WO2017099414A1 - 암 진단용 마이크로rna 바이오마커 발굴 방법 및 그 이용 - Google Patents
암 진단용 마이크로rna 바이오마커 발굴 방법 및 그 이용 Download PDFInfo
- Publication number
- WO2017099414A1 WO2017099414A1 PCT/KR2016/013975 KR2016013975W WO2017099414A1 WO 2017099414 A1 WO2017099414 A1 WO 2017099414A1 KR 2016013975 W KR2016013975 W KR 2016013975W WO 2017099414 A1 WO2017099414 A1 WO 2017099414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mir
- hsa
- cancer
- mirna
- biomarker
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
Definitions
- the present invention is a novel cancer diagnostic miRNA biomarker discovery method, biliary tract or pancreatic cancer diagnostic biomarker discovered through the biomarker discovery method, the expression amount in the sample of miRNA biomarker discovered through the method for discovering the cancer diagnostic miRNA biomarker Cancer diagnosis method comprising the step of substituting a new SVM classifier function f (x)> 0 as cancer, a biliary cancer or pancreatic cancer diagnostic kit comprising the biomarker for diagnosing biliary tract or pancreatic cancer and the cancer
- a computing device for performing a process of diagnosing a case of f (x)> 0 as cancer as a result of substituting a miRNA biomarker expression detected through a diagnostic miRNA biomarker discovery method into a novel SVM classifier function. will be.
- nucleic acids of interest to be detected include genomic DNA, expressed mRNA and other RNAs such as microRNAs (miRNAs).
- miRNAs have emerged as an important new class of regulatory RNAs that have a profound effect on a wide range of biological processes. These small, non-coding RNA molecules can regulate protein expression patterns through promoting RNA degradation, inhibiting mRNA translation, and also affecting gene transcription. miRNAs play a central role in a variety of processes, including development and differentiation, cell proliferation control, stress response and metabolism. Expression of many miRNAs has been found to be altered in numerous types of human cancers, and in some cases strong evidence has been provided to support speculation that such changes may play a causal role in tumor progression. miRNA expression is highly tissue specific, which is also beneficial for the identification of tumor tissue origin. Thus they can also be used as biological markers for research, diagnostic and therapeutic purposes.
- the bile duct is a tube that sends bile made from the liver to the duodenum, and gradually thickens as the twigs gather toward one branch in the liver, and when the bile ducts come out from the liver, the bile ducts of the left and right join most of one.
- the bile ducts are divided into intrahepatic bile ducts that pass through the liver and extrahepatic bile ducts that extend from the liver to the duodenum.
- the pockets that temporarily store and concentrate bile in the extrahepatic bile ducts are called gallbladders, and these intrahepatic bile ducts and gallbladders are collectively called bile ducts.
- Bile duct cancer also known as bile duct cancer, is a malignant tumor that develops in the epithelium of bile ducts.It is divided into two types of intrahepatic biliary tract cancer and extrahepatic biliary tract cancer depending on the site of occurrence. Unless otherwise indicated, the present specification refers to both intrahepatic biliary tract cancer and extrahepatic biliary tract cancer.
- Biliary cancer often spreads to surrounding tissues and does not form clear tumor masses, so it is difficult to accurately identify and diagnose the masses.
- abdominal ultrasonography computed tomography (CT), magnetic resonance imaging (MRI), transdermal transhepatic cholangiopancreatography (PTC), percutaneous transhepatic cholangiopancreatography (PTBD), endoscopic retrograde cholangiopancreatography Biliary cancers are diagnosed using techniques such as ERCP or angiography.
- the pancreas is in the back of the stomach, in the middle of the body, and is about 20 cm long.
- the stomach, duodenum, small intestine, large intestine, liver, gallbladder and spleen are surrounded by organs.
- the total length is about 15 to 20 cm and the weight is about 100 g, and is divided into a head, a body, and a tail.
- the pancreas has an exocrine function that secretes digestive enzymes that break down carbohydrates, fats and proteins in the foods eaten and an endocrine function that secretes hormones such as insulin and glucagon that regulate blood sugar.
- Pancreatic cancer is a mass of cancerous cells of the pancreas. There are many types of pancreatic cancer. Pancreatic adenocarcinoma of the pancreatic ducts accounts for about 90% of pancreatic cancers. Others include cystic cancer (cystic adenocarcinoma) and endocrine tumors.
- Pancreatic cancer is difficult to detect early because it has no early symptoms. Loss of appetite, weight loss, etc. are not characteristic symptoms of pancreatic cancer, but may be sufficient in other diseases.
- pancreas is thin, about 2 cm thick, wrapped only in the capsule, and in close contact with the mesenteric artery that supplies oxygen to the small intestine and the portal vein that carries nutrients absorbed from the intestine to the liver, thereby easily invading cancer.
- the nerve bundles and lymph nodes in the back of the pancreas are characterized by early metastasis.
- pancreatic cancer cells grow fast. Most people live only 4 to 8 months of onset, and their prognosis is poor, and even if they succeed after surgery, their survival rate is more than 17 to 24%.
- Diagnosis of pancreatic cancer is performed by ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS), and / or protonographic tomography (PET). It is done.
- CT computed tomography
- MRI magnetic resonance imaging
- ERCP endoscopic retrograde cholangiopancreatography
- EUS endoscopic ultrasonography
- PET protonographic tomography
- Still another object of the present invention is to provide a biomarker for diagnosing biliary tract cancer or pancreatic cancer, which is discovered through the method for identifying a miRNA biomarker for diagnosing cancer.
- Another object of the present invention is to diagnose the case of f (x)> 0 by substituting the expression level of the miRNA biomarker discovered through the method for discovering the miRNA biomarker for cancer diagnosis into a novel SVM classifier function. It is to provide a method for diagnosing cancer comprising a.
- Still another object of the present invention is to provide a kit for diagnosing biliary tract cancer or pancreatic cancer comprising the biomarker for diagnosing biliary tract cancer or pancreatic cancer.
- Still another object of the present invention is a storage unit for storing data; And a control unit for operation, wherein the control unit substitutes the miRNA biomarker expression amount discovered through the cancer diagnostic miRNA biomarker discovery method into the novel SVM classifier function, and calculates f (x)> 0.
- the control unit substitutes the miRNA biomarker expression amount discovered through the cancer diagnostic miRNA biomarker discovery method into the novel SVM classifier function, and calculates f (x)> 0.
- the method for discovering a miRNA biomarker for cancer diagnosis comprises the steps of: (i) selecting differentially expressed miRNA in a sample using microarray analysis; (ii) reselecting the selected differentially expressed miRNAs by applying a SCAD penalty function; (iii) selecting one or more of the reselected differentially expressed miRNAs as biomarkers based on the results of the sensitivity and specificity calculations of the cancer prediction model.
- the sample may be a peripheral blood sample.
- At least one of the steps (i) to (iii) may be performed by one or more 10-bundle cross validation.
- Step (i) may be performed by selecting miRNAs having a q-value less than 0.05 determined through multiple assay.
- Biomarker for diagnosing biliary tract cancer was discovered through the method for discovering cancer miRNA biomarker
- Biomarker for diagnosing pancreatic cancer according to another embodiment of the present invention was discovered through the method for discovering the cancer diagnostic miRNA biomarker
- f (x)> 0 by substituting the expression amount of the miRNA biomarker sample, which is discovered through the miRNA biomarker discovery method for cancer diagnosis, into the following SVM classifier function And diagnosing it as cancer.
- the sample may be a peripheral blood sample.
- the diagnostic method is miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR -580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g -3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR -4
- the diagnostic method comprises a miRNA for each biomarker set consisting of miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p and hsa-miR-6729-5p.
- the expression level in the peripheral blood sample of the biomarker is performed by substituting the SVM classifier function, and the diagnosis subject may be biliary tract cancer.
- the diagnostic method is miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR -580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g -3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR -4
- the diagnostic method is miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p , hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa -miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-m
- the diagnostic method is miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486- 5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-
- the biomarker set consisting of 5p, hsa-miR-7704 and hsa-miR-6808-5p is performed by substituting the expression level in the peripheral blood sample of each miRNA biomarker into the SVM classifier function, and the diagnosis subject is pancreatic cancer.
- the diagnostic method is miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p , hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa -miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-m
- Kit for diagnosing biliary tract cancer according to another embodiment of the present invention, was excavated through the method for discovering the cancer miRNA biomarker
- biomarkers which are a combination of (i) and (ii).
- Pancreatic cancer diagnostic kit according to another embodiment of the present invention was discovered through the method for discovering the cancer miRNA biomarker
- biomarkers which are a combination of (i) and (ii).
- Computing device includes a storage unit for storing data; And a control unit for operation, wherein the control unit substitutes the miRNA biomarker expression amount discovered through the cancer diagnostic miRNA biomarker discovery method to the following SVM classifier function and calculates a case where f (x)> 0. Is to carry out the diagnostic process.
- the control unit is a miRNA bio for each biomarker set consisting of miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p and hsa-miR-6729-5p.
- the expression level in the peripheral blood sample of the marker is calculated by substituting the SVM classifier function, and the diagnosis subject may be biliary tract cancer.
- the biomarker set consisting of hsa-miR-7704 and hsa-miR-6808-5p is calculated by substituting the expression level in the peripheral blood sample of each miRNA biomarker into the SVM classifier function, and the diagnosis subject may be pancreatic cancer. .
- the biomarker discovery method for diagnosing cancer of the present invention is first differentially expressed in cancer patients (Differentially Expressed), that is, expressed differently than normal; In other words, it begins with the step of detecting and selecting miRNAs that express too much or too little compared to normal expression (DEmiRNAs analysis).
- differential expression is meant a qualitative or quantitative difference in gene expression pattern between cells and tissues and within cells and tissues over time and / or cells. That is, differentially expressed genes may be those whose expression has been altered qualitatively, including activation or inactivation, eg, in normal tissue versus diseased tissue. Genes can be turned on or turned off in certain states compared to another, allowing for comparison of two or more states. Qualitatively regulated genes may exhibit expression patterns that may be detectable by standard techniques within a given state or cell type. Some genes are expressed in only one state or cell type and may not be both. Alternatively, the difference in expression may be quantitative, for example in that the expression is up regulated to increase the amount of transcript or down regulate to decrease the amount of transcript.
- differential expression may include both quantitative and qualitative differences in transient or cellular expression patterns, for example in normal cells and diseased cells, or in cells undergoing different disease phenomena or disease stages.
- differential expression can be compared to expression between two or more genes or their gene products; Or comparison of expression rates between two or more genes or their gene products; Or even comparison of differently processed products of the same gene that are different between normal individuals and individuals suffering from the disease; Or the analysis can be made by comparison of differently processed products of the same gene that are different between various stages of the same disease.
- the expression profile used in the present invention may mean a genomic expression profile, such as the expression profile of miRNA.
- Profiles can be generated by any convenient means of measuring the levels of nucleic acid sequences, such as quantitative hybridization of miRNAs, labeled miRNAs, amplified miRNAs, ncRNAs, quantitative PCR, quantitative ELISAs, etc. Differential gene expression between samples can be analyzed. The sample is taken by any convenient method known in the art.
- the expression profile may be based on measuring the level of nucleic acid, or may be based on a score combining these measurements.
- the present invention basically uses miRNA as an expression profile, and is a method of discovering biomarkers through analysis according to its expression level.
- miRNA associated with a specific disease (eg, cancer)
- miRNA acts to suppress the expression of a gene. Based on a negative correlation.
- some miRNAs act to increase the expression of genes, based on a positive correlation that the expression level of miRNA is proportional to the expression level of a particular gene.
- the biomarker discovery method by miRNA first goes through a step of matching the miRNA expression levels of a normal person and a person including a plurality of cancer patients (which may be a specific cancer).
- the miRNA may be a miRNA of the entire human, and among them, may be a miRNA pool suspected to be related to a target disease.
- Such miRNAs may include those that are not substantially related to the subject disease.
- the selection can be selected by comparison using known miRNAs, which are already known to be associated with the subject disease.
- the selection can be complemented through correlation analysis of miRNA and gene expression known to those skilled in the art.
- the selection may include performing a t-test comparing the average of miRNA expression levels of a normal group with the average of miRNA expression levels of a specific cancer group.
- the data normalization step is the step of integrating and correcting the microarray data for human miRNAs obtained from normal and patient groups.
- RMA multichip average
- the statistical analysis step is to select miRNAs with statistically significant difference in expression level between the two groups (ie, normal group and patient group) using the linear model of the standardized data.
- the t-test (significance level 0.05) is performed on the miRNA expression levels of the patient group and the normal group, there is a significant difference between the patient group and the normal group if the specific miRNA falls within the significance level range.
- the miRNA can be a valid biomarker candidate.
- miRNAs whose significance levels exceed the reference range cannot be effective biomarkers.
- the difference defines statistical significance only for data characteristics that reach a p-value below the threshold (by a two-tailed t-test), where the threshold is determined by the number of tests performed and It depends on the distribution of p-values obtained in these assays.
- test result is 5% significant on whether there is a statistically significant difference between the two groups, it can be concluded that if there are three or more test groups, it is significant at the 5% significance level as if it were two. none.
- group 1 differs significantly with p ⁇ 0.05 compared to the remaining groups N-1, the number of cases in which the misjudgement test is (N-1) * 0.05, and by this number the assay may be misjudged. Therefore, in the case of multiple tests, the test should not be completed with a p-value of 0.05, but should be tested with a more rigorous standard, which is called post hoc.
- post hoc Various methods have been proposed for post-mortem analysis (Bonferroni, Duncan, etc.), but the present invention may utilize a false discovery rate (FDR) that is not overly conservative.
- the statistical significance probability may be set to a q-value of 0.05 or less, which is a p-value corrected using FDR. It becomes more meaningful as miRNA. Therefore, step (i) may be achieved by selecting miRNAs having a q-value of less than 0.05 determined through multiple assay. Preferably, step (i) may be accomplished by selecting miRNAs having a q-value less than 0.05 as determined through multiple assay.
- the step (i) may be performed by one or more 10-fold cross validation (CV). If you build a model without distinguishing training data from test data and test using the same data, the model may be overfitted and the reliability of the result may be lowered. In order to prevent this, after dividing the data into 10 and randomly specifying 9/10 as the training data and 1/10 as the test data and repeating the test 10 times, it is called 10-bundle cross-validation. In order to increase the reliability of the screening of miRNAs selected in step (i), 10-bundle cross-validation may be applied to derive an analysis result for each training set. At this time, a more reliable result can be obtained by performing 10-bundle cross-validation at least once, for example 10 times, for example 100 times.
- 10-bundle cross-validation may be applied to derive an analysis result for each training set. At this time, a more reliable result can be obtained by performing 10-bundle cross-validation at least once, for example 10 times, for example 100 times.
- step (i) can be completed by selecting miRNAs (for each training data) with a q-value less than 0.05, preferably less than 0.01.
- step (ii) is a secondary screening, and applies a SCAD (Smoothly Clipped Absolute Deviation) penalty function.
- SCAD Smoothly Clipped Absolute Deviation
- miRNAs can be reselected using a SCAD penalty method having statistically good properties. For example, suppose that 100 variables, such as x1, x2, x3, ... x100, affect the y value. If you want to select the more influential x values, use the SCAD method to analyze the data. You can choose variables that have a high impact, and use them to make it easier to choose the most influential variable when several are present at the same time. In other words, applying the SCAD penalty function to the first-selected miRNAs in step (i) enables secondary reselection of more significant miRNAs as biomarkers for diagnosing the cancer (step (ii)).
- step (iii) at least one of the differentially expressed miRNA candidates reselected through step (ii) is selected as the final biomarker based on the result of calculating the sensitivity and specificity of the cancer prediction model.
- Sensitivity may mean a statistical measure of how well a binary classification test correctly identifies a situation, for example, how frequently it correctly classifies cancer as the correct of the two possible types. Sensitivity for class A is the percentage of events in the “A” class that are determined to belong to the “A” class by the assay, as measured on a certain absolute basis.
- Specificity can mean a statistical measure of how well a binary classification test correctly identifies a situation, for example, how often it correctly classifies cancer as the correct of the two possible types.
- Specificity for the Class A is the ratio of events that belong to the "non-A" class as determined by certain absolute criteria and determined to belong to the "non-A” class by this assay.
- Step (iii) the selection step of the final miRNA biomarker, may be performed by calculating the sensitivity and specificity of each of the candidate miRNA top rankers selected by step (ii) in the order of the highest predictive performance.
- the probability of predicting a biliary tract cancer patient as a biliary tract cancer may be referred to as a sensitivity
- the probability of predicting a normal person as normal may be referred to as a specificity
- the final miRNA biomarkers for biliary tract cancers can be selected in the order of sensitivity and specificity, and the best predictive performance (the area under the curve of the ROC curve for sensitivity and specificity is close to 1).
- step (ii) or step (iii) may also be performed by one or more 10-fold cross validation (CV), More reliable results can be obtained, for example, by performing 10 times, for example 100 times. For example, 10-bundle cross-validation is repeated 100 times, candidate miRNAs are selected for each training data, the candidate miRNAs are ranked in order of frequency, and then the sensitivity and specificity of the cancer prediction model using the top K candidates are respectively calculated. The k with the highest predictive performance can be selected as the final miRNA biomarker.
- CV 10-fold cross validation
- the present invention provides a biomarker for diagnosing biliary tract cancer.
- a biomarker for diagnosing biliary tract cancer was discovered by the biomarker excavation method of the present invention.
- the present invention provides a biomarker for diagnosing pancreatic cancer.
- the biomarker for diagnosing pancreatic cancer was discovered by the biomarker discovery method of the present invention.
- biological sample refers to a sample of biological tissue or biological fluid containing a nucleic acid. Such samples include, but are not limited to, tissues or fluids isolated from the subject. Biological samples may also include tissue sections, such as biopsy and autopsy samples, FFPE samples, frozen sections taken for histological purposes, blood, plasma, serum, sputum, feces, tears, mucus, hair, and skin. Biological samples may also include primary and / or transformed cell cultures and explants from animal or patient tissues.
- Biological samples also include blood, blood fractions, urine, exudate, ascites, saliva, cerebrospinal fluid, cervical secretions, vaginal secretions, endometrial secretions, gastrointestinal secretions, bronchial secretions, sputum, cell lines, tissue samples, fine needle aspiration; Cell contents of the FNA) or secretion from the breast.
- Biological samples may be provided by excising a cell sample from an animal, but also using previously isolated cells (eg, separated by a third party, at another time point, and / or for another purpose). Tissues with a record in the literature, such as, or with a history of treatment or outcome, are also available.
- Tissue samples are tissues obtained from tissue biopsies using methods well known to those of ordinary skill in the relevant medical arts, and methods of obtaining samples by biopsy include gross apportioning of a mass. , Microdissection, laser based microdissection, or other cell isolation methods known in the art.
- the sample in the method for identifying a miRNA biomarker for diagnosing cancer may be a peripheral blood sample
- the peripheral blood sample is generally regarded as a sample that can be collected by a non-invasive method, and inefficient and painful tissue collection The advantage is that it can be a more human-friendly approach.
- the present invention substitutes the expression level of the miRNA biomarker sample found through the method for discovering the miRNA biomarker for cancer diagnosis into the following SVM classifier function to cancer as f (x)> 0. It provides a method for diagnosing cancer comprising the step of diagnosing.
- RBF radial basis function
- x means the miRNA expression vector of the patient to be diagnosed, which has as many elements as miRNA biomarkers.
- the SVM classifier function f ( x ) developed in the present invention is determined by the target patient according to the correlation between the SVM support vector and the miRNA biomarker for the specific cancer discovered by the biomarker discovery method described above. This function can be used to indicate whether or not it is caught.
- the diagnostic method is hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2- 5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b- 5p, hsa-miR
- the diagnostic method is a biliary tract cancer consisting of miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p and hsa-miR-6729-5p.
- biomarkers 5 total
- the amount of expression in the peripheral blood sample of each miRNA biomarker was substituted into the SVM classifier function, and the expression amounts of x1, x2,...
- the diagnostic method is hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2- 5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b- 5p, hsa-miR
- the amount of expression in the peripheral blood sample of each miRNA biomarker was substituted into the SVM classifier function.
- the diagnostic method is miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa -miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa -miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, h
- the diagnostic method is miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa -miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa It can be performed against a set of biomarkers (16 total) for pancreatic cancer consisting of -miR-6803-5p, hsa-miR-7704 and hsa-miR-6808-5p.
- the amount of expression in the peripheral blood sample of each miRNA biomarker was substituted into the SVM classifier function.
- the sample in the cancer diagnostic method, as in the biomarker discovery method of the present invention may be a peripheral blood sample.
- peripheral blood samples The advantages of using peripheral blood samples that can be collected in a non-invasive manner have been described above and thus will be omitted.
- the present invention provides a kit for diagnosing biliary tract cancer.
- the kit is a miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa discovered through the method for discovering the miRNA biomarker for cancer diagnosis -miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa -miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, h
- the bile duct cancer diagnostic kit may include all of the five biomarkers described above in one set.
- the kit for diagnosing biliary tract cancer may include 34 biomarkers described above and all 5 biomarkers described above in one set.
- the kit for diagnosing biliary tract cancer may utilize known components except for the biomarker portion.
- the kit may include a textbook containing instructions (eg, a protocol) for carrying out the method described in the present invention.
- the present invention provides a kit for diagnosing pancreatic cancer.
- the kit is a miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR, which was discovered through the method for discovering miRNA biomarkers for cancer diagnosis.
- the pancreatic cancer diagnostic kit may include all of the 23 biomarkers described above in one set.
- the present invention provides a kit for diagnosing pancreatic cancer.
- the kit is a miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa, which was discovered through the method for discovering the miRNA biomarker for cancer diagnosis -miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR At least one biomarker selected from the group consisting of -6800-5p, hsa-miR-6803-5p, hsa-miR-7704 and hsa-miR-6808-5
- the pancreatic cancer diagnostic kit may include all 16 biomarkers described above in one set.
- the pancreatic cancer diagnostic kit may utilize known components except for the biomarker portion.
- the kit may include a textbook containing instructions (eg, a protocol) for carrying out the method described in the present invention.
- the present invention provides a computing device for diagnosing cancer.
- the computing device includes a storage for storing data; And a control unit for operation, wherein the control unit substitutes the miRNA biomarker expression amount discovered through the cancer diagnostic miRNA biomarker discovery method to the following SVM classifier function and calculates a case where f (x)> 0. Is to carry out the diagnostic process.
- the controller comprises miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2- 5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b- 5p, hsa-miR, h
- the controller comprises a biomarker set consisting of miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p and hsa-miR-6729-5p
- the diagnostic target may be biliary tract cancer.
- the controller comprises miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2- 5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b- 5p, hsa-miR, h
- control unit miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa- miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa- miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-mi
- the controller comprises miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa- miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-
- the expression level in the peripheral blood sample of each miRNA biomarker was calculated by substituting the SVM classifier function for diagnosis. May be pancreatic cancer.
- control unit miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa- miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa- miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-mi
- the present invention may provide a method for discovering a novel biomarker for diagnosing cancer, particularly a method for discovering a biomarker for diagnosing biliary tract or pancreatic cancer.
- the present invention provides a method for discovering biomarkers with high specificity and sensitivity by a unique statistical approach, and develops a novel SVM classifier function that can be associated with the discovered biomarkers to provide specificity of diagnostic probability. And it can provide a method for diagnosing cancer that significantly increased the sensitivity.
- the excavated biomarkers can be used to implement cancer diagnosis kits and computing devices for cancer diagnosis, including early collection of biliary or pancreatic cancers using non-invasive methods, particularly human-friendly peripheral blood samples. , Can be refined.
- FIG. 1 is a flowchart illustrating a method for discovering a miRNA biomarker for cancer diagnosis according to an embodiment of the present invention, and a method for diagnosing cancer using a novel SVM classifier function developed based on the method.
- RNA in serum was isolated using Genosol's serum miRNA purification kit. The OD 260/280 ratio was measured to check the extracted miRNA purity, and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) electrophoresis was performed with an Agilent RNA Nano 6000 LabChip Kit to check miRNA status and concentration.
- RNA samples were performed on 241 RNA samples, including 107 patients with biliary tract cancer, 89 patients with pancreatic cancer, 11 patients with gallstones, 5 patients with colorectal cancer, 7 patients with gastric cancer, and 2 patients with gastrointestinal stromal tumors.
- Biliary cancer is characterized by ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic retrograde bile duct based on symptoms such as weight loss, tiredness, anorexia, nausea, vomiting, pain in the upper abdomen or the light, and jaundice.
- Angiography ERCP
- percutaneous transhepatic cholangiography PTC
- endoscopic ultrasonography EUS
- protonographic tomography PAT
- serum tumor markers serum tumor markers
- biopsy serum tumor markers, and biopsy were diagnosed.
- Pancreatic cancer was diagnosed with abdominal pain, weight loss, jaundice, and digestion.
- Ultrasound, abdominal computed tomography (CT), magnetic resonance imaging (MRI), endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS), and proton release Diagnosis was made by tomography (PET), serum tumor marker test, laparoscopy, and biopsy.
- gallstones were diagnosed by hematology, endoscopy, and radiographs.
- Radiography was diagnosed primarily by gallstones or by gallstones on computed tomography (CT).
- Colorectal cancer is based on the major symptoms of changes in bowel habits, diarrhea, constipation, bloody or sticky mucus, abdominal pain, abdominal bloating, fatigue, anorexia, indigestion, and abdominal mass (a lump in the abdomen). Cancer cells were identified and confirmed through biopsy through endoscopy.
- rectal balance test In addition to the diagnosis of colorectal cancer, rectal balance test, stool test, colonography, computed tomography (CT), magnetic resonance imaging (MRI), and blood tests were used.
- CT computed tomography
- MRI magnetic resonance imaging
- Stomach cancer is based on symptoms such as heartburn, nausea, vomiting, abdominal pain, dizziness, difficulty swallowing food (difficulty swallowing), weight loss, fatigue, black stools, and stomach cancer in gastroscopy, gastrointestinal imaging, and tomography (CT).
- CT tomography
- the gastric endoscopic examination confirmed the presence of cancer cells.
- the diagnosis of GIST gastrointestinal stromal tumor
- GIST gastrointestinal stromal tumor
- CT computed tomography
- the correct diagnosis is the "kit (gene mutation) unique to the gastrointestinal stromal tumor. Test) was confirmed and confirmed by immunostaining.
- Normal persons were diagnosed as normal without any other cancer diagnosis ability including the biliary tract cancer, pancreatic cancer, gallstone (diagnosis), colon cancer, gastric cancer, and gastrointestinal stromal tumor (GIST).
- RNA-array hybridization was performed for 16 hours on an Affymetrix® 450 Fluidics Station instrument. Hybridized chips were washed in Genechip Fluidics Station 450 (Affymetrix, Santa Clara, California, United States) and then scanned using an Affymetrix GCS 3000 canner (Affymetrix, Santa Clara, California, United States). After the scan was completed, chip QC and RNA normalization were performed using Affymetrix GeneChip TM Expression Console software.
- RNA in serum was isolated using Genosol's serum miRNA purification kit. The OD 260/280 ratio was measured to check the extracted miRNA purity, and Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) electrophoresis was performed with an Agilent RNA Nano 6000 LabChip Kit to check miRNA status and concentration.
- RNA samples 101 patients with biliary tract cancer, 88 patients with pancreatic cancer, 10 patients with gallstones, 5 patients with colorectal cancer, 7 patients with gastric cancer, and 2 patients with gastrointestinal stromal tumor (GIST). , was normal 19 people.
- Biliary cancer is characterized by ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic retrograde bile duct based on symptoms such as weight loss, tiredness, anorexia, nausea, vomiting, pain in the upper abdomen or the light, and jaundice.
- Angiography ERCP
- percutaneous transhepatic cholangiography PTC
- endoscopic ultrasonography EUS
- protonographic tomography PAT
- serum tumor markers serum tumor markers
- biopsy serum tumor markers, and biopsy were diagnosed.
- Pancreatic cancer was diagnosed with abdominal pain, weight loss, jaundice, and digestion.
- Ultrasound, abdominal computed tomography (CT), magnetic resonance imaging (MRI), endoscopic retrograde cholangiopancreatography (ERCP), endoscopic ultrasonography (EUS), and proton release Diagnosis was made by tomography (PET), serum tumor marker test, laparoscopy, and biopsy.
- gallstones were diagnosed by hematology, endoscopy, and radiographs.
- Radiography was diagnosed primarily by gallstones or by gallstones on computed tomography (CT).
- Colorectal cancer is based on the major symptoms of changes in bowel habits, diarrhea, constipation, bloody or sticky mucus, abdominal pain, abdominal bloating, fatigue, anorexia, indigestion, and abdominal mass (a lump in the abdomen). Cancer cells were identified and confirmed through biopsy through endoscopy.
- rectal balance test In addition to the diagnosis of colorectal cancer, rectal balance test, stool test, colonography, computed tomography (CT), magnetic resonance imaging (MRI), and blood tests were used.
- CT computed tomography
- MRI magnetic resonance imaging
- Stomach cancer is based on symptoms such as heartburn, nausea, vomiting, abdominal pain, dizziness, difficulty swallowing food (difficulty swallowing), weight loss, fatigue, black stools, and stomach cancer in gastroscopy, gastrointestinal imaging, and tomography (CT).
- CT tomography
- the gastric endoscopic examination confirmed the presence of cancer cells.
- the diagnosis of GIST gastrointestinal stromal tumor
- GIST gastrointestinal stromal tumor
- CT computed tomography
- the correct diagnosis is the "kit (gene mutation) unique to the gastrointestinal stromal tumor. Test) was confirmed and confirmed by immunostaining.
- Normal persons were diagnosed as normal without any other cancer diagnosis ability including the biliary tract cancer, pancreatic cancer, gallstone (diagnosis), colon cancer, gastric cancer, and gastrointestinal stromal tumor (GIST).
- RNA-array hybridization was performed for 16 hours on an Affymetrix® 450 Fluidics Station instrument. Hybridized chips were washed in Genechip Fluidics Station 450 (Affymetrix, Santa Clara, California, United States) and then scanned using an Affymetrix GCS 3000 canner (Affymetrix, Santa Clara, California, United States). After the scan was completed, chip QC and RNA normalization were performed using Affymetrix GeneChip TM Expression Console software.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medical Informatics (AREA)
- Chemical & Material Sciences (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Data Mining & Analysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Bioethics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 신규한 암 진단용 miRNA 바이오마커 발굴 방법, 상기 바이오마커 발굴 방법을 통하여 발굴된 담도암 또는 췌장암 진단용 바이오마커, 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커의 시료 중 발현량을 신규한 SVM 분류기 함수에 대입하여 f(x)>0인 경우를 암으로 진단하는 단계를 포함하는 암 진단 방법, 상기 담도암 또는 췌장암 진단용 바이오마커를 포함하는 담도암 또는 췌장암 진단용 키트 및 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커 발현량을 신규한 SVM 분류기 함수에 대입하여 연산한 결과 f(x)>0인 경우를 암으로 진단하는 프로세스를 수행하는 것인 컴퓨팅 장치에 관한 것이다.
Description
본 발명은 신규한 암 진단용 miRNA 바이오마커 발굴 방법, 상기 바이오마커 발굴 방법을 통하여 발굴된 담도암 또는 췌장암 진단용 바이오마커, 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커의 시료 중 발현량을 신규한 SVM 분류기 함수에 대입하여 f(x)>0인 경우를 암으로 진단하는 단계를 포함하는 암 진단 방법, 상기 담도암 또는 췌장암 진단용 바이오마커를 포함하는 담도암 또는 췌장암 진단용 키트 및 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커 발현량을 신규한 SVM 분류기 함수에 대입하여 연산한 결과 f(x)>0인 경우를 암으로 진단하는 프로세스를 수행하는 것인 컴퓨팅 장치에 관한 것이다.
최근 들어 분자 진단학의 중요성은 갈수록 증가하고 있으며, 질환의 임상적 진단 (특히, 감염성 병원체의 검출, 게놈의 돌연변이 검출, 이환 세포의 검출 및 질환 소인에 대한 위험 인자의 확인)을 모색하고 있다.
특히, 생물학적 시료 중의 유전자 발현 측정을 통해서, 핵산 분석은 질환의 연구와 진단에 있어서 매우 전도유망한 새로운 가능성을 열어준다. 검출하고자 하는 관심 핵산은 게놈 DNA, 발현된 mRNA 및 기타 RNA, 예컨대 마이크로RNA (miRNA)를 포함한다.
miRNA는 폭넓은 생물학적 과정들에 대해 깊은 영향을 주는 조절성 RNA의 중요한 신규한 부류로서 대두되었다. 이들 소형 비(非)암호화 RNA 분자는 RNA 분해 촉진, mRNA 번역 저해, 및 또한 유전자 전사에의 영향을 통해 단백질 발현 패턴을 조절할 수 있다. miRNA는 발달 및 분화, 세포 증식 제어, 스트레스 반응 및 대사작용 등의 다양한 과정에서 중심적 역할을 한다. 다수의 miRNA의 발현이 수많은 유형의 인간 암에서 변화된 상태로 발견되었으며, 일부 경우 그러한 변화가 종양 진행에서 원인적 역할을 할 수 있다는 추측을 지지하는 강력한 증거가 제시되었다. miRNA 발현은 고도로 조직 특이적이어서, 종양 조직 기원의 규명에도 유익하다. 그에 따라 그들은 또한 연구, 진단 및 치료 목적용 생물학적 마커로도 이용될 수 있다.
담관은 간에서 만들어지는 담즙을 십이지장으로 보내는 관으로서, 간 속에서 나뭇가지가 하나의 가지를 향해 모이듯이 서서히 합류하면서 굵어지며, 간에서 나올 때에 좌우의 담관이 대부분 하나로 합류하게 된다. 담관은 간 속을 지나는 간내 담관과 간을 벗어나 십이지장까지 이어지는 간외 담관으로 나뉜다. 간외 담관 중 담즙을 일시적으로 저장하여 농축하는 주머니를 담낭이라 부르며, 이들 간내외 담관과 담낭을 통틀어 담도라고 부른다.
담도암은 담관암이라고도 하며, 담관의 상피에서 발생하는 악성종양으로서 발생 부위에 따라 간내 담도암과 간외 담도암의 두 종류로 나뉘는데, 일반적으로 담도암이라고 하면 주로 간외 담관에 발생한 암을 가리킨다. 본 명세서에서는 달리 지시되지 않는 한 간내 담도암 및 간외 담도암을 모두 지칭한다.
담도암은 주위의 조직에 스며들듯이 퍼지는 일이 많고, 명료한 종양 덩어리를 형성하지 않으므로, 그 덩어리를 정확하게 확인하고 진단하는 것은 쉽지 않다. 일반적으로는 화상진단기술이 발달함에 따라 복부 초음파검사, 컴퓨터 단층촬영 (CT), 자기공명영상 (MRI), 경피경간담도조영 (PTC), 경피경간담도배액술 (PTBD), 내시경 역행성 담췌관 조영술 (ERCP) 또는 혈관조영검사 등의 기술을 이용해 담도암을 진단하고 있다.
췌장은 위장의 뒤쪽, 몸의 가운데에 있으며 길이가 20 cm 정도로 길다. 위, 십이지장, 소장, 대장, 간, 담낭, 비장 등의 장기에 둘러싸여 있다. 전체 길이는 약 15 내지 20 cm, 무게는 100 g 정도이고, 두부(頭部), 체부(體部), 미부(尾部)로 구분된다. 췌장은 섭취한 음식물 중의 탄수화물, 지방, 단백질을 분해하는 소화 효소를 분비하는 외분비 기능과 혈당을 조절하는 인슐린과 글루카곤 등의 호르몬을 분비하는 내분비 기능을 갖는다.
췌장암 (pancreatic cancer)이란 췌장에 생긴 암세포로 이루어진 종괴이다. 췌장암에는 여러 가지 종류가 있는데 췌관 세포에서 발생한 췌관 선암종이 90% 정도를 차지하고 있어 일반적으로 췌장암이라고 하면 췌관 선암종을 말한다. 그 외에 낭종성암 (낭선암), 내분비종양 등이 있다.
췌장암은 특별한 초기 증상이 없기 때문에, 조기발견하기 어렵다. 식욕이 떨어지거나, 체중감소 등이 나타나지만 췌장암의 특징적인 증상이 아니라서 다른 질환에서도 충분히 나타날 수 있다.
또한 췌장은 두께가 2 cm 정도로 얇으며 피막만으로 싸여 있는데다가 소장에 산소를 공급하는 상장간막 동맥과 장에서 흡수한 영양분을 간으로 운반하는 간문맥 등과 밀착되어 있어 암의 침윤이 쉽게 일어난다. 또한 췌장 후면의 신경 다발과 임파선에도 조기에 전이가 발생하는 특징이 있다. 특히 췌장 암세포는 성장 속도가 빠르다. 발병시 4 개월 내지 8 개월밖에 살지 못하는 경우가 대부분으로, 예후가 좋지 않고, 수술에 성공하여 증상이 나아진다고 해도 5 년 이상 생존하는 비율이 17∼24% 정도로 적은 편이다.
췌장암의 진단은 초음파검사, 전산화단층촬영 (CT), 자기공명영상 (MRI), 내시경적 역행성담췌관조영술 (ERCP), 내시경적 초음파검사 (EUS) 및/또는 양성자방출단층촬영 (PET)을 통해 이루어지고 있다. 그러나, 이러한 화상진단 기술은 진단에 고비용이 들고 복잡하며 사실상 조기 진단용으로는 소용이 없기 때문에, 간단하고 비용이 경제적이며, 조기 진단이 가능한 수단이 필요하다.
이에, 민감도와 특이도가 높아서 신뢰할만한 진단을 내릴 수 있고 실제 진단에서 활용할 수 있는, 특히 담도암 및 췌장암에 대한 바이오마커의 개발 및 이를 이용한 정밀한 진단 방법이 절실한 상황이다.
본 발명의 목적은 (i) 마이크로어레이 분석을 이용하여 시료 중 차등 발현 miRNA를 선별하는 단계; (ii) 검출된 상기 차등 발현 miRNA를 SCAD 벌점 함수를 적용하여 재선별하는 단계; (iii) 암 예측모형의 민감도 및 특이도 산출 결과와 비교하여 재선별된 상기 차등 발현 miRNA 중 하나 이상을 바이오마커로 선정하는 단계를 포함하는 암 진단용 miRNA 바이오마커 발굴 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 담도암 또는 췌장암 진단용 바이오마커를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커의 시료 중 발현량을 신규한 SVM 분류기 함수에 대입하여 f(x)>0인 경우를 암으로 진단하는 단계를 포함하는 암 진단 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 담도암 또는 췌장암 진단용 바이오마커를 포함하는 담도암 또는 췌장암 진단용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 데이터를 저장하기 위한 저장부; 및 연산을 위한 제어부를 포함하고, 상기 제어부는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커 발현량을 상기 신규한 SVM 분류기 함수에 대입하여 연산한 결과 f(x)>0인 경우를 암으로 진단하는 프로세스를 수행하는 것인 컴퓨팅 장치를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 암 진단용 miRNA 바이오마커 발굴 방법은 (i) 마이크로어레이 분석을 이용하여 시료 중 차등 발현 miRNA를 선별하는 단계; (ii) 상기 선별된 차등 발현 miRNA를 SCAD 벌점 함수를 적용하여 재선별하는 단계; (iii) 암 예측모형의 민감도 및 특이도 산출 결과에 기초하여 상기 재선별된 차등 발현 miRNA 중 하나 이상을 바이오마커로 선정하는 단계를 포함한다.
상기 암 진단용 miRNA 바이오마커 발굴 방법에서 상기 시료는 말초 혈액 시료일 수 있다.
상기 단계 (i) 내지 단계 (iii) 중 하나의 단계 이상은 1회 이상의 10-묶음 교차 검증에 의하여 수행될 수 있다.
상기 단계 (i)은 다중검정보정을 통하여 결정된 q-값이 0.05 미만인 miRNA를 선별함으로써 이루어질 수 있다.
본 발명의 다른 일 실시예에 따른 담도암 진단용 바이오마커는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된,
(i) miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합이다.
본 발명의 다른 일 실시예에 따른 췌장암 진단용 바이오마커는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된,
(i) miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합이다.
본 발명의 다른 일 실시예에 따른 암 진단 방법은 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA 바이오마커의 시료 중 발현량을 하기 SVM 분류기 함수에 대입하여 f(x)>0인 경우를 암으로 진단하는 단계를 포함한다.
(식 중, 는 i번째 서포트 벡터의 y값, 는 i번째 서포트 벡터의 x값, 는 i번째 서포트 벡터의 웨이트, 은 서포트 벡터의 개수, 는 레이디얼 기초 함수 커널의 형상 모수, 는 결정함수의 절편, x는 진단하려는 환자의 miRNA 발현량 벡터를 의미한다.)
상기 암 진단 방법에서 상기 시료는 말초 혈액 시료일 수 있다.
상기 진단 방법은 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 담도암인 것일 수 있다.
상기 진단 방법은 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 담도암인 것일 수 있다.
상기 진단 방법은 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p, hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 담도암인 것일 수 있다.
상기 진단 방법은 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 췌장암인 것일 수 있다.
상기 진단 방법은, miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 췌장암인 것일 수 있다.
상기 진단 방법은 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p, hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 췌장암인 것일 수 있다.
본 발명의 다른 일 실시예에 따른 담도암 진단용 키트는, 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된,
(i) miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합인 바이오마커를 포함한다.
본 발명의 다른 일 실시예에 따른 췌장암 진단용 키트는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된,
(i) miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합인 바이오마커를 포함한다.
본 발명의 다른 일 실시예에 따른 컴퓨팅 장치는 데이터를 저장하기 위한 저장부; 및 연산을 위한 제어부를 포함하고, 상기 제어부는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커 발현량을 하기 SVM 분류기 함수에 대입하여 연산한 결과 f(x)>0인 경우를 암으로 진단하는 프로세스를 수행하는 것이다.
(식 중, 는 i번째 서포트 벡터의 y값, 는 i번째 서포트 벡터의 x값, 는 i번째 서포트 벡터의 웨이트, 은 서포트 벡터의 개수, 는 레이디얼 기초 함수 커널의 형상 모수, 는 결정함수의 편, x는 진단하려는 환자의 miRNA 발현량 벡터를 의미한다.)
상기 제어부는 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
상기 제어부는 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
상기 제어부는 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p, hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
상기 제어부는 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
상기 제어부는 miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
상기 제어부는 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p, hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
일 구현예에 있어서, 본 발명은 (i) 마이크로어레이 분석을 이용하여 시료 중 차등 발현 miRNA를 선별하는 단계; (ii) 상기 선별된 차등 발현 miRNA를 SCAD 벌점 함수를 적용하여 재선별하는 단계; (iii) 암 예측모형의 민감도 및 특이도 산출 결과에 기초하여 상기 재선별된 차등 발현 miRNA 중 하나 이상을 바이오마커로 선정하는 단계를 포함하는 암 진단용 miRNA 바이오마커 발굴 방법을 제공한다.
상기 본 발명의 암 진단을 위한 바이오마커 발굴 방법은 우선 암 환자들에게서 차등적으로 발현되는 (Differentially Expressed), 말하자면 정상에 비해 다르게 발현하는; 다시 말해 정상 발현량에 비해 지나치게 많이 발현하거나 지나치게 적게 발현하는 miRNA를 검출하여 선별하는 단계로부터 시작한다 (DEmiRNAs analysis).
"차등 발현"이란, 세포 및 조직간 및 세포 및 조직내에서 시간에 따른 및/또는 세포에 따른 유전자 발현 패턴에서의 정성적 또는 정량적 차이를 의미한다. 즉, 차등적으로 발현되는 유전자는, 예컨대, 정상 조직 대 질환 조직에서, 활성화 또는 불활성화를 포함하여, 정성적으로 발현이 변경된 것일 수 있다. 유전자는 특정 상태에서 또 다른 상태에 비해 발현이 개시 (turn on) 되거나 또는 중단 (turn off) 될 수 있어, 둘 이상의 상태의 비교를 가능하게 한다. 정성적으로 조절된 유전자는 일정 상태 또는 세포 유형 내에서 표준 기술로 검출 가능할 수 있는 발현 패턴을 나타낼 수 있다. 일부 유전자들은 1 가지 상태 또는 세포 유형에서만 발현되고 둘 다에서는 아닐 수 있다. 다르게는, 발현의 차이는, 예컨대, 발현이 상향 조절되어 전사물의 양이 증가하거나 또는 하향 조절되어 전사물의 양이 감소되도록 조정되는 점 등에서 정량적인 것일 수 있다. 따라서, 차등 발현은, 예를 들면 정상 세포 및 질환 세포 중, 또는 상이한 질환 현상 또는 질환 단계를 겪는 세포 중에서 일시적 또는 세포적 발현 패턴에서의 정량적 및 정성적 차이를 모두 포함할 수 있다. 또한, 그 방법론적 관점에서 차등 발현은 둘 이상의 유전자 또는 그들의 유전자 산물들 사이의 발현의 비교; 또는 둘 이상의 유전자 또는 그들의 유전자 산물들 사이의 발현율의 비교; 또는 심지어 정상 개체와 질환으로부터 고통받는 개체 사이에서 상이한, 동일한 유전자의 상이하게 처리된 산물의 비교; 또는 동일한 질환의 다양한 단계 사이에서 상이한, 동일한 유전자의 상이하게 처리된 산물의 비교에 의하여 그 분석이 이루어질 수 있다.
본 발명에서 사용되는 발현 프로필은 게놈 발현 프로필, 예컨대, miRNA의 발현 프로필을 의미하는 것일 수 있다. 프로필은 miRNA, 표지된 miRNA, 증폭된 miRNA, ncRNA, 등의 정량적 혼성화, 정량적 PCR, 정량화용 ELISA 등의, 핵산 서열의 수준을 측정하는 임의의 편리한 수단으로 생성시킬 수 있으며, 이를 이용하여 두 가지 시료 간의 차별적인 유전자 발현을 분석할 수 있다. 시료는 당업계에 공지된 바의 임의의 편리한 방법으로 채취한다. 발현 프로필은 핵산의 수준을 측정한 것에 기초한 것일 수 있으며, 또는 이들의 측정치를 조합한 점수에 기초한 것일 수도 있다.
본 발명은 기본적으로 발현 프로필로써 miRNA를 이용하고, 그것의 발현 수준에 따른 분석을 통하여 바이오마커를 발굴하는 방법이다. 이러한 본 발명은 특정 질환 (예컨대, 암)과 관련된 miRNA가 존재하고, 일반적으로 miRNA는 유전자의 발현을 억제하는 작용을 하는바, 상기 miRNA의 발현 수준은 이와 관련된 특정 유전자의 발현 수준과 반비례한다는 음(-)의 상관관계를 바탕으로 한다. 또한, 일부 miRNA의 경우 유전자의 발현을 증가시키는 작용을 하는바, 이 때에 miRNA의 발현 수준은 이와 관련된 특정 유전자의 발현 수준과 비례한다는 양(+)의 상관관계를 바탕으로 한다.
본 발명에 따른 miRNA에 의한 바이오마커 발굴 방법은 먼저 정상인과 다수의 암 (특정 암일 수 있다) 환자를 포함하는 사람의 miRNA 발현 수준을 매칭하는 단계를 거친다. 여기서, 상기 miRNA는 인간 전체의 miRNA일 수 있고, 그 중에서 대상 질환과 관련된 것으로 의심되는 miRNA 풀일 수도 있다. 이러한 miRNA 중에는 대상 질환과 사실상 관련이 없는 것도 포함되어 있을 수 있다. 그래서, 이러한 miRNA 중에서 질환 분석 또는 평가에 적합하게 사용될 수 있는 바이오마커로써의 miRNA를 선별하는 과정이 필요하다. 이를 위하여 상기 선별은 상기 대상 질환과 관련된 것으로 이미 알려진, 공지된 miRNA를 이용하여 비교함으로써 선택하는 것이 가능하다. 상기 선별은 당업자에게 알려진 miRNA와 유전자 발현과의 상관분석을 통하여 보완될 수 있다.
본 발명의 바이오마커 발굴 방법에 있어서, 상기 선별은 정상 그룹의 miRNA 발현량 평균과 특정 암 그룹의 miRNA 발현량 평균을 비교하는 t-검정을 실시하는 것을 포함할 수 있다.
이는 상기 차등 발현 miRNA를 통계적으로 유의미하게 찾아내기 위한 방식으로, 다양한 요인들을 고려할 수 있는 고급 통계 방법 중 하나인 선형 모형 (linear model)을 이용한다. 이는 다시 데이터 표준화 (normalization) 단계와 통계 분석 단계로 구분될 수 있다. 데이터 표준화 단계는 정상인 그룹과 환자 그룹으로부터 얻어진 인간의 miRNA에 대한 마이크로어레이 데이터를 통합하고 보정하는 단계이다. 데이터 표준화를 위해, 로버스트 멀티 칩 평균 (Robust Multichip Average, RMA) 알고리즘이 이용될 수 있다. 통계분석 단계는 표준화된 데이터를 선형모형을 이용하여 두 그룹 (즉, 정상인 그룹과 환자 그룹) 사이에서 통계적으로 유의미하게 발현량에 차이가 나는 miRNA를 선별하는 단계이다.
결론적으로는 환자군과 정상인군의 miRNA 발현량을 대상으로 t-검정 (유의수준 0.05)를 수행하는 경우, 특정 miRNA가 유의수준 범위 내에 들어온다면 환자군과 정상인군 간에 유의한 차이가 있는 것으로 볼 수 있고, 그 miRNA는 유효한 바이오마커 후보가 될 수 있다. 이와 비교하여, 유의수준이 기준 범위를 넘어서는 miRNA는 유효한 바이오마커가 될 수 없는 것이다.
상기의 t-검정 결과 각 miRNA마다 p-값이 나오게 된다. 그러나, 이 검증은 통계 분석의 일환이고 분석 대상이 되는 miRNA의 개수가 많으므로 다중검정보정 (multiple test adjustment)를 통해 p-값을 보정할 필요가 있다.
다수의 통계적 검정을 실시할 때, 예를 들어 다수의 데이터 특성 하의 두 군 간의 신호를 비교함에 있어서, 다른 방식으로는 통계적으로 유의한 것으로 간주되는 수준에 이를 수 있는 상기 군들 간의 무작위적 차이에 의해, 잘못된 양성의 결과를 수득할 가능성이 점점 높아진다. 이러한 오류적 발견율을 제한하기 위해서, 그 차이가 임계값 미만의 p-값 (양측 t-검정에 의한 것) 에 달하는 데이터 특성에 대해서만 통계적 유의성을 한정하는데, 상기 임계값은 실시된 검정의 수 및 이들 검정에서 수득된 p-값의 분포에 좌우된다.
2개의 그룹에 대하여 통계적으로 유의미한 차이가 있는지에 대하여 5% 유의수준으로 검정 결과가 나왔다고 하더라도, 검정 그룹이 3개 이상인 경우가 되면 2개였던 경우와 동일하게 5% 유의수준으로 유의미하다고 단정할 수 없다. N개의 그룹이 있고, 그룹 1이 나머지 그룹 N-1개보다 p<0.05 로 유의미하게 차이가 난다라는 결과에 대하여 총 N-1개의 검정 중에서 오판단 검정일 경우의 수는 (N-1)*0.05이고, 이 수만큼 상기 검정은 오판단일 수 있다. 따라서 다중검정인 경우 p-값 0.05로 분석을 마칠 것이 아니라, 좀더 엄격한 잣대로 검정을 해야 하며, 이를 사후 분석 (post hoc)이라고 한다. 사후 분석에는 다양한 방법들이 제시되어 왔으나 (본페로니, 던컨 등등..), 본 발명에서는 지나치게 보존적이지 않은 FDR (false discovery rate)를 이용할 수 있다.
결론적으로, q-값은 다중검정시 false discovery (false positive, Type I error)를 고려한 p-값으로 생각할 수 있다. 하나 또는 두 가지의 가설을 검정하는 일반적인 통계에서와는 달리 본 발명에서와 같이 마이크로어레이 (microarray 등) 거대량의 동시에 검정할 경우, type I error 가 0.05 로 낮다 하더라도 잘못된 판단을 하는 경우 절대적으로 너무 많은 수의 오류를 범하는 것이기 때문에 많이 사용하는 p-값인 0.05 나 0.01 도 너무 크게 되며, 따라서 이 값을 보정할 필요가 있고 이런 상황에 맞게 p-값을 보정한 값이 q-값이라 할 수 있다.
본 발명의 바이오마커 발굴 방법에서 대상 miRNA를 선별하는데 있어서 통계적 유의 확률은 FDR을 이용하여 보정된 p-값인 q-값 0.05 이하로 설정될 수 있으며, 그 수치가 작으면 작을 수록 정상치와 다르게 발현하는 miRNA로서 더욱 유의미한 것이게 된다. 따라서, 상기 단계 (i)은 다중검정보정을 통하여 결정된 q-값이 0.05 미만인 miRNA를 선별함으로써 이루어질 수 있다. 좋기로는 상기 단계 (i)은 다중검정보정을 통하여 결정된 q-값이 0.05 미만인 miRNA를 선별함으로써 이루어질 수 있다.
특정 구현예에 있어서, 상기 단계 (i)은 1회 이상의 10-묶음 교차 검증 (10-fold cross validation, CV)에 의하여 수행되는 것일 수 있다. 트레이닝 데이터와 테스트 데이터를 구분하지 않고 모델을 구축한 후 동일한 데이터를 이용하여 시험하게 되면 모델 과적합이 되어 결과의 신뢰성이 떨어질 수 있다. 이를 방지하기 위해 데이터를 10 등분한 후 9/10을 트레이닝 데이터, 1/10을 테스트 데이터로 랜덤 지정하고 이를 10회 반복하는 것을 10-묶음 교차 검증이라고 하고, 상기 본 발명의 바이오마커 발굴 방법의 단계 (i)에서 선별되는 miRNA의 선별의 신뢰도를 높이기 위하여 10-묶음 교차 검증을 적용하여 각 트레이닝 세트에 대해서 분석 결과를 도출해 낼 수 있다. 이때 10-묶음 교차 검증을 1회 이상, 예컨대 10회, 예컨대 100회 수행함으로써 더욱 신뢰도 있는 결과치를 얻을 수 있다.
상기한 바와 같이 (각 트레이닝 데이터마다) q-값이 0.05보다 작은, 좋기로는 0.01보다 작은 miRNA를 선별함으로써 단계 (i)은 완료될 수 있다.
본 발명의 바이오마커 발굴 방법에 있어서, 상기 1차 선별된 miRNA들이 miRNA 각각의 개별적인 유의성을 고려하여 선택된 것이라면 단계 (ii)는 2차 선별로서, SCAD (Smoothly Clipped Absolute Deviation) 벌점 함수를 적용, 다수의 miRNA들을 동시에 고려하여 진단 바이오마커로서 보다 유의미한 miRNA를 재선별하는 단계로 볼 수 있다.
빅데이터나 고차원의 자료를 다룰 때 고차원을 저차원으로, 다수의 변수들을 소수로 줄여야 알고리즘 성능은 보다 안정적이고 해석이 용이할 수 있다. 이를 위한 변수 선택 방법에는 여러 가지가 있을 수 있으나 컴퓨터 계산 능력의 발달에 힘입어 각광을 받고 있는 것이 벌점화 방법이다. 본 발명에서는 통계적으로 좋은 성질을 갖는 SCAD 벌점화 방법을 이용하여 miRNA를 재선별할 수 있다. 예컨대, x1, x2, x3, ... x100과 같이 총 100개의 변수가 y값에 영향을 준다고 했을 때 그 중에서도 더 영향을 주는 x들을 선택하고 싶을 때 SCAD 방법을 써서 데이터를 분석하면 100개 중에 영향력이 큰 변수들을 고를 수 있고, 이를 이용하면 여러개의 변수가 동시에 존재할 때 가장 영향력 있는 변수의 선택이 용이할 수 있다. 즉, 단계 (i)에서 1차 선별된 miRNA에 대하여 SCAD 벌점 함수를 적용시키면 해당 암을 진단하는 바이오마커로서 더욱 유의미한 miRNA들을 2차적으로 재선별할 수 있게 되는 것이다 (단계 (ii)).
다음으로, 단계 (iii)에서는 암 예측모형의 민감도 및 특이도 산출 결과에 기초하여 단계 (ii)까지 거쳐 재선별된 차등 발현 miRNA 후보들 중 하나 이상을 최종 바이오마커로 선정한다.
"민감도 (sensitivity)"란 이진 분류 검정이 상황을 얼마나 잘 올바르게 식별하는지에 대한, 예를 들어 암을 두 가지 가능한 유형 중 올바른 유형으로 얼마나 빈번히 올바르게 분류하는지에 대한 통계적 측정치를 의미하는 것일 수 있다. A 부류에 대한 민감도는, 일정 절대 기준으로 측정되는 바, "A" 부류에 속하는 사건 중 상기 검정에 의해 "A" 부류에 속하는 것으로 결정된 사건의 비율이다.
"특이도 (specificity)"란 이진 분류 검정이 상황을 얼마나 잘 올바르게 식별하는지에 대한, 예를 들어 암을 두 가지 가능한 유형 중 올바른 유형으로 얼마나 빈번히 올바르게 분류하는지에 대한 통계적 측정치를 의미하는 것일 수 있다. A 부류에 대한 특이도는, 일정 절대 기준으로 측정되는 바, "A 가 아닌" 부류에 속하는 사건 중 상기 검정에 의해 "A 가 아닌" 부류에 속하는 것으로 결정된 사건의 비율이다.
최종 miRNA 바이오마커의 선정 단계인 단계 (iii)은 단계 (ii)까지 선별된 후보 miRNA 상위 랭커들에 대하여 각각의 민감도와 특이도를 계산하여 가장 예측 성능이 높은 순서에 의하여 이루어질 수 있다.
예컨대, 담도암의 경우 담도암 환자를 담도암 환자로 예측하는 확률을 민감도라 할 수 있고, 정상인을 정상으로 예측하는 확률을 특이도라 할 수 있으며, 2차 선별된 miRNA 바이오마커 후보 중 담도암에 대한 민감도와 특이도를 산출하여 그 예측 성능이 가장 우수한 (민감도와 특이도에 대한 ROC 커브의 곡선하면적이 1에 가까운) 순서대로 담도암에 대한 최종 miRNA 바이오마커를 선정할 수 있다.
상기 단계 (i)에서와 마찬가지로, 특정 구현예에 있어서, 단계 (ii) 또는 단계 (iii) 역시 1회 이상의 10-묶음 교차 검증 (10-fold cross validation, CV)에 의하여 수행되는 것일 수 있고, 예컨대 10회, 예컨대 100회 수행함으로써 더욱 신뢰도 있는 결과치를 얻을 수 있다. 예컨대, 10-묶음 교차 검증을 100회 반복하고, 각 트레이닝 데이터마다 후보 miRNA를 선택하고 후보 miRNA들을 빈도 순으로 순위를 매긴 후 상위 K개의 후보를 이용한 암 예측모형의 민감도와 특이도를 각각 계산하여 가장 예측성능이 높은 k개를 최종 miRNA 바이오마커로 선정할 수 있다.
다른 일 구현예에 있어서, 본 발명은 담도암 진단용 바이오마커를 제공한다. 본 발명에서는 상기 본 발명의 바이오마커 발굴 방법에 의하여 담도암 진단용 바이오마커를 발굴하였고, 이들은,
(i) miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합이다. 이들의 서열 정보를 하기 표 1 및 표 2에 나타내었다.
또한, 다른 일 구현예에 있어서, 본 발명은 췌장암 진단용 바이오마커를 제공한다. 본 발명에서는 상기 본 발명의 바이오마커 발굴 방법에 의하여 췌장암 진단용 바이오마커를 발굴하였고, 이들은,
(i) miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(ii) miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 군으로부터 선택되는 1 이상; 또는
(iii) (i)과 (ii)의 조합이다. 이들의 서열 정보를 하기 표 3 및 표 4에 나타내었다.
본 발명에서 사용되는 "생물학적 시료"는 핵산을 포함하고 있는 생물학적 조직 또는 생체액의 시료를 의미한다. 이러한 시료로는, 이들에 제한되는 것은 아니나, 대상체로부터 분리한 조직 또는 유체가 포함된다. 생물학적 시료에는 또한 생검 및 부검 시료 등의 조직 절편, FFPE 시료, 조직학적 목적을 위해 채취한 동결 절편, 혈액, 혈장, 혈청, 객담, 대변, 누액, 점액, 털, 및 피부가 포함될 수 있다. 생물학적 시료에는 또한 동물 또는 환자 조직에서 유래한 1 차 및/또는 형질전환된 세포 배양물 및 체외이식편이 포함될 수 있다. 생물학적 시료는 또한 혈액, 혈액 분획물, 소변, 삼출물, 복수, 타액, 뇌척수액, 자궁경부 분비물, 질 분비물, 자궁내막 분비물, 위장관 분비물, 기관지 분비물, 객담, 세포주, 조직 시료, 세침 흡인 (fine needle aspiration; FNA) 의 세포 내용물 또는 유방으로부터의 분비물일 수도 있다. 생물학적 시료는 동물로부터 세포 시료를 절제해냄으로써 제공될 수 있으나, 또한 사전에 분리한 세포 (예컨대, 제 3 자에 의해, 또 다른 시점에, 및/또는 또 다른 목적을 위해 분리된 것)를 사용하거나 치료 또는 결과 이력이 있는 것 등 문헌에의 기록이 있는 조직 또한 사용 가능하다.
조직 시료는 관련 의학 업계의 통상의 지식을 가진 자들에 익히 공지된 방법을 이용하여 조직 생검으로부터 수득된 조직이고 생검으로 시료를 수득하는 방법으로는, 육안에 의한 덩어리 배분 (gross apportioning of a mass), 미세절제, 레이저 기반 미세절제, 또는 기타 당업계에 공지된 세포 분리 방법이 있을 수 있다.
특정 구현예에 있어서, 상기 암 진단용 miRNA 바이오마커 발굴 방법에서 시료는 말초 혈액 시료일 수 있고, 말초 혈액 시료는 통상 비침습적 방법에 의하여 채취될 수 있는 시료로 간주되어 비효율적이고 고통을 수반하는 조직 채취 방법에서 벗어나 보다 인체 친화적인 접근 방법일 수 있다는 장점이 있다.
다른 일 구현예에 있어서, 본 발명은 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA 바이오마커의 시료 중 발현량을 하기 SVM 분류기 함수에 대입하여 f(x)>0인 경우를 암으로 진단하는 단계를 포함하는 암 진단 방법을 제공한다.
(식 중, 는 i번째 서포트 벡터의 y값, 는 i번째 서포트 벡터의 x값, 는 i번째 서포트 벡터의 웨이트, 은 서포트 벡터의 개수, 는 레이디얼 기초 함수 커널의 형상 모수, 는 결정함수의 절편, x는 진단하려는 환자의 miRNA 발현량 벡터를 의미한다.)
구체적으로,
는 레이디얼 기초 함수 (radial basis function, RBF) 커널 (kernel)의 형상 모수를 의미한다. 이 값은 별도의 10-묶음 교차 검증에 의해 구해진다. 이 값이 커지면 비선형성이 증가하여 초평면의 모양이 뾰족한 모양을 띤다. RBF 커넬은 SVM에서 가장 일반적으로 사용되는 비선형 커넬이다.
x는 진단하려는 환자의 miRNA 발현량 벡터를 의미하고 이 벡터는 miRNA 바이오마커 개수만큼의 원소를 갖는다.
본 발명에서는 암을 조기에 진단할 수 있는 진단식으로서 상기 SVM 분류기 함수를 개발하였다. SVM 진단모형은 SVM 서포트 벡터 (i =1, …, ) 값들과 각 서포트 벡터에 해당하는 분류값 , 파라미터인 (i=1, …,
) , , , , x로 이루어져 있다.
본 발명에서 개발한 SVM 분류기 함수 f(x)는 SVM 서포트 벡터와 상술한 본 발명의 바이오마커 발굴 방법에 의하여 발굴된 특정 암에 대한 miRNA 바이오마커 간의 상호 관계에 따라 그 대상 환자가 그 특정 암에 걸렸는지의 여부를 나타낼 수 있는 함수이다. 특정 암에 대한 진단이 필요한 환자에게서 추출한 그 특정 암에 대한 바이오마커 miRNA 각각의 발현량을 x=(x1, x2, …
xN
)T라고 하면 이 값을 상기 함수에 대입하여 f(x)가 0보다 크면 그 특정 암, 0보다 작으면 정상이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 담도암에 대한 바이오마커 세트 (총 34개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 34종 miRNA 각각의 발현량인 x1, x2, … ,x34를 상기 함수에 대입하여 f(x)>0 이면 담도암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 담도암에 대한 바이오마커 세트 (총 5개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 5종 miRNA 각각의 발현량인 x1, x2, … ,x5를 상기 함수에 대입하여 f(x)>0 이면 담도암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p, hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 담도암에 대한 바이오마커 세트 (총 39개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 39종 miRNA 각각의 발현량인 x1, x2, … ,x39를 상기 함수에 대입하여 f(x)>0 이면 담도암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 췌장암에 대한 바이오마커 세트 (총 23개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 23종 miRNA 각각의 발현량인 x1, x2, … ,x23를 상기 함수에 대입하여 f(x)>0 이면 췌장암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 췌장암에 대한 바이오마커 세트 (총 16개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 16종 miRNA 각각의 발현량인 x1, x2, … ,x16를 상기 함수에 대입하여 f(x)>0 이면 췌장암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 진단 방법은 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p, hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 췌장암에 대한 바이오마커 세트 (총 39개)에 대하여 수행될 수 있다. 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입, 39종 miRNA 각각의 발현량인 x1, x2, … ,x39를 상기 함수에 대입하여 f(x)>0 이면 췌장암 (Y=1) 이라고 예측하고, 그렇지 않은 경우는 정상 (Y=0) 이라고 예측할 수 있다.
특정 구현예에 있어서, 상기 암 진단 방법에서 시료는, 본 발명의 바이오마커 발굴 방법에서와 마찬가지로 말초 혈액 시료일 수 있다. 비침습적 방식으로 채취할 수 있는 말초 혈액 시료를 이용하는 경우의 장점을 상술하였으므로 생략한다.
다른 일 구현예에 있어서, 본 발명은 담도암 진단용 키트를 제공한다. 이 키트는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함한다.
특정 구현예에 있어서, 상기 담도암 진단용 키트는 상술한 34종의 바이오마커 모두를 한 세트로 포함할 수 있다.
다른 일 구현예에 있어서, 본 발명은 담도암 진단용 키트를 제공한다. 이 키트는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함한다.
특정 구현예에 있어서, 상기 담도암 진단용 키트는 상술한 5종의 바이오마커 모두를 한 세트로 포함할 수 있다.
특정 구현예에 있어서, 상기 담도암 진단용 키트는 상술한 34종의 바이오마커와, 상술한 5종의 바이오마커 모두를 한 세트로 포함할 수 있다.
특정 구현예에 있어서, 상기 담도암 진단용 키트는 바이오마커 부분을 제외하고는 공지의 구성 요소들을 활용할 수 있다. 또한, 당해 키트에는 본 발명에 기술된 방법의 실시를 위한 지시사항 (예컨대, 프로토콜) 이 담긴 교재가 포함될 수 있다.
다른 일 구현예에 있어서, 본 발명은 췌장암 진단용 키트를 제공한다. 이 키트는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함한다.
특정 구현예에 있어서, 상기 췌장암 진단용 키트는 상술한 23종의 바이오마커 모두를 한 세트로 포함할 수 있다.
다른 일 구현예에 있어서, 본 발명은 췌장암 진단용 키트를 제공한다. 이 키트는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된, miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함한다.
특정 구현예에 있어서, 상기 췌장암 진단용 키트는 상술한 16종의 바이오마커 모두를 한 세트로 포함할 수 있다.
특정 구현예에 있어서, 상기 췌장암 진단용 키트는 상술한 23종의 바이오마커와, 상술한 16종의 바이오마커 모두를 한 세트로 포함할 수 있다.
특정 구현예에 있어서, 상기 췌장암 진단용 키트는 바이오마커 부분을 제외하고는 공지의 구성 요소들을 활용할 수 있다. 또한, 당해 키트에는 본 발명에 기술된 방법의 실시를 위한 지시사항 (예컨대, 프로토콜) 이 담긴 교재가 포함될 수 있다.
다른 일 구현예에 있어서, 본 발명은 암 진단을 위한 컴퓨팅 장치를 제공한다. 이 컴퓨팅 장치는 데이터를 저장하기 위한 저장부; 및 연산을 위한 제어부를 포함하고, 상기 제어부는 상기 암 진단용 miRNA 바이오마커 발굴 방법을 통하여 발굴된 miRNA 바이오마커 발현량을 하기 SVM 분류기 함수에 대입하여 연산한 결과 f(x)>0인 경우를 암으로 진단하는 프로세스를 수행하는 것이다.
(식 중, 는 i번째 서포트 벡터의 y값, 는 i번째 서포트 벡터의 x값, 는 i번째 서포트 벡터의 웨이트, 은 서포트 벡터의 개수, 는 레이디얼 기초 함수 커널의 형상 모수, 는 결정함수의 절편, x는 진단하려는 환자의 miRNA 발현량 벡터를 의미한다.)
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-26b-5p, hsa-miR-214-5p, hsa-miR-191-3p, hsa-miR-127-5p, hsa-miR-128-2-5p, hsa-miR-580-5p, hsa-miR-593-5p, hsa-miR-653-3p, hsa-miR-1224-3p, hsa-miR-208b-5p, hsa-miR-1229-5p, hsa-miR-548g-3p, hsa-miR-513c-5p, hsa-miR-1825, hsa-miR-3126-5p, hsa-miR-3649, hsa-miR-3677-3p, hsa-miR-499b-5p, hsa-miR-4770, hsa-miR-4784, hsa-miR-5687, hsa-miR-5697, hsa-miR-6511a-3p, hsa-miR-6740-3p, hsa-miR-6773-5p, hsa-miR-6795-3p, hsa-miR-6814-3p, hsa-miR-6843-3p, hsa-miR-6884-3p, hsa-miR-6889-3p, hsa-miR-6892-5p, hsa-miR-7158-5p, hsa-miR-208a-3p, hsa-miR-888-3p, hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 담도암인 것일 수 있다.
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
특정 구현예에 있어서, 상기 제어부는 miRNA hsa-miR-378b, hsa-miR-27b-3p, hsa-miR-191-3p, hsa-miR-5583-5p, hsa-miR-3145-5p, hsa-miR-513a-5p, hsa-miR-877-5p, hsa-miR-2053, hsa-miR-3183, hsa-miR-490-5p, hsa-miR-4310, hsa-miR-642b-3p, hsa-miR-1269b, hsa-miR-5571-5p, hsa-miR-933, hsa-miR-5692a, hsa-miR-6069, hsa-miR-548ay-5p, hsa-miR-6763-5p, hsa-miR-6854-3p, hsa-miR-6854-5p, hsa-miR-7154-5p, hsa-miR-425-3p, hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입하여 연산하고, 진단 대상은 췌장암인 것일 수 있다.
본 발명에서는 신규한 암 진단용 바이오마커를 발굴하는 방법, 특히 담도암 또는 췌장암 진단용 바이오마커를 발굴하는 방법을 제공할 수 있다.
본 발명은 고유의 통계학적 접근 방법에 의하여 고도의 특이성 및 민감성을 갖춘 바이오마커를 발굴하는 방법을 제공하며, 상기 발굴된 바이오마커와 연관될 수 있는 신규한 SVM 분류기 함수를 개발하여 진단 확률의 특이성 및 민감성을 획기적으로 높인 암 진단 방법을 제공할 수 있다.
또한, 발굴된 바이오마커를 활용하면 이들을 포함하는 암 진단 키트 및 암 진단을 위한 컴퓨팅 장치를 구현, 특히 비침습적 방법으로 채취되어 인체 친화적인 말초 혈액 시료를 이용하여 담도암 또는 췌장암에 대한 진단을 조기화, 정밀화할 수 있다.
본 발명에서 이루고자 하는 기술적 효과들은 이상에서 언급한 기술적 효과들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 구현예에 따른 암 진단용 miRNA 바이오마커 발굴 방법과, 그에 기초하여 개발된 신규 SVM 분류기 함수식을 이용한 암 진단 방법에 대한 흐름도를 보여준다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
Affymetrix
miRNA
Arrays 시행:
1. 시행 1
혈청 튜브에 채혈한 환자 및 정상인의 혈액을 4℃ 보냉팩에 담아 실험실로 이동 후 튜브를 원심분리기로 3000 rpm에서 20분간 원심분리하여 상층액 (혈청)을 분리하였다. 제놀루션의 serum miRNA purification kit를 이용하여 혈청 내의 총 RNA를 분리하였다. 추출된 miRNA 순도 체크를 위해 OD 260/280 비를 측정하고 miRNA 상태와 농도 확인을 위해 Agilent RNA Nano 6000 LabChip Kit으로 Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) 전기영동을 수행하였다.
241개 RNA 샘플에 대하여 마이크로어레이가 수행되었는데, 이들은 담도암 환자 107 명, 췌장암 환자 89 명, 담석(증) 환자 11 명, 대장암 환자 5 명, 위암 7명, GIST (위장관기질종양) 2 명, 정상인 20 명이었다. 담도암은 체중 감소와 피곤함, 식욕부진, 메스꺼움, 구토, 상복부나 명치의 통증, 황달 등의 증상을 토대로 초음파검사, 전산화단층촬영 (CT), 자기공명영상 (MRI), 내시경적 역행성 담췌관조영술 (ERCP), 경피경간 담도조영술 (PTC), 내시경 초음파검사 (EUS), 양성자방출단층촬영 (PET), 혈청 종양 표지자 검사, 조직 검사를 통해 진단 하였고, 췌장암은 복통과 체중 감소, 황달, 소화장애, 당뇨의 발생이나 악화 등의 증상을 토대로 초음파검사, 복부 전산화단층촬영 (CT), 자기공명영상 (MRI), 내시경적 역행성 담췌관조영술 (ERCP), 내시경 초음파 검사 (EUS), 양성자방출단층촬영 (PET), 혈청 종양 표지자 검사, 복강경검사, 조직검사를 통하여 진단하였다. 타질환 중 담석증은 혈액검사, 내시경검사, 방사선 검사를 이용하여 진단하였고, 방사선 검사는 일차적으로 초음파 검사 상 담석을 보이거나, 전산화 단층 촬영 (CT)에서 담석이 보이는 경우로 진단하였다. 대장암은 주된 증상인 인 배변 습관의 변화, 설사, 변비, 혈변 또는 끈적한 점액변, 복통, 복부 팽만, 피로감, 식욕부진, 소화불량, 그리고 복부종물 (배에서 덩어리가 만져지는 것) 등을 토대로 대장 내시경 검사를 통한 조직검사를 통해 암세포를 발견 후 확진하였다. 대장암 진단에 추가로 직장수지검사, 대변검사, 대장 조영술, 전산화단층촬영 (CT), 자기공명영상 (MRI), 혈액검사 등을 이용하였다. 위암은 속 쓰림, 메스꺼움, 구토, 복통, 어지러움, 음식물을 삼키기 어려움(연하곤란), 체중 감소, 피로, 흑색 변 등의 증상을 토대로 위내시경검사, 위장 조영 검사, 단층촬영검사(CT) 에서 위암을 진단하였고, 위내시경검사를 통한 조직검사에서 암세포가 있으면 위암으로 확진하였다. GIST (위장관기질종양)의 진단은 위내시경검사, 내시경적 초음파검사, 전산화 단층 촬영 (CT) 등을 통해 진단 후, 정확한 진단은 조직 검사와 함께 위장관 간질종양이 고유하게 갖는 "kit (유전자 돌연변이를 검사)" 이라는 단백질을 면역 염색을 통해 확인 후 확진하였다. 정상인은 상기 담도암, 췌장암, 담석(증), 대장암, 위암, GIST (위장관기질종양)을 포함한 기타 암 진단력이 없으며, 특이 질환이 현재 없는 환자를 정상으로 판단하였다.
Affymetrix Genechip miRNA 4.0 array 실험은 제조사의 프로토콜을 따랐다.
각각 130 ng의 241개 RNA 샘플을 FlashTag™ Biotin RNA Labeling Kit (Genisphere, Hatfield, PA, USA)을 이용하여 표지한 후, 99도 에서 5분, 45도 에서 5분 놓아두었다. RNA-array 혼성화는 Affymetrix® 450 Fluidics Station 기기에서 16 시간 동안 수행되었다. 혼성화 완료된 chip을 Genechip Fluidics Station 450 (Affymetrix, Santa Clara, California, United States)에서 수세한 후, Affymetrix GCS 3000 canner (Affymetrix, Santa Clara, California, United States)를 이용하여 스캔하였다. 스캔 완료 후, Affymetrix® GeneChip™ Expression Console software를 이용하여 chip QC와 RNA normalization을 진행하였다.
100회의 10-묶음 교차 검증을 통하여 상기 마이크로어레이 분석을 통한 1차 후보 선별 및 SCAD 벌점 함수를 적용한 2차 후보 재선별 후 각각의 재선별된 후보들에 대한 담도암 특이적 민감도 및 특이도 산출에 기초하여 담도암에 대한 최종 miRNA 바이오마커 34 종을 선정하였고 (표 1), 동일한 방식으로 췌장암에 대한 최종 miRNA 바이오마커 23 종을 선정하였다 (표 3)
하기 표 5 내지 표 9에 환자 정보를 나타내었다.
담도암(107명) 환자의 연령대와 성별정보
췌장암(89명) 환자의 연령대와 성별정보
타질환(25명) 환자의 연령대와 성별정보
정상인(20명)의 연령대와 성별정보
2. 시행 2
혈청 튜브에 채혈한 환자 및 정상인의 혈액을 4℃ 보냉팩에 담아 실험실로 이동 후 튜브를 원심분리기로 3000rpm에서 20분간 원심분리하여 상층액 (혈청)을 분리하였다. 제놀루션의 serum miRNA purification kit를 이용하여 혈청 내의 총 RNA를 분리하였다. 추출된 miRNA 순도 체크를 위해 OD 260/280 비를 측정하고 miRNA 상태와 농도 확인을 위해 Agilent RNA Nano 6000 LabChip Kit으로 Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, USA) 전기영동을 수행하였다.
232개 RNA 샘플에 대하여 마이크로어레이가 수행되었는데, 이들은 담도암 환자 101 명, 췌장암 환자 88 명, 담석(증) 환자 10 명, 대장암 환자 5 명, 위암 7명, GIST (위장관기질종양) 2 명, 정상인 19 명이었다. 담도암은 체중 감소와 피곤함, 식욕부진, 메스꺼움, 구토, 상복부나 명치의 통증, 황달 등의 증상을 토대로 초음파검사, 전산화단층촬영 (CT), 자기공명영상 (MRI), 내시경적 역행성 담췌관조영술 (ERCP), 경피경간 담도조영술 (PTC), 내시경 초음파검사 (EUS), 양성자방출단층촬영 (PET), 혈청 종양 표지자 검사, 조직 검사를 통해 진단 하였고, 췌장암은 복통과 체중 감소, 황달, 소화장애, 당뇨의 발생이나 악화 등의 증상을 토대로 초음파검사, 복부 전산화단층촬영 (CT), 자기공명영상 (MRI), 내시경적 역행성 담췌관조영술 (ERCP), 내시경 초음파 검사 (EUS), 양성자방출단층촬영 (PET), 혈청 종양 표지자 검사, 복강경검사, 조직검사를 통하여 진단하였다. 타질환 중 담석증은 혈액검사, 내시경검사, 방사선 검사를 이용하여 진단하였고, 방사선 검사는 일차적으로 초음파 검사 상 담석을 보이거나, 전산화 단층 촬영 (CT)에서 담석이 보이는 경우로 진단하였다. 대장암은 주된 증상인 인 배변 습관의 변화, 설사, 변비, 혈변 또는 끈적한 점액변, 복통, 복부 팽만, 피로감, 식욕부진, 소화불량, 그리고 복부종물 (배에서 덩어리가 만져지는 것) 등을 토대로 대장 내시경 검사를 통한 조직검사를 통해 암세포를 발견 후 확진하였다. 대장암 진단에 추가로 직장수지검사, 대변검사, 대장 조영술, 전산화단층촬영 (CT), 자기공명영상 (MRI), 혈액검사 등을 이용하였다. 위암은 속 쓰림, 메스꺼움, 구토, 복통, 어지러움, 음식물을 삼키기 어려움(연하곤란), 체중 감소, 피로, 흑색 변 등의 증상을 토대로 위내시경검사, 위장 조영 검사, 단층촬영검사(CT) 에서 위암을 진단하였고, 위내시경검사를 통한 조직검사에서 암세포가 있으면 위암으로 확진하였다. GIST (위장관기질종양)의 진단은 위내시경검사, 내시경적 초음파검사, 전산화 단층 촬영 (CT) 등을 통해 진단 후, 정확한 진단은 조직 검사와 함께 위장관 간질종양이 고유하게 갖는 "kit (유전자 돌연변이를 검사)" 이라는 단백질을 면역 염색을 통해 확인 후 확진하였다. 정상인은 상기 담도암, 췌장암, 담석(증), 대장암, 위암, GIST (위장관기질종양)을 포함한 기타 암 진단력이 없으며, 특이 질환이 현재 없는 환자를 정상으로 판단하였다.
Affymetrix Genechip miRNA 4.0 array 실험은 제조사의 프로토콜을 따랐다.
각각 130 ng의 241개 RNA 샘플을 FlashTag™ Biotin RNA Labeling Kit (Genisphere, Hatfield, PA, USA)을 이용하여 표지한 후, 99도 에서 5분, 45도 에서 5분 놓아두었다. RNA-array 혼성화는 Affymetrix® 450 Fluidics Station 기기에서 16 시간 동안 수행되었다. 혼성화 완료된 chip을 Genechip Fluidics Station 450 (Affymetrix, Santa Clara, California, United States)에서 수세한 후, Affymetrix GCS 3000 canner (Affymetrix, Santa Clara, California, United States)를 이용하여 스캔하였다. 스캔 완료 후, Affymetrix® GeneChip™ Expression Console software를 이용하여 chip QC와 RNA normalization을 진행하였다.
100회의 10-묶음 교차 검증을 통하여 상기 마이크로어레이 분석을 통한 1차 후보 선별 및 SCAD 벌점 함수를 적용한 2차 후보 재선별 후 각각의 재선별된 후보들에 대한 담도암 특이적 민감도 및 특이도 산출에 기초하여 담도암에 대한 최종 miRNA 바이오마커 5 종을 선정하였고 (표 2), 동일한 방식으로 췌장암에 대한 최종 miRNA 바이오마커 16 종을 선정하였다 (표 4)
하기 표 10 내지 표 14에 환자 정보를 나타내었다.
담도암(101명) 환자의 연령대와 성별정보
췌장암(88명) 환자의 연령대와 성별정보
타질환(24명) 환자의 연령대와 성별정보
정상인(19명)의 연령대와 성별정보
miRNA 바이오마커의 암 진단성능 검증:
1. 담도암 마커를 이용한 진단알고리즘 성능 검증
(1) 담도암 환자 (101명) 및 비담도암 환자 (65명)에 대하여 상기 선정된 담도암에 대한 바이오마커 34종 miRNA 각각의 발현량 x1, x2, … ,x34 를 이용하여, 하기 함수
를 완성하였고 새로운 환자의 34종 miRNA 데이터 x를 이 함수에 대입하여 f(x)>0 이면 담도암 (Y=1), 아니면 정상 (Y=0) 이라고 예측하는 진단식을 개발하였다. 이 담도암 조기진단식의 성능을 검증하기 위해 100회의 10-묶음 교차 검증을 통하여 각각의 트레이닝 데이터에 대해 앞서 설명한 바이오마커 발굴과정을 반복하고 이를 테스트 데이터에 적용한 민감도와 특이도의 평균을 계산한 결과, 민감도 0.85, 특이도 0.72의 결과를 얻었다. 이로써 발굴된 34 종 miRNA 바이오마커를 이용한 진단알고리즘의 우수한 담도암 진단 능력이 입증되었다.
(2) 담도암 환자 (101명) 및 비담도암 환자 (63명)에 대하여 상기 선정된 담도암에 대한 바이오마커 5종 miRNA 각각의 발현량 x1, x2, … ,x5를 이용하여, 하기 함수
를 완성하였고 새로운 환자의 5종 miRNA 데이터 x를 이 함수에 대입하여 f(x)>0 이면 담도암 (Y=1), 아니면 정상 (Y=0) 이라고 예측하는 진단식을 개발하였다. 이 담도암 조기진단식의 성능을 검증하기 위해 100회의 10-묶음 교차 검증을 통하여 각각의 트레이닝 데이터에 대해 앞서 설명한 바이오마커 발굴과정을 반복하고 이를 테스트 데이터에 적용한 민감도와 특이도의 평균을 계산한 결과, 민감도 0.77, 특이도 0.69의 결과를 얻었다. 이로써 발굴된 5 종 miRNA 바이오마커를 이용한 진단알고리즘의 우수한 담도암 진단 능력이 입증되었다.
2. 췌장암 마커를 이용한 진단알고리즘 성능 검증
(1) 췌장암 환자 (89명) 및 비담도암 환자 (65명)에 대하여 상기 선정된 담도암에 대한 바이오마커 23종 miRNA 각각의 발현량을 x1, x2, … ,x23를 이용하여, 하기 함수
를 완성하였고 새로운 환자의 23종 miRNA데이터 x를 이 함수에 대입하여f(x)>0 이면 췌장암 (Y=1), 아니면 정상 (Y=0) 이라고 예측하는 진단식을 개발하였다. 이 췌장암 조기진단식의 성능을 검증하기 위해 100회의 10-묶음 교차 검증을 통하여 각각의 트레이닝 데이터에 대해 앞서 설명한 바이오마커 발굴과정을 반복하고 이를 테스트 데이터에 적용한 민감도와 특이도의 평균을 계산한 결과, 민감도 0.96, 특이도 0.92 의 결과를 얻었다. 이로써 발굴된 23 종 miRNA 바이오마커를 이용한 진단알고리즘의 우수한 췌장암 진단 능력이 입증되었다.
(2) 췌장암 환자 (88명) 및 비췌장암 환자 (63명)에 대하여 상기 선정된 췌장암에 대한 바이오마커 16종 miRNA 각각의 발현량을 x1, x2, … ,x16를 이용하여, 하기 함수
를 완성하였고 새로운 환자의 16종 miRNA데이터 x를 이 함수에 대입하여f(x)>0 이면 췌장암 (Y=1), 아니면 정상 (Y=0) 이라고 예측하는 진단식을 개발하였다. 이 췌장암 조기진단식의 성능을 검증하기 위해 100회의 10-묶음 교차 검증을 통하여 각각의 트레이닝 데이터에 대해 앞서 설명한 바이오마커 발굴과정을 반복하고 이를 테스트 데이터에 적용한 민감도와 특이도의 평균을 계산한 결과, 민감도 0.92, 특이도 0.90의 결과를 얻었다. 이로써 발굴된 16종 miRNA 바이오마커를 이용한 진단알고리즘의 우수한 췌장암 진단 능력이 입증되었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (10)
- (i) 마이크로어레이 분석을 이용하여 시료 중 차등 발현 miRNA를 선별하는 단계;(ii) 상기 선별된 차등 발현 miRNA를 SCAD 벌점 함수를 적용하여 재선별하는 단계;(iii) 암 예측모형의 민감도 및 특이도 산출 결과에 기초하여 상기 재선별된 차등 발현 miRNA 중 하나 이상을 바이오마커로 선정하는 단계를 포함하는 암 진단용 miRNA 바이오마커 발굴 방법.
- 제1항에 있어서, 상기 시료는 말초 혈액 시료인 것인 방법.
- 제1항에 있어서, 상기 단계 (i) 내지 단계 (iii) 중 하나의 단계 이상은 1회 이상의 10-묶음 교차 검증에 의하여 수행되는 것인 방법.
- 제1항에 있어서, 상기 단계 (i)은 다중검정보정을 통하여 결정된 q-값이 0.05 미만인 miRNA를 선별함으로써 이루어지는 것인 방법.
- 제5항에 있어서, 상기 진단 방법은 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 담도암인 것인 방법.
- 제5항에 있어서, 상기 진단 방법은 miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 바이오마커 세트에 대하여 각각의 miRNA 바이오마커의 말초 혈액 시료 중의 발현량을 SVM 분류기 함수에 대입함으로써 수행되고, 진단 대상은 췌장암인 것인 방법.
- 제1항에 기재된 방법에 의하여 발굴된 miRNA hsa-miR-7107-5p, hsa-miR-4270, hsa-miR-1268a, hsa-miR-3162-3p 및 hsa-miR-6729-5p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함하는 담도암 진단을 위한 키트.
- 제1항에 기재된 방법에 의하여 발굴된 miRNA hsa-miR-1228-3p, hsa-miR-1469, hsa-miR-4530, hsa-miR-4532, hsa-miR-4721, hsa-miR-4741, hsa-miR-486-5p, hsa-miR-5100, hsa-miR-5787, hsa-miR-6087, hsa-miR-642a-3p, hsa-miR-642b-3p, hsa-miR-6800-5p, hsa-miR-6803-5p, hsa-miR-7704 및 hsa-miR-6808-5p로 이루어지는 군으로부터 선택되는 1 이상의 바이오마커를 포함하는 췌장암 진단을 위한 키트.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/781,958 US11155875B2 (en) | 2015-12-07 | 2016-11-30 | Method for discovery of microRNA biomarker for cancer diagnosis, and use thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0173465 | 2015-12-07 | ||
KR20150173465 | 2015-12-07 | ||
KR1020160140322A KR20170067137A (ko) | 2015-12-07 | 2016-10-26 | 암 진단용 miRNA 바이오마커 발굴 방법 및 그 이용 |
KR10-2016-0140322 | 2016-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017099414A1 true WO2017099414A1 (ko) | 2017-06-15 |
Family
ID=59014366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/013975 WO2017099414A1 (ko) | 2015-12-07 | 2016-11-30 | 암 진단용 마이크로rna 바이오마커 발굴 방법 및 그 이용 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017099414A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113736885A (zh) * | 2021-09-10 | 2021-12-03 | 上海金域医学检验所有限公司 | miRNA作为生物标记物在制备骨肉瘤检测制剂中的应用 |
CN114916233A (zh) * | 2020-12-08 | 2022-08-16 | 信标生医股份有限公司 | 泛癌症早筛预测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090099034A1 (en) * | 2007-06-07 | 2009-04-16 | Wisconsin Alumni Research Foundation | Reagents and Methods for miRNA Expression Analysis and Identification of Cancer Biomarkers |
US20150011414A1 (en) * | 2012-01-16 | 2015-01-08 | Herlev Hospital | Microrna for diagnosis of pancreatic cancer and/or prognosis of patients with pancreatic cancer by blood samples |
WO2015182781A1 (ja) * | 2014-05-30 | 2015-12-03 | 東レ株式会社 | 膵臓がんの検出キット又はデバイス及び検出方法 |
WO2015190542A1 (ja) * | 2014-06-11 | 2015-12-17 | 東レ株式会社 | 胆道がんの検出キット又はデバイス及び検出方法 |
-
2016
- 2016-11-30 WO PCT/KR2016/013975 patent/WO2017099414A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090099034A1 (en) * | 2007-06-07 | 2009-04-16 | Wisconsin Alumni Research Foundation | Reagents and Methods for miRNA Expression Analysis and Identification of Cancer Biomarkers |
US20150011414A1 (en) * | 2012-01-16 | 2015-01-08 | Herlev Hospital | Microrna for diagnosis of pancreatic cancer and/or prognosis of patients with pancreatic cancer by blood samples |
WO2015182781A1 (ja) * | 2014-05-30 | 2015-12-03 | 東レ株式会社 | 膵臓がんの検出キット又はデバイス及び検出方法 |
WO2015190542A1 (ja) * | 2014-06-11 | 2015-12-17 | 東レ株式会社 | 胆道がんの検出キット又はデバイス及び検出方法 |
Non-Patent Citations (2)
Title |
---|
HUBENTHAL: "Sparse modeling reveals miRNA signatures for diagnostics of inflammatory bowel disease", PLOS ONE, vol. 10, no. 10, 14 October 2015 (2015-10-14), pages 1 - 20, XP055598904, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0140155 * |
KOJIMA: "MicroRNA markers for the diagnosis of pancreatic and biliary- tract cancers", PLOS ONE, vol. 10, no. 2, 23 February 2015 (2015-02-23), pages 1 - 22, XP055382030, DOI: doi:10.1371/journal.pone.0118220 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114916233A (zh) * | 2020-12-08 | 2022-08-16 | 信标生医股份有限公司 | 泛癌症早筛预测方法 |
CN113736885A (zh) * | 2021-09-10 | 2021-12-03 | 上海金域医学检验所有限公司 | miRNA作为生物标记物在制备骨肉瘤检测制剂中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012081898A2 (ko) | 위암의 예후 예측용 마커 및 이를 이용하는 위암의 예후 예측 방법 | |
WO2019199105A1 (ko) | 알츠하이머성 치매가 발병될 가능성 평가방법 | |
CN105925681A (zh) | 一种用于肺癌筛查的组合物及其应用 | |
WO2018169145A1 (ko) | 진행성 위암 환자의 수술 후 예후 또는 항암제 적합성 예측 시스템 | |
CN111534600B (zh) | 食管癌基因甲基化检测引物探针组合及其试剂盒与应用 | |
WO2021101339A1 (ko) | 직장암의 선행화학방사선 표준 치료 반응 예측 및 치료 후 예후 예측을 위한 조성물 및 표준 치료 후 예후가 매우 나쁜 환자를 예측하는 방법 및 조성물 | |
CN114736968A (zh) | 血浆游离dna甲基化标志物在肺癌早筛中的用途以及肺癌早筛装置 | |
WO2012070861A2 (ko) | 위암 진단을 위한 위암 특이적 메틸화 바이오마커 | |
US20150361502A1 (en) | Method for screening cancer | |
WO2020242080A1 (ko) | 편평상피세포암의 진단 또는 예후 예측용 마커 및 이의 용도 | |
WO2021154009A1 (ko) | 특정 유전자의 CpG 메틸화 변화를 이용한 방광암 진단용 조성물 및 이의 용도 | |
KR20170067137A (ko) | 암 진단용 miRNA 바이오마커 발굴 방법 및 그 이용 | |
CN108048566A (zh) | 一种检测septin9基因甲基化的核酸组合及试剂盒 | |
WO2017099414A1 (ko) | 암 진단용 마이크로rna 바이오마커 발굴 방법 및 그 이용 | |
WO2019132581A1 (ko) | 유방암 및 난소암 등 암 진단용 조성물 및 이의 용도 | |
CN108624690A (zh) | 一种左右半结肠腺癌早期筛查检测试剂盒及检测方法 | |
WO2022216066A1 (ko) | 암 환자의 예후 예측용 바이오마커 및 이의 용도 | |
WO2022108407A1 (ko) | 핵산 길이 비를 이용한 암 진단 및 예후예측 방법 | |
Chang et al. | High-throughput gender identification of Accipitridae eagles with real-time PCR using TaqMan probes | |
WO2020149719A2 (ko) | 과민성대장증후군 특이적 미생물 바이오마커와 이를 이용하여 과민성대장증후군의 위험도를 예측하는 방법 | |
WO2021020920A2 (ko) | 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 진단방법 | |
CN114085905B (zh) | 用于检测结直肠癌的组合物及其试剂盒与应用 | |
WO2021049834A1 (ko) | 세포밖 소포의 메타게놈 및 대사체 기반 대장암 진단방법 | |
Doulabi et al. | Associations between an MDM2 gene polymorphism and ulcerative colitis by ARMS-PCR | |
JP2024501576A (ja) | 腫瘍マーカー及びその使用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16873279 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16873279 Country of ref document: EP Kind code of ref document: A1 |