WO2017101849A1 - 固态电解质、固态电解质膜及其制造方法、以及二次电池 - Google Patents

固态电解质、固态电解质膜及其制造方法、以及二次电池 Download PDF

Info

Publication number
WO2017101849A1
WO2017101849A1 PCT/CN2016/110301 CN2016110301W WO2017101849A1 WO 2017101849 A1 WO2017101849 A1 WO 2017101849A1 CN 2016110301 W CN2016110301 W CN 2016110301W WO 2017101849 A1 WO2017101849 A1 WO 2017101849A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
ionic liquid
battery
secondary battery
liquid polymer
Prior art date
Application number
PCT/CN2016/110301
Other languages
English (en)
French (fr)
Inventor
杨立
章正熙
李晓伟
李斯剑
田阳
小川信之
Original Assignee
上海交通大学
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 日立化成株式会社 filed Critical 上海交通大学
Priority to JP2018531420A priority Critical patent/JP6876050B2/ja
Priority to CN201680073615.4A priority patent/CN108475819A/zh
Publication of WO2017101849A1 publication Critical patent/WO2017101849A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte, a solid electrolyte membrane, a method of manufacturing the same, and a secondary battery.
  • Electrolytes are an important part of electrochemical devices.
  • the electrolyte of a lithium secondary battery is mainly composed of an organic solvent and a lithium salt, and the organic solvent has a low boiling point, a low flash point, is flammable and volatile, and greatly affects the safety of the lithium secondary battery;
  • the power density and energy density of batteries are also increasing, and the safety hazards caused by organic electrolytes are becoming increasingly prominent.
  • solid electrolytes with strong safety, good flexibility, and inhibition of lithium dendrite growth have received extensive attention.
  • solid electrolytes generally have problems such as low room temperature ionic conductivity and excessive electrode/solid electrolyte interface impedance, which limits their practical application in lithium ion batteries.
  • the solid electrolyte for lithium secondary batteries has attracted attention due to its good mechanical properties and high safety, which can prevent electrolyte leakage and eliminate the need for a separator.
  • most solid electrolytes have low room temperature ionic conductivity (10 -5 to 10 -6 S cm -1 ), which limits their practical application.
  • some strategies have been taken to enhance their ionic conductivity, such as doping fillers, polymer blending, copolymerization, and cross-linking.
  • ionic conductivity is still not ideal.
  • the ionic liquid has a series of excellent characteristics such as substantially non-volatile, high heat resistance, non-flammability, and good electrochemical stability, and is combined with a lithium salt as an electrolyte for use in a lithium secondary battery, which can improve the safety of the battery.
  • the prior art ionic liquids have single-site cations. Ionic liquids and dual-center cationic ionic liquids.
  • this type of electrolyte is still present in the liquid phase in the lithium secondary battery, which does not solve the problem of leakage of the battery, and it is difficult to ensure the safety and stability of the battery.
  • the nitrile compound has high polarity and has a good ability to dissolve a plurality of lithium salts.
  • an electrolyte in which succinonitrile is introduced into the polymer matrix for example, an electrolyte including polyacrylonitrile (Electrochemistry Communications, 2008, 10, 1912-1515) and succinonitrile; including chitin (Journal of Membrane Science) , 2014, 468, 149-154) and electrolytes of succinonitrile and the like.
  • the solid electrolyte is formed by dissolving a nitrile ethylated polyvinyl alcohol (PVA-CN) monomer in a solid electrolyte of succinonitrile to form a precursor, thereby immersing the precursor in a polyacrylonitrile electrospun fiber membrane network.
  • PVA-CN nitrile ethylated polyvinyl alcohol
  • Made by polymerization the discharge specific capacity of the battery at room temperature and a low charge and discharge rate (0.1 C) is ok, but as the charge and discharge rate (for example, 0.5 C and 1.0 C) is increased, the discharge is performed. The specific capacity is greatly reduced.
  • the battery For the electrolyte of a lithium secondary battery, it is essential to ensure that the battery has a high discharge specific capacity and excellent cycle performance at a high charge and discharge rate.
  • the inventors of the present invention have intensively studied the combination of an ionic liquid polymer and a nitrile compound, and developed the ionic liquid polymer, the nitrile compound, and the lithium salt of the present invention in view of the above-described drawbacks of the prior art.
  • the present invention provides a solid electrolyte comprising an ionic liquid polymer, a nitrile compound, and a lithium salt.
  • the ionic liquid polymer is one selected from the group consisting of a polymer of the following formula (1) and a polymer of the following formula (2):
  • n 300 ⁇ n ⁇ 4000
  • m is 50 ⁇ m ⁇ 2000;
  • R 1 is a hydrogen atom or a linear aliphatic alkyl group of C1 to C10; and
  • R 2 is a linear aliphatic alkyl group of C1 to C10, or an ether group. .
  • B - in the formulas (1) and (2) is BF 4 - , PF 6 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , [C(SO 2 F) 3 ] - , CF 3 BF 3 - , C 2 F 5 BF 3 - , C 3 F 7 BF 3 - , C 4 F 9 BF 3 - , [C(SO 2 CF 3 ) 3 ] - , CF 3 SO 3 - , CF 3 Any of COO - and CH 3 COO - .
  • the ether group of R 2 may be: -CH 2 OCH 3 , -CH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 CH 3 or -CH 2 CH 2 CH 2 OCH 3 .
  • the nitrile compound is selected from the group consisting of malononitrile, succinonitrile, ethoxymethylene malononitrile, terephthalonitrile, isophthalonitrile, and phthalic acid.
  • malononitrile succinonitrile
  • ethoxymethylene malononitrile ethoxymethylene malononitrile
  • terephthalonitrile ethoxymethylene malononitrile
  • isophthalonitrile terephthalonitrile
  • phthalic acid phthalic acid.
  • diacetonitrile and 4-fluorophthalonitrile One of diacetonitrile and 4-fluorophthalonitrile.
  • the nitrile compound is preferably ethoxymethylenemalononitrile or succinonitrile.
  • the lithium salt is LiY; wherein Y is BF 4 - , PF 6 - , (FSO 2 ) 2 N - , [C(SO 2 F) 3 ] - or (CF 3 SO 2 ) 2 N - .
  • the mass ratio of the ionic liquid polymer to the nitrile compound is from 1:0.1 to 1:2.0.
  • the mass ratio of the above ionic liquid polymer to the above lithium salt is from 1:0.1 to 1:1.0.
  • the present invention also provides a solid electrolyte membrane containing the aforementioned solid electrolyte.
  • the present invention also provides a secondary battery comprising the above solid electrolyte membrane.
  • the present invention also provides a secondary battery comprising the above solid electrolyte.
  • the present invention provides a method in which the amorphous state is used and the glass transition temperature is less than or A solid electrolyte membrane of a solid electrolyte equal to -80 ° C, and a secondary battery using the solid electrolyte membrane.
  • the secondary battery of the present invention may be a lithium ion battery.
  • the present invention also provides a method of manufacturing the aforementioned solid electrolyte membrane, the method comprising the steps of:
  • the ionic liquid is used in a mass ratio of ionic liquid polymer to nitrile compound of 1:0.1 to 1:2.0, and a mass ratio of ionic liquid polymer to lithium salt of 1:0.1 to 1:1.0.
  • the polymer, the nitrile compound, and the lithium salt are dissolved in a solvent and mixed to prepare a mixed solution;
  • the present invention not only a combination of new components of a solid electrolyte but also a specific ratio of these new components is provided, and the solid state of the present invention is used as compared with the prior art and its conventional polymer matrix.
  • the electrolyte battery has a very good discharge specific capacity and excellent cycle performance at a high charge and discharge rate of 0.5 C and 1.0 C.
  • the solid electrolyte of the present invention has an amorphous state, has a low glass transition temperature ( ⁇ -80 ° C), is favorable for the movement of lithium ions in the battery, and also makes the battery of the present invention high in 0.5 C and 1.0 C. It has very good discharge specific capacity and excellent cycle performance at discharge rate.
  • Example 1 is a 1 H NMR spectrum (deuterated solvent: deuterated acetone) of the ionic liquid polymer obtained in Example 1.
  • Example 2 is a graph showing discharge specific capacity and cycle performance of Li/LiFePO 4 batteries formed by the solid electrolyte prepared in Example 1 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • Example 3 is a 1 H NMR spectrum of the ionic liquid polymer obtained in Example 2 (deuterated solvent: deuterated dimethyl sulfoxide).
  • Li/LiFePO 4 is a graph showing discharge specific capacity and cycle performance of Li/LiFePO 4 batteries formed by the solid electrolyte prepared in Example 2 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • FIG 5 is a 1 H NMR spectrum of the polymer in the ionic liquid obtained in Example 3 (deuterated solvent: deuterated dimethyl sulfoxide).
  • Fig. 6 is a graph showing discharge specific capacity and cycle performance of a Li/LiFePO 4 battery formed by the solid electrolyte obtained in Example 3 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • Fig. 7 is a graph showing discharge specific capacity and cycle performance of a Li/LiFePO 4 battery formed by the solid electrolyte obtained in Example 4 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • FIG. 8 is a schematic cross-sectional view showing an example of a lithium secondary battery.
  • the numerical range indicated by “ ⁇ ” includes the numerical values described before and after “ ⁇ ” as the minimum value and the maximum value, respectively.
  • the upper limit or the lower limit described in the numerical range of one step can be replaced with the upper or lower limit of the numerical range described in other stages. Further, in the numerical ranges described in the specification, the upper or lower limit of the numerical range may be replaced with the value shown in the examples.
  • the term "layer” or “film” includes a case where only a part of the region is formed in addition to the case where the region in which the layer or the film is present is formed in the entire region.
  • stacking means that layers are stacked, two or more layers may be combined, or two or more layers may be detachable.
  • the present invention provides a solid electrolyte comprising an ionic liquid polymer, a nitrile compound, and a lithium salt.
  • the aforementioned ionic liquid polymer is one selected from the group consisting of a polymer of the following formula (1) and a polymer of the following formula (2).
  • the ionic liquid polymer refers to a polymer obtained by introducing a polymerizable unsaturated group into a cationic species or an anionic species constituting the ionic liquid and polymerizing them.
  • n 300 ⁇ n ⁇ 4000.
  • m is 50 ⁇ m ⁇ 2000;
  • R 1 is a hydrogen atom or a linear aliphatic alkyl group of C1 to C10; and
  • R 2 is a linear aliphatic alkyl group of C1 to C10, or an ether group. .
  • n represents an integer of from 300 to 4,000, preferably from 500 to 3,900, more preferably from 1,000 to 3,700, still more preferably from 1,500 to 3,500, still more preferably from 2,000 to 3,000.
  • m represents an integer of 50 to 2,000, preferably 200 to 1800, and more preferably 500 to 1,500.
  • (1) and (2) of the formula B - include: BF 4 -, PF 6 - , (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, [C (SO 2 F) 3 ] - , CF 3 BF 3 - , C 2 F 5 BF 3 - , C 3 F 7 BF 3 - , C 4 F 9 BF 3 - , [C(SO 2 CF 3 ) 3 ] - , CF 3 SO 3 - Any of CF 3 COO - and CH 3 COO - .
  • the aforementioned linear aliphatic alkyl group of C1-C10 is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a decyl group or a fluorenyl group.
  • the linear aliphatic alkyl group is preferably a C1-C5 linear aliphatic alkyl group, and is exemplified by a methyl group, an ethyl group, a propyl group, a butyl group and a pentyl group.
  • the ether group of the above R 2 is, for example, -CH 2 OCH 3 , -CH 2 CH 2 OCH 3 , -CH 2 CH 2 OCH 2 CH 3 , -CH 2 CH 2 OCH 2 CH 2 CH 3 , or -CH 2 CH 2 CH 2 OCH 3 , preferably -CH 2 CH 2 OCH 3 or -CH 2 CH 2 OCH 2 CH 3 .
  • R 1 is preferably a hydrogen atom or a methyl group.
  • R 2 is preferably an ether group of a methyl group, an ethyl group or -CH 2 CH 2 OCH 3 .
  • the method for preparing the ionic liquid polymer is not particularly limited, and may be the following production method.
  • a method for producing an ionic liquid polymer of the formula (1) can be used, for example, in the literature A.-L. Pont, R. Marcilla, I. De Meatza, H. Grande, D. Mecerreyes, Journal of Power Sources. (Manufacturing method described in (2009, 188, 558-563)).
  • the ionic liquid polymer of the formula (1) can be produced by the following production method:
  • the lithium salt was dissolved in deionized water and stirred to form a solution containing a lithium salt.
  • the two solutions prepared above are mixed according to a molar ratio of polydimethyldiallylammonium chloride to lithium salt of 1:1.2 to 1:2.0, and the reaction is stirred for 2 to 8 hours, and solids are formed and filtered. Collect solids.
  • the mixture was washed with deionized water until the eluted material was free from halogen anions, and finally vacuum dried for 12 to 48 hours to obtain an ionic liquid polymer of the formula (1).
  • lithium salt lithium bis(trifluoromethylsulfonyl)imide, lithium bis(fluorosulfonyl)imide, lithium hexafluorophosphate, lithium tetrafluoroborate or the like can be used.
  • the viscosity average molecular weight M v of the ionic liquid polymer of the formula (1) of the present invention is preferably 1.0 ⁇ 10 5 to 5.0 ⁇ 10 6 g mol -1 , more preferably 3.0 ⁇ 10 5 to 5.0 ⁇ 10 6 g mol - 1 (polymethyl methacrylate as a standard). If the viscosity average molecular weight M v of the ionic liquid polymer of the formula (1) is greater than or equal to 1.0 ⁇ 10 5 g mol -1 , it is possible to sufficiently ensure that the ionic liquid polymer is dissolved in a solvent and formed by coating drying. When the sheet strength of the ionic liquid polymer is less than or equal to 5.0 ⁇ 10 6 g mol -1 , the ionic liquid polymer is easily dissolved in the solvent, and further, the workability of coating formation can be improved.
  • the method for confirming the ionic liquid polymer (1) is a 1 H NMR spectrum.
  • the method for producing the ionic liquid polymer of the formula (2) can be, for example, the literature K.Yin, ZXZhang, L.Yang, S.-i.Hirano, Journal of Power Sources (2014, 258, 150). -154) The manufacturing method described.
  • the ionic liquid polymer of the formula (2) can be produced by the following production method:
  • the first step dissolving the olefin-containing unsaturated group imidazole monomer in a solvent, adding the initiator to the initiator in a ratio of 0.2 to 1.0% by mass of the olefin-containing unsaturated group imidazole monomer, and performing the free Base polymerization. Under the protection of a shielding gas such as argon, the reaction is stirred under reflux at 60 to 90 ° C for 6 to 12 hours, and a polymer which precipitates as a solid is formed. After filtration, the polymer is washed with a solvent at 60 to 90 ° C. The polymer containing the imidazole structure was obtained by vacuum drying for 12 to 48 hours.
  • a shielding gas such as argon
  • the imidazole-containing monomer having an olefin-unsaturated group may be 1-vinylimidazole, 1-propenylimidazole or the like.
  • the polymerization initiator may be: azobisisobutyronitrile, azobisisoheptanenitrile, azobisisobutyrate ester.
  • the solvent may be: toluene, benzene, tetrahydrofuran, acetone, ⁇ -butyrolactone, N-methylpyrrolidone or the like. Among them, acetone is preferred.
  • solvents may be used alone or in combination of two or more.
  • the molecular weight of the obtained polymer was 1.0 ⁇ 10 4 to 5.0 ⁇ 10 5 g mol -1 (polymethyl methacrylate as a standard).
  • the second step the imidazole structure-containing polymer obtained in the first step is dissolved in a solvent with a halogenated hydrocarbon or a halogenated ether at a molar ratio of 1:1.5 to 1:2.0, and the reaction is stirred at 40 to 80 ° C.
  • the solvent was distilled off under reduced pressure for ⁇ 72 hours.
  • the solid precipitated polymer was collected, and the solid was washed three times with anhydrous diethyl ether.
  • the diethyl ether was removed by rotary evaporation and dried in vacuo for 12 to 48 hours to obtain a halogen-containing anionic ionic liquid polymer.
  • the solvent thereof may, for example, be N,N-dimethylformamide or methanol.
  • the halogenated hydrocarbon may be: ethyl bromide, bromopropane, bromobutane or the like.
  • the halogenated ether may be 2-bromoethyl methyl ether, bromomethyl methyl ether, 2-bromoethyl ethyl ether or the like.
  • the viscosity-average molecular weight M v is preferably 1.0 ⁇ 10 5 ⁇ 5.0 ⁇ 10 6 g mol -1 ( polymethyl methacrylate as a standard).
  • the third step the halogen-containing anion ionic liquid polymer obtained in the second step and the lithium salt are dissolved in deionized water at a molar ratio of 1:1.2 to 1:2.0, and the reaction is stirred for 2 to 8 hours, and solids are formed, and the solid is collected by filtration. (Precipitated polymer), and washed with deionized water until the eluate was detected with silver nitrate without halogen anions. Finally, the ionic liquid polymer of the formula (2) is obtained by vacuum drying for 12 to 48 hours.
  • the lithium salt may be lithium bis(trifluoromethylsulfonyl)imide, lithium bis(fluorosulfonyl)imide, lithium hexafluorophosphate, lithium tetrafluoroborate or the like.
  • Viscosity ionic liquid polymer of the general formula (2) of the present invention average molecular weight M v is preferably 1.0 ⁇ 10 5 ⁇ 5.0 ⁇ 10 6 g mol -1 ( polymethyl methacrylate as a standard), more preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 g mol -1 . If the viscosity average molecular weight M v of the ionic liquid polymer of the formula (2) is greater than or equal to 1.0 ⁇ 10 5 g mol -1 , it is possible to sufficiently ensure that the ionic liquid polymer is dissolved in a solvent and formed by coating drying. When the sheet strength of the ionic liquid polymer is less than or equal to 5.0 ⁇ 10 6 g mol -1 , the ionic liquid polymer is easily dissolved in the solvent, and the workability of coating formation can be improved.
  • the method for confirming the ionic liquid polymer is a 1 H NMR spectrum.
  • the nitrile compound used in the present invention is selected from the group consisting of malononitrile, succinonitrile, ethoxymethylenemalononitrile, terephthalonitrile, isophthalonitrile, phthalonitrile and 4-
  • One of fluorine phthalonitriles is preferably ethoxymethylenemalononitrile or succinonitrile.
  • the aforementioned nitrile compound can be obtained by a conventional production method or can be directly purchased from the market.
  • succinonitrile produced by Fujian Chuangxin Technology Development Co., Ltd. can be used as the succinonitrile in the nitrile compound used in the present invention.
  • the malononitrile, ethoxymethylenemalononitrile, terephthalonitrile, isophthalonitrile, phthalonitrile, and 4-fluorophthalonitrile can also be used by Aladdin.
  • the produced nitrile compound is purchased directly as a commodity.
  • succinonitrile, malononitrile, ethoxymethylenemalononitrile, terephthalonitrile, isophthalonitrile, phthalonitrile, and tetrafluorocarbon manufactured by Tokyo Chemical Industry Co., Ltd. can also be used. O-phthalonitrile and 4-fluorophthalonitrile.
  • the lithium salt used in the solid electrolyte of the present invention is not particularly limited as long as it can be used as an electrolyte for an electrolyte solution for a lithium ion battery, and examples thereof include inorganic lithium salts and fluorine-containing organic lithium salts described below. , oxalate borate, etc.
  • inorganic lithium salt examples include inorganic fluoride salts such as LiPF 6 , LiBF 4 , LiAsF 6 and LiSbF 6 , perhalogen salts such as LiClO 4 , LiBrO 4 and LiIO 4 , and inorganic chlorides such as LiAlCl 4 .
  • fluorine-containing organic lithium salt examples include perfluoroalkylsulfonates such as LiCF 3 SO 3 , LiN(CF 3 SO 2 ) 2 , LiN(FSO 2 ) 2 , and LiN(CF 3 CF 2 SO 2 ) 2 .
  • Perfluoroalkylsulfonamides such as LiN(CF 3 SO 2 )(C 4 F 9 SO 9 ), perfluoroalkylsulfonylmethides such as LiC(CF 3 SO 2 ) 3 and LiC(SO 2 F) 3 Salt, Li[PF 5 (CF 2 CF 2 CF 3 )], Li[PF 4 (CF 2 CF 2 CF 3 ) 2 ], Li[PF 3 (CF 2 CF 2 CF 3 ) 3 ], Li[PF 5 Fluoroalkyl fluoride such as (CF 2 CF 2 CF 3 )], Li[PF 4 (CF 2 CF 2 CF 2 CF 3 ) 2 ], Li[PF 3 (CF 2 CF 2 CF 2 ) 3 ] Phosphate and the like.
  • oxalic acid borate examples include lithium dioxalate borate and lithium difluorooxalate borate.
  • the lithium salt used in the solid electrolyte of the present invention is preferably lithium tetrafluoroborate, lithium hexafluorophosphate or lithium bis(trifluoromethylsulfonyl)imide, and a lithium salt produced by Morita Chemical (Zhangjiagang) Co., Ltd. can be used as a commercial product. Buy directly. Further, a lithium salt sold by Tokyo Chemical Industry Co., Ltd. can also be used.
  • the mass ratio of the ionic liquid polymer to the nitrile compound is preferably from 1:0.1 to 1:2.0, more preferably from 1:0.2 to 1:1.8, still more preferably from 1:0.3 to 1:1.5. . If the mass ratio of the nitrile compound is more than 0.1, the electrochemical characteristics of the solid electrolyte membrane are improved, and if it is greater than or equal to 0.3, the electrochemical characteristics are further improved. If the mass ratio of the nitrile compound is less than 2.0, the solid electrolyte membrane is inhibited from sticking and is easily peeled off from the mold, and if it is less than or equal to 1.5, it is more preferable.
  • the mass ratio of the ionic liquid polymer to the lithium salt is from 1:0.1 to 1:1.0, more preferably from 1:0.2 to 1:0.9, still more preferably from 1:0.3 to 1:0.8. If the mass ratio of the lithium salt is less than 0.1, the concentration of the lithium ion carrier in the solid electrolyte becomes low, the ionic conductivity tends to decrease, and if the mass ratio of the lithium salt exceeds 1.0, the solid electrolyte membrane tends to become brittle.
  • the present invention also provides a solid electrolyte membrane containing the aforementioned solid electrolyte.
  • the present invention also provides a method of manufacturing the aforementioned solid electrolyte membrane, the method comprising the steps of:
  • the mass ratio of the ionic liquid polymer to the nitrile compound is preferably from 1:0.1 to 1:2.0, more preferably from 1:0.2 to 1:1.8, still more preferably from 1:0.3 to 1:1.5. Further, the mass ratio of the ionic liquid polymer to the lithium salt is preferably from 1:0.1 to 1:1.0, more preferably from 1:0.2 to 1:0.9, still more preferably from 1:0.3 to 1:0.8. Dissolving the ionic liquid polymer, the nitrile compound and the lithium salt in a solvent according to the above ratio, and uniformly mixing to obtain a mixed liquid;
  • the thickness of the solid electrolyte membrane varies greatly depending on the configuration of the battery, and is not particularly limited.
  • the solid electrolyte of the present invention is applied to a secondary battery, that is, the present invention also provides a secondary battery comprising the aforementioned ionic liquid polymer solid electrolyte membrane.
  • the solid electrolyte of the present invention is preferably used in a Li/LiFePO 4 battery.
  • the solid electrolyte of the present invention can contribute to an improvement in the safety of a lithium secondary battery because of its flame retardancy. Further, since the electrolyte of the present invention is in a solid state, a bipolar electrode can be used. By using a bipolar electrode, it is possible to manufacture a battery having a high energy density that cannot be realized by a conventional lithium secondary battery.
  • the configuration example of the lithium secondary battery of the present embodiment will be described with reference to FIG. 8 , but the lithium secondary battery is not limited to the configuration of FIG. 8 .
  • the solid electrolyte membrane 3 is disposed between the anode active material layer 2 and the cathode active material layer 4.
  • the anode active material layer 2 is formed on the anode current collector 1 and the cathode active material layer 4 is formed on the cathode current collector 5.
  • the negative electrode active material layer 2 formed on the negative electrode current collector 1 is also referred to as a negative electrode sheet
  • the positive electrode active material layer 4 including the positive electrode current collector 5 is also referred to as a positive electrode sheet.
  • the solid electrolyte layer in the lithium secondary battery of the present invention is a layer formed between the positive electrode active material layer and the negative electrode active material layer.
  • the solid electrolyte layer contains a solid electrolyte membrane, and may be, for example, a form in which a solid electrolyte is applied to an electrode.
  • the thickness of the solid electrolyte layer varies greatly depending on the configuration of the battery, and is not particularly limited.
  • the positive electrode sheet in the lithium secondary battery of the present invention is a layer containing at least a positive electrode active material (that is, a positive electrode active material layer). Further, the positive electrode active material layer may further contain at least one of a conductive material and a binder in addition to the positive electrode active material.
  • the type of the positive electrode active material is not particularly limited, and examples thereof include an oxide active material, and examples of the oxide active material include LiCoO 2 , LiMnO 2 , LiNiO 2 , LiVO 2 , and LiNi 1/3 Co 1/3 Mn 1 . /3 O 2 and other rock salt layered active materials; spinel-type active materials such as LiMn 2 O 4 and Li(Ni 0.5 Mn 1.5 )O 4 ; olivine-type actives such as LiFePO 4 , LiMnPO 4 , LiNiPO 4 and LiCuPO 4 Substance and so on. From the viewpoint of thermal stability, lithium iron phosphate (LiFePO 4 ) is preferably used.
  • the conductive material is not particularly limited as long as it has a desired electron conductivity, and examples thereof include a carbon material.
  • examples of the carbon material include carbon black such as acetylene black, ketjen black, furnace black, and thermal black.
  • the binder is not particularly limited as long as it is a chemically stable and electrically stable binder, and examples thereof include a fluorine-based binder such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE). .
  • a fluorine-based binder such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the content of the positive electrode active material in the positive electrode active material layer is preferably as large as possible.
  • the thickness of the positive electrode active material layer varies greatly depending on the composition of the battery, There is no particular limitation.
  • examples of the material of the positive electrode current collector include SUS, aluminum, nickel, iron, titanium, carbon, and the like.
  • the negative electrode sheet in the lithium secondary battery of the present invention is a layer containing at least a negative electrode active material (that is, a negative electrode active material layer). Further, the negative electrode active material layer may further contain at least one of a conductive material and a binder in addition to the negative electrode active material.
  • the type of the negative electrode active material is not particularly limited, and examples thereof include a metal active material and a carbon active material.
  • the metal active material include a metal monomer, an alloy, a metal oxide, and the like.
  • the metal element contained in the metal active material include Li, Al, Mg, In, Si, and Sn.
  • Li metal, carbon, or Li 4 Ti 5 O 12 is preferably used as the negative electrode active material.
  • the same material as that described in the above-mentioned positive electrode active material layer can be used. Further, from the viewpoint of capacity, the content of the negative electrode active material in the negative electrode active material layer is preferably as large as possible. Further, the thickness of the negative electrode active material layer varies greatly depending on the configuration of the battery, and is not particularly limited.
  • examples of the material of the negative electrode current collector include SUS, copper, nickel, carbon, and the like.
  • the material of the battery case is not particularly limited as long as it is a general material, and examples thereof include a SUS or Al laminate film.
  • the shape of the lithium secondary battery of the present invention may, for example, be a coin type, a laminate type, a cylindrical type, or a square type.
  • the assembling method of the lithium secondary battery of the present invention may be:
  • the positive electrode cover of the battery, the positive electrode sheet, the prepared solid electrolyte membrane, the negative electrode sheet, and the negative electrode cover are stacked in a bottom-up order to form a laminate in an argon-protected glove box, and then the laminate is placed in the stack.
  • the stamping machine is stamped so that the positive and negative electrode covers of the battery are tightly locked to each other, and thus the lithium secondary battery of the present invention is assembled and assembled.
  • the negative electrode sheet was cut into a circular shape having a diameter of 1.6 cm
  • the positive electrode sheet was cut into a circular shape having a diameter of 1.4 cm
  • the solid electrolyte membrane was cut into a circular shape having a diameter of 1.9 cm.
  • a positive electrode sheet, a solid electrolyte membrane, a negative electrode sheet, and a cut-off diameter of 1.4 as a separator were sequentially stacked in a stainless steel coin outer container (positive electrode cover) having a diameter of 2.0 cm and a thickness of 0.3 cm (CR2032 type). Cm round copper foil).
  • a gasket made of polypropylene A cover made of stainless steel (negative case cover) was placed on the container, and the container was sealed by punching. Thus, a lithium secondary battery (button battery) was produced.
  • the battery component other than the solid electrolyte membrane of the present invention such as the positive electrode cover, the positive electrode sheet, the negative electrode sheet, and the negative electrode cover used in the above, may be obtained by using a known battery member obtained by a known method, or may be obtained by various sellers. .
  • a bipolar type in which a plurality of unit cells in which a negative electrode mixture layer, a solid electrolyte, and a positive electrode mixture layer are stacked may be laminated.
  • the measurement was carried out by differential scanning calorimetry (DSC) and using a TA Instruments Model Q2000 Differential Calorimeter.
  • DSC differential scanning calorimetry
  • a second cycle is performed, and the DSC curve data of the second cycle is used to obtain a glass transition temperature: first, the solid electrolyte sample is cooled from room temperature to -80 ° C, kept at a constant temperature for 10 minutes, and then heated to 200 at a rate of 10 ° C / minute. °C, constant temperature for 5 minutes, and then cooled to -80 ° C at a rate of 10 ° C / minute, as the first cycle. The above operation was repeated once as the second cycle.
  • the ionic conductivity of the solid electrolyte was measured by the AC impedance method, and the instrument used was a CHI600D electrochemical workstation.
  • the sample to be tested was composed of a stainless steel electrode/solid electrolyte/stainless steel electrode in the order of composition, and the simulated battery was subjected to an AC impedance test at 25 °C. Before the test, the simulated battery was allowed to stand at a constant temperature for 1 h at each temperature point, the frequency range was 1 Hz to 100 KHz, and the AC amplitude was 5 mV.
  • the conductivity calculation formula is as follows:
  • R is the solid electrolyte bulk resistance ( ⁇ )
  • L represents the thickness (cm) of the solid electrolyte membrane
  • S represents the effective area (cm 2 ) of the solid electrolyte membrane.
  • the discharge specific capacity of the battery is measured as follows:
  • the obtained solid electrolyte was made into a battery, and the battery was placed at a temperature of 25 ° C, and charged and discharged at a voltage range of 2.5-4.0 V and a constant current of 0.1 C, 0.5 C or 1.0 C, using CT2001A (Wuhan City)
  • CT2001A Wood City
  • the charging and discharging device of Lanbo Test Equipment Co., Ltd., LAND Battery Test System-CT2001A measures the first discharge capacity of the battery and the discharge capacity up to 10 times.
  • Discharge specific capacity (mAh g -1 ) actual discharge capacity (mAh) / mass (g) of active material in the positive electrode sheet.
  • the cycle performance map was prepared by taking the data of the discharge specific capacity obtained above as the ordinate and the number of cycles as the abscissa.
  • the ionic liquid polymer had a viscosity average molecular weight of 2.11 ⁇ 10 6 g mol -1 .
  • the chemical structure of the ionic liquid polymer is characterized by a 1 H NMR spectrum as shown in FIG.
  • the 1 H NMR spectrum of the solid electrolyte produced in Example 1 was measured by the following method using AVANCE III HD 400 manufactured by Bruker BioSpin.
  • Deuterated solvent deuterated acetone
  • the obtained mixed liquid poly(dimethyldiallylammonium bis(trifluoromethylsulfonyl)imide) solid electrolyte was coated on a polytetrafluoroethylene template, and then vacuum dried at 30 ° C for 48 hours.
  • a solid electrolyte membrane is obtained.
  • the solid electrolyte membrane had a glass transition temperature T g of less than -80 ° C and an ion conductivity of 5.74 ⁇ 10 -4 S cm -1 at 25 °C.
  • a positive electrode sheet containing lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, a prepared solid electrolyte membrane, and a negative electrode sheet containing lithium (Li) as a negative electrode active material are stacked in order from bottom to top to form a laminated electrode. and then placed in a laminate-type electrode punched to give Li / LiFePO 4 cell on the press.
  • LiFePO 4 lithium iron phosphate
  • the prepared Li/LiFePO 4 battery was subjected to a constant current charge and discharge test at a voltage range of 2.5 to 4.0 V at 25 ° C, and each test was carried out for 10 cycles at a charge and discharge rate of 0.1 C, 0.5 C and 1.0 C.
  • Example 1 The measurement data results of Example 1 are summarized in Tables 2 to 3 and Figs. 1 to 2.
  • a radical polymerization reaction is carried out using 1-vinylimidazole as a reaction monomer, azobisisobutyronitrile as an initiator, and toluene as a reaction solvent, wherein the initiator accounts for 0.5% by mass of the monomer.
  • the reaction was refluxed under an Ar atmosphere at 65 ° C for 8 hours.
  • the solid was formed, washed with acetone, and dried under vacuum at 75 ° C for 24 hours to give a polyvinyl imidazole.
  • the viscosity average molecular weight M v of the polyvinylimidazole was 3.39 ⁇ 10 5 g mol -1 .
  • the chemical structure of the ionic liquid polymer was characterized by 1 H NMR spectroscopy, as shown in FIG.
  • the 1 H NMR spectrum of the solid electrolyte produced in Example 2 was measured by the following method using AVANCE III HD 400 manufactured by Bruker BioSpin.
  • Deuterated solvent deuterated dimethyl sulfoxide
  • the viscosity average molecular weight M v of the ionic liquid polymer was 7.32 ⁇ 10 5 g mol -1 .
  • the obtained mixed liquid poly(1-(2-methoxyethyl)-3-vinylimidazolium bis(trifluoromethylsulfonyl)imide) solid electrolyte was coated on a polytetrafluoroethylene template, and then It was vacuum dried at 25 ° C for 48 hours to obtain a solid electrolyte membrane.
  • the solid electrolyte membrane had a glass transition temperature T g of less than -80 ° C and an ion conductivity of 2.98 ⁇ 10 -4 S cm -1 at 25 °C.
  • a positive electrode sheet containing lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, a prepared solid electrolyte membrane, and a negative electrode sheet containing lithium (Li) as a negative electrode active material are stacked in order from bottom to top to form a laminated electrode. Then, the laminated electrode was placed on a press and punched to obtain a Li/LiFePO 4 battery.
  • the prepared Li/LiFePO 4 battery was subjected to a constant current charge and discharge test at a voltage range of 2.5 to 4.0 V at 25 ° C, and each test was carried out for 10 cycles at a charge and discharge rate of 0.1 C, 0.5 C and 1.0 C.
  • Example 2 The measurement data results of Example 2 are summarized in Tables 2 to 3 and Figs. 3 to 4.
  • a radical polymerization reaction is carried out using 1-vinylimidazole as a reaction monomer, azobisisobutyronitrile as an initiator, and toluene as a reaction solvent, wherein the initiator accounts for 0.5% by mass of the monomer.
  • the reaction was refluxed under an Ar atmosphere at 65 ° C for 8 hours.
  • the solid was formed, washed with acetone, and dried under vacuum at 75 ° C for 24 hours to give a polyvinyl imidazole.
  • the viscosity average molecular weight M v of the polyvinylimidazole was 3.39 ⁇ 10 5 g mol -1 .
  • the viscosity average molecular weight M v of poly(1-(2-methoxyethyl)-3-vinylimidazolium bromide) was 5.62 ⁇ 10 5 g mol -1 .
  • the chemical structure of the ionic liquid polymer was characterized by 1 H NMR spectroscopy, as shown in FIG.
  • the 1 H NMR spectrum of the solid electrolyte produced in Example 3 was measured by the following method using AVANCE III HD 400 manufactured by Bruker BioSpin.
  • Deuterated solvent deuterated dimethyl sulfoxide
  • the viscosity average molecular weight M v of the ionic liquid polymer was 6.35 ⁇ 10 5 g mol -1 .
  • the obtained mixed liquid poly(1-(2-methoxyethyl)-3-vinylimidazolium hexafluorophosphate) solid electrolyte was coated on a polytetrafluoroethylene template, and then vacuum dried at 30 ° C. In hours, a solid electrolyte membrane was obtained.
  • the solid electrolyte membrane has a glass transition temperature T g of less than -80 ° C and an ion conductivity of 1.08 ⁇ 10 -4 S cm -1 at 25 °C.
  • a positive electrode sheet containing lithium iron phosphate (LiFePO 4 ) as a positive electrode active material, a prepared solid electrolyte membrane, and a negative electrode sheet containing lithium (Li) as a negative electrode active material are stacked in order from bottom to top to form a laminated electrode. Then, the laminated electrode was placed on a press and punched to obtain a Li/LiFePO 4 battery.
  • Example 3 The measurement data results of Example 3 are summarized in Tables 2 to 3 and Figs. 5 to 6.
  • a solid electrolyte and a solid electrolyte membrane and a lithium secondary battery were formed as in Example 1 except that the weight ratio of the ionic liquid polymer and succinonitrile of Example 1 was changed to 1:1.5.
  • the solid electrolyte membrane had a glass transition temperature T g of less than -80 ° C and an ion conductivity of 3.56 ⁇ 10 -4 S cm -1 at 25 °C.
  • Example 4 The measurement data results of Example 4 are summarized in Tables 2 to 3 and FIG.
  • a solid electrolyte and a solid electrolyte membrane were formed as in Example 2 except that the weight ratio of the ionic liquid polymer and ethoxymethylenemalononitrile of Example 2 was changed to 1:0.3.
  • the solid electrolyte membrane has a glass transition temperature T g of less than -80 ° C and an ion conductivity of 1.01 ⁇ 10 -4 S cm -1 at 25 °C.
  • composition and related fabrication of the solid electrolyte of the comparative example can be referred to the cited article "Advanced Energy Materials” (2015, 5, 1500353).
  • the ionic liquid polymer of the present invention was not used and contained in Comparative Example 1.
  • a solid electrolyte was prepared by using polyacrylonitrile as a matrix and nitrile ethylated polyvinyl alcohol as a crosslinking component in combination with succinonitrile and a lithium salt, and the obtained solid electrolyte was applied to a Li/LiFePO 4 battery.
  • Example 2 is a graph showing discharge specific capacity and cycle performance of Li/LiFePO 4 batteries formed by the solid electrolyte prepared in Example 1 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • Battery respectively 0.1C, 0.5C and 1.0C of constant current charge and discharge rate at 25 °C, initial discharge capacity of 150mAh g -1, respectively, 132mAh g -1 and 121mAh g -1, discharge ratio after 10 cycles capacities are 152mAh g -1, 130mAh g -1 and 116mAh g -1.
  • Li/LiFePO 4 is a graph showing discharge specific capacity and cycle performance of Li/LiFePO 4 batteries formed by the solid electrolyte prepared in Example 2 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • the battery was subjected to constant current charge and discharge at a rate of 0.1 C, 0.5 C and 1.0 C at 25 ° C, respectively.
  • the discharge specific capacities were 135 mAh g -1 (0.1 C), 129 mAh g -1 (0.5 C) and 119 mAh g -1 , respectively. (1.0C), the discharge specific capacities after 10 cycles were 143 mAh g -1 (0.1 C), 128 mAh g -1 (0.5 C), and 113 mAh g -1 (1.0 C), respectively.
  • Fig. 6 is a graph showing discharge specific capacity and cycle performance of a Li/LiFePO 4 battery formed by the solid electrolyte obtained in Example 3 at different charge and discharge rates (0.1 C, 0.5 C, and 1.0 C).
  • the battery was subjected to constant current charge and discharge at a rate of 0.1 C, 0.5 C and 1.0 C at 25 ° C, respectively.
  • the discharge specific capacities were 132 mAh g -1 (0.1 C), 128 mAh g -1 (0.5 C) and 112 mAh g -1 , respectively. (1.0C), after 10 cycles, discharge capacities were 138mAh g -1 (0.1C), 126mAh g -1 (0.5C) and 110mAh g -1 (1.0C).
  • Li / LiFePO 4 cell embodiment 4 prepared to a solid electrolyte formed by the method discharge capacity and cycle characteristics in FIG different charge-discharge rate (0.1C, 0.5C and 1.0C) a.
  • the solid electrolyte membranes of Examples 1 to 5 were in an amorphous state, and had only a glass transition temperature and no melting point.
  • the solid electrolyte membrane of the comparative example is a crystalline polymer having a melting point.
  • the first discharge specific capacity at a charge and discharge rate of 0.5 C was greater than or equal to 125mAh g -1 is a high discharge specific capacity. Even at a high charge and discharge rate of 1.0 C, the first discharge specific capacities of the batteries of Examples 1 to 4 were both greater than or equal to 112 mAh g -1 .
  • the discharge was evaluated by the attenuation of the discharge capacity after 10 cycles.
  • Example 1 of the present invention At a charge and discharge rate of 0.5 C, the attenuation ratio of Example 1 of the present invention was 1.51%, that of Example 2 was 0.78%, that of Example 3 was 1.56%, and that of Example 4 was 0.79%. From this, it is understood that the average attenuation ratio of Examples 1 to 4 is 1.16%, indicating that the attenuation is extremely small even after 10 cycles.
  • the ratio of the discharge specific capacity attenuation after the 10 cycles at a charge and discharge rate of 0.5 C was 4.00%, the attenuation was more pronounced, and the cycle performance was poor.
  • Example 1 of the present invention was 4.13%, that of Example 2 was 5.04%, and that of Example 3 was 1.79%.
  • Example 4 was 4.31%. From this, it can be seen that even after 10 cycles, the average attenuation ratio is 3.82%, which is only about 4%.
  • the ratio of the specific capacity of the discharge after the 10 cycles of the charge-discharge rate of 1.0 C was 13.27%, the attenuation was very remarkable, and the cycle performance was poor.
  • the ratio of the discharge specific capacity after 10 cycles of the charge-discharge rate of 1.0 C was 13.27%, which was the charge-discharge ratio of 1.0 C of the battery formed by the solid electrolytes of Examples 1 to 4 of the present invention.
  • the ratio of the discharge to the capacity is 3.5 times, the attenuation is very high, the cycle performance of the battery is very poor, and the battery has poor cycleability.
  • the discharge specific capacity attenuation was small even after 10 cycles at a high charge and discharge rate of 1.0 C, after 10 cycles. It also maintains a very stable discharge specific capacity, which is very important as a battery.
  • the solid electrolyte of the present invention and its battery have high charge and discharge rates (0.5 C and 1.0 C). It has very good discharge specific capacity and excellent cycle performance, and is very suitable for use as a battery, and is particularly suitable for use in a lithium secondary battery.
  • the present invention not only a combination of new components of a solid electrolyte but also a specific ratio of these new components is provided, and the battery is compared with the prior art and its conventional polymer matrix. It has very good discharge specific capacity and excellent cycle performance at high charge and discharge rates of 0.5C and 1.0C.
  • the solid electrolyte of the present invention has an amorphous state, has a very low glass transition temperature ( ⁇ -80 ° C), is favorable for the movement of lithium ions in the battery, and also enables the battery of the present invention to have a high charge and discharge rate (0.5). Under C and 1.0C), it has very good discharge specific capacity and excellent cycle performance.
  • solid electrolyte of the present invention By applying the solid electrolyte of the present invention to a lithium secondary battery, particularly in a Li/LiFePO 4 lithium secondary battery, excellent discharge specific capacity and cycle performance can be obtained at a high charge and discharge rate.

Abstract

一种固态电解质、固态电解质膜及其制造方法、以及二次电池。该固态电解质包含离子液体聚合物、腈类化合物和锂盐。包含该固态电解质的电池在高充放电倍率(例如0.5C和1.0C)下具有非常好的放电比容量和优异的循环性能,适合作为电池使用,特别适合于锂二次电池使用。

Description

固态电解质、固态电解质膜及其制造方法、以及二次电池
相关申请的交叉引用
本申请主张在2015年12月17日在中国提交的中国专利申请号No.201510955695.3的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及一种固态电解质、固态电解质膜及其制造方法、以及二次电池。
背景技术
电解质是电化学器件中的重要组成部分。目前,锂二次电池的电解质主要由有机溶剂与锂盐组成,而有机溶剂沸点低,闪点低,易燃易挥发,极大地影响锂二次电池的安全性;同时,随着锂二次电池应用领域的扩大,电池的功率密度和能量密度也不断提高,有机电解质所带来的安全隐患也日趋突出。
因有机电解质而产生的着火、爆炸、漏液等安全隐患严重制约了高比能量锂离子电池的发展。因此,具有安全性强、柔性好、可抑制锂枝晶生长等优势的固态电解质受到了广泛关注。然而,目前固态电解质普遍存在室温离子电导率偏低、电极/固态电解质界面阻抗过大等问题,限制了其在锂离子电池中的实际应用。
锂二次电池用固态电解质由于具有良好的机械性能和高安全性,可防止电解液泄漏,且无需隔膜,已引起广泛关注。然而,大多数固态电解质的室温离子电导率较低(10-5~10-6S cm-1),限制了其实际应用。迄今为止,人们采取一些策略增强其离子电导率,例如掺杂填料,聚合物共混、共聚以及交联等,然而,离子电导率依然不够理想。
离子液体具有基本不挥发、耐热性高、不易燃、电化学稳定性好等一系列优异特性,将其与锂盐复合作为电解质应用于锂二次电池中,可以提高电池的安全性。迄今为止,现有技术中的离子液体存在有单中心阳离子 离子液体和双中心阳离子离子液体。然而,该类电解质在锂二次电池中依然是液相存在,解决不了电池的漏液问题,难以确保电池的安全性和稳定性。
腈类化合物具有高极性,其具有良好的溶解多种锂盐的能力。
例如,研究发现丁二腈/二(三氟甲基磺酰)亚胺锂体系的电解质,其室温下的离子电导率可达10-3S cm-1(Nature materials,2004,3,476-481)。
还有存在丁二腈被引入到聚合物基体的电解质,例如,电解质中包括聚丙烯腈(Electrochemistry Communications,2008,10,1912-1915)和丁二腈的电解质;包括甲壳素(Journal of Membrane Science,2014,468,149-154)和丁二腈的电解质等等。
最近,研究人员还研制出采用原位合成技术以制备一种腈类固态电解质(Advanced Energy Materials,2015,5,1500353)。该类固态电解质是通过将腈乙基化聚乙烯醇(PVA-CN)单体溶于丁二腈固态电解质中形成前躯体,进而将前躯体浸入聚丙烯腈电纺纤维膜网络中进行原位聚合而制得的。但其应用于锂二次电池时,电池在室温及低的充放电倍率(0.1C)下的放电比容量还可以,但随着充放电倍率(例如0.5C和1.0C)的提高,其放电比容量大幅度降低。
所以迫切要求能够研制出所制得的锂二次电池在高的充放电倍率下放电比容量不降低,在高的充放电倍率下也具有高的放电比容量和好的循环性能的电解质。
对于锂二次电池的电解质而言,能保证该电池在高的充放电倍率下有高的放电比容量和优异的循环性能是至关重要的。
发明内容
本发明的发明人针对上述现有技术所存在的缺陷,对离子液体聚合物以及腈类化合物的组合等进行了深入研究,开发出本发明的包含离子液体聚合物、腈类化合物和锂盐的固态电解质、固态电解质膜及其制造方法、以及二次电池。
本发明提供一种固态电解质,其包含离子液体聚合物、腈类化合物和锂盐。
在本发明的所述的固态电解质中,所述离子液体聚合物选自下式(1)的聚合物、和下式(2)的聚合物的一种:
Figure PCTCN2016110301-appb-000001
其中式(1)中,n为300≤n≤4000;
其中式(2)中,m为50≤m≤2000;R1为氢原子、或C1-C10的直链脂肪族烷基;R2为C1-C10的直链脂肪族烷基、或醚基。
式(1)和(2)中的B-为BF4 -、PF6 -、(CF3SO2)2N-、(FSO2)2N-、[C(SO2F)3]-、CF3BF3 -、C2F5BF3 -、C3F7BF3 -、C4F9BF3 -、[C(SO2CF3)3]-、CF3SO3 -、CF3COO-、CH3COO-中的任一种。
上述式(2)中,所述R2的醚基可以为:-CH2OCH3、-CH2CH2OCH3、-CH2CH2OCH2CH3、-CH2CH2OCH2CH2CH3、或者-CH2CH2CH2OCH3
在本发明的所述的固态电解质中,所述腈类化合物选自丙二腈、丁二腈、乙氧基亚甲基丙二腈、对苯二甲腈、间苯二甲腈、邻苯二甲腈、以及4-氟邻苯二腈中的一种。
所述腈类化合物优选为乙氧基亚甲基丙二腈或者丁二腈。
在本发明的所述的固态电解质中,所述锂盐为LiY;其中Y为BF4 -、PF6 -、(FSO2)2N-、[C(SO2F)3]-或(CF3SO2)2N-
在本发明的所述的固态电解质中,上述离子液体聚合物和上述腈类化合物的质量比为1∶0.1~1∶2.0。
此外,上述离子液体聚合物和上述锂盐的质量比为1∶0.1~1∶1.0。
本发明还提供一种固态电解质膜,该固态电解质膜含有前述固态电解质。
本发明还提供一种二次电池,该二次电池含有上述固态电解质膜。
本发明还提供一种二次电池,该二次电池含有上述固态电解质。
进而,本发明还提供一种使用了呈无定形态且玻璃化转变温度小于或 等于-80℃的固态电解质的固态电解质膜,以及使用了该固态电解质膜的二次电池。
本发明的所述的二次电池可以为锂离子电池。
本发明还提供一种前述固态电解质膜的制造方法,该制造方法包括如下步骤:
(1)按照离子液体聚合物和腈类化合物的质量比为1∶0.1~1∶2.0、以及离子液体聚合物和锂盐的质量比为1∶0.1~1∶1.0的比例将所述离子液体聚合物、所述腈类化合物以及所述锂盐溶解在溶剂中,进行混合,制得混合液;
(2)将步骤(1)所得的混合液涂布在模板上,制得固态电解质膜。
技术效果
在本发明中,不仅提供了一种固态电解质的新组分的组合,而且还提供了这些新组分的特定配比,与现有技术及其常规聚合物基体相比,使用本发明的固态电解质的电池在0.5C和1.0C的高充放电倍率下具有非常好的放电比容量和优异的循环性能。
再者,本发明的固态电解质呈无定形态,具有低的玻璃化转变温度(<-80℃),有利于电池锂离子的运动,也使本发明的电池在0.5C和1.0C的高充放电倍率下具有非常好的放电比容量和优异的循环性能。
附图说明
图1为实施例1中得到的离子液体聚合物的1H NMR谱图(氘代溶剂:氘代丙酮)。
图2为以实施例1所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
图3为实施例2中得到的离子液体聚合物的1H NMR谱图(氘代溶剂:氘代二甲基亚砜)。
图4为以实施例2所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
图5为实施例3中得到的离子液体聚合物的1H NMR谱图(氘代溶剂: 氘代二甲基亚砜)。
图6为以实施例3所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
图7为以实施例4所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
图8为表示锂二次电池的一个例子的截面概略图。
具体实施方式
以下,对本发明的实施方式进行说明。但是,本发明不限于以下实施方式。在以下实施方式中,其构成要素(还包括要素步骤等),除了特别明示的情况以外,并不是必须的。对于数值及其范围也同样,并不限制本发明。
本说明书中,用“~”所示的数值范围包含记载在“~”前后的数值分别作为最小值和最大值。
在本说明书中阶段性记载的数值范围中,在某一段数值范围中记载的上限值或下限值可以替换成其他阶段性记载的数值范围的上限值或下限值。此外,在本说明书中记载的数值范围中,该数值范围的上限值或下限值可以替换成实施例中所示的值。
本说明书中,“层”或“膜”一词除了包含观察该层或膜所存在的区域时形成在该区域整体的情况以外,还包含仅形成在该区域的一部分的情况。
本说明书中,“层叠”一词表示将层堆叠,可以两个以上的层是结合的,也可以两个以上的层是可脱离的。
本发明提供一种固态电解质,该固态电解质包含离子液体聚合物、腈类化合物和锂盐。
<离子液体聚合物>
前述离子液体聚合物选自下式(1)的聚合物、和下式(2)的聚合物中的一种。本发明中,离子液体聚合物是指在构成离子液体的阳离子种或阴离子种中导入聚合性不饱和基团,将它们聚合而成的聚合物。
Figure PCTCN2016110301-appb-000002
其中式(1)中,n为300≤n≤4000。
其中式(2)中,m为50≤m≤2000;R1为氢原子、或C1-C10的直链脂肪族烷基;R2为C1-C10的直链脂肪族烷基、或醚基。
具体地,式(1)中,n表示300~4000的整数,优选为500~3900,更优选为1000~3700,进一步优选为1500~3500,特别优选为2000~3000。式(2)中,m表示50~2000的整数,优选为200~1800,更优选为500~1500。
式(1)和(2)中的B-可举出:BF4 -、PF6 -、(CF3SO2)2N-、(FSO2)2N-、[C(SO2F)3]-、CF3BF3 -、C2F5BF3 -、C3F7BF3 -、C4F9BF3 -、[C(SO2CF3)3]-、CF3SO3 -、CF3COO-、CH3COO-中的任一种。
前述的C1-C10的直链脂肪族烷基例如为:甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基。
前述直链脂肪族烷基较好为C1-C5的直链脂肪族烷基,例举为:甲基、乙基、丙基、丁基、戊基。
前述R2的醚基例如为:-CH2OCH3、-CH2CH2OCH3、-CH2CH2OCH2CH3、-CH2CH2OCH2CH2CH3、或者-CH2CH2CH2OCH3,较好为-CH2CH2OCH3或-CH2CH2OCH2CH3
R1较好为氢原子或甲基。
R2较好为甲基、乙基、或-CH2CH2OCH3的醚基。
<离子液体聚合物的制作方法>
前述离子液体聚合物的制备方法没有特别限定,可为如下的制造方法。
通式(1)的离子液体聚合物的制造方法可以使用例如文献A.-L.Pont,R.Marcilla,I.De Meatza,H.Grande,D.Mecerreyes,、电源技术学报(Journal of Power Sources)(2009,188,558-563)所记载的制造方法。
通式(1)的离子液体聚合物可由如下制造方法制得:
将聚二甲基二烯丙基氯化铵水溶液(浓度为20.00质量%)溶解于去离子水中,搅拌形成含有聚二甲基二烯丙基氯化铵的溶液。
另将锂盐溶解在去离子水中,搅拌形成含有锂盐的溶液。
按照聚二甲基二烯丙基氯化铵和锂盐的摩尔比1∶1.2~1∶2.0的比例将前述制得的两溶液进行混合配制,搅拌反应2~8小时,有固体生成,过滤收集固体。再用去离子水洗涤,直到洗出物用硝酸银检测不含卤素阴离子为止,最后真空干燥12~48小时,以制得通式(1)的离子液体聚合物。
所述锂盐可使用:二(三氟甲基磺酰)亚胺锂、双(氟代磺酰)亚胺锂、六氟磷酸锂、四氟硼酸锂等。
本发明的通式(1)的离子液体聚合物的粘均分子量Mv优选为1.0×105~5.0×106g mol-1,更优选为3.0×105~5.0×106g mol-1(聚甲基丙烯酸甲酯作为标样)。如果通式(1)的离子液体聚合物的粘均分子量Mv大于或等于1.0×105g mol-1,则能够充分担保将离子液体聚合物溶解于溶剂中并通过涂布干燥而形成的离子液体聚合物的片强度,如果小于或等于5.0×106g mol-1,则容易将离子液体聚合物溶解于溶剂中,此外,能够提高涂布形成的操作性。
所述离子液体聚合物(1)的确认方法为1H NMR谱图。
通式(2)的离子液体聚合物的制造方法可以使用例如文献K.Yin、Z.X.Zhang、L.Yang、S.-i.Hirano,电源技术学报(Journal of Power Sources)(2014,258,150-154)所记载的制造方法。
通式(2)的离子液体聚合物可由如下制造方法制得:
第一步:将含烯烃不饱和基团咪唑类单体溶解在溶剂中,以引发剂占所述含烯烃不饱和基团咪唑类单体质量的0.2~1.0%的比例加入引发剂,进行自由基聚合反应。在氩气等保护气体的保护下,60~90℃下在回流状态下搅拌反应6~12小时,待有固体即析出的聚合物生成,过滤后用溶剂洗涤聚合物,在60~90℃下真空干燥12~48小时,制得含咪唑结构的聚合物。
含烯烃不饱和基团咪唑类单体可为:1-乙烯基咪唑、1-丙烯基咪唑等。
聚合引发剂可为:偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲 酯。
溶剂可为:甲苯、苯、四氢呋喃、丙酮、γ-丁内酯、N-甲基吡咯烷酮等。其中,优选为丙酮。
这些溶剂可以单独使用一种,也可以将两种以上组合使用。
所制得的聚合物的分子量:其粘均分子量Mv为1.0×104~5.0×105g mol-1(聚甲基丙烯酸甲酯作为标样)。
第二步:将第一步所制得的含咪唑结构的聚合物与卤代烃或卤代醚按摩尔比1∶1.5~1∶2.0溶解在溶剂中,在40~80℃下搅拌反应24~72小时,减压蒸馏除去溶剂。收集固体即析出的聚合物,用无水乙醚将该固体洗涤3次,旋转蒸发除去乙醚,真空干燥12~48小时,得到含卤素阴离子离子液体聚合物。
其中的溶剂可举出:N,N-二甲基甲酰胺、甲醇等。
所述卤代烃可为:溴乙烷,溴丙烷,溴丁烷等。
所述卤代醚可为:2-溴乙基甲基醚、溴甲基甲基醚,2-溴乙基乙基醚等。
所制得的含卤素阴离子离子液体聚合物的分子量:其粘均分子量Mv优选为1.0×105~5.0×106g mol-1(聚甲基丙烯酸甲酯作为标样)。
第三步:将第二步得到的含卤素阴离子离子液体聚合物和锂盐按摩尔比1∶1.2~1∶2.0溶解在去离子水中,搅拌反应2~8小时,有固体生成,过滤收集固体(析出的聚合物),再用去离子水洗涤,直到洗出物用硝酸银检测不含卤素阴离子。最后真空干燥12~48小时得到通式(2)的离子液体聚合物。
所述锂盐可为:二(三氟甲基磺酰)亚胺锂、双(氟代磺酰)亚胺锂、六氟磷酸锂、四氟硼酸锂等。
本发明的通式(2)的离子液体聚合物的粘均分子量Mv优选为1.0×105~5.0×106g mol-1(聚甲基丙烯酸甲酯作为标样),更优选为1.0×105~1.0×106g mol-1。如果通式(2)的离子液体聚合物的粘均分子量Mv大于或等于1.0×105g mol-1,则能够充分担保将离子液体聚合物溶解于溶剂中并通过涂布干燥而形成的离子液体聚合物的片强度,如果小于或等于 5.0×106g mol-1,则容易将离子液体聚合物溶解于溶剂中,此外能够提高涂布形成的操作性。
所述离子液体聚合物的确认方法为1H NMR谱图。
本发明中所使用的腈类化合物为选自丙二腈、丁二腈、乙氧基亚甲基丙二腈、对苯二甲腈、间苯二甲腈、邻苯二甲腈以及4-氟邻苯二腈中的一种,优选为乙氧基亚甲基丙二腈或者丁二腈。
前述腈类化合物可通过常规制造方法制得,也可以从市场直接购得。
例如,本发明所用的腈类化合物中的丁二腈可使用由福建创鑫科技开发有限公司生产的丁二腈。本发明的丙二腈、乙氧基亚甲基丙二腈、对苯二甲腈、间苯二甲腈、邻苯二甲腈、以及4-氟邻苯二腈也可使用由阿拉丁公司生产的腈类化合物,作为商品直接购入。此外,还可以使用东京化成工业株式会社制的丁二腈、丙二腈、乙氧基亚甲基丙二腈、对苯二甲腈、间苯二甲腈、邻苯二甲腈、四氟邻苯二腈以及4-氟邻苯二腈。
作为本发明的固态电解质中所使用的锂盐,如果是能够作为锂离子电池用电解液的电解质使用的锂盐就没有特别限制,可举出以下所示的无机锂盐、含氟有机锂盐、草酸硼酸盐等。
作为无机锂盐,可举出LiPF6、LiBF4、LiAsF6、LiSbF6等无机氟化物盐,LiClO4、LiBrO4、LiIO4等高卤酸盐,LiAlCl4等无机氯化物塩等。
作为含氟有机锂盐,可举出LiCF3SO3等全氟烷基磺酸盐,LiN(CF3SO2)2、LiN(FSO2)2、LiN(CF3CF2SO2)2、LiN(CF3SO2)(C4F9SO9)等全氟烷基磺酰胺盐,LiC(CF3SO2)3、LiC(SO2F)3等全氟烷基磺酰基甲基化物盐,Li[PF5(CF2CF2CF3)]、Li[PF4(CF2CF2CF3)2]、Li[PF3(CF2CF2CF3)3]、Li[PF5(CF2CF2CF2CF3)]、Li[PF4(CF2CF2CF2CF3)2]、Li[PF3(CF2CF2CF2CF3)3]等氟烷基氟代磷酸盐等。
作为草酸硼酸盐,可举出二草酸硼酸锂、二氟草酸硼酸锂等。
本发明的固态电解质中所用的锂盐优选为四氟硼酸锂、六氟磷酸锂、二(三氟甲基磺酰)亚胺锂,均可使用由森田化工(张家港)有限公司生产的锂盐,作为商品直接购入。此外,还可以使用东京化成工业株式会社所出售的锂盐。
本发明中,所述离子液体聚合物和所述腈类化合物的质量比优选为1∶0.1~1∶2.0,更优选为1∶0.2~1∶1.8,进一步优选为1∶0.3~1∶1.5。如果所述腈类化合物的质量比大于0.1,则固态电解质膜的电化学特性得以提高,如果大于或等于0.3,则电化学特性更加提高。如果所述腈类化合物的质量比小于2.0,则抑制固态电解质膜发粘而容易从模具上剥离下来,如果小于或等于1.5则更佳。
本发明中,所述离子液体聚合物和所述锂盐的质量比为1∶0.1~1∶1.0,更优选为1∶0.2~1∶0.9,进一步优选为1∶0.3~1∶0.8。如果所述锂盐的质量比小于0.1,则固态电解质内的锂离子载体浓度变低,离子电导率倾向于降低,如果锂盐的质量比超过1.0,则固态电解质膜倾向于变脆。
本发明还提供一种固态电解质膜,其含有前述的固态电解质。
本发明还提供一种前述固态电解质膜的制造方法,该制造方法包括如下步骤:
(1)离子液体聚合物和腈类化合物的质量比优选为1∶0.1~1∶2.0,更优选为更优选为1∶0.2~1∶1.8,进一步优选为1∶0.3~1∶1.5。并且,离子液体聚合物和锂盐的质量比优选为1∶0.1~1∶1.0,更优选为1∶0.2~1∶0.9,进一步优选为1∶0.3~1∶0.8。按照上述比例将所述离子液体聚合物、所述腈类化合物以及所述锂盐溶解在溶剂中,均匀混合,制得混合液;
(2)将步骤(1)所得的混合液涂布在模板上,制得固态电解质膜。
固态电解质膜的厚度根据电池构成的不同而有很大不同,没有特别限定。
本发明的固态电解质在二次电池中应用,即本发明还提供一种二次电池,该电池含有前述的离子液体聚合物固态电解质膜。
本发明的固态电解质优选使用在Li/LiFePO4电池中。
此外,本发明的固态电解质由于具有阻燃性,因而能够有助于提高锂二次电池的安全性。进而,本发明的电解质由于为固态,因此能够使用双极电极。通过使用双极电极,从而能够制作出以往的锂二次电池所无法实现的高能量密度的电池。
<锂二次电池的制备和组装方法>
对于本实施方式的锂二次电池的构成例,一边参照图8一边进行说明,但锂二次电池不限于图8的构成。
图8所示的锂二次电池中,在负极活性物质层2与正极活性物质层4之间配置有固态电解质膜3。负极活性物质层2形成在负极集电体1上,正极活性物质层4形成在正极集电体5上。(以下,包括形成在负极集电体1上的负极活性物质层2也称为负极片,包括形成在正极集电体5上的正极活性物质层4也称为正极片。)
以下,关于本发明的锂二次电池,对各构成进行说明。
1.固态电解质层
本发明的锂二次电池中的固态电解质层是在正极活性物质层与负极活性物质层之间形成的层。固态电解质层包含固态电解质膜,还可以是例如将固态电解质涂布于电极而形成的形态。本发明中,固态电解质层的厚度根据电池的构成而有很大不同,没有特别限定。
2.正极片
本发明的锂二次电池中的正极片为至少含有正极活性物质的层(即,正极活性物质层)。此外,正极活性物质层除了含有正极活性物质以外,还可以进一步含有导电材料和粘结剂的至少一方。
正极活性物质的种类没有特别限定,例如可举出氧化物活性物质,作为氧化物活性物质,可举出例如LiCoO2、LiMnO2、LiNiO2、LiVO2、LiNi1/3Co1/3Mn1/3O2等岩盐层状型活性物质;LiMn2O4、Li(Ni0.5Mn1.5)O4等尖晶石型活性物质;LiFePO4、LiMnPO4、LiNiPO4、LiCuPO4等橄榄石型活性物质等。从热稳定性的观点出发,优选使用磷酸铁锂(LiFePO4)。
作为导电材料,只要是具有所希望的电子电导率就没有特别限定,可举出例如碳材料。作为碳材料,可举出例如乙炔黑、科琴黑、炉黑、热裂黑等炭黑。
另一方面,作为粘结剂,只要是化学稳定、电稳定的粘结剂就没有特别限定,可举出例如聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)等氟系粘结剂。此外,从容量的观点出发,正极活性物质层中的正极活性物质含量越多越优选。此外,正极活性物质层的厚度根据电池的构成不同而有很大不同, 没有特别限定。
此外,作为正极集电体的材料,可举出例如SUS、铝、镍、铁、钛以及碳等。
3.负极片
本发明的锂二次电池中的负极片为至少含有负极活性物质的层(即,负极活性物质层)。此外,负极活性物质层除了含有负极活性物质以外,还可以进一步含有导电材料和粘结剂的至少一方。
负极活性物质的种类没有特别限定,可举出例如金属活性物质以及碳活性物质。作为金属活性物质,可举出例如金属单体、合金、金属氧化物等。作为金属活性物质中所含的金属元素,可举出例如Li、Al、Mg、In、Si、Sn等。作为负极活性物质,优选使用Li金属、碳、Li4Ti5O12
关于导电材料和粘结剂,可以使用在上述正极活性物质层中记载的材料同样的材料。此外,从容量的观点出发,负极活性物质层中的负极活性物质含量越多越优选。此外,负极活性物质层的厚度根据电池的构成不同而有很大不同,没有特别限定。
此外,作为负极集电体的材料,可举出例如SUS、铜、镍以及碳等。
4.其他构成
电池盒的材料只要是一般的材料即可,可举出例如SUS、Al层压膜等。作为本发明的锂二次电池的形状,可举出例如硬币型、层压型、圆筒型以及方型等。
本发明的锂二次电池的组装方法可以为:
在氩气保护的手套箱中将电池的正极壳盖、正极片、所制得的固态电解质膜、负极片、负极壳盖按照从下到上顺序堆叠放置形成叠层,然后将叠层放置在冲压机上冲压,使得电池的正负极壳盖相互密闭锁牢,至此本发明的锂二次电池制备组装完成。具体而言,分别将负极片切成直径1.6cm的圆形,将正极片切成直径1.4cm的圆形,将固态电解质膜切成直径1.9cm的圆形。接着,在直径2.0cm、厚度0.3cm(CR2032型)的不锈钢制的硬币外装容器(正极壳盖)内,依次堆叠正极片、固态电解质膜、负极片、(以及作为隔板的切成直径1.4cm的圆形的铜箔)。接着,隔着聚丙烯制的垫圈 将不锈钢制的盖子(负极壳盖)盖在容器上,利用冲压将容器密封。由此制作锂二次电池(纽扣电池)。
上述所用到的正极壳盖、正极片、负极片、负极壳盖等除了本发明的固态电解质膜以外的电池部件,都可使用公知方法所制得的相关电池部件,也可由各种销售卖家得到。
此外,还可以制成将多个堆叠有负极合剂层、固态电解质和正极合剂层的单电池层叠而成的双极型。
<分子量的测定>
粘均分子量测试方法:
使用聚甲基丙烯酸甲酯作为标样,使用乌氏粘度计测定25℃时的聚合物的粘度[η],再通过公式[η]=KMv(其中K代表扩张因子。其值与温度、聚合物、溶剂性质有关,Mv代表粘均分子量,[η]代表聚合物的粘度)得到粘均分子量Mv
<本发明的固态电解质的玻璃化转变温度Tg的测定>
采用示差扫描量热分析(DSC)法并利用TA Instruments Q2000型示差量热分析仪进行测定。通常进行二次循环,使用第2次循环的DSC曲线数据,得到玻璃化转变温度:首先将固态电解质样品从室温降温至-80℃,恒温10分钟,然后以10℃/分钟的速度升温至200℃,恒温5分钟,再以10℃/分钟的速度降温至-80℃,作为第1次循环。重复上述操作1次作为第2次循环。
<本发明的固态电解质的离子电导率的测定>
固态电解质的离子电导率采用交流阻抗法测定,所用仪器为CHI600D电化学工作站。将待测样品以:不锈钢电极/固态电解质/不锈钢电极的组成顺序构成模拟电池,再对该模拟电池在25℃下进行交流阻抗测试。测试前,将模拟电池在每个温度点恒温静置1h,频率范围1Hz~100KHz,交流振幅5mV。电导率计算公式如下:
Figure PCTCN2016110301-appb-000003
公式中R是固态电解质本体阻抗(Ω),L表示固态电解质膜的厚度(cm),S代表固态电解质膜的有效面积(cm2)。
<放电比容量的测定>
电池的放电比容量以如下方法测得:
将所得的固态电解质制成电池,将该电池放置在25℃的温度中,以2.5-4.0V的电压范围且0.1C、0.5C或1.0C的恒流将其充放电,采用CT2001A(武汉市蓝博测试设备有限公司,LAND电池测试系统-CT2001A)的充放电设备测定电池首次放电容量以及循环至10次为止的放电容量。
放电比容量的计算公式:
放电比容量(mAh g-1)=实际放电容量(mAh)/正极片中活性物质的质量(g)。
此外,附图中的循环性能图的数据如下得到:
将上述得到的放电比容量的数据作为纵坐标,将循环次数作为横坐标制作了循环性能图。
<实施例>
下面的实施例是对本发明的进一步说明,但不限制本发明的范围。
<实施例1>
[1]聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺)基固态电解质的制备
[1-1]聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺)离子液体聚合物的制备:
在250.00mL烧杯中加入20.00g的聚二甲基二烯丙基氯化铵
Figure PCTCN2016110301-appb-000004
水溶液(20质量%)(Aldrich公司产品)和100.00mL去离子水,磁力搅拌1小时,以形成含有聚二甲基二烯丙基氯化铵的溶液。
在另一个50.00mL烧杯中依次加入8.52g(29.68mmol)的二(三氟甲基磺酰)亚胺锂(森田化工(张家港)有限公司产品)和10.00mL去离子水,磁力搅拌使之完全溶解,形成含有二(三氟甲基磺酰)亚胺锂的溶液。
将前述两种溶液混合,离子交换2小时,有固体(析出的聚合物)生成, 过滤收集固体,再用水洗涤一直到洗出物用硝酸银检测不含氯离子为止,最后在105℃下真空干燥72小时。所得到的离子液体聚合物聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺)的结构式为:
Figure PCTCN2016110301-appb-000005
所述离子液体聚合物的粘均分子量为2.11×106g mol-1
该离子液体聚合物的化学结构采用1H NMR谱图表征,如图1所示。
对于在实施例1中制作的固态电解质的1H NMR光谱,使用Bruker BioSpin公司制的AVANCE III HD 400,通过以下方法进行测定。
氘代溶剂:氘代丙酮
共振频率:6~440MHz
分辨率:<0.005Hz
脉冲宽度:1H≤9μsec
化学位移值基准:四甲基硅烷(TMS)0ppm
可以看出,谱图的结果与所期望的结构相符。
[1-2]固态电解质的制备:
向单口圆底烧瓶中加入1.00g所制得的聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺),加入作为溶剂的20.00g丙酮,磁力搅拌溶解,再加入作为腈类化合物的1.00g丁二腈(福建创鑫科技开发有限公司产品)和作为锂盐的0.50g二(三氟甲基磺酰)亚胺锂(森田化工(张家港)有限公司产品),在25℃下磁力搅拌混合12小时后得到透明的混合液的聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺)固态电解质。
[1-3]固态电解质膜的制备:
将所得到的混合液的聚(二甲基二烯丙基铵二(三氟甲基磺酰)亚胺)固态电解质涂布在聚四氟乙烯模板上,然后在30℃下真空干燥48小时,得到固态电解质膜。该固态电解质膜的玻璃化转变温度Tg为小于-80℃,在25℃下离子电导率为5.74×10-4S cm-1
[1-4]锂二次电池的制备:
将含有磷酸铁锂(LiFePO4)作为正极活性物质的正极片、所制得的固态电解质膜、以锂(Li)作为负极活性物质的负极片按照从下到上顺序堆叠放置形成叠层型电极,然后将叠层型电极放置在冲压机上冲压,得到Li/LiFePO4电池。
将所制得的Li/LiFePO4电池在25℃、2.5-4.0V的电压范围下进行恒流充放电测试,在0.1C,0.5C和1.0C充放电倍率下各测试10个循环。
将实施例1的测定数据结果总结在表2~表3和图1~2中。
<实施例2>
[2]聚(1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺)基固态电解质的制备
[2-1]聚(1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺)离子液体聚合物的制备:
(1)以1-乙烯基咪唑为反应单体、偶氮二异丁腈作为引发剂、甲苯作为反应溶剂,进行自由基聚合反应,其中引发剂占单体质量的0.5%。在Ar气氛保护、65℃下,搅拌回流反应8小时。待有固体生成,过滤后用丙酮洗涤,在75℃下真空干燥24小时,得到聚乙烯基咪唑。
聚乙烯基咪唑的粘均分子量Mv为3.39×105g mol-1
(2)将4.00g所制得的聚乙烯基咪唑和8.90g的2-溴乙基甲基醚(63.83mmol)溶解在60.00mL的N,N-二甲基甲酰胺中,在60℃下搅拌反应48小时,减压蒸馏除去溶剂,收集固体,用无水乙醚洗涤3次,旋转蒸发除去乙醚,真空干燥24小时,得到聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)。
聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)的粘均分子量Mv为5.62×105g mol-1
(3)将3.50g所制得的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)和5.17g(18.02mmol)二(三氟甲基磺酰)亚胺锂(森田化工(张家港)有限公司产品)溶解在20.00mL去离子水中,在室温下磁力搅拌6小时,有固体生成,过滤收集固体。再用去离子水洗涤,直到洗出物用硝酸银检测不含卤素阴离子,最后在75℃下真空干燥24小时得到离子液体聚合物聚 (1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺),其结构式为:
Figure PCTCN2016110301-appb-000006
该离子液体聚合物的化学结构采用1H NMR谱图表征,如图3所示。对于在实施例2中制作的固态电解质的1H NMR光谱,使用Bruker BioSpin公司制的AVANCE III HD 400,通过以下方法测定。
氘代溶剂:氘化二甲基亚砜
共振频率:6~440MHz
分辨率:<0.005Hz
脉冲宽度:1H≤9μsec
化学位移值基准:四甲基硅烷(TMS)0ppm
可以看出,谱图结果与所期望的结构相符。
所述离子液体聚合物的粘均分子量Mv为7.32×105g mol-1
[2-2]固态电解质的制备:
向单口圆底烧瓶中加入1.00g所制得的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺),加入作为溶剂的20.00g丙酮,磁力搅拌溶解,再加入作为腈类化合物的0.60g乙氧基亚甲基丙二腈(阿拉丁公司产品)和作为锂盐的0.50g二(三氟甲基磺酰)亚胺锂(森田化工(张家港)有限公司产品),在25℃下磁力搅拌混合12小时后得到透明的混合液的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺)固态电解质。
[2-3]固态电解质膜的制备:
将所得的混合液的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑二(三氟甲基磺酰)亚胺)固态电解质涂布在聚四氟乙烯模板上,然后在25℃下真空干燥48小时,得到固态电解质膜。该固态电解质膜的玻璃化转变温度Tg为小于-80℃,在25℃下离子电导率为2.98×10-4S cm-1
[2-4]锂二次电池的制备:
将含有磷酸铁锂(LiFePO4)作为正极活性物质的正极片、所制得的固态电解质膜、以锂(Li)作为负极活性物质的负极片按照从下到上顺序堆叠放置形成叠层型电极,然后将叠层型电极放置在冲压机上冲压,得到Li/LiFePO4电池。
将所制得的Li/LiFePO4电池在25℃、2.5-4.0V的电压范围下进行恒流充放电测试,在0.1C,0.5C和1.0C充放电倍率下各测试10个循环。
将实施例2的测定数据结果总结在表2~表3和图3~4中。
<实施例3>
[3]聚(1-(2-甲氧基乙基)-3-乙烯基咪唑六氟磷酸)基固态电解质的制备
[3-1]聚(1-(2-甲氧基乙基)-3-乙烯基咪唑六氟磷酸)离子液体聚合物的制备:
(1)以1-乙烯基咪唑为反应单体、偶氮二异丁腈作为引发剂、甲苯作为反应溶剂,进行自由基聚合反应,其中引发剂占单体质量的0.5%。在Ar气氛保护、65℃下,搅拌回流反应8小时。待有固体生成,过滤后用丙酮洗涤,在75℃下真空干燥24小时,得到聚乙烯基咪唑。
聚乙烯基咪唑的粘均分子量Mv为3.39×105g mol-1
(2)将4.00g所制得的聚乙烯基咪唑和8.90g的2-溴乙基甲基醚(63.83mmol)溶解在60.00mL的N,N-二甲基甲酰胺中,在60℃下搅拌反应48小时,减压蒸馏除去溶剂,收集固体,用无水乙醚洗涤3次,旋转蒸发除去乙醚,真空干燥24小时,得到聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)。
聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)的粘均分子量Mv为5.62×105g mol-1
(3)将3.50g所制得的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑溴)和2.74g(18.02mmol)六氟磷酸锂(森田化工(张家港)有限公司产品)溶解在20.00mL的去离子水中,在室温下磁力搅拌6小时,有固体生成,过滤收集固体。然后再用去离子水洗涤,直到洗出物用硝酸银检测不含卤素阴离子,最后在75℃下真空干燥24小时得到离子液体聚合物聚(1-(2- 甲氧基乙基)-3-乙烯基咪唑六氟磷酸),其结构式为:
Figure PCTCN2016110301-appb-000007
该离子液体聚合物的化学结构采用1H NMR谱图表征,如图5所示。对于在实施例3中制作的固态电解质的1H NMR光谱,使用Bruker BioSpin公司制的AVANCE III HD 400,通过以下方法测定。
氘代溶剂:氘化二甲基亚砜
共振频率:6~440MHz
分辨率:<0.005Hz
脉冲宽度:1H≤9μsec
化学位移值基准:四甲基硅烷(TMS)0ppm
可以看出,谱图结果与所期望的结构相符。
所述离子液体聚合物的粘均分子量Mv为6.35×105g mol-1
[3-2]固态电解质的制备:
向单口圆底烧瓶中加入1.00g所制得的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑六氟磷酸),加入作为溶剂的20.00g丙酮,磁力搅拌溶解,再加入作为腈类化合物的0.60g乙氧基亚甲基丙二腈(阿拉丁公司产品)和作为锂盐的0.40g六氟磷酸锂(森田化工(张家港)有限公司产品),在25℃下磁力搅拌混合12小时后得到透明的混合液的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑六氟磷酸)固态电解质。
[3-3]固态电解质膜的制备:
将所得到的混合液的聚(1-(2-甲氧基乙基)-3-乙烯基咪唑六氟磷酸)固态电解质涂布在聚四氟乙烯模板上,然后在30℃下真空干燥48小时,得到固态电解质膜。该固态电解质膜的玻璃化转变温度Tg为小于-80℃,在25℃下离子电导率为1.08×10-4S cm-1
[3-4]锂二次电池的制备:
将含有磷酸铁锂(LiFePO4)作为正极活性物质的正极片、所制得的 固态电解质膜、以锂(Li)作为负极活性物质的负极片按照从下到上顺序堆叠放置形成叠层型电极,然后将叠层型电极放置在冲压机上冲压,得到Li/LiFePO4电池。
将实施例3的测定数据结果总结在表2~表3和图5~图6中。
<实施例4>
除了将实施例1的所述离子液体聚合物和丁二腈的重量比改为1∶1.5以外,其他都与实施例1一样形成固态电解质和固态电解质膜以及锂二次电池。
该固态电解质膜的玻璃化转变温度Tg为小于-80℃,在25℃下离子电导率为3.56×10-4S cm-1
将实施例4的测定数据结果总结在表2~表3和图7中。
<实施例5>
除了将实施例2的所述离子液体聚合物和乙氧基亚甲基丙二腈的重量比改为1∶0.3以外,其他都与实施例2一样形成固态电解质和固态电解质膜。
该固态电解质膜的玻璃化转变温度Tg为小于-80℃,在25℃下离子电导率为1.01×10-4S cm-1
将实施例5的测定数据结果总结在表2中。
<比较例>
比较例的固态电解质的组成和相关制作,可参考引用文献《Advanced Energy Materials》(2015,5,1500353)。
其固态电解质组成为:聚丙烯腈(J&KScientific Ltd.产品)、腈乙基化聚乙烯醇(Shin-Etsu Chemical产品)、丁二腈(阿拉丁公司产品)以及LiTFSI锂盐(TCI公司产品)。腈乙基化聚乙烯醇∶丁二腈∶LiTFSI=5∶83∶10(质量比)。在比较例1中没有使用和含有本发明的离子液体聚合物。
将聚丙烯腈作为基体,腈乙基化聚乙烯醇作为交联组分与丁二腈、锂盐复合制备出固态电解质,将所得到的固态电解质应用于Li/LiFePO4电池中。
在25℃,以2.4~4.2V的电压范围下,以0.1C恒流充放电测定电池的首次放电比容量为155mAh g-1,10次循环后放电比容量为150mAh g-1,并且在0.5C和1.0C下放电比容量分别为125mAh g-1和98mAh g-1,以及10次循环后放电比容量分别为120mAh g-1和85mAh g-1
将它们复合制备出固态电解质,该固态电解质在25℃下的离子电导率为4.49×10-4S cm-1
其结果表示在表2~表3中。
表1
Figure PCTCN2016110301-appb-000008
Figure PCTCN2016110301-appb-000009
图2为以实施例1所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
电池在25℃下分别以0.1C、0.5C和1.0C的倍率进行恒流充放电,首次放电比容量分别为150mAh g-1、132mAh g-1和121mAh g-1,10次循环后放电比容量分别为152mAh g-1、130mAh g-1和116mAh g-1
图4为以实施例2所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
电池在25℃下分别以0.1C、0.5C和1.0C的倍率进行恒流充放电,放电比容量分别为135mAh g-1(0.1C)、129mAh g-1(0.5C)和119mAh g-1(1.0C),10次循环后放电比容量分别为143mAh g-1(0.1C)、128mAh g-1(0.5C)和113mAh g-1(1.0C)。
图6为以实施例3所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
电池在25℃下分别以0.1C、0.5C和1.0C的倍率进行恒流充放电,放电比容量分别为132mAh g-1(0.1C)、128mAh g-1(0.5C)和112mAh g-1(1.0C),10次循环后放电比容量分别为138mAh g-1(0.1C)、126mAh g-1(0.5C)和110mAh g-1(1.0C)。
图7为以实施例4所制得的固态电解质所形成的Li/LiFePO4电池在不同充放电倍率(0.1C、0.5C和1.0C)下的放电比容量和循环性能图。
电池在25℃下分别以0.1C、0.5C和1.0C的倍率进行恒流充放电,放电比容量分别为145mAh g-1(0.1C)、127mAh g-1(0.5C)和116mAh g-1(1.0C),10次循环后放电比容量分别为146mAh g-1(0.1C)、126mAh g-1(0.5C)和111mAh g-1(1.0C)。
将前述数据总结在如下的表2和表3中。
表2
Figure PCTCN2016110301-appb-000010
实施例1~5的固态电解质膜呈无定形态,只有玻璃化转变温度,没有熔点。
比较例的固态电解质膜是结晶聚合物,有熔点。
表3 Li/LiFePO4电池放电比容量比较
Figure PCTCN2016110301-appb-000011
Figure PCTCN2016110301-appb-000012
从表3可知,在由本发明的实施例1、实施例2、实施例3和实施例4的固态电解质所形成的电池中,在0.5C的充放电倍率下的首次放电比容量都大于或等于125mAh g-1,是高的放电比容量。即使在1.0C的高充放电倍率下,实施例1~4的电池的首次放电比容量也都大于或等于112mAh g-1
而在比较例中,虽然在0.5C的充放电倍率下其首次放电比容量为125mAh g-1,但是在1.0C的高充放电倍率下其首次放电比容量降低到小于或等于100mAh g-1,为98mAh g-1,不能正常工作。
再者,对于循环性能来说,以10次循环后放电比容量的衰减来进行评价。
在0.5C的充放电倍率下,本发明的实施例1的衰减比例为1.51%,实施例2为0.78%,实施例3为1.56%,实施例4为0.79%。由此可知,实施例1~4的平均衰减比例为1.16%,说明即使在10次循环后,衰减也非常少。
而对于比较例,其在0.5C的充放电倍率下的10次循环后放电比容量的衰减比例为4.00%,衰减较为明显,其循环性能较差。
另外,对于在1.0C的充放电倍率下的10次循环后放电比容量的衰减情况,本发明的实施例1的衰减比例为4.13%,实施例2为5.04%,实施例3为1.79%,实施例4为4.31%。由此可知,即使在10次循环后,其衰减比例平均值为3.82%,只在4%左右。
而对于比较例,其在1.0C的充放电倍率下的10次循环后放电比容量的衰减比例为13.27%,衰减非常明显,其循环性能差。
由上面衰减数据分析可知如下内容:
(1)在0.5C的充放电倍率下,本发明的实施例1~4的电池在10次循环后的放电比容量衰减比例的平均值仅为1.16%,较比较例的4.00%少很多。
(2)在1.0C的充放电倍率下,本发明的实施例1~4的固态电解质所形成的电池在1.0C的充放电倍率下的10次循环后放电比容量的衰减比例的平均值为3.82%,只相当于比较例0.5C的充放电倍率下的10次循环后放电比容量的衰减比例(4.00%)。
而比较例的1.0C的充放电倍率下的10次循环后放电比容量的衰减比例为13.27%,是本发明的实施例1~4的固态电解质所形成的电池的1.0C的充放电倍率下的10次循环后放电比容量的衰减比例的3.5倍,衰减程度很厉害,电池的循环性能非常差,该电池循环使用性差。
即本发明的实施例1~4的固态电解质所形成的电池在10次循环后,即使在1.0C的高充放电倍率下的10次循环后放电比容量的衰减较小,在10次循环后还能保持着非常稳定的放电比容量,作为电池来说,是非常重要的。
由前述对首次放电比容量数据和首次放电比容量与10次循环后的放电比容量的衰减比例进行的分析可知,本发明的固态电解质及其电池在高充放电倍率(0.5C和1.0C)下具有非常好的放电比容量和优异的循环性能,非常适合作为电池使用,特别适合用于锂二次电池。
即在本发明中,不仅提供了一种固态电解质的新组分的组合,而且还提供了这些新组分的特定配比,与现有技术及其常规聚合物基体相比,以使其电池在0.5C和1.0C的高充放电倍率下具有非常好的放电比容量和优异的循环性能。
再者,本发明的固态电解质呈无定形态,具有非常低的玻璃化转变温度(<-80℃),有利于电池锂离子的运动,也使本发明的电池在高的充放电倍率(0.5C和1.0C)下,具有非常好的放电比容量和优异的循环性能。
产业上利用的可能性
通过将本发明的固态电解质应用在锂二次电池,特别是在Li/LiFePO4锂二次电池中,在高的充放电倍率下可得到优异的放电比容量和循环性能。

Claims (16)

  1. 一种固态电解质,其特征在于,其包含离子液体聚合物、腈类化合物和锂盐。
  2. 如权利要求1所述的固态电解质,其特征在于,所述离子液体聚合物选自下式(1)的聚合物、和下式(2)的聚合物的一种:
    Figure PCTCN2016110301-appb-100001
    其中式(1)中,n为300≤n≤4000;
    其中式(2)中,m为50≤m≤2000;R1为氢原子、或C1-C10的直链脂肪族烷基;R2为C1-C10的直链脂肪族烷基、或醚基。
  3. 如权利要求2所述的固态电解质,其特征在于,式(1)和(2)中的B-为BF4 -、PF6 -、(CF3SO2)2N-、(FSO2)2N-、[C(SO2F)3]-、CF3BF3 -、C2F5BF3 -、C3F7BF3 -、C4F9BF3 -、[C(SO2CF3)3]-、CF3SO3 -、CF3COO-、CH3COO-中的任一种。
  4. 如权利要求2所述的固态电解质,其特征在于,所述R2的醚基为:-CH2OCH3、-CH2CH2OCH3、-CH2CH2OCH2CH3、-CH2CH2OCH2CH2CH3、或者-CH2CH2CH2OCH3
  5. 如权利要求1所述的固态电解质,其特征在于,所述腈类化合物选自丙二腈、丁二腈、乙氧基亚甲基丙二腈、对苯二甲腈、间苯二甲腈、邻苯二甲腈、以及4-氟邻苯二腈中的一种。
  6. 如权利要求5所述的固态电解质,其特征在于,所述腈类化合物为乙氧基亚甲基丙二腈或者丁二腈。
  7. 如权利要求1所述的固态电解质,其特征在于,所述锂盐为LiY;其中Y为BF4 -、PF6 -、(FSO2)2N-、[C(SO2F)3]-或(CF3SO2)2N-
  8. 如权利要求1所述的固态电解质,其特征在于,所述离子液体聚合 物和所述腈类化合物的质量比为1∶0.1~1∶2.0。
  9. 如权利要求1所述的固态电解质,其特征在于,所述离子液体聚合物和所述锂盐的质量比为1∶0.1~1∶1.0。
  10. 一种固态电解质膜,其特征在于,含有权利要求1~8中任一项所述的固态电解质。
  11. 一种二次电池,其特征在于,含有权利要求10所述的固态电解质膜。
  12. 一种含有权利要求1~9中任一项所述的固态电解质的二次电池。
  13. 一种固态电解质膜,其使用了呈无定形态且玻璃化转变温度小于或等于-80℃的固态电解质。
  14. 一种使用了权利要求13所述的固态电解质膜的二次电池。
  15. 如权利要求11、12或14所述的二次电池,所述二次电池为锂离子电池。
  16. 一种固态电解质膜的制造方法,其特征在于,包括如下步骤:
    (1)按照离子液体聚合物和腈类化合物的质量比为1∶0.1~1∶2.0、以及离子液体聚合物和锂盐的质量比为1∶0.1~1∶1.0的比例将所述离子液体聚合物、所述腈类化合物以及所述锂盐溶解在溶剂中,进行混合,制得混合液;
    (2)将步骤(1)所得的混合液涂布在模板上,制得固态电解质膜。
PCT/CN2016/110301 2015-12-17 2016-12-16 固态电解质、固态电解质膜及其制造方法、以及二次电池 WO2017101849A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018531420A JP6876050B2 (ja) 2015-12-17 2016-12-16 固体電解質、固体電解質膜及びその製造方法、並びに二次電池
CN201680073615.4A CN108475819A (zh) 2015-12-17 2016-12-16 固态电解质、固态电解质膜及其制造方法、以及二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510955695.3 2015-12-17
CN201510955695.3A CN106898813B (zh) 2015-12-17 2015-12-17 一种固态电解质、固态电解质膜及其制造方法、以及锂二次电池

Publications (1)

Publication Number Publication Date
WO2017101849A1 true WO2017101849A1 (zh) 2017-06-22

Family

ID=59055717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110301 WO2017101849A1 (zh) 2015-12-17 2016-12-16 固态电解质、固态电解质膜及其制造方法、以及二次电池

Country Status (4)

Country Link
JP (1) JP6876050B2 (zh)
CN (2) CN106898813B (zh)
TW (1) TWI771279B (zh)
WO (1) WO2017101849A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110783624A (zh) * 2019-09-26 2020-02-11 湖南工业大学 一种具有高离子电导率的离子凝胶基复合固态电解质的制备方法
JP2020047426A (ja) * 2018-09-18 2020-03-26 Tdk株式会社 リチウム二次電池
EP3629413A1 (fr) * 2018-09-28 2020-04-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Électrolyte gélifié, procédé de préparation et utilisation de l'électrolyte gélifié

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898813B (zh) * 2015-12-17 2020-07-31 上海交通大学 一种固态电解质、固态电解质膜及其制造方法、以及锂二次电池
CN108807010A (zh) * 2018-08-28 2018-11-13 深圳清华大学研究院 电解质膜制备方法
CN109638350B (zh) * 2018-12-18 2022-08-16 西北工业大学 一种对锂稳定的丁二腈基固态电解质、制备方法及其应用
CN111446497A (zh) * 2020-04-03 2020-07-24 上海电气集团股份有限公司 一种固体电解质及其应用
WO2022118443A1 (ja) * 2020-12-03 2022-06-09 昭和電工マテリアルズ株式会社 電解質及びデュアルイオン電池
TWI751945B (zh) * 2021-04-23 2022-01-01 國立臺灣大學 一種電解質和其應用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (ja) * 1993-10-21 1995-05-09 Sony Corp 高分子固体電解質
CN101045806A (zh) * 2007-04-18 2007-10-03 北京科技大学 一种复合型聚合物电解质材料及其制备方法
CN101409368A (zh) * 2008-12-05 2009-04-15 北京理工大学 一种采用离子液体型固态聚合物电解质的锂二次电池
CN101735542A (zh) * 2009-12-14 2010-06-16 上海交通大学 一种二嵌段胍盐类离子液体型聚合物电解质及其制备方法
CN104031193A (zh) * 2013-03-08 2014-09-10 华中科技大学 一种聚合物离子液体电解质及其制备方法
CN104466240A (zh) * 2013-09-22 2015-03-25 中国科学院大学 一种离子液体聚合物电解质及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4318324B2 (ja) * 1996-07-17 2009-08-19 四国化成工業株式会社 溶融塩型高分子電解質用溶融塩ポリマーの調製方法及び溶融塩型高分子電解質
JPH10265674A (ja) * 1997-03-25 1998-10-06 Mitsubishi Chem Corp 高分子化合物複合体及びその製造方法
EP1911117A4 (en) * 2005-07-29 2008-11-05 Ca Nat Research Council PLASTIC CRYSTAL ELECTROLYTE IN LITHIUM ELECTROCHEMICAL DEVICES
JP5067728B2 (ja) * 2006-03-15 2012-11-07 独立行政法人国立高等専門学校機構 ポリマー電解質、及びその製造方法
JP5093656B2 (ja) * 2007-09-03 2012-12-12 国立大学法人京都大学 イオン液体ポリマー複合微粒子を用いた高分子固体電解質
JP2011119053A (ja) * 2009-12-01 2011-06-16 Konica Minolta Holdings Inc 電解質組成物及びそれを用いた二次電池
KR20120000734A (ko) * 2010-06-28 2012-01-04 동우 화인켐 주식회사 광 경화성 겔 폴리머 전해질 조성물
KR102163733B1 (ko) * 2013-11-29 2020-10-12 삼성전자주식회사 리튬 전지용 고분자 전해질 및 이를 포함하는 리튬 전지
CN104681865B (zh) * 2015-01-23 2017-07-11 清华大学深圳研究生院 一种全固态聚合物电解质及其在电池中的应用
CN106898813B (zh) * 2015-12-17 2020-07-31 上海交通大学 一种固态电解质、固态电解质膜及其制造方法、以及锂二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118480A (ja) * 1993-10-21 1995-05-09 Sony Corp 高分子固体電解質
CN101045806A (zh) * 2007-04-18 2007-10-03 北京科技大学 一种复合型聚合物电解质材料及其制备方法
CN101409368A (zh) * 2008-12-05 2009-04-15 北京理工大学 一种采用离子液体型固态聚合物电解质的锂二次电池
CN101735542A (zh) * 2009-12-14 2010-06-16 上海交通大学 一种二嵌段胍盐类离子液体型聚合物电解质及其制备方法
CN104031193A (zh) * 2013-03-08 2014-09-10 华中科技大学 一种聚合物离子液体电解质及其制备方法
CN104466240A (zh) * 2013-09-22 2015-03-25 中国科学院大学 一种离子液体聚合物电解质及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047426A (ja) * 2018-09-18 2020-03-26 Tdk株式会社 リチウム二次電池
JP7238304B2 (ja) 2018-09-18 2023-03-14 Tdk株式会社 リチウム二次電池
EP3629413A1 (fr) * 2018-09-28 2020-04-01 Commissariat à l'Energie Atomique et aux Energies Alternatives Électrolyte gélifié, procédé de préparation et utilisation de l'électrolyte gélifié
FR3086806A1 (fr) * 2018-09-28 2020-04-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de preparation d'un electrolyte gelifie
CN110783624A (zh) * 2019-09-26 2020-02-11 湖南工业大学 一种具有高离子电导率的离子凝胶基复合固态电解质的制备方法

Also Published As

Publication number Publication date
CN108475819A (zh) 2018-08-31
JP2018537831A (ja) 2018-12-20
CN106898813B (zh) 2020-07-31
TWI771279B (zh) 2022-07-21
CN106898813A (zh) 2017-06-27
TW201724632A (zh) 2017-07-01
JP6876050B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2017101849A1 (zh) 固态电解质、固态电解质膜及其制造方法、以及二次电池
KR101705250B1 (ko) 양극활물질, 및 이를 채용한 양극과 리튬전지
CN111769329B (zh) 锂离子电池
US20190363344A1 (en) Negative electrode plate, testing method of active specific surface area of electrode plate, battery
CN106654365A (zh) 基于固态聚合物电解质的复合凝胶聚合物电解质及其制备方法与应用
KR101546251B1 (ko) 전기화학 장치용 전해액 및 전기화학 장치
CA2662423C (en) Polymer electrolyte comprising a ketonic carbonyl group and electrochemical device comprising said electrolyte
US9601804B2 (en) Gel polymer electrolyte, lithium battery including gel polymer electrolyte, and method of preparing gel polymer electrolyte
TWI807628B (zh) 電解質組成物、二次電池、及電解質片的製造方法
JP2001146427A (ja) 被覆したリチウム混合酸化物粒子およびそれらの使用ii
CN106797034B (zh) 非水电解质二次电池及其制造方法
Wang et al. Preparation and performance of a non-ionic plastic crystal electrolyte with the addition of polymer for lithium ion batteries
JP7106762B2 (ja) 正極シート及びその製造方法、並びにリチウムイオン二次電池
AU2015313241A1 (en) Wound electrode group, electrode group, and non-aqueous electrolyte battery
CN104752683B (zh) 正极材料用组合物和浆料及制备方法以及正极材料和正极及制作方法以及锂离子电池
US20130252096A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
CN108258305A (zh) 电解质与电池
US20130252102A1 (en) Nonaqueous Electrolyte Rechargeable Battery Having Electrode Containing Conductive Polymer
Zhang et al. Polymer electrolyte enlightens wide-temperature 4.45 V-class LiCoO2/Li metal battery
CN110661034A (zh) 聚合物电解质组合物、聚合物电解质片及其制造方法、电化学装置用电极、聚合物二次电池
CN108878963A (zh) 一种固体电解质、固体电解质膜及其制造方法、以及锂二次电池
WO2020084828A1 (ja) ポリマー、電極活物質及び二次電池
CN105493319B (zh) 负极活性物质、使用该负极活性物质的负极、以及锂离子二次电池
CN107492660A (zh) 正极浆料、正极片及锂离子电池
US20180241085A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018531420

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16874906

Country of ref document: EP

Kind code of ref document: A1