械データは、機械の制御に用いられる。例えば、特許文献1には、データベースと接続され、保持している機械データをデータベースに蓄積する制御装置が記載されている。
 また、モータが組み込まれた機械では、モータの駆動に伴い振動や音が発生する。発生する振動や音は、機械に異常(例えば、ベアリングなどの構成部品の傷、欠け、疲労による損傷や、構成部品の組み付け上のミスアライメント、異物混入など)が無い場合は許容範囲内である。しかしながら、機械的な異常の発生により大きくなり、やがて機械の故障を招く恐れがある。そのため、従来、機械が動いている状態での振動や音を確認し、機械の異常の有無を判断することが行われている。例えば、特許文献2には、このような確認に用いることができる、振動や音を計測機で測定し、そのアナログ信号の波形を解析して、機械などが正常かどうかを検査する検査装置が記載されている。
日本国公開特許公報「特開2014-099061号」 日本国公開特許公報「特開2001-091414号」
 ところで、機械が正常な動作状態から異常な動作状態へと変化し出すと、振動や音にも変化が現れる。したがって、振動や音の変化から、異常の兆候を把握することができる。また、機械が異常傾向にあると、機械データにも変化が現れるので、異常の兆候を把握した場合には、蓄積している機械データを確認することで、異常の原因を特定して、故障を未然に防ぐことが可能である。
 しかしながら、上記した制御装置では、機械データを蓄積しているものの、検査装置と連携するようにはなっておらず、制御装置と検査装置とは、それぞれのタイミングでデータを取得している。そのため、異常な振動や音が発生しているときの機械データを確認するには、蓄積している機械データの中から異常な振動や音が発生している時間の機械データを抽出してきて、検査装置のデータ取得のタイミングに合わせてプロットし直すといった煩雑な作業を行う必要がある。
 本発明は、上記課題に鑑みなされたもので、その目的は、計測機にて取得された制御対象(機械)の動作状態を示す計測機のデータの変化と、制御対象を制御するための制御データ(機械データ)との関係を容易に確認することができ、ひいては、制御対象に異常の兆候の把握、およびの原因の特定を容易に行うことができる制御装置を提供することである。
 上記の課題を解決するために、本発明の一態様における制御装置は、制御対象から取得した複数の制御データに基づいて前記制御対象に対して制御命令を出力する制御装置であって、前記制御対象の動作状態を示す値を計測する計測機に対して、任意に設定可能なタイミングでデータの取得を指示する計測機データ取得指示部と、前記計測機データ取得指示部による指示にて取得された計測機のデータおよび該データより算出される特徴量の少なくとも一方と、前記計測機のデータと同時刻に取得された前記複数の制御データと、前記計測機のデータを取得した日時を特定できる情報とを相互に関連付けて記憶装置に格納をさせる格納指示部と、を備えることを特徴としている。
 本発明の一態様における監視システムは、前記制御装置と、前記記憶装置と、前記記憶装置にアクセスして、格納されている前記データに基づいて決定される監視指標のトレンドグラフを生成して表示装置に表示させるトレンドグラフ作成表示部を有する情報処理装置と、を備えることを特徴としている。
 なお、前記制御装置は、コンピュータにより実現してもよい。この場合、前記制御装置の前記計測機データ取得指示部および前記格納指示部としてコンピュータを機能させる制御プログラム、およびそれを記録した記録媒体も、本発明の範疇に含まれる。
 本発明の一態様によれば、計測機にて取得された制御対象の動作状態を示す計測機のデータの変化と、制御対象を制御するための制御データとの関係を容易に確認することができ、ひいては、制御対象に異常の兆候の把握、およびの原因の特定を容易に行うことができる制御装置を提供することができる。
本発明の実施の一形態に係る制御装置を含む監視システムの一構成例を示すブロック図である。 上記監視システムに含まれる制御装置、DBおよびPCの詳細構成と、上記監視システムにおけるデータの流れを示すブロック図である。 上記監視システムに含まれる制御装置、振動収集ユニット、音収集ユニット、画像処理システム、およびPCそれぞれの処理手順を示すフローチャートである。 上記PCのモニタに表示される、トレンドグラフ表示画面の一例を示す図である。 上記トレンドグラフ表示画面に表示されるトレンドグラフの一例を示す図である。 上記PCのモニタに表示される、振動波形解析画面の一例を示す図である。
 以下において、本発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 図1は、本発明の実施の形態に係る制御装置10を含む監視システム1の一構成例を示すブロック図である。まずは、図1を参照して、監視システム1の概要を説明する。
 図1に示すように、収集1は、制御対象であるマシン5を制御する制御装置10と、マシンデータ計測部20と、DB(データベース)30と、PC(パーソナルコンピュータ、情報処理装置)40と、振動収集ユニット(計測機、振動計測機)3と、音収集ユニット(計測機、音計測機)7とを備える。なお、図1では、DB30をPC40とは別のハードウェアとして記載しているが、DB30はPC40と同一のハードウェアであってもよい。
 制御装置10は、例えばPLC(Programmable Logic Controller)などの産業用の制御装置である。制御装置10は、マシン5から受信した後述するマシンデータ(制御データ)に基づいてマシン5に制御命令を送信することでマシン5の各部位の制御を行う。
 マシン5は、例えば工場に設置された製造装置である。本実施の形態では、マシン5は、X軸サーボモータ(図示せず)と、Y軸サーボモータ(図示せず)と、θ軸サーボモータ(軸)とを備えている。
 マシンデータ計測部20は、制御装置10とマシン5との間に介在し、制御装置10がマシン5を制御するために必要なマシンデータを逐次計測するものである。本実施の形態では、マシンデータ計測部20は、X軸サーボドライバ21と、Y軸サーボドライバ22と、θ軸サーボドライバ23と、入出力ターミナル24と、画像処理システム25と、変位センサ26とを含んでいる。
 X軸/Y軸/θ軸の各サーボドライバ21~23はそれぞれ、マシン5に設けられたX軸/Y軸/θ軸の各サーボモータの駆動を担うものである。このうち、Y軸サーボドライバ22は、マシンデータの1つとして、Y軸のフィードバック現在位置を制御装置10に送信する。θ軸サーボドライバ23は、マシンデータの1つとして、θ軸のフィードバック現在トルクを制御装置10に送信する。
 また、これらX軸/Y軸/θ軸の各サーボモータには、熱電対が設けられている。入出力ターミナル24は、マシンデータの1つとして、各サーボモータの温度を計測して制御装置10に送信する。変位センサ26は、マシンデータの1つとして、所定の軸、例えばY軸の位置変化量を計測し、制御装置10に送信する。
 画像処理システム25は、画像を撮影し、その画像からマシン5における所定の部材同士の位置関係を基に離間距離を算出する。画像処理システム25は、マシンデータの1つとして、算出した離間距離を制御装置10に送信する。本実施の形態では、円盤5aと接触ピン5bの位置関係を撮影した画像からそれらの離間距離を算出する。
 また、詳細については後述するが、画像処理システム25は、制御装置10から後述するデータ取得日時情報を受信すると、監視データの1つとして、該情報が示すデータ取得日時の画像データをDB30に送信する。
 振動収集ユニット3は、制御装置10から振動波形データの取得開始が指示されると、マシン5側に配置された振動センサ3aの検出値を取り込んで振動波形データを取得する。振動収集ユニット3は、取得した波形データの一部を制御装置10に送信し、波形データの全体を、監視データの1つとして、DB30に送信する。振動収集ユニット3の振動波形データの取得タイミング(サンプリング周期)は、例えば25.6kHzである。
 音収集ユニット7は、制御装置10から音データの取得開始が指示されると、マシン5側に配置されたマイク7aが集音した音の音データを取得する。音収集ユニット7は、監視データの1つとして、取得した音データをDB30に送信する。
 制御装置10は、マシンデータ計測部20にて逐次計測されるマシンデータに応じて、マシン5のアクチュエータ(X軸/Y軸/θ軸の各サーボモータ)のON/OFFを制御するシーケンス制御と、アクチュエータの操作変位や操作速度などを連続的に制御するモーション制御とを実行する。
 上述したように、本実施の形態では、マシンデータとして、X軸/Y軸/θ軸の各サーボモータの温度、Y軸位置変化量、円盤5aと接触ピン5bの離間距離、Y軸のフィードバック現在位置、θ軸のフィードバック現在トルクを取得する。
 そして、詳細については後述するが、制御装置10は、所定のタイミング(監視データ取得タイミング)で、振動収集ユニット3、音収集ユニット7、画像処理システム25に、監視データとして、振動波形データ、音データ、および画像データを取得させ、取得された監視データを、同じタイミングで取得されたマシンデータおよびデータ取得日時情報と相互に関連付ける。さらに、制御装置10は、振動収集ユニット3が取得した振動波形データに基づいて波形特徴量を算出し、該波形特徴量も監視データの1つとして、同様に相互に関連付ける。
 PC40は、モニタ51と、スピーカ52と、キーボード(図示せず)と、マウス(図示せず)などを備える。PC40は、制御装置10の指示に従い、制御装置10から受け取ったマシンデータをDB30に格納する。
 そして、詳細については後述するが、PC40は、DB30を参照して、波形特徴量およびマシンデータについて傾向を示すトレンドグラフを作成してモニタ51に表示し、また、指定されたデータ取得日時における振動波形データの解析結果を表示したり、指定されたデータ取得日時における画像データや音データを再生したりする。
 DB30は、制御装置10からPC40を介して送信されるマシンデータおよび波形特徴量、並びに振動収集ユニット3、音収集ユニット7および画像処理システムから送信される監視データを蓄積するものである。
 図2は、監視システム1に含まれる制御装置10、DB30およびPC40の詳細構成と、監視システム1におけるデータの流れを示すブロック図である。次に、図2を参照して、監視システム1における各部の詳細構成と、データの流れを説明する。
 図2に示すように、制御装置10は、マシンデータ収集部11と、監視データ取得指示部(計測機データ取得指示部)12と、波形特徴量演算部13と、格納指示部14とを備えている。
 マシンデータ収集部11は、マシンデータ計測部20から、逐次計測されるマシンデータを受信して収集するものである。
 監視データ取得指示部12は、監視データを取得する監視データ取得タイミングになると、振動収集ユニット3および音収集ユニット7に、振動波形データおよび音データの取得開始を指示するものである。監視データ取得指示部12は、監視データの取得開始時刻を含むデータ取得日時情報を付加して開始を指示する。また、監視データ取得指示部12は、監視データ取得タイミングになると、マシンデータ収集部11、波形特徴量演算部13およびマシンデータ計測部20の画像処理システム25に、データ取得日時情報を送信する。
 監視データ取得タイミングは、ユーザが任意に設定することができる。本実施の形態では、PC40に設けられた後述する監視データ取得タイミング設定部46から任意に設定する。
 マシンデータ収集部11は、監視データ取得指示部12からデータ取得日時情報を受信すると、収集しているマシンデータの中からデータ取得日時情報に対応するマシンデータを抽出して、格納指示部14に送信する。マシンデータ収集部11は、データ取得日時情報を付加してマシンデータを送信する。
 波形特徴量演算部13は、振動収集ユニット3より、数フレーム分の振動波形データを受信すると、フィルタ処理、FFT処理、特徴量演算処理などを行って波形特徴量を算出するものである。波形特徴量演算部13は、算出された波形特徴量を、データ取得日時情報を付加して格納指示部14に送信する。
 格納指示部14は、マシンデータ収集部11から受信したマシンデータと、波形特徴量演算部13から受信した波形特徴量と、これらに付加されている同一のデータ取得日時情報とを相互に関連付けてPC40に送信し、DB30への格納を指示する。
 振動収集ユニット3は、制御装置10の監視データ取得指示部12から、データ取得日時情報と共に振動波形データの取得開始が指示されると、振動波形データを所定時間計測し取得する。振動収集ユニット3は、取得した振動波形データの一部、例えば5フレーム分を制御装置10に波形特徴量算出用に送信する。また、振動収集ユニット3は、取得した振動波形データの全体を、取得開始指示と共に受信したデータ取得日時情報と互いに関連付けてDB30に送信し、格納させる。具体的には、振動波形データのファイル名をデータ取得日時とする。
 音収集ユニット7は、制御装置10の監視データ取得指示部12から音データの取得開始が指示されると、音データを所定時間取得する。音収集ユニット7は、取得した所定時間分の音データを、取得開始指示と共に受信したデータ取得日時情報と互いに関連付けてDB30に送信し、格納させる。具体的には、音声データのファイル名をデータ取得日時とする。
 画像処理システム25は、制御装置10の監視データ取得指示部12からデータ取得日時情報を受信すると、該データ取得日時が示す時刻から所定時間分の画像データを、受信したデータ取得日時情報と互いに関連付けてDB30に送信し、格納させる。具体的には、画像データのファイル名をデータ取得日時とする。
 DB30は、波形特徴量テーブル31と、マシンデータテーブル32と、トルクテーブル33と、振動波形データ格納部34と、画像データ格納部35と、音データ格納部36とを備えている。
 振動波形データ格納部34には、振動収集ユニット3から送信されてくる、ファイル名としてデータ取得日時が付された振動波形データが蓄積される。画像データ格納部35には、画像処理システム25から送信されてくる、ファイル名としてデータ取得日時が付された画像データが蓄積される。音データ格納部36には、音収集ユニット7から送信されてくる、ファイル名にデータ取得日時が付された音データが蓄積される。
 PC40は、データベース処理部41と、予兆管理部42と、波形解析表示部47と、画像表示部(出力部)48と、音出力部(出力部)49とを備える。
 データベース処理部41は、制御装置10の格納指示部14の指示に従い、該格納指示部14から相互に関連付けられたマシンデータと波形特徴量とデータ取得日時情報と受信すると、これらをDB30に格納する。波形特徴量は、データ取得日時と関連付けられて波形特徴量テーブル31に格納される。マシンデータのうち、X軸/Y軸/θ軸の各サーボモータの温度、Y軸の位置変化量、円盤5aと接触ピン5bとの離間距離、およびY軸のフィードバック現在位置は、データ取得日時に関連付けられてマシンデータテーブル32に格納される。マシンデータのθ軸のフィードバック現在トルクは、データ取得日時と関連つけられてトルクテーブル33に格納される。
 予兆管理部42は、トレンドグラフ作成表示部43と、閾値設定部44と、アラーム出力部45と、監視データ取得タイミング設定部46とを有する。
 トレンドグラフ作成表示部43は、DB30における波形特徴量テーブル31、マシンデータテーブル32およびトルクテーブル33を参照して、基準値からのずれ量などで、マシン5の正常・異常の度合を示す監視指標の各トレンドグラフ(図5参照)を作成して、モニタ51(図1参照)に表示するものである。トレンドグラフとは、監視指標をデータ取得日時毎に時系列に沿って表したグラフであり、監視指標の変化を表す。
 本実施の形態では、トレンドグラフ作成表示部43は、例えば42種類の監視指標を用いて42種類のトレンドグラフを作成し、これらを一つのウィンドウに縦に並べてスクロール可能に表示する。42種類の内訳は、波形特徴量として35種類(実効値、ピーク振幅A~E、衝撃度A~E、周波数解析による特定の周波数成分…)と、マシンデータとして、X軸/Y軸/θ軸の各サーボモータ温度の3種類と、円盤5aと接触ピン5bの離間距離、Y軸の位置変化量、Y軸のフィードバック現在位置、θ軸のフィードバック現在トルクのードバック現在位置の7種類である。
 閾値設定部44は、監視指標毎、つまりトレンドグラフ毎に閾値を設定するものである。閾値設定部44は、例えば監視指標の平均値や偏差を用いて閾値を自動に設定する機能を有している。さらに、閾値設定部44は、モニタ51に閾値を設定するための後述する閾値設定画面64(図4参照)を表示し、該画面を用いたユーザによる設定も受け付ける。また、マシン5の故障が発見されたときに、ユーザが故障発生時刻を制御装置10に入力し、閾値設定部44は、入力された故障発生時刻における監視指標値に基づいて、許容範囲を定める閾値を設定してもよい。
 本実施の形態では、警報を出す上限警報閾値および下限警報閾値に加えて、警報の前の予報を出す上限予報閾値および下限予報閾値も設定する。閾値は、後述するように、トレンドグラフGに重ねて表示される。
 アラーム出力部45は、監視指標値が、上限警報閾値あるいは下限警報閾値を超えると、モニタ51における後述するアラーム表示画面63(図4参照)において、アラームをON表示するものである。なお、アラーム画面による表示に加えて代えて、あるいはこれに加えて、アラーム音を発生したり、予め登録されている送信先にメールで通知したりすることもできる。
 監視データ取得タイミング設定部46は、制御装置10における監視データ取得タイミングの設定を受け付けるものである。監視データ取得タイミング設定部46は、モニタ51に監視データ取得タイミングを設定するための設定画面(図示せず)を表示し、ユーザが該画面から設定する。監視データ取得タイミング設定部46は、設定した監視データ取得タイミングを制御装置10の監視データ取得指示部12に送信する。
 監視データ取得タイミングとしては、1日置きの所定時刻といった日時や時刻による設定の他、マシン5への制御命令、あるいは、その結果であるマシンデータの変化に関連付けて設定することができる。
 例えば、X軸サーボモータの回転数をA→Bに変化させる制御命令を出力したタイミングであったりとか、X軸サーボモータの回転数がA→Bに実際に変化したことを示すマシンデータが変化したタイミングであったりとか、Y軸が初期位置に実際に戻ったことを示すマシンデータが変化したタイミングであったりとかである。
 マシン5への制御命令、あるいは、その結果であるマシンデータの変化に関連付けて監視データ取得タイミングを設定することで、マシン5に負荷が掛かる瞬間や、マシン5が特定(所定)のある動作を開始した時、あるいは過去にマシン5が故障した動作などに関連付けて設定することが可能になり、異常の兆候の把握により有効なデータをより少ないデータ量で得ることができる。
 波形解析表示部47は、振動波形データの解析が指示されると、DB30の振動波形データ格納部34を参照して解析が指示されたデータ取得日時のファイル名を有する振動波形データを取得し、それを解析して解析結果を含む後述する振動波形解析画面70(図6参照)をモニタ51(図1参照)に表示するものである。
 画像表示部48は、画像表示が指示されると、DB30の画像データ格納部35を参照して解析が指示されたデータ取得日時のファイル名を有する画像データを取得し、モニタ51(図1参照)に表示するものである。
 音出力部49は、音再生が指示されると、DB30の音データ格納部36を参照して解析が指示されたデータ取得日時のファイル名を有する音データを取得し、スピーカ52(図1参照)から音を出力するものである。
 図3は、監視システム1に含まれる制御装置10、振動収集ユニット3、音収集ユニット7、画像処理システム25、およびPC40それぞれの処理を示すフローチャートである。次に、図3を参照して、監視システム1における各部の処理の流れを説明する。
 図3に示すように、制御装置10は、監視データ取得タイミングか否かを常時判断している(S1)。制御装置10は、S1における判断をしつつ、マシンデータ計測部20から、逐次計測されたマシンデータを受信して収集している。
 制御装置10は、S1において、監視データ取得タイミングであると判断するとS2に進み、振動収集ユニット3、音収集ユニット7に、データ取得日時情報を付加して振動波形データ、音データの取得開始を指示する。また、制御装置10は、画像処理システム25に、データ取得日時情報を送信する。
 振動収集ユニット3、音収集ユニット7では、データ取得の開始が指示されたか否かを常時判断している(S11、S21)。制御装置10のS2を経て、振動収集ユニット3、音収集ユニット7が、S11、S21において指示されたと判断すると、S12、S22に進み、振動計測、集音を開始する。振動計測および集音は、開始してから所定時間行われる。この間、振動収集ユニット3は、取得した振動波形データのうちの所定の数フレーム分を、波形特徴量演算用として制御装置10に送信する(S13)。
 制御装置10は、振動収集ユニット3のS13を経て、振動収集ユニット3から数フレーム分の振動波形データを受信すると、波形特徴量を算出する(S3)。次に、制御装置10は、算出された波形特徴量と、S2で送信したデータ取得日時情報の日時に対応するマシンデータとを、S2で送信したデータ取得日時情報と相互に関連付けてPC40に送信し、DB30への格納を指示する(S4)。
 振動収集ユニット3、音収集ユニット7は、所定時間の振動計測、集音が完了すると、S14、S23に進み、取得した振動波形データおよび音データに、S11で受信したデータ取得日時情報の日時のファイル名を付してDB30へ送信し、格納を指示する。
 画像処理システム25は、マシンデータを取得するために逐次画像を撮影しつつ(S31)、制御装置10からのデータ取得日時情報を受信したか否かを常時判断している(S32)。画像処理システム25は、S32において、データ取得日時情報を取得したと判断すると、S33に進み、受信したデータ取得日時情報の日時に対応する画像データを、S31で受信したデータ取得日時情報の日時のファイル名を付してDB30へ送信し、格納を指示する。ここで、DB30に送信される画像データは、動画であれば、振動収集ユニット3、音収集ユニット7が、S12、S22で計測、集音した時間分と同じ長さを有する。
 PC40は、制御装置10から、相互に関連付けられたデータ取得日時情報とマシンデータと波形特徴量とを受信し、格納が指示されたか否かを常時判断している(S41)。S41において、YESと判断するとS42に進み、相互に関連付けられたデータ取得日時情報とマシンデータと波形特徴量とをDB30に格納する。
 図4は、PC40のモニタ51に表示される、トレンドグラフ表示画面60の一例を示す図である。図4に示すように、一つのウィンドウ65に、前述した42種類の監視指標を用いて作成した42種類のトレンドグラフG1~G42を、縦に並べてスクロール可能に表示する。ウィンドウ65に設けられたスクロールバー62を操作することで、42種類のトレンドグラフG1~G42の全てを確認することができる。
 また、ウィンドウ65の横に表示されたグラフ並び替えボタン61をクリックすることで、42種類のトレンドグラフの並び替えを行うことができる。トレンドグラフG1~G42は、並び替えを指示するまでDB30に格納されている順番で表示されている。並べ替えが指示されると、例えば前回測定時からの変化量が多い順に表示順を並び替えられる。
 また、ウィンドウ65の横には、アラーム表示画面63が表示され、該画面63に、全体アラームおよび監視指標毎の予報アラームおよび警報アラームが表示される。アラーム出力部45は、監視指標値が上限予報閾値あるいは下限予報閾値に達したとき、その監視指標(トレンドグラフ)の予報アラームをON表示とする。また、監視指標値が上限警報閾値あるいは下限警報閾値に達したとき、その監視指標(トレンドグラフ)の警報アラームをON表示とする。
 全体アラームは、全監視指標共通のアラームである。アラーム出力部45は、いずれか1つでも監視指標値が上限警報閾値あるいは下限警報閾値に達したとき、全体アラームをON表示とする。全体アラームのON表示により、42種類のうちのいずれかの監視指標において上限警報閾値あるいは下限警報閾値に達したことを、一目瞭然に確認することができる。アラーム出力部45は、全ての監視指標で上限警報閾値および下限警報閾値を共に超えない状態となったとき、全体アラームをOFF表示とする。なお、図4の例では、予報アラームと警報アラームとは、例えば予報を黄色、警告を赤にするなどして、警告レベルを切り換えるようになっている。
 また、図4に示すように、アラーム表示画面63の下には、前述した閾値設定画面64が表示され、該画面64を用いて各監視指標の設定、変更が可能となっている。
 図5は、トレンドグラフ表示画面60に表示されるトレンドグラフGの一例を示す図である。図5に示すように、トレンドグラフGは、縦軸に監視指標値、横軸がデータ取得日時の時間軸で表される。図5の例では、ポイントAを境に監視指標値が上昇し出していることがわかる。トレンドグラフG1~G42の間で、横軸の時間軸は共通である。これにより、トレンドグラフG1~G42をスクロールさせることで、異常傾向にあるトレンドグラフGを容易に見つけ出すことができる。そして、このようなトレンドグラフG1~G42を用いることで、異常を検出するのに最適な時期の特定、異常を検出するのに有効な指標の特定、異常を検出するのに有効な閾値の決定および見直し、を正確に行うことができる。
 また、このようなトレンドグラフGにおいて、プロットされたポイントにマウスのカーソルを合わせることでデータ取得日時を指定することができる。また、カーソルを合わせると、波形分析、画像表示、音再生を指示するボタンがダイアログ表示される。
 波形分析のボタンをクリックすることで、波形解析表示部47(図2)が、カーソル位置のデータ取得日時の振動波形データを波形解析して、後述する振動波形解析画面70(図6参照)を表示する。
 また、画像表示のボタンをクリックすることで、カーソルの位置が示すデータ取得日時の画像データを表示され、音再生のボタンをクリックすることで、カーソルの位置が示すデータ取得日時の音データが再生される。
 さらに、図5に示すように、トレンドグラフGには、上限警報閾値および下限警報閾値と、上限予報閾値および下限予報閾値とがライン表示されている。トレンドグラフG1~G42のうちの1つでも監視指標値が、上限警報閾値あるいは下限警報閾値に達すると、その監視指標の警告アラームがON表示され、また、その監視指標の点検を促すアラームメールが送信される。メッセージは、アラームが発生した監視指標名を含む、例えば「監視指標○○が警報値に達しました、点検してください。」のようなものである。
 図6は、PC40のモニタ51に表示される、振動波形解析画面70の一例を示す図である。図6に示すように、振動波形解析画面70には、データ取得日時に対応する振動波形データの全体(参照符号71)、波形特徴量の算出に用いられた数フレーム部の振動波形データ(参照符号72)、FFTグラフ(参照符号73)、FFT強度グラフ(参照符号74)、FFT3Dグラフ(参照符号75)などが表示される。
 <ソフトウェアによる実現例>
 制御装置10の監視データ取得指示部12、波形特徴量演算部13、マシンデータ収集部11、および格納指示部14、およびPC40のデータベース処理部41、予兆管理部42、波形解析表示部47、画像表示部48、音出力部49は、集積回路(ICチップ)などに形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
 後者の場合、制御装置10およびPC40は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波など)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 本発明の実施の形態に係る制御装置10およびPC40は、コンピュータによって実現してもよく、この場合には、コンピュータを上記制御装置10が備える各部(ソフトウェア要素)として動作させることにより上記制御装置10をコンピュータにて実現させる制御装置10の監視プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 <変形例>
 次に、監視システム1における変形例について説明する。上述した実施の形態においては、波形特徴量演算部13が、制御装置10に搭載されていたが、PC40側に搭載させる構成としてもよい。
 また、波形特徴量演算部13は必須ではなく、例えば、音のボリュームを特徴量としてとらえ、音収集ユニット7からDBに該特徴量を送って、制御装置10から送信されたマシンデータと相互に関連付けるような構成であってもよい。
 また、波形特徴量演算部13は、音収集ユニット7にて取得された音データから波形の特徴を抽出する構成としてもよい。
 また、上述した実施の形態では、相互に関連付けられたマシンデータと波形特徴量とデータ取得日時情報とを制御装置10からPC40を経由させてDB30に格納させているが、PC40を経由させることなく、制御装置10の格納指示部14が、DB30にダイレクトに送信して格納する構成としてもよい。
 また、上述した実施の形態では、マシンデータ計測部20から収集したマシンデータを制御装置10が備える記憶部(図示せず)に蓄積する構成としたが、DB30に送って蓄積させる構成としてもよい。
 また、上述した実施の形態では、マシンデータ収集部11が収集したマシンデータから、監視データ取得指示部12が取得を指示したデータ取得日時のマシンデータを抽出する構成としたが、監視データ取得指示部12が、振動収集ユニット3等と同様に、マシンデータ計測部20に対してデータ取得を指示する構成としてもよい。
 また、上述した実施の形態では、トレンドグラフ作成表示部43が作成するトレンドグラフの監視指標として、DB30に格納されているマシンデータおよび波形特徴量を直に対応させていたが、たとえば、あるマシンデータとある波形特徴量とを演算したものをトレンドグラフの監視指標としてもよい。
 また、上述した実施の形態では、監視データ取得指示部12は、振動収集ユニット3や、音収集ユニット8、画像処理システム25、マシンデータ収集部11、波形特徴量演算部13に対して、「データ取得日時情報」を送信し、該「データ取得日時」をDB30に格納する際のファイル名に用いることで、マシンデータと波形特徴量と監視データ(振動波形データや音データ、画像データなど)を相互に関連付けていたが、これは一例に過ぎない。つまり、これらデータを相互に関連付けるのに必要なデータ取得ID情報としては、データ取得日時に限らず、データ取得日時+シリアル番号、あるいはシリアル番号でもよい。但し、データ取得ID情報をシリアル番号とした場合は、シリアル番号とデータ取得日時情報とを関連付けておく必要がある。
 また、上述した実施の形態では、DB30に取得した各種のデータを時系列に沿って格納する構成を例示したが、単に時系列に沿って格納するだけでなく、取得した各種のデータを、データ取得した時のマシン5の工程毎に分け、工程毎に時系列に沿ったデータとして格納する構成とすることもできる。
 以上のように、本発明の一態様における制御装置は、制御対象から取得した複数の制御データに基づいて前記制御対象に対して制御命令を出力する制御装置であって、前記制御対象の動作状態を示す値を計測する計測機に対して、任意に設定可能なタイミングでデータの取得を指示する計測機データ取得指示部と、前記計測機データ取得指示部による指示にて取得された計測機のデータおよび該データより算出される特徴量の少なくとも一方と、前記計測機のデータと同時刻に取得された前記複数の制御データと、前記計測機のデータを取得した日時を特定できる情報とを相互に関連付けて記憶装置に格納をさせる格納指示部と、を備えることを特徴としている。
 上記の構成によれば、制御対象の制御に必要な制御データと、該制御データ以外の計測機で計測された制御対象の動作状態を示す計測機のデータとが、同時刻に取得され、取得した日時を特定できる情報に相互に関連付けられて収集される。したがって、計測機のデータの変化と制御データとの関係との確認を容易に行うことが可能となり、例えば、取得した日時に基づいてグラフ化したりすることで、制御対象に異常の兆候がある場合にはその把握および異常箇所の特定等が容易に行えるようになる。
 しかも、計測機のデータの取得のタイミングを任意に設定できるので、取得のタイミングを適切に設定することで、異常の兆候の把握に有効なデータを少ないデータ量で得ることができる。
 本発明の一態様における制御装置は、さらに、前記計測機が、前記制御対象の動作状態を示す値として振動を計測する振動計測機、あるいは前記制御対象の動作状態を示す値として音を計測する音計測機である構成とすることもできる。
 前述したように、制御対象が正常な動作状態から異常な動作状態へと変化し出すと、振動や音にも変化が現れる。したがって、前記計測機としては、振動を計測する振動計測機や音を計測する音計測機を用いることが好ましい。
 本発明の一態様における制御装置は、さらに、振動の波形データあるいは音の波形データより波形特徴量を演算する波形特徴量演算部を備える構成とすることもできる。
 上記構成によれば、振動の波形データあるいは音の波形データより波形特徴量を演算することができる。
 本発明の一態様における制御装置は、さらに、前記タイミングは、前記制御命令あるいは前記制御データに関連して設定されている構成とすることが好ましい。
 上記構成によれば、計測機のデータの取得のタイミングは、制御命令あるいは制御データに関連して設定されるので、例えば、制御対象に負荷が掛かる瞬間や、制御対象がある動作を開始した時、あるいは過去に制御対象が故障した動作などに関連付けて設定することが可能になり、異常の兆候の把握により有効なデータをより少ないデータ量で得ることができる。
 本発明の一態様における監視システムは、前記制御装置と、前記記憶装置と、前記記憶装置にアクセスして、格納されている前記データに基づいて決定される監視指標のトレンドグラフを生成して表示装置に表示させるトレンドグラフ作成表示部を有する情報処理装置と、を備えることを特徴としている。
 上記構成によれば、情報処理装置が、記憶装置に格納されているデータ、つまり、各々同時刻に取得された制御データと計測機のデータ、あるいは計測機のデータから算出される特徴量のデータとから決定される監視指標のトレンドグラフを作成して表示する。したがって、このようなトレンドグラフを確認することで、異常の兆候の把握および異常箇所の特定などをより容易に行うことができる。すなわち、異常を検出するのに最適な時期の特定、異常を検出するのに有効な指標の特定、異常を検出するのに有効な閾値の決定および見直し、を正確に行うことができる。
 本発明の一態様における監視システムは、さらに、前記情報処理装置は、前記トレンドグラフ上でポイントが指定されると、指定されたポイントの時刻に対応する前記計測機のデータを出力する出力部を備える構成とすることもできる。
 上記構成によれば、制御処理装置は、トレンドグラフ上でポイントが指定されると、出力部が、指定されたポイントの時刻に対応する計測機のデータ、例えば振動の波形データを表示したり、音データを再生して音を出力したりする。
 したがって、トレンドグラフで監視指標の値の変化(基準値からのずれ量など)を確認することに加え、取得された実際の振動波形を見たり実際の音を聞いたりすることが可能となるので、異常の兆候の把握および異常箇所の特定などをより一層容易に行うことができる。
 なお、前記制御装置は、コンピュータにより実現してもよい。この場合、前記制御装置の前記計測機データ取得指示部および前記格納指示部としてコンピュータを機能させる制御プログラム、およびそれを記録した記録媒体も、本発明の範疇に含まれる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
1 監視システム
3 振動収集ユニット(計測機)
5 マシン(制御対象)
7 音収集ユニット(計測機)
10 制御装置
11 マシンデータ収集部
12 監視データ取得指示部(計測機データ取得指示部)
13 波形特徴量演算部
14 格納指示部
20 マシンデータ計測部
21 X軸サーボドライバ
22 Y軸サーボドライバ
23 θ軸サーボドライバ
24 入出力ターミナル
25 画像処理システム
26 変位センサ
30 DB(記憶装置)
31 波形特徴量テーブル
32 マシンデータテーブル
33 トルクテーブル
34 振動波形データ格納部
35 画像データ格納部
36 音データ格納部
40 PC(情報処理装置)
41 データベース処理部
43 トレンドグラフ作成表示部
47 波形解析表示部(出力部)
48 画像表示部(出力部)
49 音出力部(出力部)

Claims (8)

  1.  制御対象から取得した複数の制御データに基づいて前記制御対象に対して制御命令を出力する制御装置であって、
     前記制御対象の動作状態を示す値を計測する計測機に対して、任意に設定可能なタイミングでデータの取得を指示する計測機データ取得指示部と、
     前記計測機データ取得指示部による指示にて取得された計測機のデータおよび該データより算出される特徴量の少なくとも一方と、前記計測機のデータと同時刻に取得された前記複数の制御データと、前記計測機のデータを取得した日時を特定できる情報とを相互に関連付けて記憶装置に格納をさせる格納指示部と、
    を備えることを特徴とする制御装置。
  2.  前記計測機が、前記制御対象の動作状態を示す値として振動を計測する振動計測機、あるいは前記制御対象の動作状態を示す値として音を計測する音計測機であることを特徴とする請求項1に記載の制御装置。
  3.  振動の波形データあるいは音の波形データより波形特徴量を演算する波形特徴量演算部を備えることを特徴とする請求項2に記載の制御装置。
  4.  前記タイミングは、前記制御命令あるいは前記制御データに関連して設定されていることを特徴とする請求項1~3のいずれか1項に記載の制御装置。
  5.  前記請求項1~4のいずれか1項に記載された制御装置と、
     前記記憶装置と、
     前記記憶装置にアクセスして、格納されている前記データに基づいて決定される監視指標のトレンドグラフを生成して表示装置に表示させるトレンドグラフ作成表示部を有する情報処理装置と、を備えることを特徴とする監視システム。
  6.  前記情報処理装置は、前記トレンドグラフ上でポイントが指定されると、指定されたポイントの時刻に対応する前記計測機のデータを出力する出力部を備えることを特徴とする請求項5に記載の監視システム。
  7.  請求項1に記載の制御装置としてコンピュータを機能させるための制御プログラムであって、前記計測機データ取得指示部および前記格納指示部としてコンピュータを機能させるための制御プログラム。
  8.  請求項7に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2016/085364 2015-12-15 2016-11-29 制御装置、監視システム、制御プログラムおよび記録媒体 WO2017104401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/751,876 US20180232294A1 (en) 2015-12-15 2016-11-29 Control device, monitoring system, and recording medium
EP16875385.3A EP3392727A4 (en) 2015-12-15 2016-11-29 CONTROL DEVICE, MONITORING SYSTEM, CONTROL PROGRAM, AND RECORDING MEDIUM
CN201680047768.1A CN107924183A (zh) 2015-12-15 2016-11-29 控制装置、监视系统、控制程序及记录媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-244444 2015-12-15
JP2015244444A JP6638370B2 (ja) 2015-12-15 2015-12-15 制御装置、監視システム、制御プログラムおよび記録媒体

Publications (1)

Publication Number Publication Date
WO2017104401A1 true WO2017104401A1 (ja) 2017-06-22

Family

ID=59056399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085364 WO2017104401A1 (ja) 2015-12-15 2016-11-29 制御装置、監視システム、制御プログラムおよび記録媒体

Country Status (5)

Country Link
US (1) US20180232294A1 (ja)
EP (1) EP3392727A4 (ja)
JP (1) JP6638370B2 (ja)
CN (1) CN107924183A (ja)
WO (1) WO2017104401A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020183730A1 (ja) * 2019-03-14 2020-09-17 オムロン株式会社 監視システム、情報処理装置、及び情報処理方法
WO2020240937A1 (ja) * 2019-05-29 2020-12-03 新東工業株式会社 情報処理システム、ゲートウェイ、サーバ、および情報処理方法
US20210286344A1 (en) * 2018-07-26 2021-09-16 Nec Corporation Plant monitoring apparatus, plant monitoring method, and computer readable recording medium
US11915572B2 (en) 2019-05-29 2024-02-27 Sintokogio, Ltd. Information processing device and information processing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6969320B2 (ja) * 2017-11-27 2021-11-24 オムロン株式会社 監視状態表示装置、監視状態表示方法、および、監視状態表示プログラム
JP6809618B2 (ja) 2018-05-15 2021-01-06 住友電気工業株式会社 管理装置、管理方法および管理プログラム
JP2019207542A (ja) * 2018-05-29 2019-12-05 ファナック株式会社 分析装置、分析方法及び分析プログラム
JP2019211816A (ja) * 2018-05-31 2019-12-12 株式会社日立製作所 特徴量抽出装置、故障予兆診断装置、設計支援装置、並びに故障予兆診断運用方法
JP6806737B2 (ja) * 2018-06-15 2021-01-06 ファナック株式会社 同期装置、同期方法及び同期プログラム
US11435260B2 (en) * 2018-10-16 2022-09-06 Computational Systems, Inc. Graphical display of discontinuous waveform data
EP3882591A4 (en) * 2018-11-14 2021-12-29 Panasonic Intellectual Property Management Co., Ltd. Sound state display method, sound state display apparatus, and sound state display system
US11227567B2 (en) * 2019-01-28 2022-01-18 Mitsubishi Electric Corporation Device state reproduction device, device state reproduction method, and storage medium
US10983743B2 (en) * 2019-03-29 2021-04-20 Keyence Corporation Programmable display and programmable logic controller system including the same
CN115956013A (zh) * 2020-08-17 2023-04-11 发那科株式会社 信息处理装置、计算机能执行的方法、计算机可读取的存储介质
JPWO2022102348A1 (ja) * 2020-11-11 2022-05-19
EP4328689A4 (en) * 2021-04-20 2024-09-25 Panasonic Ip Man Co Ltd DATA PROCESSING SYSTEM, DATA PROCESSING METHOD, AND PROGRAM
CN114626615B (zh) * 2022-03-21 2023-02-03 江苏仪化信息技术有限公司 一种生产过程监控管理方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230927A (ja) * 1996-02-23 1997-09-05 Toshiba Corp プロセス監視システム
JP2004178447A (ja) * 2002-11-28 2004-06-24 Yaskawa Electric Corp 状態量呈示装置および方法
JP2013149151A (ja) * 2012-01-20 2013-08-01 Azbil Corp グラフ表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2970964B2 (ja) * 1991-09-18 1999-11-02 株式会社日立製作所 監視装置
JP2002095070A (ja) * 2000-09-14 2002-03-29 Matsushita Electric Works Ltd 操作ユニット、監視ユニット、表示ユニット、操作表示ユニット、及びこれらを備えた監視制御システム
JP4995134B2 (ja) * 2008-03-31 2012-08-08 三菱重工業株式会社 風車の監視装置及び方法並びにプログラム
JP5452158B2 (ja) * 2009-10-07 2014-03-26 株式会社日立製作所 音響監視システム、及び音声集音システム
CN104160145B (zh) * 2012-03-08 2017-06-13 Ntn株式会社 状态监视系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230927A (ja) * 1996-02-23 1997-09-05 Toshiba Corp プロセス監視システム
JP2004178447A (ja) * 2002-11-28 2004-06-24 Yaskawa Electric Corp 状態量呈示装置および方法
JP2013149151A (ja) * 2012-01-20 2013-08-01 Azbil Corp グラフ表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392727A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210286344A1 (en) * 2018-07-26 2021-09-16 Nec Corporation Plant monitoring apparatus, plant monitoring method, and computer readable recording medium
US11579596B2 (en) * 2018-07-26 2023-02-14 Nec Corporation Plant monitoring apparatus, plant monitoring method, and computer readable recording medium
WO2020183730A1 (ja) * 2019-03-14 2020-09-17 オムロン株式会社 監視システム、情報処理装置、及び情報処理方法
WO2020240937A1 (ja) * 2019-05-29 2020-12-03 新東工業株式会社 情報処理システム、ゲートウェイ、サーバ、および情報処理方法
JPWO2020240937A1 (ja) * 2019-05-29 2020-12-03
JP7276442B2 (ja) 2019-05-29 2023-05-18 新東工業株式会社 情報処理システム、ゲートウェイ、サーバ、および情報処理方法
US11915572B2 (en) 2019-05-29 2024-02-27 Sintokogio, Ltd. Information processing device and information processing method
US11962959B2 (en) 2019-05-29 2024-04-16 Sintokogio, Ltd. Information processing system, gateway, server, and information processing method

Also Published As

Publication number Publication date
CN107924183A (zh) 2018-04-17
JP6638370B2 (ja) 2020-01-29
EP3392727A4 (en) 2019-08-07
EP3392727A1 (en) 2018-10-24
US20180232294A1 (en) 2018-08-16
JP2017111571A (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
WO2017104401A1 (ja) 制御装置、監視システム、制御プログラムおよび記録媒体
CA2783130C (en) Automation management system and method
US10402246B2 (en) Method for generating a machine heartbeat
JP6998781B2 (ja) 故障診断システム
JP2018173332A (ja) 故障診断システム
JP7225984B2 (ja) システム、演算装置、及びプログラム
JP6922239B2 (ja) 工程監視装置、工程監視装置の制御方法およびプログラム
JP2008546084A (ja) 生産機械のための評価装置の動作方法
US20200004220A1 (en) Method and apparatus for performing an automatic health checkup for a cnc turning center
US11776177B2 (en) Methods for displaying recorded physical machine measured state data vs time
JP2007257444A (ja) 機器管理システム
JP5234321B2 (ja) プロセス関連データ表示装置およびプロセス関連データ表示方法
KR20220146562A (ko) 가시화 시스템
US20220088802A1 (en) Information processing method, information processing apparatus, display method, display apparatus, recording medium, method of manufacturing products, and method of acquiring learning data
TWI498531B (zh) 含自回歸分析模型的振動監測警報方法
JP7427938B2 (ja) 診断装置、診断装置の制御方法およびプログラム
CN113348415B (zh) 装置状态再现装置、方法及存储介质
JP4940182B2 (ja) 操作器ポジションチェック装置
JP4258424B2 (ja) 運転負荷測定装置
JP2014206816A (ja) 施設監視装置及び施設監視方法
WO2023218655A1 (ja) 映像管理装置、及びコンピュータが読み取り可能な記憶媒体
JP5297308B2 (ja) 数値制御装置
WO2024075567A1 (ja) 診断システム、情報処理装置、診断方法、及びプログラム
WO2023139790A9 (ja) 診断装置及びコンピュータ読み取り可能な記録媒体
US20220357726A1 (en) Information processing method, information processing apparatus, control program, storage medium, method of manufacturing product, and method of acquiring learning data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875385

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE