WO2017101709A1 - 一种低成本高导热压铸镁合金及其制造方法 - Google Patents

一种低成本高导热压铸镁合金及其制造方法 Download PDF

Info

Publication number
WO2017101709A1
WO2017101709A1 PCT/CN2016/108673 CN2016108673W WO2017101709A1 WO 2017101709 A1 WO2017101709 A1 WO 2017101709A1 CN 2016108673 W CN2016108673 W CN 2016108673W WO 2017101709 A1 WO2017101709 A1 WO 2017101709A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
die
low
cost
cast magnesium
Prior art date
Application number
PCT/CN2016/108673
Other languages
English (en)
French (fr)
Inventor
徐世伟
戴吉春
唐伟能
卓长龙
蒋浩民
张丕军
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020187014936A priority Critical patent/KR102172483B1/ko
Priority to EP16874766.5A priority patent/EP3392358B1/en
Priority to AU2016372755A priority patent/AU2016372755B2/en
Priority to US15/780,161 priority patent/US10870905B2/en
Priority to JP2018528309A priority patent/JP6771032B2/ja
Publication of WO2017101709A1 publication Critical patent/WO2017101709A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/003Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using inert gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Definitions

  • the present invention relates to an alloy material and a method of manufacturing the same, and more particularly to a magnesium-containing alloy material and a method of manufacturing the same.
  • Magnesium and its alloys are the lightest metal structural materials. Its density is only 1/4 of steel, 2/3 of aluminum, high specific strength, high specific stiffness, excellent electromagnetic shielding performance, good heat dissipation, good shock absorption performance, etc. Many advantages. Since the strength of pure magnesium is too low (the tensile yield strength in the as-cast state is only about 21 MPa) and the casting can be poor, at the same time, alloying is the most effective method to improve its mechanical properties and castability, so the actual Magnesium alloys are used instead of pure magnesium in the application.
  • the die casting process since the die casting process has many advantages such as high production efficiency, low cost, and high dimensional accuracy of the prepared parts, most of the existing magnesium alloy parts are prepared by a die casting process, 90 More than % of magnesium alloy parts are die-cast parts.
  • 3C products ie, computers, communications, and consumer electronics
  • mobile phones, notebook computers, digital cameras, video cameras, etc. are often made of magnesium alloy die-casting.
  • magnesium alloy has excellent thin-wall casting performance and anti-collision ability, which can meet the requirements of 3C products with high integration, light and thin, anti-collision, electromagnetic shielding, heat dissipation and environmental protection.
  • 3C products are the fastest growing industry in the world, and are developing in the direction of light, thin, short and small. High-performance, miniaturization, and integration have become the trend of development. The volumetric power density of electronic components and devices is also increasing.
  • pure magnesium has a high thermal conductivity of about 157 W/m ⁇ K at room temperature
  • the thermal conductivity of the alloyed magnesium alloy is usually significantly reduced.
  • the thermal conductivity of the conventional commercial die-cast magnesium alloy Mg-9Al-1Zn-0.2Mn (AZ91) is only 51 W/m ⁇ K.
  • the thermal conductivity of Mg-5Al-0.5Mn (AM50) and Mg-6Al-0.5Mn (AM60) are 65W/m ⁇ K and 61W/m ⁇ K, respectively, which are much lower than the thermal conductivity of pure magnesium.
  • the above three kinds of magnesium alloys have excellent die-casting properties and good mechanical properties, they cannot meet the requirements of high heat conductivity because of their poor thermal conductivity.
  • the magnesium alloy AE44 has excellent mechanical properties and a high thermal conductivity (85 W/m ⁇ K), but the magnesium alloy is easy to stick and has poor die casting properties.
  • magnesium alloys having high thermal conductivity have also been developed in the prior art.
  • the Chinese Patent Publication No. CN102719716A published on October 10, 2012, entitled "Thermal Magnesium Alloy and Its Preparation Method” discloses a magnesium alloy and a preparation method thereof.
  • the weight percentage of chemical elements of the magnesium alloy is: Zn: 1 to 7%, Ca: 0.1 to 3%, La: 0.1 to 3%, Ce: 0.1 to 3%, and the balance is magnesium.
  • the magnesium alloy has a thermal conductivity of not less than 125 W/m ⁇ K, a yield strength at room temperature of more than 300 MPa, and a tensile strength of more than 340 MPa.
  • the magnesium alloy is an extrusion-deformed magnesium alloy, and two kinds of rare earth metals are added to the magnesium alloy.
  • this patent document does not relate to the die casting properties of magnesium alloys.
  • the Chinese patent document entitled "a thermally conductive magnesium alloy” discloses a component content of a thermally conductive cast magnesium alloy: Zn is 0.5 to 5.5 wt. %, Sn is 0.2 to 5 wt%, and the balance is Mg.
  • the magnesium alloy has a thermal conductivity of more than 110 W/m ⁇ K, a tensile strength of 180 to 230 MPa, and an elongation of 18 to 22%.
  • the magnesium alloy is produced by gravity casting and then by a heat treatment process, and the patent document does not relate to the die casting properties of the magnesium alloy.
  • the mass percentage of the chemical element of the magnesium alloy is: 1.5 to 3% of a lanthanoid element, 0.5 to 1.5% of one or two elements selected from aluminum and zinc, and 0.2 to 0.6% of a selected from manganese and zirconium. One or two elements, the remainder consisting of magnesium and unavoidable impurities.
  • the thermal conductivity of the magnesium alloy is 102 to 122 W/m ⁇ K, the die casting properties and mechanical properties of the magnesium alloy are not involved in the above patent documents. and.
  • the magnesium alloy material has high thermal conductivity and has good die casting properties and excellent mechanical properties.
  • the production and manufacture of the magnesium alloy according to the present invention is economical and suitable for promotion to a large-scale industrial production field.
  • the present invention provides a low cost, high thermal conductivity die cast magnesium alloy having a chemical element mass percentage of:
  • the balance is Mg and other unavoidable impurities.
  • Rare earth elements can purify alloy solutions and can effectively improve the room temperature, high temperature mechanical properties and corrosion resistance of magnesium alloys.
  • the rare earth element can narrow the alloy solidification temperature range to improve the casting properties of the alloy, and can reduce weld cracking and improve the compactness of the casting.
  • the rare earth elements commonly used for strengthening magnesium alloys are ruthenium (Gd), yttrium (Y), yttrium (Nd), yttrium (Sm), praseodymium (Pr), lanthanum (La) and cerium (Ce).
  • Gd ruthenium
  • Y yttrium
  • Nd yttrium
  • Sm yttrium
  • Pr praseodymium
  • La lanthanum
  • Ce cerium
  • elements such as Gd, Y, Nd, and Sm are expensive, and the use of these rare earth elements greatly increases the production cost of the magnesium alloy.
  • La element is a relatively easy-to-obtain rare earth element among the three economic rare earth elements, and thus La is selected as an added alloying element.
  • the La element is less than 1 wt.%, the effect of improving the corrosion resistance and fluidity of the magnesium alloy is limited, and at the same time, in order to maintain a low production cost, the addition amount of La should not be too high.
  • the La content in the low-cost high heat-conductive die-cast magnesium alloy according to the present invention should be set between 1 and 5%.
  • Zinc element is one of the commonly added alloying elements in magnesium alloys, which has solid solution strengthening and The dual role of aging strengthening. Adding an appropriate amount of Zn can improve the strength and plasticity of the magnesium alloy, improve the melt fluidity, and improve the casting performance. Adding 0.5% or more of Zn can improve the fluidity of the magnesium alloy and can produce the effect of strengthening the mechanical properties of the alloy. However, if the amount of Zn added is too large, the fluidity of the alloy of Zn is greatly reduced, and the magnesium alloy tends to be microscopically or thermally cracked. For this reason, based on the above technical solution, the Zn content is controlled to be 0.5 to 3%.
  • Adding alkaline earth element Ca can advantageously improve the metallurgical quality of magnesium alloy.
  • the addition cost of Ca element is relatively low, so Ca is often added in the production process of magnesium alloy.
  • the reason for adding Ca is: 1) increasing the ignition temperature of the magnesium alloy melt, reducing the oxidation of the alloy during the melting and heat treatment during the smelting process, in particular, a small amount of Ca (for example, Ca having a content of 0.1 wt.%) It can improve the oxidation resistance and heat resistance of magnesium alloys; 2) Ca can refine the grain of magnesium alloy and improve the corrosion resistance and creep resistance of magnesium alloy.
  • the Ca content of the low-cost high heat-conductive die-cast magnesium alloy of the present invention needs to be designed to be 0.1 to 2%.
  • Mn Magnesium alloys are susceptible to corrosion due to their chemical nature. Furthermore, since the crucibles and the stirring tools used in the smelting process are mostly iron, the magnesium alloy often contains a large amount of impurity elements such as Fe and Cu, and these impurities further deteriorate the corrosion resistance of the magnesium alloy. Sex. The corrosion resistance is improved by adding Mn element to the magnesium alloy. A small amount of Mn forms an Fe-Mn compound with the impurity Fe element, thereby reducing the hazard of the impurity element and improving the corrosion resistance of the alloy. At the same time, Mn can slightly increase the yield strength and weldability of the magnesium alloy, and at the same time play the role of refining the alloy grains. The Mn content in the low-cost high heat-conductive die-cast magnesium alloy according to the present invention should be set to 0.1 to 1%.
  • the magnesium alloy of the present invention does not contain Al element because the Al element greatly reduces magnesium. The thermal conductivity of the alloy.
  • the microstructure of the low-cost high heat-conducting die-cast magnesium alloy according to the present invention is an ⁇ -magnesium matrix and a precipitate phase, wherein the ⁇ -magnesium matrix comprises fine crystal grains and a small amount of relatively large crystal grains, of which relatively large The volume fraction of crystal grains is ⁇ 20%.
  • the size of the fine crystal grains is 3 to 15 ⁇ m, and the size of the relatively large crystal grains is 40 to 100 ⁇ m.
  • the fine ⁇ -magnesium matrix of the grain can effectively improve the mechanical properties of the die-cast magnesium alloy.
  • the precipitated phase includes Mg-Zn-La-Ca distributed continuously around the grain boundary
  • the Mg-Zn phase has a width of 1 to 20 nm and a length of 10 to 1000 nm.
  • the Mg-Zn-La-Ca quaternary phase can effectively improve the mechanical properties and creep resistance of the alloy, while the Mg-Zn phase can reduce the content of Zn dissolved in the ⁇ -magnesium matrix and weaken the alloying elements. The effect on thermal conductivity and the mechanical properties of the alloy.
  • the die-cast magnesium alloy having the above microstructure has good mechanical properties and thermal conductivity.
  • the low-cost high thermal conductivity die-cast magnesium alloy according to the present invention has a thermal conductivity of ⁇ 110 W/m ⁇ K, a tensile strength of 200 to 270 MPa, a yield strength of 150 to 190 MPa, and an elongation of 2% to 10 %.
  • Another object of the present invention is to provide a method for producing a low cost, high thermal conductivity die cast magnesium alloy.
  • a magnesium alloy having excellent die-casting properties, excellent comprehensive mechanical properties, and high thermal conductivity can be obtained by this production method.
  • the manufacturing method is obtained by a die casting process, which is simple in production process and economical in production cost.
  • the present invention provides a method for manufacturing a low cost, high thermal conductivity die cast magnesium alloy comprising the steps of:
  • the method for producing a low-cost, high-heat-conducting die-cast magnesium alloy according to the present invention is characterized in that a magnesium alloy of the present invention is obtained by a die-casting process in a production process.
  • the flux used may be a commercially available No. 5 magnesium alloy flux (RJ-5, which is a standardized product of the magnesium alloy industry, and its main component is 24-30 wt.% MgCl 2 , 20-26 wt.% KCl, 28 to 31 wt.% BaCl 2 , 13 to 15 wt.% CaF 2 ), may also be other magnesium alloy fluxes commonly used in the art.
  • RJ-5 which is a standardized product of the magnesium alloy industry, and its main component is 24-30 wt.% MgCl 2 , 20-26 wt.% KCl, 28 to 31 wt.% BaCl 2 , 13 to 15 wt.% CaF 2
  • RJ-5 which is a standardized product of the magnesium alloy industry, and its main component is 24-30 wt.% MgCl 2 , 20-26 wt.% KCl, 28 to 31 wt.% BaCl 2 , 13 to 15 wt.% CaF
  • the melting temperature is controlled to be 700 to 760 ° C, and melting is performed under the protection of SF 6 gas.
  • the melting temperature is controlled to 700 to 760 ° C, and smelting is performed under the protection of SF 6 gas.
  • the melting temperature is controlled to be 700 to 760 ° C, and melting is performed under the protection of SF 6 gas.
  • the temperature in the melting furnace is controlled to be 730 to 780 ° C, Ar gas is introduced into the melt or the melt is manually stirred, and the RJ-5 flux is added for refining and refining 5 to After 15 minutes, a refined melt was obtained; then it was allowed to stand at 730 to 760 ° C for 80 to 120 minutes.
  • the die casting parameters are controlled so that the injection speed is 2 to 50 m/s, the mold temperature is 220 to 400 ° C, and the casting pressure is 10 to 90 MPa.
  • the low-cost high thermal conductivity die-casting magnesium alloy according to the invention adopts a rational and economical component design, that is, avoids the use of relatively expensive rare earth alloy elements for addition, but uses only a relatively economical rare earth alloy element La.
  • the die-casting process is optimized to improve the comprehensive mechanical properties and die-casting properties of the magnesium alloy and improve the thermal conductivity of the magnesium alloy.
  • the low-cost high thermal conductivity die-casting magnesium alloy according to the invention has high tensile strength and flexural strength, and has a tensile strength of 200 to 270 MPa and a yield strength of 150 to 190 MPa.
  • the magnesium alloy of the present invention has good thermal conductivity and a thermal conductivity of ⁇ 110 W/m ⁇ K.
  • the magnesium alloy according to the present invention has good elongation and stretchability and an elongation of 2% to 10%.
  • the magnesium alloy of the present invention has good fluidity and good die casting properties.
  • the alloy of the magnesium alloy according to the present invention is economical to add, and the manufacturing cost is low.
  • the magnesium alloy having high strength, good thermal conductivity, good tensile properties and good die-casting properties can be obtained by the method for producing a low-cost, high-temperature-conducting die-cast magnesium alloy according to the present invention.
  • Example 1 is an optical microstructural view of a low cost, high thermal conductivity die cast magnesium alloy of Example E.
  • Example 2 is a scanning electron micrograph of a low cost, high thermal conductivity die cast magnesium alloy of Example E.
  • Example 3 is a transmission electron micrograph of a low cost, high thermal conductivity die cast magnesium alloy of Example E.
  • the injection-casting melt in step (5) is injected into the die-casting machine at a pressure of 2 to 50 m/s, and the mold temperature is 220. ⁇ 400 ° C, casting pressure of 10 ⁇ 90MPa to obtain different sizes of low-cost high thermal conductivity die-cast magnesium alloy.
  • Table 1 lists the mass percentages of the respective chemical elements of the magnesium alloys of the above examples and comparative examples.
  • Table 2 lists specific process parameters of the above-described examples and comparative examples of the method for producing a magnesium alloy.
  • Table 3 lists the comprehensive performance parameters of the magnesium alloys of the above examples and comparative examples.
  • the tensile strength of the magnesium alloy of the example AE of the present invention is ⁇ 260 MPa
  • the yield strength is ⁇ 170 MPa
  • the elongation is ⁇ 2%.
  • the magnesium alloy in the embodiment has high strength.
  • comprehensive mechanical properties such as good tensile properties.
  • the thermal conductivity of the magnesium alloy of Examples A-E of the present invention was ⁇ 115 W/(m ⁇ K), indicating that the magnesium alloy in the above embodiment also has excellent thermal conductivity.
  • Comparative Example F has a lower thermal conductivity, which is 110 W/(m ⁇ K), and its ignition point (the ignition point is indicative of the difficulty of oxidation and combustion of the alloy during the smelting process. The higher the ignition point, the less susceptible to oxidation and combustion during the smelting process.
  • the more easily oxidized, burned is also lower, only 764 ° C, the steady state creep rate at 200 ° C / 60 MPa (steady state creep rate is characterized by the deformation of the alloy at high temperatures for a long time under external load).
  • Fig. 1 shows optical micrographs, scanning electron micrographs, and transmission electron micrographs of the low cost, high thermal conductivity die cast magnesium alloy of Example E, respectively.
  • Fig. 1 shows optical micrographs, scanning electron micrographs, and transmission electron micrographs of the low cost, high thermal conductivity die cast magnesium alloy of Example E, respectively.
  • Fig. 1 shows optical micrographs, scanning electron micrographs, and transmission electron micrographs of the low cost, high thermal conductivity die cast magnesium alloy of Example E, respectively.
  • Fig. 1 shows that the ⁇ -magnesium matrix of the low-cost high-temperature die-cast magnesium alloy is mostly fine crystal grains, the grain size is 3-15 ⁇ m, and only a small number of large crystal grains having a size of 40-100 ⁇ m are obtained.
  • Fig. 2 shows second phases (precipitates) distributed at the grain boundaries. These phases can also effectively improve the mechanical properties and creep resistance of the alloys.

Abstract

一种压铸镁合金,其质量百分含量为:La:1~5%,Zn:0.5~3%,Ca:0.1~2%,Mn:0.1~1%,余量为Mg和其他不可避免的杂质。上述镁合金的制造方法,包括:熔炼、精炼、压铸。镁合金力学性能、压铸性能及导热性好。

Description

一种低成本高导热压铸镁合金及其制造方法 技术领域
本发明涉及一种合金材料及其制造方法,尤其涉及一种含镁合金材料及其制造方法。
背景技术
镁及其合金是最轻的金属结构材料,其密度仅为钢的1/4,铝的2/3,具有比强度、比刚度高,电磁屏蔽性能优良,散热性好,减震性能好等诸多优点。由于纯镁的强度太低(铸态下的拉伸屈服强度仅为21MPa左右)且可铸造差,同时,合金化又是提高其力学性能以及可铸造性的最为行之有效的方法,因此实际应用中都是采用镁合金而不是纯镁。在现有的镁合金加工方法中,由于压铸工艺具有生产效率高、成本低、制备零部件尺寸精度高等诸多优点,因此现有的大多数镁合金零部件都是通过压铸工艺来制备的,90%以上的镁合金零部件为压铸件。
当前很多3C产品(即计算机(Computer)、通信(Communication)和消费类电子产品(Consumer Electronics)三者的和称),例如手机、笔记本电脑、数码相机、摄像机等的外壳往往采用镁合金压铸制造而成,这是因为镁合金具有优异的薄壁铸造性能及抗撞能力,能够满足3C产品高度集成化、轻薄化、抗摔撞、电磁屏蔽、散热及环保要求。随着半导体晶体管性能的快速提升,3C产品是当今全球发展最为快速的产业,正朝着轻、薄、短、小的方向发展。高性能、微型化、集成化已成为其发展趋势,电子元器件及设备的体积功率密度也愈来愈高,这使得电子器件的总功率密度和发热量大幅地增加,例如,个人电脑、新型大功率LED照明系统及高密度电脑服务器系统等。如果电子器件工作过程中产生的热能无法及时通过壳体散去,周围温度就会上升,与此同时电子器件的工作效率对于温度又非常敏感,部分电子器件的工作效率会随着温度升高呈指数级下降。为此,这些产品的壳体和安装芯片等电子器件的基板需要有优良的散热性能。可见,同时兼顾导热性、可压铸性、力学性能的低成本 镁合金有广泛地应用领域。
虽然纯镁的热导率较高,在室温下约为157W/m·K,但是经过合金化后的镁合金的导热系数通常会明显地降低。比如,现有的常用商业压铸镁合金Mg-9Al-1Zn-0.2Mn(AZ91)的导热系数仅为51W/m·K。又比如Mg-5Al-0.5Mn(AM50)和Mg-6Al-0.5Mn(AM60)的导热系数则分别为65W/m·K和61W/m·K,都远低于纯镁的导热系数。虽然以上几种镁合金的压铸性能优异且力学性能也较为良好,但是因其导热性能差的缺陷,并不能满足高导热的需求。此外,镁合金AE44的力学性能优良且导热系数也较高(85W/m·K),但是该镁合金容易粘模,其压铸性能较差。
为了适应3C制造领域对于镁合金需要具备高导热性的要求,现有技术中也相继开发了具备高导热性的镁合金。
例如,公开号为CN102719716A,公开日为2012年10月10日,名称为“导热镁合金及其制备方法”的中国专利文献公开了一种镁合金及其制备方法。该镁合金的化学元素重量百分比为:Zn:1~7%,Ca:0.1~3%,La:0.1~3%,Ce:0.1~3%,余量为镁。该镁合金的导热系数不低于125W/m·K,室温下的屈服强度大于300MPa,抗拉强度大于340MPa。然而,该镁合金是挤压变形的镁合金,并且在该镁合金中添加了两种稀土金属。此外,该专利文献中并没有涉及镁合金的压铸性能。
又例如,公开号为CN102251161A,公开日为2011年11月23日,名称为“一种导热镁合金”的中国专利文献公开了一种导热铸造镁合金的成分含量为:Zn为0.5~5.5wt%,Sn为0.2~5wt%,其余为Mg。该镁合金的导热系数大于110W/m·K,抗拉强度为180~230MPa,延伸率为18~22%。不过,该镁合金是采用重力铸造并随后采用热处理工艺制得的,并且该篇专利文献中也并未涉及镁合金的压铸性能。
另外,公开号为CN102586662A,公开日为2012年7月18日,名称为“压铸用高导热性镁合金”的中国专利文献公开了一种导热性优良的压铸用高导热性镁合金。该镁合金的化学元素的质量百分比为:1.5~3%的镧系元素、0.5~1.5%的选自铝和锌的一种或两种元素、以及0.2~0.6%的选自锰和锆的一种或两种元素,余部由镁和不可避免的杂质组成。尽管该镁合金的导热系数为102~122W/m·K,可是该镁合金的压铸性能和力学性能并没有在上述专利文献中涉 及。
为此,随着3C产品蓬勃发展对于镁合金产品提出更高的需求,迫切需要开发一种低成本的镁合金,该镁合金具有良好的压铸性能、优良力学性能以及优异的导热性能。
发明内容
本发明的目的在于提供一种低成本高导热压铸镁合金。该镁合金材料的导热性高,且兼具有良好的压铸性能和优良的力学性能。另外,本发明所述的镁合金的生产制造成本经济,适合推广至大规模化的工业生产领域。
为了实现上述目的,本发明提出了一种低成本高导热压铸镁合金,其化学元素质量百分含量为:
La:1~5%;
Zn:0.5~3%;
Ca:0.1~2%;
Mn:0.1~1%;
余量为Mg和其他不可避免的杂质。
本发明所述的低成本高导热压铸镁合金中的各化学元素的设计原理为:
镧:稀土元素(RE)可以净化合金溶液,并且可以有效地改善镁合金的室温、高温力学性能和抗腐蚀性能。此外,稀土元素能使合金凝固温度区间变窄从而改善合金的铸造性能,并且能够减轻焊缝开裂和提高铸件的致密性。常用于强化镁合金的稀土元素有钆(Gd)、钇(Y)、钕(Nd)、钐(Sm)、镨(Pr)、镧(La)和铈(Ce)等。然而Gd、Y、Nd和Sm等元素价格昂贵,采用这些稀土元素会大幅度地提高镁合金的生产成本。与此相对的是,Pr、La和Ce是相对较为经济的稀土元素,并且La元素是这三种经济的稀土元素中的比较容易获得的稀土元素,因此选择La作为添加的合金元素。当La元素低于1wt.%时,对镁合金耐蚀性、流动性的改善效果有限,同时,为了保持较低的生产成本,La的添加量则不应过高。综合考量镁合金的性能改善效果和生产成本因素,在本发明所述的低成本高导热压铸镁合金中的La含量应当被设定在1~5%范围之间。
锌:Zn元素是镁合金中常用添加的合金化元素之一,其具有固溶强化和 时效强化的双重作用。添加适量Zn能够提高镁合金的强度和塑性,改善熔体流动性,提高铸造性能。添加0.5%以上的Zn就能起到改善镁合金的流动性的作用,并能够产生强化合金力学性能的效果。但是若Zn的添加量过多,反而会大大降低Zn的合金流动性,并且使得镁合金产生显微缩松或热裂倾向。为此,基于上述技术方案,将Zn含量控制为:0.5~3%。
钙:添加碱土元素Ca能够有利地改善镁合金的冶金质量,同时,Ca元素的添加成本比较低,因此镁合金的生产工艺中往往会添加Ca。添加Ca的原因在于:1)提高镁合金熔体的着火温度,减轻熔炼过程中熔体以及热处理过程中合金的氧化,尤其是,少量的Ca(例如,含量为0.1wt.%的Ca)即可提高镁合金的抗氧化能力和耐热性能;2)Ca可以细化镁合金晶粒,提高镁合金的耐蚀性和蠕变抗力。鉴于此,本发明的低成本高导热压铸镁合金中Ca含量需要设计为0.1~2%。
锰:由于镁合金化学性质活泼,因此其容易被腐蚀。再者,由于在熔炼过程中使用的坩埚、搅拌工具等绝大都是铁质的,因此镁合金中常会含有较多的Fe、Cu等杂质元素,这些杂质会进一步地严重恶化镁合金的耐蚀性。通过向镁合金中添加Mn元素来提高其耐蚀性。少量的Mn会和杂质Fe元素形成Fe-Mn化合物,从而降低杂质元素的危害,提高合金的耐蚀性。同时,Mn还能稍微提高镁合金的屈服强度和可焊接性能,同时起到细化合金晶粒的作用。在本发明所述的低成本高导热压铸镁合金中的Mn含量应当设定为0.1~1%。
不同于现有技术中的镁合金材料会采用Al进行合金添加,为了改善镁合金材料的导热性,本发明的镁合金中不添加有Al元素,其原因在于:Al元素会大幅度地降低镁合金的导热性能。
进一步地,本发明所述的低成本高导热压铸镁合金的微观组织为α镁基体和析出相,其中α镁基体包括细小的晶粒和少量的相对较大的晶粒,其中相对较大的晶粒的体积占比≤20%。
更进一步地,所述细小的晶粒的尺寸为3~15μm,相对较大的晶粒的尺寸为40~100μm。
在本技术方案中,晶粒细小的α镁基体可以有效提高压铸镁合金的力学性能。
更进一步地,所述析出相包括呈连续状分布在晶界周围的Mg-Zn-La-Ca 四元相以及在晶粒内部析出的Mg-Zn相。
更进一步地,所述Mg-Zn相的宽度为1-20nm,长度为10~1000nm。
在本技术方案中,Mg-Zn-La-Ca四元相可以有效提高合金的力学性能以及抗蠕性,而Mg-Zn相能降低固溶在α镁基体中的Zn元素含量,减弱合金元素对导热性能的影响,并且可提高合金的力学性能。
因此,具有上述微观组织的压铸镁合金具有较好的力学性能以及导热性能。
进一步地,本发明所述的低成本高导热压铸镁合金的热导率≥110W/m·K,且其抗拉强度为200~270MPa,屈服强度为150~190MPa,延伸率为2%~10%。
本发明的另一目的在于提供一种低成本高导热压铸镁合金的制造方法。通过该制造方法可以获得压铸性能佳,综合力学性能优良且导热性能高的镁合金。另外,该制造方法获采用压铸工艺,生产过程简单且生产成本经济。
为了实现上述发明目的,本发明提出了一种低成本高导热压铸镁合金的制造方法,其包括步骤:
(1)将纯Mg锭和纯Zn锭放入熔炼炉中熔化;
(2)向熔炼炉中加入Mg-Ca、Mg-Mn中间合金,使其完全熔化;
(3)向熔炼炉中加入Mg-La中间合金,使其完全熔化,同时加入熔剂覆盖熔体表面;
(4)用熔剂对熔体进行精炼处理;
(5)将精炼后的熔体降温至630~750℃;
(6)压铸熔体,获得低成本高导热压铸镁合金。
从上述工艺步骤可以看出,本发明所述的低成本高导热压铸镁合金的制造方法的特点在于生产过程中采用了压铸工艺获得本发明的镁合金。
在本技术方案中,采用的熔剂可以是市售的五号镁合金熔剂(RJ-5,其为为镁合金行业标准化产品,其主要成分为24~30wt.%MgCl2,20~26wt.%KCl,28~31wt.%BaCl2,13~15wt.%CaF2),也可以是本领域内常用的其他镁合金熔剂。
进一步地,在上述步骤(1)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
进一步地,在上述步骤(2)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
进一步地,在上述步骤(3)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
进一步地,在上述步骤(4)中,将熔炼炉内温度控制为730~780℃,向熔体中通入Ar气或者手动搅拌熔体,同时加入RJ-5熔剂以进行精炼,精炼5~15分钟,得到精炼熔体;然后在730~760℃静置80~120分钟。
在上述技术方案中,向熔体中通入Ar气以及手动搅拌熔体均是起到搅拌熔体的作用。
进一步地,在上述步骤(6)中,控制压铸参数为:压射速度2~50m/s,模具温度220~400℃,铸造压力10~90MPa。
本发明所述的低成本高导热压铸镁合金采用了合理经济的成分设计,即避免采用较为昂贵的稀土合金元素进行添加,而是仅采用了一种较为经济的稀土合金元素La。同时,在生产过程中,优化压铸工艺,以提高镁合金的综合力学性能和压铸性能,改善镁合金的导热率。
本发明所述的低成本高导热压铸镁合金具有较高的抗拉强度和屈强强度,其抗拉强度为200~270MPa,且其屈服强度为150~190MPa。
另外,本发明所述的镁合金的导热性能好,其热导率≥110W/m·K。
此外,本发明所述的镁合金的延展拉伸性能良好,其延伸率为2%~10%。
同时,本发明所述的镁合金的流动性好,具有良好的压铸性能。
本发明所述的镁合金的合金添加成本经济,生产制造成本低。
通过本发明所述的低成本高导热压铸镁合金的制造方法可以获得强度高、导热性能佳、延展拉伸性能好且压铸性能良好的镁合金。
附图说明
图1为实施例E的低成本高导热压铸镁合金的光学显微组织图。
图2为实施例E的低成本高导热压铸镁合金的扫描电子显微组织图。
图3为实施例E的低成本高导热压铸镁合金的透射电子显微组织图。
具体实施方式
下面将结合附图说明和具体的实施例对本发明所述的低成本高导热压铸镁合金及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
实施例A-E和对比例F
通过本发明的低成本高导热压铸镁合金的制造方法来获得上述实施例和对比例,其包括步骤:
1)将纯Mg锭和纯Zn锭放入熔炼炉中熔化,并控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼;
2)向熔炼炉中加入Mg-Ca、Mg-Mn中间合金,使其完全熔化,并控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼;
3)向熔炼炉中加入Mg-La中间合金,使其完全熔化,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼,同时加入RJ-5熔剂覆盖熔体表面;
4)精炼熔体,将熔炼炉内温度控制为730~780℃,并向熔体中通入Ar气,同时加入RJ-5熔剂以进行精炼,精炼5~15分钟,得到精炼熔体;然后在730~760℃静置80~120分钟,并控制熔体中的化学元素质量百分含量如表1所示;
5)将精炼后的熔体降温至630~750℃得到待压铸熔体;
6)压铸熔体,采用300吨冷室压铸机,控制压铸参数为:以2~50m/s的压射速度将步骤(5)中的待压铸熔体射入压铸机中,模具温度为220~400℃,铸造压力为10~90MPa以获得不同尺寸的低成本高导热压铸镁合金。
表1列出了上述实施例和对比例的镁合金的各化学元素的质量百分含量。
表1.(wt%,余量为Mg和其他不可避免的杂质元素)
序号 La Zn Ca Mn 压铸尺寸
A 5 0.5 2 0.1 150mm×50mm×2mm
B 1 3 0.1 0.5 100mm×40mm×1mm
C 4 2 1 1 100mm×40mm×1mm
D 2 2.5 1 0.5 1000mm×50mm×0.6mm
E 5 0.5 0.5 0.9 1200mm×50mm×0.6mm
F 5 0.5 - 0.9 1200mm×50mm×0.6mm
表2列出了上述实施例和对比例的镁合金的制造方法的具体工艺参数。
表2.
Figure PCTCN2016108673-appb-000001
将实施例A-E和对比例F的镁合金取样进行相关测试,其中,对于实施例E和对比例F还进行燃点和蠕变性能测试,将经过测试后所获得的结果列于表3中。
表3列出了上述实施例和对比例的镁合金的综合性能参数。
表3.
Figure PCTCN2016108673-appb-000002
由表3可知,本案实施例A-E的镁合金的抗拉强度均≥260MPa,屈服强度均≥170MPa,伸长率均≥2%,由此可见,实施例中的镁合金兼具较高的强度和良好的延展拉伸性能等综合力学性能。此外,本案实施例A-E的镁合金的导热系数都≥115W/(m·K),说明上述实施例中的镁合金还具有优良的导热性能。
结合表1、表2和表3内容可以看出,虽然实施例E和对比例F采用了相同的制造工艺参数,但是由于对比例F中并没有添加Ca元素,因此,相较于实施例E,对比例F的导热系数更低,其为110W/(m·K),其燃点(燃点是表 征合金在熔炼过程中氧化、燃烧的难易程度,燃点越高,熔炼过程中越不易氧化、燃烧,反之越易氧化、燃烧)也更低,仅为764℃,在200℃/60MPa条件下的稳态蠕变速率(稳态蠕变速率是表征合金在高温下长时间受到外力载荷时的变形速率,蠕变速率越低,合金在高温下越不容易变形,合金的稳定性越高,反之则在高温下容易变形,合金稳定性差)则更高,达到了2.5×10-6S-1,由此说明了添加Ca可有效提高合金的燃点和抗蠕变性能。
图1、图2和图3分别显示了实施例E的低成本高导热压铸镁合金的光学显微组织照片、扫描电子显微照片以及透射电子显微照片。从图1可以看出,该低成本高导热压铸镁合金的α镁基体多为细晶粒,晶粒尺寸在3~15μm,只有少量的尺寸为40~100μm的大晶粒。从图2可以看出,有很多第二相(析出相)分布在晶界处,这些相也可有效提高合金的力学性能以及抗蠕性能,这些相呈连续状分布在晶界周围,能谱分析结果表明这些第二相是Mg-Zn-La-Ca四元相。由图3可以看出,晶粒内部还有析出相,其宽度为1-20nm,长度从10~1000nm不等,能谱分析结果表明这些相是Mg-Zn相,Mg-Zn相会降低固溶在镁基体中的Zn元素含量,减弱合金元素对导热性能的影响,并且可提高合金的力学性能。
需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。

Claims (12)

  1. 一种低成本高导热压铸镁合金,其特征在于,其化学元素质量百分含量为:
    La:1~5%;
    Zn:0.5~3%;
    Ca:0.1~2%;
    Mn:0.1~1%;
    余量为Mg和其他不可避免的杂质。
  2. 如权利要求1所述的低成本高导热压铸镁合金,其特征在于,其微观组织为α镁基体和析出相,其中α镁基体包括细小的晶粒和少量的相对较大的晶粒,其中相对较大的晶粒的占比≤20%。
  3. 如权利要求2所述的低成本高导热压铸镁合金,其特征在于,所述细小的晶粒的尺寸为3~15μm,相对较大的晶粒的尺寸为40~100μm。
  4. 如权利要求2所述的低成本高导热压铸镁合金,其特征在于,所述析出相包括呈连续状分布在晶界周围的Mg-Zn-La-Ca四元相以及在晶粒内部析出的Mg-Zn相。
  5. 如权利要求4所述的低成本高导热压铸镁合金,其特征在于,所述Mg-Zn相的宽度1~20nm,长度为10~1000nm。
  6. 如权利要求1所述的低成本高导热压铸镁合金,其特征在于,其热导率≥110W/m·K,且其抗拉强度为200~270MPa,屈服强度为150~190MPa,延伸率为2%~10%。
  7. 如权利要求1-6中任意一项所述的低成本高导热压铸镁合金的制造方法,其特征在于,包括步骤:
    (1)将纯Mg锭和纯Zn锭放入熔炼炉中熔化;
    (2)向熔炼炉中加入Mg-Ca、Mg-Mn中间合金,使其完全熔化;
    (3)向熔炼炉中加入Mg-La中间合金,使其完全熔化,同时加入熔剂覆盖熔体表面;
    (4)精炼熔体;
    (5)将精炼后的熔体降温至630~750℃;
    (6)压铸熔体,获得所述低成本高导热压铸镁合金。
  8. 如权利要求7所述的低成本高导热压铸镁合金的制造方法,其特征在于,在所述步骤(1)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
  9. 如权利要求7所述的低成本高导热压铸镁合金的制造方法,其特征在于,在所述步骤(2)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
  10. 如权利要求7所述的低成本高导热压铸镁合金的制造方法,其特征在于,在所述步骤(3)中,控制熔炼温度为700~760℃,且在SF6气体保护下进行熔炼。
  11. 如权利要求7所述的低成本高导热压铸镁合金的制造方法,其特征在于,在所述步骤(4)中,将熔炼炉内温度控制为730~780℃,向熔体中通入Ar气或者手动搅拌熔体,同时加入RJ-5熔剂以进行精炼,精炼5~15分钟,得到精炼熔体;然后在730~760℃静置80~120分钟。
  12. 如权利要求7所述的低成本高导热压铸镁合金的制造方法,其特征在于,在所述步骤(6)中,控制压铸参数为:压射速度2~50m/s,模具温度220~400℃,铸造压力10~90MPa。
PCT/CN2016/108673 2015-12-14 2016-12-06 一种低成本高导热压铸镁合金及其制造方法 WO2017101709A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187014936A KR102172483B1 (ko) 2015-12-14 2016-12-06 저비용 고열전도성 다이-캐스팅 마그네슘 합금 및 그 제조 방법
EP16874766.5A EP3392358B1 (en) 2015-12-14 2016-12-06 Low-cost high-heat-conduction die-casting magnesium alloy and manufacturing method therefor
AU2016372755A AU2016372755B2 (en) 2015-12-14 2016-12-06 Low-cost high-heat-conduction die-casting magnesium alloy and manufacturing method therefor
US15/780,161 US10870905B2 (en) 2015-12-14 2016-12-06 Low-cost high-heat-conduction die-casting magnesium alloy and manufacturing method therefor
JP2018528309A JP6771032B2 (ja) 2015-12-14 2016-12-06 低コスト・高熱伝導性のダイカスト用マグネシウム合金、およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510926273.3A CN105401032B (zh) 2015-12-14 2015-12-14 一种低成本高导热压铸镁合金及其制造方法
CN201510926273.3 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017101709A1 true WO2017101709A1 (zh) 2017-06-22

Family

ID=55466783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108673 WO2017101709A1 (zh) 2015-12-14 2016-12-06 一种低成本高导热压铸镁合金及其制造方法

Country Status (7)

Country Link
US (1) US10870905B2 (zh)
EP (1) EP3392358B1 (zh)
JP (1) JP6771032B2 (zh)
KR (1) KR102172483B1 (zh)
CN (1) CN105401032B (zh)
AU (1) AU2016372755B2 (zh)
WO (1) WO2017101709A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401032B (zh) 2015-12-14 2017-08-25 宝山钢铁股份有限公司 一种低成本高导热压铸镁合金及其制造方法
CN108118226B (zh) * 2016-11-30 2020-04-28 宝钢集团有限公司 一种高导热、耐蚀、耐热压铸镁合金及其制造方法
CN110195181B (zh) * 2018-02-26 2021-10-22 中国宝武钢铁集团有限公司 一种具有高温耐热性能的压铸镁合金及其制造方法
CN110195180B (zh) * 2018-02-26 2021-10-19 中国宝武钢铁集团有限公司 一种高导热压铸镁合金及其制造方法
CN108994479B (zh) * 2018-08-24 2020-08-07 温州市星峰新材料有限公司 一种耐腐蚀高强度的焊接材料及其制造方法
CN111378882B (zh) * 2018-12-29 2021-09-17 嘉丰工业科技(惠州)有限公司 一种高导热性能压铸镁合金材料及其制备方法
GB2583482A (en) * 2019-04-29 2020-11-04 Univ Brunel A casting magnesium alloy for providing improved thermal conductivity
CN112048650A (zh) * 2020-07-22 2020-12-08 东华大学 一种高电磁屏蔽和导热性能高强镁合金及其制备方法
CN113308614A (zh) * 2021-05-21 2021-08-27 贵州安吉航空精密铸造有限责任公司 一种zm6合金精炼方法
CN113337765A (zh) * 2021-05-27 2021-09-03 长春理工大学 一种耐高温高压蠕变压铸镁合金及其制备方法
CN113308632A (zh) * 2021-05-27 2021-08-27 长春理工大学 一种高温抗蠕变压铸镁合金及其制备方法
CN113621858B (zh) * 2021-07-14 2022-05-20 西安理工大学 一种抗菌及抑肿瘤增殖的可降解镁合金骨钉及其制备方法
CN116219244A (zh) * 2023-03-10 2023-06-06 中国科学院长春应用化学研究所 一种高强高导热压铸稀土镁合金及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200348A (ja) * 1992-05-22 1994-07-19 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
CN1965099A (zh) * 2004-06-15 2007-05-16 株式会社东京大学Tlo 高强韧性镁基合金、采用它的驱动系统部件、及高强韧性镁基合金基体的制造方法
CN102251161A (zh) 2011-07-14 2011-11-23 四川大学 一种导热镁合金
CN102586662A (zh) 2011-01-14 2012-07-18 三井金属矿业株式会社 压铸用高导热性镁合金
CN102719716A (zh) 2012-05-28 2012-10-10 哈尔滨工业大学 导热镁合金及其制备方法
CN105088037A (zh) * 2015-08-28 2015-11-25 上海交通大学 一种Mg-RE-Mn系多元镁合金及其制备方法
CN105401032A (zh) * 2015-12-14 2016-03-16 宝山钢铁股份有限公司 一种低成本高导热压铸镁合金及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9502238D0 (en) * 1995-02-06 1995-03-29 Alcan Int Ltd Magnesium alloys
JP2002212662A (ja) * 2001-01-19 2002-07-31 Aisin Takaoka Ltd マグネシウム合金
RU2007101661A (ru) * 2004-06-24 2008-07-27 Каст Сентр Пти Лтд. (Au) Сплав магния, отлитый в постоянную форму
US7841380B2 (en) * 2004-06-30 2010-11-30 Sumitomo Electric Industries, Ltd. Producing method for magnesium alloy material
CN102312144A (zh) * 2010-07-07 2012-01-11 乐普(北京)医疗器械股份有限公司 一种超细晶医用镁合金及其制备方法
CN105755340B (zh) * 2014-12-17 2017-12-26 宝山钢铁股份有限公司 低成本高强高韧高导热变形镁合金及其制备方法
CN104846250A (zh) 2015-05-29 2015-08-19 苏州慧驰轻合金精密成型科技有限公司 高导热压铸耐腐蚀镁合金及其制备方法
KR20170049083A (ko) * 2015-10-28 2017-05-10 한국생산기술연구원 고열전도 마그네슘 주조 합금 및 그 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200348A (ja) * 1992-05-22 1994-07-19 Mitsui Mining & Smelting Co Ltd 高強度マグネシウム合金
CN1965099A (zh) * 2004-06-15 2007-05-16 株式会社东京大学Tlo 高强韧性镁基合金、采用它的驱动系统部件、及高强韧性镁基合金基体的制造方法
CN102586662A (zh) 2011-01-14 2012-07-18 三井金属矿业株式会社 压铸用高导热性镁合金
CN102251161A (zh) 2011-07-14 2011-11-23 四川大学 一种导热镁合金
CN102719716A (zh) 2012-05-28 2012-10-10 哈尔滨工业大学 导热镁合金及其制备方法
CN105088037A (zh) * 2015-08-28 2015-11-25 上海交通大学 一种Mg-RE-Mn系多元镁合金及其制备方法
CN105401032A (zh) * 2015-12-14 2016-03-16 宝山钢铁股份有限公司 一种低成本高导热压铸镁合金及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3392358A4 *

Also Published As

Publication number Publication date
KR102172483B1 (ko) 2020-10-30
US20180347010A1 (en) 2018-12-06
EP3392358B1 (en) 2021-06-09
AU2016372755B2 (en) 2019-10-03
CN105401032A (zh) 2016-03-16
JP6771032B2 (ja) 2020-10-21
EP3392358A1 (en) 2018-10-24
US10870905B2 (en) 2020-12-22
CN105401032B (zh) 2017-08-25
KR20180071361A (ko) 2018-06-27
EP3392358A4 (en) 2019-06-12
JP2019504186A (ja) 2019-02-14
AU2016372755A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2017101709A1 (zh) 一种低成本高导热压铸镁合金及其制造方法
CN101363094B (zh) 一种高强度铸造铝合金材料
CN103526082B (zh) 高导热率铸造铝合金及其制备方法
WO2018095186A1 (zh) 导热铝合金及其应用
CN109852853B (zh) 一种薄壁压铸件用高强韧散热铝合金材料及其制备方法
CN104046868B (zh) 一种无稀土低成本高强度导热镁合金及其制备方法
CN111690849A (zh) Al-Si系压铸铝合金中富铁相的细化方法及合金
CN105779838B (zh) 一种高导热压铸镁合金及其制备工艺
JP2012149276A (ja) ダイカスト鋳造用高熱伝導性マグネシウム合金
CN104152769B (zh) 一种导热镁合金及其制备方法
CN104233018A (zh) 一种增强铝合金及其制备方法
CN104032195B (zh) 一种可高效挤压低成本高性能导热镁合金及其制备方法
JP2010116620A (ja) マグネシウム合金およびマグネシウム合金鋳物
CN108118226B (zh) 一种高导热、耐蚀、耐热压铸镁合金及其制造方法
JP2013204087A (ja) 高強度高熱伝導性アルミニウム合金部材とその製造方法
CN111485146A (zh) 一种高导热高强度低Si铸造铝合金及其制备方法
CN112779443A (zh) 一种铝合金及铝合金结构件
KR20170049083A (ko) 고열전도 마그네슘 주조 합금 및 그 제조방법
CN111155012B (zh) 适于压铸超薄件的高流动性高导热稀土镁合金及其制法
JP6900199B2 (ja) 鋳造用アルミニウム合金、アルミニウム合金鋳物製品およびアルミニウム合金鋳物製品の製造方法
Liu et al. The second phases of Mg–xAl–ySi–Ca alloys and their influences on properties
JP5747103B1 (ja) アルミニウム合金から成る放熱フィン及びその製造方法
KR20170049082A (ko) 고열전도 마그네슘 주조 합금 및 그 제조방법
CN115491558A (zh) 一种压铸镁合金及其制备方法和应用
WO2020103227A1 (zh) 一种具有高散热性能的稀土镁合金材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187014936

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018528309

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2016372755

Country of ref document: AU

Date of ref document: 20161206

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE