WO2017099179A1 - ポリオレフィン延伸多孔性フィルム - Google Patents

ポリオレフィン延伸多孔性フィルム Download PDF

Info

Publication number
WO2017099179A1
WO2017099179A1 PCT/JP2016/086544 JP2016086544W WO2017099179A1 WO 2017099179 A1 WO2017099179 A1 WO 2017099179A1 JP 2016086544 W JP2016086544 W JP 2016086544W WO 2017099179 A1 WO2017099179 A1 WO 2017099179A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous film
stretched porous
film
polyolefin
stretched
Prior art date
Application number
PCT/JP2016/086544
Other languages
English (en)
French (fr)
Inventor
正一 石元
廣井 洋介
北村 和久
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59014280&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017099179(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to EP16873072.9A priority Critical patent/EP3388476A4/en
Priority to JP2017555134A priority patent/JP6854777B2/ja
Priority to CN201680072278.7A priority patent/CN108473705A/zh
Priority to US15/781,596 priority patent/US20190194412A1/en
Publication of WO2017099179A1 publication Critical patent/WO2017099179A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a polyolefin stretched porous film.
  • a stretched resin porous film formed by stretching a thermoplastic resin is known. Since this resin stretched porous film is excellent in basic properties such as tensile strength, bending strength, impact resistance, durability, water resistance, chemical resistance, etc., in recent years, not only printing applications such as posters and commercial printing, Utilization is promoted in a wide range of fields such as voting paper, package labels, and in-mold labels.
  • Patent Document 1 discloses that a large number of voids (holes) are formed inside a film substrate by stretching a resin composition in which a thermoplastic resin is blended with inorganic fine powder whose surface is treated with a hydrophilizing agent.
  • a stretched resin film is also disclosed.
  • This stretched resin film has good absorbability with respect to water-based adhesives, water-based inks, or water as a solvent, and when a paint is applied to the surface of the film base, the film base absorbs a part of the paint. Since a uniform coating appearance can be obtained without generating bubbles, it is said to be useful as a coating raw material for film-based synthetic paper or the like to which water-based ink or water-based adhesive is applied.
  • agricultural multi-films (mulching films) require poor water permeability to prevent excessive water from permeating into the soil from the viewpoints of preventing mud splashing due to rainwater, preventing drought erosion, and preventing fertilizer runoff. Is done.
  • the agricultural multi-film is required to have appropriate moisture permeability from the viewpoint of evaporating excess moisture in the field while having sufficient moisture retention for the roots. Similar compatibility of characteristics may be required in applications such as medical materials, clothing materials, packaging materials, and sanitary materials.
  • the present invention has been made in view of such background art.
  • the purpose is to provide a stretched resin porous film having both poor water permeability and moderate moisture permeability.
  • the film density was measured by A method of JIS K7112 using distilled water immersion liquid and [rho w, the surface tension of the immersion liquid is measured by the A method of JIS K7112 using a liquid 27.3mN / m
  • the film density before stretching measured by JIS K7112 A method using distilled water as the immersion liquid is ⁇ 0
  • the film density after stretching is ⁇ w
  • the surface tension of the immersion liquid is 27.3 mN / m.
  • the ratio (communication void ratio / total void ratio) between the communication void ratio defined by the following formula and the total void ratio is 0.
  • the hydrophobizing agent is an organic carboxylic acid, an organic carboxylic acid salt, an amide of an organic carboxylic acid, an ester of an organic carboxylic acid and an alcohol having 1 to 6 carbon atoms, poly (meth) acrylic acid, and a silane cup 8.
  • the polyolefin stretched porous film according to [9] wherein the inorganic fine powder is calcium carbonate.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the polyolefin stretched porous film of the present embodiment is a stretched film including at least a polyolefin resin and a predetermined fine filler, and further having voids (communication voids) communicating with the inside of the film.
  • the polyolefin stretched porous film may also be referred to as “stretched porous film” hereinafter.
  • the void and the communication void are pores (voids) present in the stretched porous film, give the stretched porous film porosity (porous structure), and give the stretched porous film a predetermined moisture permeability described later.
  • microvoids that are partitioned independently in the film are defined as voids, and two or more adjacent voids are formed by communicating in, for example, a linear shape, a rectangular shape, a spherical shape, a mesh shape, or an indefinite shape.
  • a relatively high-capacity hole is used as a communication void.
  • the voids and the communication voids only need to exist at least inside the stretched porous film, and a part thereof may be exposed to the outside on the surface of the stretched porous film.
  • a void and a communication void is not specifically limited, For example, it can carry out by well-known methods, such as an internal paper forming method and a foaming method.
  • an internal paper forming method when a polyolefin film is stretched to form a film, a void is generally formed in the film with a fine filler contained in the polyolefin resin as a core.
  • polyolefin resins that can be used for the stretched porous film of the present embodiment include crystalline ethylene resins such as high-density polyethylene, medium-density polyethylene, and low-density polyethylene, crystalline propylene-based resins, and polymethyl-1-pentene. , Ethylene-cyclic olefin copolymers and the like, but not limited thereto. These can be used alone or in combination of two or more.
  • crystalline ethylene resins and crystalline propylene resins are preferable.
  • the crystalline propylene resin an isotactic polymer or a syndiotactic polymer obtained by homopolymerizing propylene is more preferable.
  • a copolymer of propylene as a main component and an ⁇ -olefin such as ethylene, 1-butene, 1-hexene, 1-heptene, 4-methyl-1-pentene can be used.
  • the copolymer may be a binary or multi-component monomer component, and may be a random copolymer or a block copolymer.
  • the content of the polyolefin resin is not particularly limited, but is preferably 25% by mass or more, more preferably 30% by mass or more, and further preferably 35% by mass or more based on the total amount of the stretched porous film.
  • the content of the polyolefin resin is not particularly limited, but is preferably 65% by mass or less, more preferably 60% by mass or less, and further preferably 55% by mass or less based on the total amount of the stretched porous film.
  • the fine filler that can be used in the stretched porous film of the present embodiment is characterized by having an average primary particle diameter in a specific range.
  • the average primary particle diameter is to give predetermined stretches described later to the stretched porous film.
  • the fine filler having a hydrophobic surface a fine powder that is hydrophobic per se can be used as it is. Moreover, what hydrophobized the fine powder can be used. As the fine powder, either an inorganic fine powder or an organic fine powder can be used.
  • the hydrophobic treatment can be performed by treating the surface of the fine powder with a surface treatment agent (hydrophobizing agent).
  • the hydrophobized fine powder has a hydrophobizing agent on its surface, and the hydrophobizing agent imparts hydrophobicity.
  • a fine filler can be used individually by 1 type or in combination of 2 or more types.
  • the inorganic fine powder include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, titanium oxide, barium sulfate, zinc oxide, magnesium oxide, diatomaceous earth, silicon oxide and other fine powder, hollow glass beads, etc.
  • calcium carbonate, calcined clay, and diatomaceous earth are preferable because they are inexpensive and can form many pores at the time of stretching, and the porosity can be easily adjusted.
  • Heavy calcium carbonate and light calcium carbonate are more preferable because there are many types of commercially available products, and the average particle size and particle size distribution are easily obtained. These can be used alone or in combination of two or more.
  • the organic fine powder is a different type of resin from the above-mentioned polyolefin resin that is a constituent base material of the stretched porous film, and its melting point or glass transition point is higher than the melting point or glass transition point of the polyolefin resin.
  • a fine powder made of a high resin can be used.
  • the incompatibility of the constituent base material of the stretched porous film with the polyolefin-based resin can be increased, and the pore-forming property during stretch molding tends to be improved. These can be used alone or in combination of two or more.
  • Hydrophobizing agents for hydrophobizing the surface of these fine powders include fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, organic carboxylic acids such as resin acids, and their salts, amides, or carbon atoms of 1 to 6 ester with alcohol; poly (meth) acrylic acid; silane coupling agent and the like, but not limited thereto.
  • fatty acids and their salts are preferable. These can be used alone or in combination of two or more.
  • These hydrophobizing agents modify the surface of the fine powder to make the fine filler hydrophobic, thereby easily improving the hydrophobicity of the stretched porous film containing the fine filler.
  • fatty acids examples include saturated fatty acids such as caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid; elaidic acid, palmitoleic acid, oleic acid, linoleic acid, linolenic acid
  • unsaturated fatty acids such as acid, cetreic acid, erucic acid, and ricinoleic acid.
  • fatty acids having 8 to 24 carbon atoms are preferable, fatty acids having 12 to 20 carbon atoms are more preferable, and oleic acid and stearic acid are more preferable.
  • metal salts such as K, Na, Ag, Al, Ba, Ca, Cu, Fe, Li, Mg, Mn, Pb, Sn, Sr, Zn, are mentioned as a salt of these organic carboxylic acids.
  • metal soaps are preferable, Al and Zn metal soaps are more preferable, aluminum stearate and zinc stearate are more preferable, and aluminum stearate is particularly preferable.
  • silane coupling agent examples include 3-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxy Examples thereof include, but are not limited to, propyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-aminopropyltriethoxysilane.
  • the presence of these hydrophobizing agents in the stretched porous film can be determined from the presence or absence of a peak (for example, a stearic acid peak) derived from the hydrophobizing agent by mass spectrometry.
  • the hydrophobizing agent contained in the polyolefin stretched porous film may be supported on the surface of the fine powder, or may be dispersed in the system from the fine filler. It may be attached.
  • the content of the hydrophobizing agent with respect to the total amount of fine filler having a hydrophobic surface is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.15 More preferably, it is at least mass%.
  • the content of the hydrophobizing agent with respect to the total amount of fine filler having a hydrophobic surface is not particularly limited, but is preferably 15% by mass or less, more preferably 10% by mass or less, and 6% by mass or less. More preferably it is.
  • the content of the hydrophobizing agent with respect to the total amount of the stretched porous film is not particularly limited, but is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, and 0.05% by mass.
  • the content of the hydrophobizing agent relative to the total amount of the stretched porous film is not particularly limited, but is preferably 10% by mass or less, more preferably 8% by mass or less, and preferably 5% by mass or less. Further preferred.
  • the content of the hydrophobizing agent is not less than the above lower limit, the fine filler is sufficiently hydrophobized, and the water permeability of the stretched porous film tends to be suppressed. It is preferable from the viewpoint of cost that the content of the hydrophobizing agent is not more than the above upper limit.
  • the hydrophobization treatment can be performed according to a conventional method, and the method is not particularly limited.
  • the hydrophobizing agent can be sprayed onto a fine powder as a solution or slurry of an organic solvent and stirred for a predetermined time.
  • it can be performed by adding a hydrophobizing agent to an aqueous slurry in which fine powder is dispersed in water, and stirring and mixing.
  • a hydrophobizing agent may be added as a hydrophobizing agent.
  • the hydrophobizing agent may be added as a solution or slurry of a water-soluble organic solvent.
  • the fine filler in a stirred and mixed state may be further dehydrated and dried to obtain a fine powdery filler.
  • the hydrophobizing treatment using a hydrophobizing agent can be performed, for example, by the methods described in JP-A-11-349846, JP-A-2002-363443, WO2001-027193, and WO2004-006871. .
  • the average primary particle diameter of the fine filler is usually 0.05 ⁇ m or more, preferably 0.07 ⁇ m or more, more preferably 0.1 ⁇ m or more, and further preferably 0.12 ⁇ m or more.
  • the average primary particle size of the fine filler is usually 0.8 ⁇ m or less, preferably 0.6 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.4 ⁇ m or less. .
  • the average primary particle diameter of the fine filler is not less than the above lower limit value, voids tend to be efficiently formed in the stretched porous film.
  • the average primary particle diameter of the fine filler is not more than the above upper limit value, more fine fillers can be included in the stretched porous film if the blending amount is the same as that of the large particle diameter. Can do. Thereby, it becomes easy to form a communication void efficiently, there exists a tendency for a water vapor transmission rate to increase, and it exists in the tendency for a film to fracture
  • the average primary particle diameter of the fine filler means that the cut surface in the thickness direction of the stretched porous film is observed with an electron microscope, and each of the 100 fine fillers randomly extracted from the observation region. It is an average value calculated based on the measurement of the primary particle diameter.
  • the primary particle diameter of the fine filler is determined from the maximum value of the distance between two points on the particle outline, that is, the maximum diameter.
  • the stretched porous film may contain secondary particles composed of the primary particles of the fine filler having the average primary particle diameter described above as the fine filler, and contain both primary particles and secondary particles of the fine filler. Also good.
  • primary particles refer to fine filler particle units that exist in a dispersed state.
  • Secondary particles refer to aggregates in which a plurality of primary particles are aggregated or bonded.
  • the average secondary particle size (average secondary particle size) is preferably 0.05 ⁇ m to 0.9 ⁇ m, more preferably 0.15 ⁇ m to 0.8 ⁇ m. It is preferably 0.25 ⁇ m to 0.6 ⁇ m, more preferably 0.25 ⁇ m to 0.5 ⁇ m.
  • the average secondary particle diameter of the fine filler refers to a volume-based median diameter (D 50 ) of the fine filler measured using a particle size distribution measuring apparatus by a laser diffraction method. Further, the cut surface in the thickness direction of the stretched porous film was observed with an electron microscope, and the particle diameters of 100 secondary particles randomly extracted from the observation region were measured, and the average value calculated based on this was obtained. May be.
  • the secondary particle diameter of the fine filler in this case is determined from the maximum value (maximum diameter) of the distance between two points on the particle outline.
  • the stretched porous film may further contain a fine filler having a hydrophilic surface within a range not impeding poor water permeability.
  • the moisture permeability of the stretched porous film can be further improved by mixing and using fine fillers having a hydrophilic surface.
  • a fine filler having a hydrophilic surface a fine powder that is hydrophilic per se can be used as it is. Moreover, what hydrophilized the fine powder can be used.
  • the fine powder the inorganic fine powder or the organic fine powder described in the fine filler can be used.
  • the hydrophilization treatment can be performed by treating the surface of the fine powder with a surface treatment agent (hydrophilizing agent).
  • the hydrophilized fine powder has a hydrophilizing agent on its surface, and hydrophilicity is imparted by the hydrophilizing agent.
  • hydrophilization treatment using a hydrophilizing agent can be performed by, for example, the methods described in JP-A-8-231873 and JP-A-2005-82756.
  • hydrophilizing agent examples include, but are not limited to, polyphosphoric acid, hydrophilic silane coupling agent, hydrophilic polymer, hydrophilic polyhydric alcohol, and hydrophilic metal oxide.
  • hydrophilic metal oxides are preferable. These can be used alone or in combination of two or more. These hydrophilizing agents modify the surface of the fine powder to make the fine filler hydrophilic, thereby easily improving the hydrophilicity of the stretched porous film containing the fine filler.
  • hydrophilic silane coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, and ⁇ -ureidopropyltriethoxysilane.
  • hydrophilic polymers include polyvinyl alcohol, polyethylene glycol, polypropylene glycol, polyvinyl pyrrolidone, polyacrylic acid and salts thereof, polyacrylic acid derivatives; carboxylic acid groups, sulfonic acid groups, phosphoric acid groups, primary, secondary, and tertiary amino acids.
  • hydrophilic polyhydric alcohol examples include diethylene glycol, ethylene glycol, and glycerin.
  • hydrophilic metal oxide examples include silicon oxide, aluminum oxide, zirconium oxide, and cerium oxide.
  • the content of the hydrophilizing agent with respect to the total amount of fine filler having a hydrophilic surface is not particularly limited, but is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and 0.15 More preferably, it is at least mass%.
  • the content of the hydrophilizing agent with respect to the total amount of fine filler having a hydrophilic surface is not particularly limited, but is preferably 1.5% by mass or less, more preferably 1.0% by mass or less, and 0 More preferably, it is 6 mass% or less.
  • the content of the hydrophilizing agent is not less than the above lower limit, the fine filler is sufficiently hydrophilized, and the moisture permeability of the stretched porous film tends to increase. Further, the content of the hydrophilizing agent is preferably not more than the above upper limit value from the viewpoint of easily achieving the communicating void ratio of the stretched porous film.
  • the stretched porous film preferably includes both secondary particles of fine filler having a hydrophobic surface and primary particles of fine filler having a hydrophilic surface.
  • the average primary particle diameter of the fine filler having a hydrophilic surface is preferably 0.05 ⁇ m or more, more preferably 0.07 ⁇ m or more, and further preferably 0.1 ⁇ m or more.
  • the average primary particle size of the fine filler having a hydrophilic surface is preferably 0.6 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.4 ⁇ m or less.
  • the average primary particle diameter of the fine filler having a hydrophilic surface is not more than the upper limit value, it tends to form a fine void that is difficult to permeate water. Moreover, it becomes easy to give moderate moisture permeability to a stretched porous film by using together the fine filler which has such a hydrophilic surface.
  • the content of the fine filler with respect to the total amount of the stretched porous film is not particularly limited, but is preferably 32% by mass or more, more preferably 39% by mass or more, and further preferably 44% by mass or more. . Further, the content of the fine filler with respect to the total amount of the stretched porous film is not particularly limited, but is preferably 72% by mass or less, more preferably 62% by mass or less, and 52% by mass or less. Further preferred. When the content of the fine filler is not less than the above lower limit value, the number of voids increases to facilitate the formation of communication voids, and the moisture permeability tends to be improved by the porous structure.
  • the stretched porous film tends to be stretch-molded and the yield tends to be improved. Moreover, it exists in the tendency for a film to fracture
  • the content of the fine filler having a hydrophobic surface with respect to the total amount of the stretched porous film is not particularly limited, but is preferably 32% by mass or more, more preferably 35% by mass or more, and 40% by mass or more. More preferably it is.
  • the content of the fine filler having a hydrophobic surface relative to the total amount of the stretched porous film is not particularly limited, but is preferably 72% by mass or less, more preferably 60% by mass or less, and 50% by mass. More preferably, it is as follows. When the content of the fine filler having a hydrophobic surface is not less than the above lower limit value, moisture permeability tends to be improved by the porous structure. Moreover, it is easy to suppress water permeability because content of the fine filler which has a hydrophobic surface is below said upper limit.
  • the content of the fine filler having a hydrophilic surface relative to the total amount of the stretched porous film is not particularly limited, but is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and 0 More preferably, it is 5% by mass or more.
  • the content of the fine filler having a hydrophilic surface is not particularly limited, but is preferably 10% by mass or less, more preferably 7% by mass or less, based on the total amount of the stretched porous film. More preferably, it is 5 mass% or less.
  • the content of the fine filler having a hydrophobic surface contained in the stretched porous film and the fine filler having a hydrophilic surface are included.
  • the ratio with the content of is not particularly limited, but from the viewpoint of easily adjusting the water permeability and moisture permeability to the desired one, it is preferable to increase the amount of the fine filler having a relatively hydrophobic surface, Specifically, the ratio of (content of fine filler having a hydrophobic surface) / (content of fine filler having a hydrophilic surface) on a mass basis is 99.5 / 0.5 to 85/15.
  • the content of each of the fine filler having a hydrophobic surface and the fine filler having a hydrophilic surface is within the above range, the content of the hydrophilizing agent is more than the content of the hydrophobizing agent relative to the total amount of the stretched porous film. Even when the amount is large, it is easy to ensure the effect of poor water permeability.
  • the content of the fine filler having a hydrophobic surface relative to the total amount of the stretched porous film can be easily calculated based on the mass of the fine filler (fine powder) before the hydrophobic treatment.
  • the content of the fine filler having a hydrophilic surface relative to the total amount of the stretched porous film can be easily calculated based on the mass of the fine filler (fine powder) before the hydrophilization treatment.
  • ⁇ Other additives In the stretched porous film of the present embodiment, known additives such as a dispersant, a heat stabilizer, an ultraviolet stabilizer, an antioxidant, an antiblocking agent, a nucleating agent, a lubricant, and a colorant are blended as necessary. May be. These additives are preferably blended in a proportion of 0.01 to 3% by mass with respect to 100% by mass of the total amount of the film.
  • the dispersant is used, for example, for the purpose of highly dispersing the fine filler in the film containing the polyolefin resin described above.
  • the fine filler which formed the secondary particle it is preferable to disperse
  • the dispersant include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid, maleic anhydride-modified polypropylene, and salts thereof.
  • the content of the dispersing agent is not particularly limited, but is preferably 0.01 to 3% by mass with respect to the total amount of the film.
  • the content of the dispersant is 0.01% by mass or more, the fine filler is sufficiently dispersed, so that a communication void is easily obtained, and a predetermined water permeability and moisture permeability tend to be obtained.
  • the content of the dispersant is 3% by mass or less, the stretchability of the film is good, and there is a tendency that the stretching breakage during molding is suppressed.
  • the total amount of the above-described hydrophobizing agent and dispersant is preferably 0.25 to 8% by mass, more preferably 0.3 to 6% by mass, based on the total amount of the film.
  • the stretched porous film of the present embodiment can be produced by various known methods, for example, known methods such as an internal paper making method and a foaming method, and the production method is not particularly limited.
  • known methods such as an internal paper making method and a foaming method
  • the production method is not particularly limited.
  • the manufacturing method by the internal paper forming method will be described in detail as one of the preferable manufacturing methods for obtaining the porous film simultaneously with the stretch molding.
  • a resin composition containing a polyolefin resin and a fine filler is prepared.
  • a resin composition can be prepared by blending a polyolefin resin, fine filler, and various additives as required, and melt-kneading them.
  • a polyolefin stretched porous film having a predetermined water permeability and moisture permeability can be obtained by stretch molding of a resin sheet described later. It tends to be easy.
  • this resin composition is melt-extruded into a sheet shape to form a polyolefin resin sheet containing fine fillers therein.
  • the stretched porous film of this embodiment can be obtained by stretching the obtained polyolefin resin sheet in at least one direction.
  • an inter-roll stretching (longitudinal stretching) method that stretches by utilizing the peripheral speed difference of the roll group in the transport direction of the resin sheet, or a tenter in a direction orthogonal to the transport direction of the resin sheet (width direction).
  • Examples thereof include a clip stretching (lateral stretching) method of stretching using an oven.
  • Examples of the biaxial stretching method include a sequential biaxial stretching method using a combination of the above longitudinal stretching method and the above lateral stretching method.
  • the simultaneous biaxial stretching method which performs extending
  • the simultaneous biaxial stretching method by the tubular method which is a stretching method of an inflation film can be mentioned.
  • the stretching of the polyolefin resin sheet can be appropriately selected from the above-described longitudinal uniaxial stretching, lateral uniaxial stretching, sequential biaxial stretching, simultaneous biaxial stretching, and the like.
  • the stretching method for each layer may be the same, or the stretching method for each layer may be different.
  • the stretching method of each layer may be appropriately selected from the above stretching methods.
  • the sequential biaxial stretching method and the simultaneous biaxial stretching method are preferable, and the sequential biaxial stretching method is more preferable.
  • the stretch ratio of the stretched porous film is not particularly limited, and may be appropriately determined in consideration of the characteristics of the stretched porous film to be obtained.
  • the draw ratio during longitudinal uniaxial stretching is preferably in the range of 3 to 11 times, and preferably 4 to 10 times.
  • the range is more preferable, and the range of 5 to 7 times is more preferable.
  • the draw ratio during transverse uniaxial stretching is preferably in the range of 4 to 11 times, more preferably in the range of 4 to 10 times, and still more preferably in the range of 5 to 9 times.
  • the area stretching ratio at the time of sequential biaxial stretching or simultaneous biaxial stretching is preferably in the range of 10 to 90 times, more preferably in the range of 15 to 75 times, and in the range of 30 to 60 times. More preferably.
  • the stretching temperature of the stretched porous film is not particularly limited, but is a temperature higher than the crystallization temperature of the polyolefin-based resin that is the constituent base material, and is preferably 5 ° C. or more lower than the melting point, and 10 ° C. or more lower. Is more preferable. Moreover, when using 2 or more types of resin, it is preferable to carry out at the temperature higher than the crystallization temperature of resin which occupies the largest content, and 5 degreeC or more lower than melting
  • the stretching temperature is preferably 70 to 131 ° C.
  • the stretched porous film after stretching is preferably subjected to heat treatment.
  • the heat treatment temperature is preferably selected within a temperature range of 0 to 30 ° C. higher than the stretching temperature.
  • the heat treatment is generally performed by roll heating or a heat oven, but may be combined.
  • the conveying speed when stretching the stretched porous film is usually 10 to 500 m / min, preferably 30 to 300 m / min, and more preferably 50 to 200 m / min. preferable.
  • transverse stretching it is usually from 10 to 150 m / min, preferably from 30 to 120 m / min, and more preferably from 50 to 100 m / min.
  • sequential biaxial stretching it is usually 10 to 500 m / min, preferably 30 to 300 m / min, more preferably 50 to 200 m / min.
  • simultaneous biaxial stretching it is usually from 3 to 350 m / min, preferably from 5 to 120 m / min, and more preferably from 5 to 100 m / min.
  • the stretched porous film When the stretched porous film is composed of a plurality of layers, those laminated by coextrusion may be stretched together. Further, the stretched layer may be stretched again after lamination. Alternatively, the films obtained by the above methods may be bonded together. Although it is possible to laminate the layers after stretching each layer separately, it is preferable to laminate the layers after lamination as described above because the number of steps is small and the manufacturing cost is low.
  • the number of stretching axes of each layer constituting the stretched film may be unstretched or unstretched, uniaxially stretched, or biaxially stretched.
  • the number of stretch axes of each layer is as follows: unstretched / uniaxial, unstretched / biaxial, uniaxial / uniaxial, uniaxial / biaxial, biaxial / biaxial Any combination of axes, etc. can be used.
  • the number of stretch axes of each layer is unstretched / uniaxial / nonstretched, unstretched / biaxial / unstretched, Unstretched / uniaxial / uniaxial, unstretched / uniaxial / biaxial, unstretched / biaxial / uniaxial, unstretched / biaxial / biaxial, uniaxial / uniaxial / uniaxial, uniaxial / uniaxial / biaxial, uniaxial / biaxial / One axis, one axis / two axes / two axes, two axes / two axes / two axes, and the like can be arbitrarily combined.
  • the stretched porous film obtained after stretching is preferably subjected to a surface treatment described later.
  • the surface treatment By performing the surface treatment, the surface of the stretched porous film can be adjusted to have a predetermined wetting tension described later. Since the stretched porous film has a predetermined wetting tension described later, its suitability for secondary processing can be improved.
  • the surface treatment can be performed by performing an oxidation treatment on the stretched film, and can be performed by applying an anchor agent and an antistatic agent after performing an oxidation treatment on the stretched film.
  • oxidation treatment method methods such as corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment and ozone treatment which are generally used for film treatment can be used alone or in combination.
  • corona discharge treatment and flame treatment are preferred, and corona discharge treatment is particularly preferred from the standpoint of ease of equipment and operation.
  • anchoring agent examples include polyimine-based polymers or polyamine polyamide ethyleneimine adducts alone or a mixture thereof, or those obtained by further adding a crosslinking agent.
  • examples of the ethyleneimine adduct of polyimine-based polymer or polyamine polyamide include polyethyleneimine, poly (ethyleneimine-urea) and polyimine polyamide ethyleneimine adduct, or alkyl-modified products, cycloalkyl-modified products, aryl-modified products thereof.
  • an example of the antistatic agent is a polymer type antistatic agent.
  • a polymer type antistatic agent a cation type, an anion type, an amphoteric type, a nonionic type and the like can be used.
  • the cationic type include those having an ammonium salt structure or a phosphonium salt structure in the molecular structure.
  • Anionic types include alkali metal salts such as sulfonic acid, phosphoric acid and carboxylic acid, for example, alkali metal salts such as acrylic acid, methacrylic acid and (anhydrous) maleic acid (for example, lithium salt, sodium salt, potassium salt, etc. ) Having a structure in the molecular structure.
  • the amphoteric type contains both the cation type and the anion type structure in the same molecule, and examples thereof include a betaine type.
  • the nonionic type include an ethylene oxide polymer having an alkylene oxide structure and a polymer having an ethylene oxide polymerization component in a molecular chain.
  • a polymer type antistatic agent having boron in the molecular structure can be given as an example.
  • cationic polymer type antistatic agents are preferable, particularly nitrogen-containing polymer type antistatic agents, and more specifically, tertiary nitrogen or quaternary nitrogen (ammonium salt structure) -containing acrylic system. It is a polymer.
  • the stretched porous film of the present embodiment a large number of voids are formed inside the polyolefin resin film, and at least a part of these voids forms a communication void that is in communication with each other. Further, the void and the communication void contain fine fillers whose surfaces are treated with a hydrophobic agent by a hydrophobic agent. As a result, the stretched porous film has a water permeability that suppresses the permeation of water to such an extent that the water permeability described later is exhibited, and has a moisture permeability that allows water vapor to permeate to an extent that indicates the moisture permeability described later.
  • the stretched porous film of the present embodiment can pass water vapor sufficiently while hardly passing water.
  • the stretched porous film exhibits such characteristics because at least a part of the voids communicate with each other in the film, and water vapor can pass through the stretched porous film through the communication void from the opening on the film surface.
  • the hydrophobicity of the olefinic resin itself and the presence of fine fillers having a hydrophobic surface suppress the infiltration of water into the communicating void and the permeation of water, thereby reducing the water in the stretched porous film. It is estimated that the passage of is suppressed.
  • the fine filler which has a hydrophilic surface in addition to the fine filler which has a hydrophobic surface, there exists a tendency for moisture permeability to improve moderately.
  • the moisture permeability, air permeability, and water permeability of the stretched porous film are the particle diameter of fine filler, content, degree of hydrophobic treatment, combined use of fine filler having a hydrophobic surface and fine filler having a hydrophilic surface. It can be controlled by adjusting the number of voids in the film, the degree of void communication, or the size of the voids.
  • any layer constituting the stretched porous film has a fine average primary particle diameter having a hydrophobic surface of 0.05 to 0.8 ⁇ m. It is preferable that a filler is included.
  • desired low water permeability and moisture permeability are achieved by satisfying the water permeability and moisture permeability described later as the whole of the plurality of layers.
  • the thickness in the stretched porous film refers to a value measured according to JIS K7130: 1999.
  • the stretched porous film is composed of a plurality of layers, it is a value measured as a whole of the plurality of layers.
  • the thickness of each layer is determined by observing the cross section using an electron microscope, determining the interface between the layers based on the appearance, determining the thickness ratio, and the thickness measured above. It calculates from the thickness ratio of each layer.
  • the thickness of the stretched porous film may be appropriately set according to the desired performance, and is not particularly limited. However, if used as an agricultural material, it is preferably 20 ⁇ m or more, more preferably 40 ⁇ m or more, More preferably, it is 50 ⁇ m or more. Further, the thickness of the stretched porous film is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and further preferably 300 ⁇ m or less. When the thickness of the stretched porous film is not less than the above lower limit, the stretched porous film has sufficient mechanical strength, and it is easy to prevent the film from being broken during stretching and laying of the stretched porous film. There is a tendency. Moreover, when the thickness of the stretched porous film is not more than the above upper limit value, the stretched porous film does not become too heavy and the handling tends to be easy.
  • Density of the stretched porous film is preferably at 0.45 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, more preferably 0.55 g / cm 3 or more. Further, the density of the stretched porous film is preferably 0.7 g / cm 3 or less, more preferably 0.65 g / cm 3 or less, and further preferably 0.6 g / cm 3 or less. . When the density of the stretched porous film is not less than the above lower limit value, it is easy to prevent the film from being broken during stretching, and sufficient mechanical strength tends to be obtained for the stretched porous film.
  • the density of the stretched porous film can be controlled by adjusting the content of the fine filler, the number of stretch axes of the film, and the stretch ratio.
  • the density in the stretched porous film refers to a value obtained by using distilled water as the immersion liquid in the method A of JIS K7112: 1999. Note that this density is equal to later-described density [rho w.
  • the stretched porous film has a predetermined density by appropriately forming communication voids in the film.
  • the void ratio in the stretched porous film refers to the ratio (volume ratio) of the volume occupied by the pores in the film to the volume of the entire film.
  • the whole void ratio what shows the volume ratio of all the void
  • whole void ratio what shows the volume ratio of all the void
  • internal independent void ratio those showing the volume ratio of vacancies independent within the film.
  • communication void ratio those indicating the volume ratio of the holes communicating with the surface of the film.
  • the overall void ratio of the stretched porous film is obtained by the following formula (1).
  • ⁇ 0 is the density of the film before stretching obtained by using distilled water as the immersion liquid in the method A of JIS K7112: 1999.
  • [rho w is JIS K7112: In method A 1999, is the density of the film after stretching obtained by using distilled water in the immersion liquid.
  • ⁇ 0 indicating the density of a film having no pores before stretching is a portion occupied by a resin composition containing a polyolefin-based resin and fine filler, excluding pores from a film having pores after stretching. It is almost the same as the true density indicating the density of
  • the ratio of all the voids formed inside the stretched porous film to the entire film is defined as the overall void ratio. Can be sought.
  • the internal independent void ratio of the stretched porous film is obtained by the following formula (2).
  • the definition of ⁇ 0 is the same as that in the formula (1).
  • ⁇ s is a density determined using a liquid having a surface tension of 27.3 mN / m instead of distilled water as the immersion liquid in the method A of JIS K7112: 1999.
  • a liquid having a surface tension of 27.3 mN / m can be prepared according to the formulation described in the table of JIS K6768: 1999 (mixing 80% by volume of methanol and 20% by volume of distilled water). What is marketed with names, such as a test liquid mixture, can be used.
  • the film is formed inside the stretched porous film and is not communicated with the outside of the film, and is independent inside the film.
  • the ratio of the voids to the entire film can be determined as the internal independent void ratio.
  • the communication void ratio of the stretched porous film is obtained by the following formula (3).
  • the pores are not filled with distilled water, but are filled with a liquid having a surface tension of 27.3 mN / m. Therefore, as shown in Formula (3), the ratio of the voids communicating with the film surface to the entire film can be obtained as the communication void ratio from the difference between the overall void ratio and the internal independent void ratio.
  • the stretched porous film of the present embodiment exhibits moderate moisture permeability and poor water permeability, thereby transmitting water vapor and suppressing excessive water penetration. This is achieved by the presence of an appropriate proportion of communicating voids out of the total pores formed in the film. That is, there is a suitable range for the value of (communication void ratio / total void ratio) that represents the ratio of the communication void ratio and the total void ratio. This (communication void ratio / total void ratio) is expressed by the following equation (4).
  • the stretched porous film of this embodiment preferably has a value of (communication void ratio / total void ratio) of 0.4 to 0.85, more preferably 0.5 to 0.8, More preferably, it is 6 to 0.75. By having the same value within the same range, it is easy to achieve the desired moisture permeability.
  • the value of (communication void ratio / total void ratio) of the stretched porous film can be controlled by adjusting the content of the fine filler used, the particle diameter of the fine filler, the stretch ratio of the stretched porous film, and the like. .
  • the overall void ratio of the stretched porous film is preferably 40 to 80%, more preferably 50 to 70%, and further preferably 55 to 65%.
  • the internal independent void ratio is preferably 5 to 50%.
  • the communication void ratio is preferably 30 to 75%, more preferably 35 to 65%, and further preferably 40 to 60%.
  • the difference between the density [rho s and density [rho w is a molecule of the above formula (4) ( ⁇ s - ⁇ w ) is, JIS K7112: and density was measured with distilled water in method A of 1999 [rho w , surface tension instead of distilled water shows a difference in density [rho s, measured using a liquid 27.3mN / m.
  • the value of ⁇ s - ⁇ w is preferably 0.15 to 1.15, more preferably 0.3 to 1.0, and 0.5 to More preferably, it is 0.9.
  • the density difference is not less than the above lower limit value, moisture permeability tends to be easily exhibited.
  • the density difference is not more than the above upper limit value, moisture permeability tends to be suppressed.
  • the water permeability in the stretched porous film of the present embodiment indicates “poor water permeability” as described in the above problem. Furthermore, this water permeability indicates that almost no water passes when used as an agricultural material or the like. Moreover, this water permeability means the water permeability measured based on JISZ0221: 1976.
  • the water permeability of such a stretched porous film is 10,000 seconds or more, preferably 12,000 seconds or more, more preferably 14,000 seconds or more, and 20,000 seconds or more. More preferably.
  • the stretched porous film has a water permeability of 85,000 seconds or less, preferably 78,000 seconds or less, more preferably 70,000 seconds or less, and 50,000 seconds or less. Is more preferable.
  • the water permeability is equal to or more than the above lower limit value, the passage of water tends to be suppressed.
  • it shows that it is hardly water-permeable so that the value of water permeability is large, even if water permeability is below said upper limit, it can fully ensure difficult water permeability.
  • the water permeability of the stretched porous film can be controlled by the communication void ratio obtained by adjusting the content of fine filler, the particle diameter, and the stretch ratio of the film. It can also be controlled by adjusting the content of the fine filler having a hydrophobic surface or the fine filler having a hydrophilic surface and the ratio of these contents.
  • the moisture permeability in the stretched porous film of the present embodiment indicates “appropriate moisture permeability” as described in the above problem. Furthermore, when the moisture pressure is high when the water vapor pressure on one side of the film is high so that the internal space will not be steamed and condensed when used as an agricultural material, etc. It shows that the movement of water vapor is performed. Moreover, this moisture permeability means the moisture permeability measured on condition of temperature 40 degreeC and relative humidity 90% based on JISZ0208: 1976.
  • the moisture permeability of such a stretched porous film is 700 g / m 2 ⁇ 24 hr or more, preferably 800 g / m 2 ⁇ 24 hr or more, and 1,000 or more g / m 2 ⁇ 24 hr or more. More preferred. Furthermore, moisture permeability of the stretched porous film is not more than 2,500g / m 2 ⁇ 24hr, or less 2,400g / m 2 ⁇ 24hr is preferable, 2,000g / m 2 ⁇ 24hr or less Is more preferable.
  • the moisture permeability of the stretched porous film can be controlled by the communication void ratio obtained by adjusting the content of fine filler, the particle diameter, and the stretch ratio of the film. It can also be controlled by adjusting the content of the fine filler having a hydrophobic surface or the fine filler having a hydrophilic surface and the ratio of these contents.
  • the air permeability in the stretched porous film of the present embodiment indicates that when used as an agricultural material or the like, the air is appropriately vented so as not to hinder the respiration of crops or nitrogen fixation of rhizobia. Yes, it means the air permeability measured according to JIS P8117: 2009.
  • the air permeability of the stretched porous film is preferably 5,000 seconds or more, and more preferably 10,000 seconds or more.
  • the air permeability of the stretched porous film is preferably 85,000 seconds or less, and more preferably 75,000 seconds or less. If the air permeability of the stretched porous film is within the above range, it can be said that the stretched porous film has appropriate air permeability.
  • the wetting tension in the stretched porous film is a feature for facilitating secondary processing such as laminating and offset printing on the stretched porous film, and a plurality of wetting tension evaluation ink pens with different dyne levels ( (Corona Products, UK) was used, and after applying under conditions of 23 ° C. and 50% relative humidity, it was judged whether it was wet or repelled in the state of the liquid film after about 2 seconds. It is determined.
  • the surface tension of the stretched porous film is preferably 31 mN / m or more, and more preferably 33 mN / m or more. Further, the wetting tension of the stretched porous film is preferably 42 mN / m or less, and more preferably 37 mN / m or less.
  • the surface tension is equal to or higher than the above lower limit value, there is a tendency not to repel an adhesive or a paint during the secondary processing, which is preferable from the viewpoint of workability.
  • the surface tension is not more than the above upper limit value, the water resistance of the film surface is exhibited, and when printing is performed on the film surface by offset printing, a good image can be obtained without spreading of dampening water. It is preferable because it tends to form.
  • the stretched porous film of the present embodiment has a continuous void containing a fine filler having a hydrophobic surface, and is excellent in moisture permeability while suppressing water permeability. For this reason, the stretched porous film of the present embodiment can be used widely and effectively in fields requiring suppression of water permeation and promotion of water vapor permeation. Moreover, it can be used also in the field
  • Applications of the stretched porous film of the present embodiment include, for example, agricultural materials such as multi-films, film for houses, vegetable packaging bags, fruit packaging bags; sterilization / sterilization packaging materials, medical base fabrics, and medical instruments.
  • Medical materials such as packaging materials, surgical clothing, surgical gloves, etc .; packaging materials such as disposable warmers, household dehumidifiers, desiccants, oxygen absorbers, freshness-keeping agents; sanitary materials such as disposable diapers and sanitary products; wallpaper, house It can be used for building materials such as wraps.
  • agricultural materials such as multi-films, film for houses, vegetable packaging bags, fruit packaging bags; sterilization / sterilization packaging materials, medical base fabrics, and medical instruments.
  • Medical materials such as packaging materials, surgical clothing, surgical gloves, etc .
  • packaging materials such as disposable warmers, household dehumidifiers, desiccants, oxygen absorbers, freshness-keeping agents
  • sanitary materials such as disposable diapers and sanitary products
  • wallpaper house It can be used for building materials such as wraps.
  • Air permeability> The air permeability of the stretched porous film obtained in each example and comparative example was measured according to JIS P8117: 2009.
  • ⁇ Average primary particle size of fine filler> The average primary particle diameter of the fine filler contained in the stretched porous film obtained in each Example and Comparative Example was determined by observing the cut surface of the stretched porous film with an electron microscope and randomly extracting 100 fine fillers. In each of the above, the maximum value (maximum diameter) of the distance between two points on the contour of the primary particles was determined, and the average value was taken as the average primary particle diameter.
  • ⁇ Wetting tension> The wetting tension of the stretched porous films obtained in each of the examples and comparative examples was measured under the conditions of 23 ° C. and 50% relative humidity using a plurality of wetting tension evaluation ink pens (manufactured by Corona Supplies, UK) with different dyne levels. After coating, it was determined whether it was wet or repelled in the state of the liquid film about 2 seconds later, and was determined from the dyne level as a boundary.
  • ⁇ s ⁇ w was calculated using the density ⁇ s and the density ⁇ w .
  • fine fillers (A) of the blending examples (b) to (d) of the resin composition were obtained.
  • the fine filler (A) used in the blending examples (a) to (d) of the resin composition formed aggregates, and the average secondary particle diameter was 0.7 ⁇ m in all cases.
  • Preparation Example 1 of a fine filler having a hydrophilic surface Commercially available titanium dioxide (trade name: Taipei CR60, manufactured by Ishihara Sangyo Co., Ltd., average primary particle size: 0.21 ⁇ m) is blended with resin composition examples (c) to (r), (u), (v ), (Y) to (zz) were used as they were as the fine filler (D).
  • the product is obtained by surface-treating rutile titanium dioxide with aluminum hydroxide at a blending ratio of 95: 5.
  • Preparation example 2 of fine filler having a hydrophilic surface Commercially available hydrophilic surface-treated calcium carbonate (trade name: AFF-Z, manufactured by PMMA Tech, average primary particle size: 1.0 ⁇ m) is blended with resin composition examples (s), (t), ( The fine filler (E) used for w) and (x) was used as it was.
  • the product is obtained by surface-treating heavy calcium carbonate with a diallylamine copolymer and sodium alkylbenzenesulfonate at a blending ratio of 100: 4.8.
  • the raw materials described in the blending example (a) of the resin composition in Table 1 were mixed at the blending ratios described in the same table to obtain a raw material mixture (a).
  • the raw material mixture (a) is melt-kneaded with a twin-screw kneader set at 210 ° C., then extruded into a strand shape with an extruder set at 230 ° C., cooled, and cut with a strand cutter to obtain a resin composition (a ) Pellets.
  • the pellets of this resin composition (a) were produced in the following production examples of stretched porous films.
  • a stretch ratio of 5 times in the transport direction (longitudinal direction) of the resin sheet is achieved by an inter-roll stretching method using the peripheral speed difference of a large number of roll groups.
  • the resin stretched film was uniaxially stretched and then cooled at 60 ° C. to obtain a uniaxially stretched resin film.
  • the uniaxially stretched resin stretched film was heated again to 162 ° C. using a tenter oven, and then in the width direction (lateral direction) of the resin sheet by a clip stretching method using a tenter stretcher at 155 ° C.
  • the film was stretched at a stretch ratio of 8 times, and further heat-treated for 2 seconds by heating to 160 ° C. in an oven while being held by a clip. Thereafter, the film was cooled to 60 ° C., and the stretched porous film of Production Example 1 having three layers of biaxial / 2 biaxial biaxially stretched sequentially by slitting the ear portion was obtained.
  • the conveyance speed of the stretched resin film was controlled to 120 m / min.
  • Example 8 of production of stretched porous film The resin composition (j) for the core layer is melt-kneaded with an extruder set at 250 ° C., extruded from a T-die into a sheet shape, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
  • this non-stretched single layer resin sheet After heating this non-stretched single layer resin sheet to 142 ° C., it is 1 at a stretch ratio of 5 times in the transport direction (longitudinal direction) of the resin sheet by the inter-roll stretching method using the peripheral speed difference of many roll groups.
  • the resin was stretched uniaxially and then cooled at 60 ° C. to obtain a uniaxially stretched resin film.
  • the uniaxially stretched resin stretched film is heated again to 162 ° C. using a tenter oven, and then in a direction perpendicular to the conveyance direction of the resin sheet by a clip stretching method using a tenter stretcher at 155 ° C.
  • the film was stretched in the (lateral direction) at a stretching ratio of 8 times, and further heated to 165 ° C. in an oven for 4 seconds while being held by a clip. Thereafter, it was cooled to 60 ° C., and the stretched porous film of Production Example 8 was obtained as a single layer that was sequentially biaxially stretched by slitting the ears.
  • Example 10 of production of stretched porous film The resin composition (k) for the core layer is melt-kneaded with an extruder set at 250 ° C., extruded from a T-die into a sheet shape, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
  • this non-stretched single layer resin sheet After heating this non-stretched single layer resin sheet to 140 ° C., it is 1 at a stretch ratio of 5 times in the transport direction (longitudinal direction) of the resin sheet by the inter-roll stretching method using the peripheral speed difference of a large number of roll groups.
  • the resin was stretched uniaxially and then cooled at 60 ° C. to obtain a uniaxially stretched resin film.
  • the resin composition (l) for the skin layer was melt-kneaded with two extruders set at 250 ° C., and this was extruded into a sheet form from a T die, and the above-described uniaxially stretched resin stretched film A laminate having a three-layer structure was obtained by laminating on both sides.
  • this three-layer laminate was heated again to 162 ° C. using a tenter oven, and then the resin sheet was stretched 8 times in the width direction (lateral direction) by a clip stretching method using a tenter stretching machine at 155 ° C.
  • the film was stretched at a stretching ratio, and further heated to 160 ° C. in an oven while being held by a clip, and heat-treated for 2 seconds. Thereafter, the film was cooled to 60 ° C., and the stretched porous film of Production Example 10 having three layers of uniaxial / 2 biaxial / 1 uniaxially stretched sequentially by slitting the ear portion was obtained.
  • the conveyance speed of the stretched resin film was controlled to 120 m / min.
  • Example 11 of production of stretched porous film The resin composition (l) for the core layer is melt-kneaded with an extruder set at 250 ° C., extruded from a T-die into a sheet shape, and cooled to 80 ° C. with a cooling device to be an unstretched resin. A sheet was obtained.
  • this non-stretched single-layer resin sheet was heated again to 162 ° C. using a tenter oven, and then in the resin sheet width direction (lateral direction) by a clip stretching method using a tenter stretching machine at 155 ° C.
  • the film was stretched at a double stretch ratio, and further heated to 160 ° C. in an oven for 2 seconds while being held by a clip. Thereafter, it was cooled to 60 ° C., and the stretched porous film of Production Example 11 was obtained as a monolayer which was slit in the ear and stretched uniaxially.
  • the conveyance speed of the resin sheet and the stretched resin film was controlled to 120 m / min.
  • Example 1 The both sides of the stretched porous film of Production Example 1 were continuously subjected to corona discharge treatment using a corona discharge treatment apparatus (device name: HF400F, manufactured by Kasuga Electric Co., Ltd.).
  • the treatment conditions were an aluminum discharge electrode having a length of 0.8 m and a silicone film roll as an insulation roll, a gap between the discharge electrode and the insulation roll of 5 mm, a line treatment speed of 15 m / min, an applied energy density of 4, 200 J / m 2 .
  • the stretched porous film of Example 1 was obtained by subjecting the stretched porous film of Production Example 1 to surface treatment.
  • quaternary ammonium salt polymer Mitsubishi Chemical Corporation, trade name: Saftomer ST-1000
  • solid content 0.5 mass%
  • propylene oxide modified polyethyleneimine Nippon Shokubai Co., Ltd., product
  • Epomin PP-061 An aqueous solution having a solid content concentration of 0.5 mass% and a polyamide / epichlorohydrin resin (manufactured by Seiko PMC Co., Ltd., trade name: WS4002) having a solid content concentration of 0.5 mass% was used.
  • Examples 2 to 12, 14, 15 and Comparative Examples 1 to 5 Surface treatment was performed in the same manner as in Example 1 except that the stretched porous films of Production Examples 2 to 17 shown in Table 2 were used instead of the stretched porous film of Production Example 1, and Examples 2 to 12, 14 were used. 15, stretched porous films of Comparative Examples 1 to 5 were obtained.
  • the polyolefin stretched porous film of Example 3 had a surface wetting tension of 39 mN / m.
  • Example 13 comparative examples 6 and 7>
  • the stretched porous films of Production Examples 3, 18, and 19 shown in Table 2 were used as they were, and the ones that were not subjected to surface treatment were designated as the stretched porous films of Example 13 and Comparative Examples 6 and 7.
  • the polyolefin stretched porous film of Example 13 had a surface wetting tension of 41 mN / m.
  • Tables 2 and 3 summarize the production conditions, physical properties, and evaluation results of the stretched porous film.
  • the stretched porous film of Example 1 containing the fine filler whose surface was hydrophobized by the zinc stearate treatment had both poor water permeability and moisture permeability.
  • the stretched porous film of Example 2 containing a fine filler having a hydrophobic surface and a fine filler having a hydrophilic surface by aluminum hydroxide treatment has higher moisture permeability than that of Example 1, It combines moisture permeability.
  • the stretched porous films of Examples 3 to 15 including the fine filler having a hydrophobic surface and the fine filler having a hydrophilic surface by the aluminum stearate treatment have both poor water permeability and moisture permeability. It has become.
  • Comparative Examples 1 to 5 containing a large amount of calcium carbonate having a hydrophobic surface but a coarse particle diameter are difficult to achieve both poor water permeability and moisture permeability.
  • Comparative Example 1 the ratio of the communication voids to the entire voids is relatively high, and in Comparative Examples 2 to 5, it is understood that the communication voids are conversely poor.
  • Comparative Examples 6 and 7 do not contain a fine filler having a hydrophobic surface, and the values of water permeability are extremely low, and it can be seen that water is very permeable.
  • the stretched porous films of Examples 1 to 15 and Comparative Example 6 it can be seen from the overall void ratio that the voids are sufficiently formed inside the film. Further, from the communication void ratio and (communication void ratio / total void ratio), it can be seen that the communication voids are well formed. At this time, the stretched porous films of Examples 1 to 15 show appropriate values for water permeability and moisture permeability, whereas the stretched porous film of Comparative Example 6 has extremely high water permeability. It can be seen that ⁇ 15 can control the permeation of water through the communicating void by the fine filler having a hydrophobic surface. Furthermore, the stretched porous films of Examples 1 to 15 exhibit poor water permeability when ⁇ s ⁇ w is in a predetermined range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、水の非透過性と透湿性とを兼ね備えた樹脂フィルムを提供することを目的とする。本発明のポリオレフィン延伸多孔性フィルムは、ポリオレフィン系樹脂と、平均一次粒子径が0.05~0.8μmの微細フィラーを含み、連通ボイドを有する。さらに、本発明のポリオレフィン延伸多孔性フィルムは疎水化剤を含み、JIS Z0221で測定した透水度が10,000~85,000秒であり、JIS Z0208で測定した透湿度が300~2,500g/m2・24hである。

Description

ポリオレフィン延伸多孔性フィルム
 本発明は、ポリオレフィン延伸多孔性フィルムに関する。
 従来、熱可塑性樹脂を延伸して形成される樹脂延伸多孔性フィルムが知られている。この樹脂延伸多孔性フィルムは、引っ張り強度、折り曲げ強度、耐衝撃性、耐久性、耐水性、耐薬品性等の基本性能に優れることから、近年、ポスターや商業印刷等の印刷用途のみならず、投票用紙、パッケージラベル、インモールドラベル等の幅広い分野において利用が促進している。
 これらの基本性能に加えて、樹脂延伸多孔性フィルムに良好な吸水性及び透気性を付与する試みがなされている。例えば、特許文献1には、熱可塑性樹脂に表面を親水化剤で処理した無機微細粉末を配合した樹脂組成物を延伸することで、フィルム基材内部に多数のボイド(空孔)が形成された、樹脂延伸フィルムが開示されている。この樹脂延伸フィルムは、水系接着剤や水系インキ、或いはその溶媒となる水分に対する吸収性が良く、フィルム基材表面に塗料を塗工した際に、フィルム基材は塗料の一部を吸収するが気泡は発生させずに、均一な塗工外観が得られることから、水系インキや水系接着剤等が塗工されるフィルム系合成紙等の塗工用原反として有用であるとされている。
特開2014-080025号公報
 一方、吸水性や透水性が要求されず、過剰な水の透過を抑制する難透水性及び適度な透湿性が要求される技術分野も数多くある。例えば、農業用マルチフィルム(マルチングフィルム)では、雨水による泥はねの防止、畝の浸食防止、肥料流出防止等の観点から、土壌へ過剰な水が透過することを抑制する難透水性が要求される。それと同時に、農業用マルチフィルムでは、根に対して十分な保湿性を有しつつ圃場中の余剰水分を蒸散させる観点から、適度な透湿性も求められる。同様の特性の両立は、医療用材料、衣料材料、包装材料、衛生材料などの用途においても求められることがある。
 しかしながら、従来公知の樹脂延伸多孔性フィルムにおいて、難透水性は容易に達成できるものの、同時に適度な透湿性をも兼ね備えたもの、すなわち延伸フィルムの一方の面から他の面に向けて、水は通しにくいが水蒸気は容易に通すものは実現できていなかった。
 本発明は、かかる背景技術に鑑みてなされたものである。その目的は、難透水性と適度な透湿性とを兼ね備えた、樹脂延伸多孔性フィルムを提供することにある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、水蒸気の通過と水の浸入とを制御する特定のボイドを有する樹脂延伸多孔性フィルムが、難透水性と透湿性の両性能を兼ね備えたものとなることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
[1]ポリオレフィン系樹脂と、平均一次粒子径が0.05~0.8μmの微細フィラーを含み、連通ボイドを有するポリオレフィン延伸多孔性フィルムであり、該ポリオレフィン延伸多孔性フィルムが疎水化剤を含み、JIS Z0221で測定した透水度が10,000~85,000秒であり、JIS Z0208で測定した透湿度が700~2,500g/m2・24hであることを特徴とする、ポリオレフィン延伸多孔性フィルム。
[2]25~65質量%の前記ポリオレフィン系樹脂と、32~72質量%の前記微細フィラーとを含む、上記[1]に記載のポリオレフィン延伸多孔性フィルム。
[3]JIS P8117で測定した透気度が5,000~85,000秒である、上記[1]又は[2]に記載のポリオレフィン延伸多孔性フィルム。
[4]ぬれ張力が31~42mN/mである、上記[1]~[3]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
[5]密度が0.45~0.7g/cm3である、上記[1]~[4]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
[6]浸漬液に蒸留水を用いてJIS K7112のA法で測定したフィルム密度をρとし、浸漬液の表面張力が27.3mN/mの液体を用いてJIS K7112のA法で測定したフィルム密度をρとしたとき、密度ρと密度ρとの差が、0.15~1.15である、上記[1]~[5]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
[7]浸漬液に蒸留水を用いてJIS K7112のA法で測定した延伸前のフィルム密度をρ、延伸後のフィルム密度をρとし、浸漬液の表面張力が27.3mN/mの液体を用いてJIS K7112のA法で測定したフィルム密度をρとしたとき、下記式で定義される連通ボイド率と前記全体ボイド率との比(連通ボイド率/全体ボイド率)が、0.4~0.85である、上記[1]~[6]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
Figure JPOXMLDOC01-appb-M000002
[8]前記疎水化剤が、有機カルボン酸、有機カルボン酸の塩、有機カルボン酸のアミド、有機カルボン酸と炭素数1~6のアルコールとのエステル、ポリ(メタ)アクリル酸、及びシランカップリング剤から選ばれた少なくとも一種を含む、上記[1]~[7]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
[9]前記微細フィラーが、前記疎水化剤を表面に有する無機微細粉末を含む、上記[1]~[8]のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
[10]前記無機微細粉末が、炭酸カルシウムである、上記[9]に記載のポリオレフィン延伸多孔性フィルム。
 本発明によれば、難透水性と適度な透湿性とを兼ね備えた、ポリオレフィン延伸多孔性フィルムを提供することができる。
 以下、本発明の各実施形態を説明する。なお、以下の各実施形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[ポリオレフィン延伸多孔性フィルム]
 本実施形態のポリオレフィン延伸多孔性フィルムは、ポリオレフィン系樹脂と所定の微細フィラーとを少なくとも含み、さらにフィルム内部に連通しているボイド(連通ボイド)を有する、延伸フィルムである。なお、ポリオレフィン延伸多孔性フィルムを、以降「延伸多孔性フィルム」とも称することもある。
 ボイド及び連通ボイドは、延伸多孔性フィルム中に存在する空孔(空隙)であり、延伸多孔性フィルムに多孔性(多孔質構造)を与え、延伸多孔性フィルムに後述する所定の透湿度を与えるものである。ここでは、フィルム中で各々独立して区画されている微小空孔をボイドとし、隣接する2以上のボイドが例えば線状、矩形状、球状、網目状、不定形状に連通することで形成された、比較的に高容量の空孔を連通ボイドとする。ボイド及び連通ボイドは、少なくとも延伸多孔性フィルムの内部に存在していればよく、延伸多孔性フィルムの表面においてその一部が外部に露出していてもよい。このようなボイド及び連通ボイドの形成方法は、特に限定されないが、例えば内部紙化法や発泡法等の公知の方法により行うことができる。例えば、内部紙化法の場合、ポリオレフィンフィルムを延伸して製膜する際に、ポリオレフィン系樹脂中に含有される微細フィラーを核として、フィルム内にボイドを形成するのが一般的である。
<ポリオレフィン系樹脂>
 本実施形態の延伸多孔性フィルムに使用することができるポリオレフィン系樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン等の結晶性エチレン系樹脂、結晶性プロピレン系樹脂、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの中でも、耐水性、耐溶剤性、耐薬品性及び生産コスト等の観点から、結晶性エチレン系樹脂、結晶性プロピレン系樹脂が好ましい。結晶性プロピレン系樹脂としては、プロピレンを単独重合させたアイソタクティック重合体又はシンジオタクティック重合体がより好ましい。また、主成分となるプロピレンと、エチレン、1-ブテン、1-ヘキセン、1-ヘプテン、4-メチル-1-ペンテン等のα-オレフィンとの共重合体を使用することもできる。共重合体は、モノマー成分が2元系でも3元系以上の多元系でもよく、またランダム共重合体でもブロック共重合体でもよい。
 ポリオレフィン系樹脂の含有量は、特に限定されないが、延伸多孔性フィルムの総量に対して、25質量%以上が好ましく、30質量%以上がより好ましく、35質量%以上がさらに好ましい。また、ポリオレフィン系樹脂の含有量は、特に限定されないが、延伸多孔性フィルムの総量に対して、65質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下がさらに好ましい。ポリオレフィン系樹脂の含有量を上記の下限値以上、上限値以下とすることで、特に好ましい多孔質構造を有する延伸多孔性フィルムが得られ易い傾向にある。また、上記の範囲とすることで、特に難透水性が得られ易い傾向にある。
<微細フィラー>
 本実施形態の延伸多孔性フィルムに使用することができる微細フィラーは、特定の範囲の平均一次粒子径を有することを特徴とする。この平均一次粒子径とは、延伸多孔性フィルムに、後述する所定の空孔を与えるものである。そして、この微細フィラーは、その表面に、従来の延伸多孔性フィルムに用いられる無機フィラー、典型的には炭酸カルシウムと比べて高い疎水性を示す、疎水性表面を有することが望ましい。この疎水性とは、延伸多孔性フィルムに、後述する所定の透水度と透湿度とを与えるものである。
 疎水性表面を有する微細フィラーとしては、それ自体が疎水性である微細粉末をそのまま用いることもできる。また、微細粉末を疎水化処理したものを用いることができる。微細粉末としては、無機微細粉末、有機微細粉末のいずれも用いることができる。疎水化処理は、微細粉末の表面を表面処理剤(疎水化剤)で処理することにより行うことができる。疎水化処理された微細粉末は、その表面に疎水化剤を有し、この疎水化剤によって疎水性が付与されている。微細フィラーは、1種を単独で又は2種以上を組み合わせて用いることができる。
 無機微細粉末の具体例としては、重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレー、タルク、酸化チタン、硫酸バリウム、酸化亜鉛、酸化マグネシウム、珪藻土、酸化珪素などの微細粉末、中空ガラスビーズ等が挙げられるが、これらに特に限定されない。これらの中でも、炭酸カルシウム、焼成クレー、珪藻土は、安価で延伸時に多くの空孔を形成させることができ、空孔率の調整が容易なために好ましい。また、重質炭酸カルシウム、軽質炭酸カルシウムは、多くの種類の市販品があり、その平均粒子径や粒度分布が所望のものを得やすいためにより好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 有機微細粉末としては、延伸多孔性フィルムの構成母材となる上記のポリオレフィン系樹脂とは異なる種類の樹脂であって、その融点又はガラス転移点が、当該ポリオレフィン系樹脂の融点又はガラス転移点よりも高い樹脂からなる微細粉末を用いることができる。このような有機微細粉末を用いると、延伸多孔性フィルムの構成母材のポリオレフィン系樹脂に対する非相溶性を高めることができ、延伸成形する際の空孔形成性が向上する傾向にある。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 延伸多孔性フィルムの構成母材となるポリオレフィン系樹脂に使用可能な、有機微細粉末の具体例としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネート、ポリスチレン、環状オレフィン単独重合体、エチレン-環状オレフィン共重合体、ポリエチレンサルファイド、ポリイミド、ポリメタクリレート、ポリエチルエーテルケトン、ポリエチレンスルフィド、ポリフェニレンスルフィド、メラミン樹脂粒子等であって、構成母材となるポリオレフィン系樹脂の融点よりも高い融点(例えば170~300℃)又はガラス転移温度(例えば170~280℃)を有し、かつ構成母材となるポリオレフィン系樹脂に非相溶のものが挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの微細粉末の表面を疎水化処理する疎水化剤としては、脂肪酸、脂環族カルボン酸、芳香族カルボン酸、樹脂酸等の有機カルボン酸、及びそれらの塩、アミド、又は炭素数1~6のアルコールとのエステル;ポリ(メタ)アクリル酸;シランカップリング剤等が挙げられるが、これらに特に限定されない。これらの中でも、脂肪酸、及びそれらの塩が好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの疎水化剤は、上記の微細粉末の表面を修飾して、微細フィラーを疎水化することで、これを含む延伸多孔性フィルムの疎水性を向上させやすいものである。
 上記の脂肪酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸;エライジン酸、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸、セトレイン酸、エルカ酸、リシノール酸等の不飽和脂肪酸が挙げられるが、これらに特に限定されない。これらの中でも、炭素数8~24の脂肪酸が好ましく、炭素数12~20の脂肪酸がより好ましく、オレイン酸、ステアリン酸がさらに好ましい。また、これらの有機カルボン酸の塩として、K、Na、Ag、Al、Ba、Ca、Cu、Fe、Li、Mg、Mn、Pb、Sn、Sr、Znなどの金属塩が挙げられる。中でも金属石鹸が好ましく、Al、Znの金属石鹸がより好ましく、ステアリン酸アルミニウム、ステアリン酸亜鉛がさらに好ましく、ステアリン酸アルミニウムが特に好ましい。
 上記のシランカップリング剤としては、3-クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、3-メタクリオキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン等が挙げられるが、これらに特に限定されない。
 延伸多孔性フィルム中におけるこれらの疎水化剤の存在は、例えば質量分析法による疎水化剤に由来するピーク(例えば、ステアリン酸のピーク)の有無などから判断することができる。
 なお、ポリオレフィン延伸多孔性フィルムに含まれる疎水化剤は、微細粉末の表面に担持されているものであってもよく、微細フィラーから系中に分散したものであってもよく、ポリオレフィン系樹脂に別添したものであってもよい。
 疎水性表面を有する微細フィラー総量に対する疎水化剤の含有量は、特に限定されないが、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.15質量%以上であることがさらに好ましい。また、疎水性表面を有する微細フィラー総量に対する疎水化剤の含有量は、特に限定されないが、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。また、延伸多孔性フィルム総量に対する疎水化剤の含有量は、特に限定されないが、0.005質量%以上であることが好ましく、0.01質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。また、延伸多孔性フィルム総量に対する疎水化剤の含有量は、特に限定されないが、10質量%以下であることが好ましく、8質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。疎水化剤の含有量が上記の下限値以上であることにより、微細フィラーに十分な疎水化処理が施され、延伸多孔性フィルムの透水性が抑えられる傾向にある。疎水化剤の含有量が上記の上限値以下であることが、コストの面から好ましい。
 疎水化処理は、常法にしたがって行うことができ、その方法は特に限定されない。例えば、疎水化剤を有機溶媒の溶液又はスラリーとして微細粉末に噴霧し、所定時間撹拌することにより行うことができる。別の例としては、微細粉末を水中に分散させた水スラリーに疎水化剤を添加して、攪拌、混合することより行うことができる。微細粉末がアルカリ土類金属を含む場合には、疎水化剤として、さらにアルカリ土類金属に対してキレート能を有する化合物を加えてもよい。また、疎水化剤と水とをなじませるために、疎水化剤を水可溶性有機溶媒の溶液又はスラリーとして添加してもよい。攪拌、混合した状態の微細フィラーは、さらに脱水、乾燥を行い、粉末状の微細フィラーを得てもよい。
 疎水化剤を用いた疎水化処理は、例えば、特開平11-349846号公報、特開2002-363443号公報、WO2001-027193号公報、WO2004-006871号公報に記載された方法により行うことができる。
 微細フィラーの平均一次粒子径は、通常0.05μm以上であり、0.07μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.12μm以上であることがさらに好ましい。また、微細フィラーの平均一次粒子径は、通常0.8μm以下であり、0.6μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。微細フィラーの平均一次粒子径が上記の下限値以上であることにより、延伸多孔性フィルム中にボイドが効率よく形成される傾向にある。また、微細フィラーの平均一次粒子径が上記の上限値以下であることにより、粒径の大きなものに比べて配合量が同一であればより多数の微細フィラーを延伸多孔性フィルム中に含有せしめることができる。これにより、連通ボイドが効率よく形成されやすくなり、透湿度が高まる傾向にあるとともに、粗大粒子の混入により延伸時にフィルムが破断することが抑制される傾向にある。
 なお、本明細書において、微細フィラーの平均一次粒子径とは、延伸多孔性フィルムの厚み方向の切断面を電子顕微鏡により観察し、観察領域より無作為に抽出した100個の微細フィラーのそれぞれの一次粒子径を測定し、これに基づいて算出した平均値である。微細フィラーの一次粒子径は、粒子の輪郭上の2点間の距離の最大値、即ち最大径から決定する。
 延伸多孔性フィルムは、微細フィラーとして、上述した平均一次粒子径を有する微細フィラーの一次粒子からなる二次粒子を含んでいてもよく、微細フィラーの一次粒子と二次粒子とを共に含んでいてもよい。ここで、一次粒子とは、分散した状態にあって単独で存在する微細フィラーの粒子単位をいう。二次粒子とは、複数個の一次粒子が凝集又は結合した状態にある集合体をいう。
 微細フィラーの二次粒子を含む場合、二次粒子の平均粒子径(平均二次粒子径)が0.05μm~0.9μmであることが好ましく、0.15μm~0.8μmであることがより好ましく、0.25μm~0.6μmであることがさらに好ましく、0.25μm~0.5μmであることが特に好ましい。平均一次粒子径が上記数値範囲となる一次粒子と、平均二次粒子径が上記数値範囲となる二次粒子とを含む微細フィラーの使用により、連通ボイドを形成しやすくなることがある。
 なお、本明細書において、微細フィラーの平均二次粒子径とは、レーザー回折法による粒度分布測定装置を用いて測定される微細フィラーの体積基準のメジアン径(D50)をいう。また、延伸多孔性フィルムの厚み方向の切断面を電子顕微鏡により観察し、観察領域より無作為に抽出した100個の二次粒子の粒子径を測定し、これに基づいて算出した平均値であってもよい。この場合の微細フィラーの二次粒子径は、粒子の輪郭上の2点間の距離の最大値(最大径)から決定する。
 延伸多孔性フィルムは、難透水性を阻害しない範囲で親水性表面を有する微細フィラーをさらに含んでいてもよい。親水性表面を有する微細フィラーを混合して使用することで延伸多孔性フィルムの透湿性をより向上させることができる。親水性表面を有する微細フィラーとしては、それ自体が親水性である微細粉末をそのまま用いることもできる。また、微細粉末に親水化処理したものを用いることができる。微細粉末としては、上記の微細フィラーにおいて説明した無機微細粉末又は有機微細粉末を用いることができる。親水化処理は、微細粉末の表面を表面処理剤(親水化剤)で処理することにより行うことができる。親水化処理された微細粉末は、その表面に親水化剤を有し、この親水化剤によって親水性が付与されている。
 親水化剤を用いた親水化処理は、例えば、特開平8-231873号公報、特開2005-82756号公報に記載された方法により行うことができる。
 親水化剤としては、ポリリン酸、親水性シランカップリング剤、親水性ポリマー、親水性多価アルコール、親水性金属酸化物が挙げられるが、これらに特に限定されない。これらの中でも、親水性金属酸化物が好ましい。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
 これらの親水化剤は、上記の微細粉末の表面を修飾して、微細フィラーを親水化することで、これを含む延伸多孔性フィルムの親水性を向上させやすいものである。
 親水性シランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシランなどが挙げられる。親水性ポリマーとしては、ポリビニルアルコール、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルピロリドン、ポリアクリル酸及びその塩、ポリアクリル酸誘導体;カルボン酸基、スルホン酸基、リン酸基、第1・2・3級アミノ基、第4級アンモニウム塩基を含む単量体の単独重合体又は共重合体などが挙げられる。親水性多価アルコールとしては、ジエチレングリコール、エチレングリコール、グリセリンなどが挙げられる。親水性金属酸化物としては、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化セリウムなどが挙げられる。
 親水性表面を有する微細フィラー総量に対する親水化剤の含有量は、特に限定されないが、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.15質量%以上であることがさらに好ましい。また、親水性表面を有する微細フィラー総量に対する親水化剤の含有量は、特に限定されないが、1.5質量%以下であることが好ましく、1.0質量%以下であることがより好ましく、0.6質量%以下であることがさらに好ましい。親水化剤の含有量が上記の下限値以上であることにより、微細フィラーに十分な親水化処理が施され、延伸多孔性フィルムの透湿性が高まる傾向にある。また、親水化剤の含有量が上記の上限値以下であることが、延伸多孔性フィルムの連通ボイド率を達成しやすい観点から好ましい。
 延伸多孔性フィルムは、疎水性表面を有する微細フィラーの二次粒子と、親水性表面を有する微細フィラーの一次粒子とを共に含むことが好ましい。親水性表面を有する微細フィラーの平均一次粒子径は、0.05μm以上であることが好ましく、0.07μm以上であることがより好ましく、0.1μm以上であることがさらに好ましい。また、親水性表面を有する微細フィラーの平均一次粒子径は、0.6μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。親水性表面を有する微細フィラーの平均一次粒子径が上記の下限値以上であることにより、ボイドを形成しやすい傾向がある。また、親水性表面を有する微細フィラーの平均一次粒子径が上限値以下であることにより、透水しづらい微細なボイドを成形しやすい傾向がある。また、この様な親水性表面を有する微細フィラーを併用することによって、延伸多孔性フィルムに適度な透湿性を付与しやすくなる。
 延伸多孔性フィルムの総量に対する微細フィラーの含有量は、特に限定されないが、32質量%以上であることが好ましく、39質量%以上であることがより好ましく、44質量%以上であることがさらに好ましい。また、延伸多孔性フィルムの総量に対する微細フィラーの含有量は、特に限定されないが、72質量%以下であることが好ましく、62質量%以下であることがより好ましく、52質量%以下であることがさらに好ましい。微細フィラーの含有量が上記の下限値以上であることにより、ボイドの数が増加して連通ボイドの形成が容易となり、また多孔質構造によって透湿性が向上する傾向にある。さらに、微細フィラーの含有量が上記の下限値以上であることにより、延伸多孔性フィルムを延伸成形しやすく歩留りが向上する傾向にある。また、微細フィラーの含有量が上記の上限値以下であることにより、延伸時にフィルムが破断することが抑制される傾向にある。
 延伸多孔性フィルムの総量に対する疎水性表面を有する微細フィラーの含有量は、特に限定されないが、32質量%以上であることが好ましく、35質量%以上であることがより好ましく、40質量%以上であることがさらに好ましい。また、延伸多孔性フィルムの総量に対する疎水性表面を有する微細フィラーの含有量は、特に限定されないが、72質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることがさらに好ましい。疎水性表面を有する微細フィラーの含有量が上記の下限値以上であることにより、多孔質構造によって透湿性が向上する傾向にある。また、疎水性表面を有する微細フィラーの含有量が上記の上限値以下であることにより、透水性を抑えやすい。
 延伸多孔性フィルムの総量に対する親水性表面を有する微細フィラーの含有量は、特に限定されないが、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.5質量%以上であることがより好ましい。また、親水性表面を有する微細フィラーの含有量は、特に限定されないが、延伸多孔性フィルムの総量に対して、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることがさらに好ましい。親水性表面を有する微細フィラーの含有量が上記の下限値以上であることによって、透湿性が向上しやすい。また、親水性表面を有する微細フィラーの含有量が上記の上限値以下であることにより、難透水性を維持しやすい。
 疎水性表面を有する微細フィラーと、親水性表面を有する微細フィラーとを併用する場合に、延伸多孔性フィルムに含まれる、疎水性表面を有する微細フィラーの含有量と、親水性表面を有する微細フィラーの含有量との比は、特に限定されないが、難透水性と透湿性とを所期のものに調整しやすい観点から、相対的に疎水性表面を有する微細フィラーを多めにすることが好ましく、具体的には質量基準で、(疎水性表面を有する微細フィラーの含有量)/(親水性表面を有する微細フィラーの含有量)とした比が、99.5/0.5~85/15の範囲内であることが好ましく、99/1~89/11の範囲内であることがより好ましく、98.5/1.5~92/8の範囲内であることがさらに好ましい。
 疎水性表面を有する微細フィラーと親水性表面を有する微細フィラーのそれぞれの含有量が上記範囲内であれば、仮に延伸多孔性フィルムの総量に対する疎水化剤の含有量よりも、親水化剤の含有量が多い場合であっても、難透水性の効果を十分に担保しやすい。
 なお、延伸多孔性フィルムの総量に対する疎水性表面を有する微細フィラーの含有量は、疎水化処理前の微細フィラー(微細粉末)の質量を基準として算出するのが容易である。同様に、延伸多孔性フィルムの総量に対する親水性表面を有する微細フィラーの含有量は、親水化処理前の微細フィラー(微細粉末)の質量を基準として算出するのが容易である。
<その他の添加剤>
 本実施形態の延伸多孔性フィルムには、必要に応じて分散剤、熱安定剤、紫外線安定剤、酸化防止剤、ブロッキング防止剤、核剤、滑剤、着色剤等の公知の添加剤を配合してもよい。これらの添加剤は、フィルムの総量100質量%に対して、0.01~3質量%の割合で配合するのが好ましい。
 分散剤は、例えば、上述したポリオレフィン系樹脂を含むフィルム中に微細フィラーを高分散させる目的で用いられる。二次粒子を形成した微細フィラーを使用する場合、二次粒子の状態で微細フィラーを高分散させることが好ましい。分散剤としては、シランカップリング剤、オレイン酸、ステアリン酸等の高級脂肪酸、金属石鹸、ポリアクリル酸、ポリメタクリル酸若しくは無水マレイン酸変性ポリプロピレン又はこれらの塩等を例示することができる。
 分散剤の含有量は、特に限定されないが、フィルムの総量に対して、0.01~3質量%が好ましい。分散剤の含有量が0.01質量%以上であることにより、微細フィラーが十分に分散するため、連通ボイドが得られやすく、所定の透水度及び透湿度が得られる傾向にある。また、分散剤の含有量が3質量%以下であることにより、フィルムの延伸性が良好で成形時における延伸切れが抑えられる傾向にある。なお、上述した疎水化剤と分散剤の合計量は、フィルムの総量に対して、0.25~8質量%が好ましく、0.3~6質量%がより好ましい。
[ポリオレフィン延伸多孔性フィルムの製造]
 次に、本実施形態の延伸多孔性フィルムの製造方法について説明する。
 本実施形態の延伸多孔性フィルムは、従来公知の種々の方法、例えば内部紙化法や発泡法等の公知の方法により製造することができ、その製法は特に限定されない。ここでは、延伸成形と同時に多孔性フィルムが得られる好適な製法の1つとして、内部紙化法による製法を詳述する。
<樹脂組成物の調製及び樹脂シートの成形>
 内部紙化法による延伸多孔性フィルムの製造では、まず、ポリオレフィン系樹脂及び微細フィラーを含む樹脂組成物を調製する。具体的には、ポリオレフィン系樹脂、微細フィラー、及び必要に応じて各種添加剤を配合し、これを溶融混練することにより樹脂組成物を調製することができる。このとき、樹脂組成物の各成分の配合割合を上述した好ましい数値範囲内とすることにより、後述する樹脂シートの延伸成形によって所定の透水度及び透湿度を具備するポリオレフィン延伸多孔性フィルムが得られ易い傾向にある。
 次いで、この樹脂組成物をシート状に溶融押出して、微細フィラーを内部に含むポリオレフィン系樹脂シートを成形する。その後、得られたポリオレフィン系樹脂シートを少なくとも一方向に延伸することにより、本実施形態の延伸多孔性フィルムを得ることができる。
<延伸>
 1軸延伸する方法としては、樹脂シートの搬送方向にロール群の周速差を利用して延伸するロール間延伸(縦延伸)法、樹脂シートの搬送方向に直交する方向(幅方向)にテンターオーブンを利用して延伸するクリップ延伸(横延伸)法などを挙げることができる。
 2軸延伸する方法としては、上記の縦延伸法と、上記の横延伸法を組み合わせて利用した逐次2軸延伸法を挙げることができる。また、樹脂シートの搬送方向の延伸と、樹脂シートの搬送方向に直交する方向の延伸を同時に行う同時2軸延伸法を挙げることができる。より具体的には、テンターオーブンとパンタグラフの組合せ、テンターオーブンとリニアモーターの組合せによる同時2軸延伸方法などによる方法を挙げることができる。また、インフレーションフィルムの延伸方法であるチューブラー法による同時2軸延伸法を挙げることができる。
 ポリオレフィン系樹脂シートの延伸は、上記の縦1軸延伸、横1軸延伸、逐次2軸延伸、同時2軸延伸等から適宜選択することができる。さらにポリオレフィン系樹脂シートが積層体である場合には、各層の延伸方法がすべて同じであっても、各層の延伸方法が異なっていてもよい。各層の延伸方法が異なる場合、各層の延伸方法は上記の延伸方法から適宜選択すればよい。これらの中でも、逐次2軸延伸法、同時2軸延伸法が好ましく、逐次2軸延伸法がより好ましい。
 延伸多孔性フィルムの延伸倍率は、特に制限されず、得られる延伸多孔性フィルムの特性等を考慮して、適宜決定すればよい。本発明では構成母材にポリオレフィン系樹脂を用い、所期の連通ボイドを形成する目的から、縦1軸延伸時の延伸倍率は3~11倍の範囲であることが好ましく、4~10倍の範囲であることがより好ましく、5~7倍の範囲であることがさらに好ましい。横1軸延伸時の延伸倍率は4~11倍の範囲であることが好ましく、4~10倍の範囲であることがより好ましく、5~9倍の範囲であることがさらに好ましい。逐次2軸延伸時、又は同時2軸延伸時の面積延伸倍率は10~90倍の範囲であることが好ましく、15~75倍の範囲であることがより好ましく、30~60倍の範囲であることがさらに好ましい。延伸倍率を上記の範囲とすることで、延伸ムラを防いで均一な膜厚となるよう安定した延伸成形ができ、また、フィルムの表面まで連通した所望のボイドが得られ易く、所定の透水度と透湿度が得られる傾向にある。
 延伸多孔性フィルムの延伸温度は、特に限定されないが、構成母材となるポリオレフィン系樹脂の結晶化温度よりも高い温度であり、且つ融点よりも5℃以上低いことが好ましく、10℃以上低いことがより好ましい。また、2種以上の樹脂を用いる場合は含有量の最大を占める樹脂の結晶化温度よりも高い温度であり、且つ融点より5℃以上低い温度で行うことが好ましい。例えば、ポリオレフィン系樹脂に融点が155~167℃であるプロピレン単独重合体を用いる場合は、延伸温度は100~162℃であることが好ましい。また、ポリオレフィン系樹脂に融点が121~136℃である高密度ポリエチレンを用いる場合は、延伸温度は70~131℃であることが好ましい。なお、延伸処理後に、必要に応じて、延伸温度より高温での熱処理を施してもよい。
<熱処理>
 延伸後の延伸多孔性フィルムには、熱処理を行うのが好ましい。熱処理の温度は、延伸温度より0~30℃高い温度範囲内で選択することが好ましい。熱処理を行うことにより、ポリオレフィン系樹脂分子の非晶部分の結晶化が促進されて延伸方向への熱収縮率が低減し、製品保管時の巻き締まりや、巻き締まりに起因する波打ち等が少なくなる。熱処理の方法はロール加熱又は熱オーブンで行うのが一般的であるが、これらを組み合わせてもよい。
 延伸多孔性フィルムを延伸成形する場合の搬送速度は、縦延伸の場合、通常は10~500m/minであり、30~300m/minであることが好ましく、50~200m/minであることがより好ましい。また、横延伸の場合、通常は10~150m/minであり、30~120m/minであることが好ましく、50~100m/minであることがより好ましい。また、逐次2軸延伸の場合、通常は10~500m/minであり、30~300m/minであることが好ましく、50~200m/minであることがより好ましい。また、同時2軸延伸の場合、通常は3~350m/minであり、5~120m/minであることが好ましく、5~100m/minであることがより好ましい。
 延伸多孔性フィルムが複数の層から構成される場合は、共押出により積層したものをまとめて延伸してもよい。また、延伸した層を積層後に再び延伸してもよい。また、上記の方法によって得られたフィルムを貼り合わせて形成してもよい。各層を別個に延伸した後に積層することも可能であるが、上記のように各層を積層した後にまとめて延伸する方が工程数は少なく簡便であり、製造コストも安くなるので好ましい。
 延伸多孔性フィルムが複数の層から構成される場合、これを構成する各層の延伸軸数は、無延伸や未延伸であっても、一軸延伸であっても二軸延伸であってもよい。例えば延伸多孔性フィルムをスキン層/コア層の2層構造とした場合の各層の延伸軸数は、無延伸/一軸、無延伸/二軸、一軸/一軸、一軸/二軸、二軸/二軸等、任意に組み合わせることができる。
 また、例えば延伸多孔性フィルムを表スキン層/コア層/裏スキン層の3層構造とした場合の各層の延伸軸数は、無延伸/一軸/無延伸、無延伸/二軸/無延伸、無延伸/一軸/一軸、無延伸/一軸/二軸、無延伸/二軸/一軸、無延伸/二軸/二軸、一軸/一軸/一軸、一軸/一軸/二軸、一軸/二軸/一軸、一軸/二軸/二軸、二軸/二軸/二軸等、任意に組み合わせることができる。
<表面処理>
 延伸後に得られる延伸多孔性フィルムには、後述する表面処理を行うのが好ましい。表面処理を行うことにより、延伸多孔性フィルムの表面が、後述する所定のぬれ張力を有するように調整できる。延伸多孔性フィルムが後述する所定のぬれ張力を有することで、その二次加工適性を向上させることができる。表面処理は、延伸後のフィルムに対して酸化処理を行うことで実施でき、また延伸後のフィルムに対して酸化処理を行った後に、アンカー剤及び帯電防止剤の塗布を行うことで実施できる。
 酸化処理方法としては、一般的にフィルムの処理に使用されているコロナ放電処理、フレーム処理、プラズマ処理、グロー放電処理、オゾン処理などの方法を単独又は組み合わせて使用することができる。これらのうちで好ましくはコロナ放電処理、フレーム処理であり、設備や操作の容易さから特に好ましくはコロナ放電処理である。
 アンカー剤としては、ポリイミン系重合体又はポリアミンポリアミドのエチレンイミン付加物を単独或いはこれらを混合したもの、又はこれらにさらに架橋剤を加えたものが挙げられる。ポリイミン系重合体又はポリアミンポリアミドのエチレンイミン付加物としては、ポリエチレンイミン、ポリ(エチレンイミン-尿素)及びポリアミンポリアミドのエチレンイミン付加物、又はこれらのアルキル変性体、シクロアルキル変性体、アリール変性体、アリル変性体、アラルキル変性体、アルキラル変性体、ベンジル変性体、シクロペンチル変性体、若しくは脂肪族環状炭化水素変性体、ないしはこれらの水酸化物、ないしはこれら前述のものを数種類複合させたものを挙げることができる。
 帯電防止剤として、ポリマー型帯電防止剤が挙げられる。ポリマー型帯電防止剤としては、カチオン型、アニオン型、両性型、ノニオン型などが使用可能である。カチオン型としては、アンモニウム塩構造やホスホニウム塩構造を分子構造中に有するものが挙げられる。アニオン型としては、スルホン酸、リン酸、カルボン酸等のアルカリ金属塩、例えば、アクリル酸、メタクリル酸、(無水)マレイン酸などのアルカリ金属塩(例としてはリチウム塩、ナトリウム塩、カリウム塩等)構造を分子構造中に有するものが挙げられる。両性型としては、前述のカチオン型とアニオン型の両方の構造を同一分子中に含有するもので、例としてはベタイン型が挙げられる。ノニオン型としては、アルキレンオキシド構造を有するエチレンオキシド重合体や、エチレンオキシド重合成分を分子鎖中に有する重合体が挙げられる。その他、ホウ素を分子構造中に有するポリマー型帯電防止剤も例として挙げることができる。これらの中で好ましくはカチオン型のポリマー型帯電防止剤であり、特に窒素含有ポリマー型帯電防止剤であり、より具体的には第三級窒素又は第四級窒素(アンモニウム塩構造)含有アクリル系ポリマーである。
[ポリオレフィン延伸多孔性フィルムの特徴]
 本実施形態の延伸多孔性フィルムは、ポリオレフィン系樹脂のフィルムの内部に多数のボイドが形成されており、これらのボイドの少なくとも一部は、相互に連通した連通ボイドを形成している。さらにボイド及び連通ボイドは、疎水化剤によって表面を疎水性に処理された微細なフィラーを内在している。これにより延伸多孔性フィルムは、後述する透水度を示す程度に水の透過が抑制される難透水性を有するとともに、後述する透湿度を示す程度に水蒸気が透過する透湿性を有する。
 すなわち、本実施形態の延伸多孔性フィルムは、水を殆ど通さないのに対して、水蒸気を十分に通過させることができる。延伸多孔性フィルムがこのような特性を示すのは、ボイドの少なくとも一部がフィルム内で連通しており、フィルム表面の開口から連通ボイドを通じて、水蒸気が延伸多孔性フィルム内を通過することができるためであると推測される。一方で、オレフィン系樹脂そのものの疎水性、及び疎水性表面を有する微細フィラーの存在により、連通ボイド内への水の浸入及び水の透過が抑制されていることにより、延伸多孔性フィルム内の水の通過は抑制されていると推測される。なお、疎水性表面を有する微細フィラーに加えて、親水性表面を有する微細フィラーを併用する場合には、透湿性が適度に向上する傾向がある。
 延伸多孔性フィルムの透湿度、透気度、及び透水度は、微細フィラーの粒子径、含有量、疎水化処理の程度、疎水性表面を有する微細フィラーと親水性表面を有する微細フィラーとの併用、フィルム内部のボイドの数、ボイドの連通度、又はボイドの大きさを調整することによって制御することができる。
 なお、延伸多孔性フィルムが複数の層から構成される場合には、延伸多孔性フィルムを構成するいずれの層についても、疎水性表面を有する平均一次粒子径が0.05~0.8μmの微細フィラーを含むことが好ましい。また、延伸多孔性フィルムが複数の層から構成される場合には、複数の層全体として、後述する透水度及び透湿度を満たすことで、所望の難透水性と透湿性とが達成される。
<厚み>
 延伸多孔性フィルムにおける厚みとは、JIS K7130:1999に準拠して測定した値をいう。延伸多孔性フィルムが複数の層から構成される場合には、複数の層全体として測定した値である。延伸多孔性フィルムが複数の層から構成される場合の各層の厚みは、電子顕微鏡を用いてその断面を観察し、外観より層間の界面を判断して厚み比率を求め、上で測定した厚みと各層の厚み比率から算出する。
 延伸多孔性フィルムの厚みは、所望性能に応じて適宜設定すればよく、特に制限されないが、農業用材料として用いるのであれば、20μm以上であることが好ましく、40μm以上であることがより好ましく、50μm以上であることがさらに好ましい。また、延伸多孔性フィルムの厚みは、500μm以下であることが好ましく、400μm以下であることがより好ましく、300μm以下であることがさらに好ましい。延伸多孔性フィルムの厚みが上記の下限値以上であることにより、延伸多孔性フィルムは十分な機械的強度が得られ、延伸多孔性フィルムの延伸成形や敷設の際にフィルムの破断を防止しやすい傾向にある。また延伸多孔性フィルムの厚みが上記の上限値以下であることにより、延伸多孔性フィルムが重くなりすぎず、取り扱いが容易になる傾向にある。
<密度>
 延伸多孔性フィルムの密度は、0.45g/cm3以上であることが好ましく、0.5g/cm3以上であることがより好ましく、0.55g/cm3以上であることがさらに好ましい。また、延伸多孔性フィルムの密度は、0.7g/cm3以下であることが好ましく、0.65g/cm3以下であることがより好ましく、0.6g/cm3以下であることがさらに好ましい。延伸多孔性フィルムの密度が上記の下限値以上であることにより、延伸の際にフィルムの破断を防止しやすく、また延伸多孔性フィルムに十分な機械的強度が得られる傾向にある。延伸多孔性フィルムの密度が上記の上限値以下であることにより、フィルム内部に連通するボイドが生じやすく、透湿性が発現しやすい傾向にある。延伸多孔性フィルムの密度は、微細フィラーの含有量や、フィルムの延伸軸数及び延伸倍率を調整することにより制御することができる。
 延伸多孔性フィルムにおける密度とは、JIS K7112:1999のA法において、浸漬液に蒸留水を用いて求められる値をいう。なお、この密度は、後述する密度ρに等しい。延伸多孔性フィルムは、フィルムの中に適切に連通ボイドが形成されることにより、所定の密度を有するものとなる。
<ボイド率>
 延伸多孔性フィルムにおけるボイド率とは、フィルム全体の体積に対する、フィルム中の空孔が占める体積の割合(体積率)をいう。ここで、フィルム中の全ての空孔の体積率を示すものを、「全体ボイド率」と称する。また、フィルム中の空孔のうち、フィルム内部で独立している空孔の体積率を示すものを、「内部独立ボイド率」と称する。さらに、フィルム中の空孔のうち、フィルムの表面と連通している空孔の体積率を示すものを、「連通ボイド率」と称する。
 延伸多孔性フィルムの全体ボイド率は下記の式(1)で求められる。
Figure JPOXMLDOC01-appb-M000003
 式(1)中、ρはJIS K7112:1999のA法において、浸漬液に蒸留水を用いて求められる延伸前のフィルムの密度である。ρはJIS K7112:1999のA法において、浸漬液に蒸留水を用いて求められる延伸後のフィルムの密度である。
 ここで、延伸前の空孔を有しないフィルムの密度を示すρは、延伸後の空孔を有するフィルムから空孔部分を除いた、ポリオレフィン系樹脂及び微細フィラーを含む樹脂組成物が占める部分の密度を示す真密度とほぼ同じである。
 また、本実施形態の延伸多孔性フィルムの内部に形成された連通している空孔の界面は疎水性であるため、短時間・無加圧下ではフィルム内部の空孔に水が浸透し難い。したがって、JIS K7112:1999のA法において、浸漬液に蒸留水を用いて測定することにより得られるρは、フィルム内部で独立している空孔が占める体積と、フィルムの表面と連通している空孔が占める体積と、フィルム自身が占める体積とに基づく、延伸後のフィルムの密度に相当する。
 よって、式(1)に示すように、ρとρとの差を利用して、延伸多孔性フィルムの内部に形成された全ての空孔がフィルム全体に占める割合を、全体ボイド率として求めることができる。
 次に、延伸多孔性フィルムの内部独立ボイド率は下記の式(2)で求められる。
Figure JPOXMLDOC01-appb-M000004
 式(2)中、ρの定義は式(1)と同じである。ρはJIS K7112:1999のA法において、浸漬液として蒸留水に代えて表面張力が27.3mN/mの液体を用いて求められる密度である。
 この浸漬液によれば、対象物の表面が疎水性であっても濡れやすい特徴を有することから、延伸多孔性フィルムの表面から内部まで連通している空孔(連通ボイド)を満たすことができる。一方で、表面張力が27.3mN/mの液体を用いた場合でも、フィルム表面に連通していない空孔(内部独立ボイド)はこの液体で満たされずに空孔として残存する。したがって、JIS K7112:1999のA法において、浸漬液として蒸留水に代えて表面張力が27.3mN/mの液体を用いて測定することにより得られるρは、フィルム内部で独立している空孔が占める体積と、フィルム自身が占める体積とに基づく、延伸後のフィルムのみかけ密度に相当する。表面張力が27.3mN/mの液体は、JIS K6768:1999の表に記載されている配合(メタノール80体積%と蒸留水20体積%とを混合)に従い調製することができ、また、ぬれ張力試験用混合液等の名称で市販されるものを使用することができる。
 よって、式(2)に示すように、ρとρとの差を利用して、延伸多孔性フィルムの内部に形成された、フィルム外部と連通していない、フィルム内部で独立している空孔がフィルム全体に占める割合を、内部独立ボイド率として求めることができる。
 続いて、延伸多孔性フィルムの連通ボイド率は、下記の式(3)で求められる。
Figure JPOXMLDOC01-appb-M000005
 延伸多孔性フィルムの表面まで連通している空孔に注目すると、この空孔は蒸留水では満たされず、表面張力が27.3mN/mの液体で満たされる。したがって、式(3)に示すように、全体ボイド率と内部独立ボイド率の差から、フィルム表面と連通している空孔がフィルム全体に占める割合を、連通ボイド率として求めることができる。
 本実施形態の延伸多孔性フィルムは、適度な透湿性及び難透水性を示すことで、水蒸気を透過すると共に、過度な水の浸透を抑制する。これはフィルム中に形成される全体の空孔のうち、連通ボイドが適度な割合で存在することによって達成される。すなわち、連通ボイド率と全体ボイド率との比を表す、(連通ボイド率/全体ボイド率)の値に好適な範囲が存在する。この(連通ボイド率/全体ボイド率)は、下記の式(4)で表される。
Figure JPOXMLDOC01-appb-M000006
 本実施形態の延伸多孔性フィルムは、(連通ボイド率/全体ボイド率)の値が0.4~0.85であることが好ましく、0.5~0.8であることがより好ましく、0.6~0.75であることがさらに好ましい。同値が同範囲内であることで、所期の透湿性を達成しやすい。延伸多孔性フィルムの(連通ボイド率/全体ボイド率)の値は、用いる微細フィラーの含有量、微細フィラーの粒子径や、延伸多孔性フィルムの延伸倍率等を調整することにより制御することができる。
 また、延伸多孔性フィルムの全体ボイド率は、40~80%であることが好ましく、50~70%であることがより好ましく、55~65%であることがさらに好ましい。また、内部独立ボイド率は、5~50%であることが好ましい。また、連通ボイド率は30~75%であることが好ましく、35~65%であることがより好ましく、40~60%であることがさらに好ましい。
 またさらに、上記式(4)の分子である密度ρと密度ρとの差(ρ-ρ)は、JIS K7112:1999のA法において蒸留水を用いて測定した密度ρと、蒸留水に代えて表面張力が27.3mN/mの液体を使用して測定した密度ρの差を示すものである。
 本実施形態の延伸多孔性フィルムは、ρ-ρの値が、0.15~1.15であることが好ましく、0.3~1.0であることがより好ましく、0.5~0.9であることがさらに好ましい。密度差が上記の下限値以上であることにより、透湿性を発揮させやすくする傾向がある。密度差が上記の上限値以下であることにより、透湿性を抑制する傾向にある。
<透水度>
 本実施形態の延伸多孔性フィルムにおける透水度とは、上記課題で説明するところの「難透水性」を示すものである。さらに、この透水度は、農業用材料等として使用した場合に殆ど水は通さないことを示すものである。また、この透水度は、JIS Z0221:1976に準拠して測定した透水度を意味する。
 このような延伸多孔性フィルムの透水度は、10,000秒以上であり、12,000秒以上であることが好ましく、14,000秒以上であることがより好ましく、20,000秒以上であることがさらに好ましい。また、延伸多孔性フィルムの透水度は、85,000秒以下であり、78,000秒以下であることが好ましく、70,000秒以下であることがより好ましく、50,000秒以下であることがさらに好ましい。透水度が上記の下限値以上であることにより、水の通過が抑制される傾向にある。また、透水度の値は大きいほど難透水性であることを示すが、透水度が上記の上限値以下であっても、難透水性は十分に担保できる。延伸多孔性フィルムの透水度は、微細フィラーの含有量、粒子径や、フィルムの延伸倍率を調整することにより得られる連通ボイド率で制御することができる。また、疎水性表面を有する微細フィラーや親水性表面を有する微細フィラーの含有量及びこれらの含有量の比の調整によっても制御することができる。
<透湿度>
 本実施形態の延伸多孔性フィルムにおける透湿度とは、上記課題で説明するところの「適度な透湿性」を示すものである。さらに、この透湿度は、農業用材料等として使用した場合に内部空間が蒸れて結露したりしないよう、フィルムの一方の面側の水蒸気圧が高い場合には、他の面に向けて速やかに水蒸気の移動が行われることを示すものである。また、この透湿度は、JIS Z0208:1976に準拠して、温度40℃、相対湿度90%の条件で測定した透湿度を意味する。
 このような延伸多孔性フィルムの透湿度は、700g/m2・24hr以上であり、800g/m2・24hr以上であることが好ましく、1,000以上g/m2・24hr以上であることがより好ましい。また、延伸多孔性フィルムの透湿度は、2,500g/m2・24hr以下であり、2,400g/m2・24hr以下であることが好ましく、2,000g/m2・24hr以下であることがより好ましい。透湿度が上記の下限値以上であることで、水蒸気が延伸多孔性フィルムを容易に透過して、延伸多孔性フィルムに被覆された内部空間に水蒸気が溜まることが防止される傾向にある。また、透湿度が上記の上限値以下であることで、透湿性と難透水性とを両立しやすい傾向にある。延伸多孔性フィルムの透湿度は、微細フィラーの含有量、粒子径や、フィルムの延伸倍率を調整することにより得られる連通ボイド率で制御することができる。また、疎水性表面を有する微細フィラーや親水性表面を有する微細フィラーの含有量及びこれらの含有量の比の調整によっても制御することができる。
<透気度>
 本実施形態の延伸多孔性フィルムにおける透気度とは、農業用材料等として使用した場合に、作物の呼吸や根粒菌の窒素固定等を妨げないように、適度に通気することを示すものであり、JIS P8117:2009に準拠して測定した透気度を意味する。延伸多孔性フィルムの透気度は、5,000秒以上であることが好ましく、10,000秒以上であることがより好ましい。また、延伸多孔性フィルムの透気度は、85,000秒以下であることが好ましく、75,000秒以下であることがより好ましい。延伸多孔性フィルムの透気度が上記範囲内であれば、適切な通気性を有していると言える。
<ぬれ張力>
 本実施形態の延伸多孔性フィルムは、農業用材料等として使用する際に、予め不織布等の他部材との貼り合せ加工や、商品名等を表面に印刷加工したものを、商品として販売することがある。
 延伸多孔性フィルムにおけるぬれ張力とは、延伸多孔性フィルムに貼り合せ加工やオフセット印刷等の二次加工を施すことを容易とするための特徴であり、ダインレベルの異なる複数のぬれ張力評価インクペン(英国Corona Supplies社製)を用いて、23℃、相対湿度50%の条件下で塗布後、約2秒後の液膜の状態で濡れているか弾くかを判定して、境界となるダインレベルから決定される。
 延伸多孔性フィルムのぬれ張力は、表面張力が31mN/m以上であることが好ましく、33mN/m以上であることがより好ましい。また、延伸多孔性フィルムのぬれ張力は、42mN/m以下であることが好ましく、37mN/m以下であることがより好ましい。表面張力が上記の下限値以上であることで、二次加工の際に接着剤や塗料等をはじくことがない傾向にあるため、加工性の点から好ましい。また、表面張力が上記の上限値以下であることで、フィルム表面の耐水性が発揮され、また、フィルム表面にオフセット印刷で印刷を施す際には、湿し水が広がることなく良好な画像を形成する傾向にあるため好ましい。
[ポリオレフィン延伸多孔性フィルムの用途]
 本実施形態の延伸多孔性フィルムは、疎水性表面を有する微細フィラーを内在する連通ボイドを有しており、透水性が抑えられるとともに、透湿性に優れている。このため、本実施形態の延伸多孔性フィルムは、水の透過の抑制と水蒸気の透過の促進が要求される分野において広く且つ有効に使用可能である。また、連通ボイドの形成により、透気性が要求される分野にも用いることができる。さらには、微細フィラーとして表面が疎水化された無機微細粉末を使用する態様においては、不透明性と光拡散反射性を付与することもでき、果実の色付き等、これらの特性が要求される分野にも用いることができる。
 本実施形態の延伸多孔性フィルムの用途としては、例えば、マルチフィルム、ハウス用フィルム、野菜包装袋、果実包装袋などの農業用材料;滅菌・殺菌包装材料、医療用基布、医療用器具の包装材料、手術衣、手術用手袋などの医療用材料;使い捨てカイロ、家庭用除湿剤、乾燥剤、脱酸素剤、鮮度保持剤などの包装材料;紙おむつ、生理用品などの衛生材料;壁紙、ハウスラップなどの建築材料に用いることができる。中でも、畑の土壌を覆うことで、肥料流出防止などのための水の非透過性と、根に対して十分な保湿性を有しかつ圃場中の余剰水分を蒸散させるための適度な透湿性とをもたらすことにより、農作物の栽培に適した環境を提供する、農業用のマルチフィルムとして好適に用いることができる。
 以下、製造例及び実施例を挙げて本発明を具体的に説明する。なお、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明は以下の実施例に限定されるものではない。
[評価手法]
 各実施例、比較例で得られた延伸多孔性フィルムの評価は、以下の方法で行った。
<透水度>
 各実施例、比較例で得られた延伸多孔性フィルムの透水度を、JIS Z0221:1976に準拠し、温度40℃、相対湿度90%の条件で測定した。
<透湿度>
 各実施例、比較例で得られた延伸多孔性フィルムの透湿度を、JIS Z0208:1976に準拠して、温度40℃、相対湿度90%の条件で測定した。
<透気度>
 各実施例、比較例で得られた延伸多孔性フィルムの透気度を、JIS P8117:2009に準拠して測定した。
<微細フィラーの平均一次粒子径>
 各実施例、比較例で得られた延伸多孔性フィルムに含まれる微細フィラーの平均一次粒子径は、延伸多孔性フィルムの切断面を電子顕微鏡により観察し、無作為に抽出した100個の微細フィラーのそれぞれにおいて、一次粒子の輪郭上の2点間の距離の最大値(最大径)を求め、その平均値を平均一次粒子径とした。
<微細フィラーの平均二次粒子径>
 微細フィラーが凝集体の場合、表面処理を行った後の微細フィラーをメタノールで湿らせた後、水に分散させてスラリーを作成し、このスラリーに対してレーザー回折型粒度分布測定装置((株)島津製作所製:SALD-2200)を用いて測定した体積基準のメジアン径(D50)を平均二次粒子径とした。
<ぬれ張力>
 各実施例、比較例で得られた延伸多孔性フィルムのぬれ張力を、ダインレベルの異なる複数のぬれ張力評価インクペン(英国Corona Supplies社製)を用いて、23℃、相対湿度50%の条件下で塗布後、約2秒後の液膜の状態で濡れているか弾くかを判定して、境界となるダインレベルから決定した。
<密度>
 各実施例、比較例で得られた延伸多孔性フィルムの密度ρを、JIS K7112:1999のA法において、浸漬液に蒸留水を用いて、温度23℃の条件で測定した。
<全体ボイド率>
 各実施例、比較例で得られた延伸多孔性フィルムについて、延伸前の樹脂組成物のペレットの密度ρを、JIS K7112:1999のA法において、浸漬液に蒸留水を用いて求めた。密度ρ及び密度ρを用いて、上記式(1)から、全体ボイド率を算出した。
<連通ボイド率>
 各実施例、比較例で得られた延伸多孔性フィルムの密度ρを、JIS K7112:1999のA法において、浸漬液として蒸留水に代えて、市販の表面張力が27.3mN/mの液体(商品名:ぬれ張力試験用混合液No.27.3、和光純薬工業社製)を用いて求めた。密度ρ及び密度ρを用いて、式(3)から、連通ボイド率を算出した。
<連通ボイド率と全体ボイド率との比>
 連通ボイド率及び全体ボイド率を用いて、式(4)から、連通ボイド率と全体ボイド率との比(連通ボイド率/全体ボイド率)を算出した。
<ρ-ρ
 各実施例、比較例で得られた延伸多孔性フィルムについて、密度ρ及び密度ρを用いて、ρ-ρを算出した。
[微細フィラーの調製]
<疎水性表面を有する微細フィラーの調製例1>
 軽質炭酸カルシウム微細粉末(商品名:ブリリアント1500、白石カルシウム社製、表面処理なし、平均一次粒子径:0.15μm)10000gをニーダーで撹拌しながら、これに疎水化剤としてステアリン酸亜鉛(商品名:ZP、大日化学工業社製)15.0gをメタノール100mlに分散させた分散液を添加し、30分撹拌した。攪拌により得られた混合物を80℃で1時間乾燥させて、表1の樹脂組成物の配合例(a)の微細フィラー(A)を得た。また、微細粉末と疎水化剤の配合割合を表1の樹脂組成物の配合例(b)~(d)に記載の配合割合とする以外は、樹脂組成物の配合例(a)に用いる微細フィラー(A)の調製例と同様にして、樹脂組成物の配合例(b)~(d)の微細フィラー(A)を得た。樹脂組成物の配合例(a)~(d)に用いた微細フィラー(A)は凝集体を形成し、平均二次粒子径は何れも0.7μmであった。
<疎水性表面を有する微細フィラーの調製例2>
 上記調整例1のステアリン酸亜鉛に代えて、疎水化剤としてステアリン酸アルミニウム(商品名:アルミニウムステアレート900、日油社製)を用いて、微細粉末と疎水化剤の配合割合を表1の樹脂組成物の配合例(e)~(n),(v),(y)~(zz)に記載の配合割合とする以外は、上記調製例1と同様にして、樹脂組成物の配合例(e)~(n),(v),(y)~(zz)の微細フィラー(A)を得た。樹脂組成物の配合例(e)~(n),(v),(y)~(zz)に用いた微細フィラー(A)は凝集体を形成し、平均二次粒子径は何れも0.7μmであった。
<疎水性表面を有する微細フィラーの調製例3>
 市販の重質炭酸カルシウム(商品名:カルテックス 5、丸尾カルシウム社製、平均一次粒子径:0.9μm)を、表1の配合例(o)~(u),(y),(z)の微細フィラー(B)として、そのまま使用した。当該品は、重質炭酸カルシウムをステアリン酸アルミニウムで、10000:15の配合割合で、表面処理したものである。
<疎水性表面を有する微細フィラーの調製例4>
 市販の二酸化チタン(商品名:タイペーク A-100、石原産業社製、平均一次粒子径:0.15μm)を、表1の樹脂組成物の配合例(a),(b)に用いる微細フィラー(C)として、そのまま使用した。当該品は、二酸化チタンをステアリン酸で、95:5の配合割合で、表面処理したものである。
<親水性表面を有する微細フィラーの調製例1>
 市販の二酸化チタン(商品名:タイペーク CR60、石原産業社製、平均一次粒子径:0.21μm)を、表1の樹脂組成物の配合例(c)~(r),(u),(v),(y)~(zz)に用いる微細フィラー(D)として、そのまま使用した。当該品は、ルチル型二酸化チタンを水酸化アルミニウムで、95:5の配合割合で、表面処理したものである。
<親水性表面を有する微細フィラーの調製例2>
 市販の親水性表面処理炭酸カルシウム(商品名:AFF-Z、ファイマテック社製、平均一次粒子径:1.0μm)を、表1の樹脂組成物の配合例(s),(t),(w),(x)に用いる微細フィラー(E)として、そのまま使用した。当該品は、重質炭酸カルシウムをジアリルアミンコポリマー及びアルキルベンゼンスルホン酸ナトリウムで、100:4.8の配合割合で、表面処理したものである。
Figure JPOXMLDOC01-appb-T000007
[樹脂組成物の作製]
 表1の樹脂組成物の配合例(a)に記載の原料を、同表に記載の配合割合で混合して、原料混合物(a)を得た。原料混合物(a)を210℃に設定した2軸混練機にて溶融混練し、次いで230℃に設定した押出機にてストランド状に押し出し、冷却後にストランドカッターにて切断して樹脂組成物(a)のペレットを作成した。この樹脂組成物(a)のペレットを、以降の延伸多孔性フィルムの製造例で作製した。樹脂組成物(a)の作製例と同様にして、表1の樹脂組成物配合例(b)~(zz)の原料を、同表に記載の配合割合で用いて、樹脂組成物(b)~(zz)のペレットを作製した。
[延伸多孔性フィルムの製造]
<延伸多孔性フィルムの製造例1>
 樹脂組成物(a)をコア層用として、樹脂組成物(b)を表スキン層用及び裏スキン層用として用い、これらを250℃に設定した3台の押出機でそれぞれ溶融混練し、これを共押出Tダイに導入してダイ内で表スキン層/コア層/裏スキン層となるように積層してシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸3層積層樹脂シートを得た。
 この無延伸3層積層樹脂シートを、142℃まで加熱した後、多数のロール群の周速差を利用したロール間延伸法にて樹脂シートの搬送方向(縦方向)に5倍の延伸倍率で1軸延伸し、その後60℃にて冷却して1軸延伸された樹脂延伸フィルムを得た。
 次いで、この1軸延伸された樹脂延伸フィルムを、テンターオーブンを用いて再び162℃まで加熱した後、155℃でテンター延伸機を用いたクリップ延伸法にて樹脂シートの幅方向(横方向)に8倍の延伸倍率で延伸し、クリップで保持したままさらにオーブンで160℃まで加熱して2秒間熱処理を行った。その後60℃まで冷却し、耳部をスリットして逐次2軸延伸された2軸/2軸/2軸の3層の、製造例1の延伸多孔性フィルムを得た。樹脂延伸フィルムの搬送速度は、120m/minに制御した。
<延伸多孔性フィルムの製造例2~7,12~14>
 製造例1の延伸多孔性フィルムと同様にして、表2に記載の樹脂組成物を用いて、表2に記載の延伸条件にて、製造例2~7,12~14の延伸多孔性フィルムを得た。
<延伸多孔性フィルムの製造例8>
 コア層用の樹脂組成物(j)を、250℃に設定した押出機で溶融混練し、これをTダイからシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この無延伸単層樹脂シートを、142℃まで加熱した後、多数のロール群の周速差を利用したロール間延伸法にて樹脂シートの搬送方向(縦方向)に5倍の延伸倍率で1軸延伸し、その後60℃にて冷却して1軸延伸された樹脂延伸フィルムを得た。
 次いで、この1軸延伸された樹脂延伸フィルムを、テンターオーブンを用いて再び162℃まで加熱した後、155℃でテンター延伸機を用いたクリップ延伸法にて、樹脂シートの搬送方向に直交する方向(横方向)に8倍の延伸倍率で延伸し、クリップで保持したままさらにオーブンで165℃まで加熱して4秒間熱処理を行った。その後60℃まで冷却し、耳部をスリットして逐次2軸延伸された単層の、製造例8の延伸多孔性フィルムを得た。
<延伸多孔性フィルムの製造例9,15,16,19~21>
 製造例8の延伸多孔性フィルムと同様にして、表2に記載の樹脂組成物を用いて、表2に記載の延伸条件にて、製造例9,15,16,19~21の延伸多孔性フィルムを得た。
<延伸多孔性フィルムの製造例10>
 コア層用の樹脂組成物(k)を、250℃に設定した押出機で溶融混練し、これをTダイからシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 この無延伸単層樹脂シートを、140℃まで加熱した後、多数のロール群の周速差を利用したロール間延伸法にて樹脂シートの搬送方向(縦方向)に5倍の延伸倍率で1軸延伸し、その後60℃にて冷却して1軸延伸された樹脂延伸フィルムを得た。
 次いで、スキン層用の樹脂組成物(l)を、250℃に設定した2台の押出機で溶融混練し、これをTダイからシート状に押し出し、上記の1軸延伸された樹脂延伸フィルムの両面に積層して3層構造の積層物を得た。
 次いで、この3層積層物を、テンターオーブンを用いて再び162℃まで加熱した後、155℃でテンター延伸機を用いたクリップ延伸法にて、樹脂シートの幅方向(横方向)に8倍の延伸倍率で延伸し、クリップで保持したままさらにオーブンで160℃まで加熱して2秒間熱処理を行った。その後60℃まで冷却し、耳部をスリットして逐次2軸延伸された1軸/2軸/1軸の3層の、製造例10の延伸多孔性フィルムを得た。樹脂延伸フィルムの搬送速度は、120m/minに制御した。
<延伸多孔性フィルムの製造例17>
 製造例10の延伸多孔性フィルムと同様にして、表2に記載の樹脂組成物を用いて、表2に記載の延伸条件にて、製造例17の延伸多孔性フィルムを得た。
<延伸多孔性フィルムの製造例11>
 コア層用の樹脂組成物(l)を、250℃に設定した押出機で溶融混練し、これをTダイからシート状に押し出し、これを冷却装置にて80℃まで冷却して無延伸の樹脂シートを得た。
 次いで、この無延伸単層樹脂シートを、テンターオーブンを用いて再び162℃まで加熱した後、155℃でテンター延伸機を用いたクリップ延伸法にて、樹脂シートの幅方向(横方向)に8倍の延伸倍率で延伸し、クリップで保持したままさらにオーブンで160℃まで加熱して2秒間熱処理を行った。その後60℃まで冷却し、耳部をスリットして横1軸延伸された単層の、製造例11の延伸多孔性フィルムを得た。樹脂シートと樹脂延伸フィルムの搬送速度は、120m/minに制御した。
<延伸多孔性フィルムの製造例18>
 製造例11の延伸多孔性フィルムと同様にして、表2に記載の樹脂組成物を用いて、表2に記載の延伸条件にて、製造例18の延伸多孔性フィルムを得た。
<延伸多孔性フィルムの製造例22>
 製造例8の延伸多孔性フィルムと同様にして、樹脂組成物(zz)を用いて、表2に記載の延伸条件にて、延伸多孔性フィルムを得ようとしたが、テンター延伸機を用いたクリップ延伸法にて樹脂シートの幅方向(横方向)に延伸した際に、フィルムの破断が多発し、安定して延伸多孔性フィルムを得ることができなかった。そのため製造例22の延伸多孔性フィルムについては後述する評価は行っていない。
<実施例1>
 製造例1の延伸多孔性フィルムの両面に、コロナ放電処理装置(機器名:HF400F、春日電気社製)で、連続的にコロナ放電処理を施した。処理条件は長さ0.8mのアルミニウム製放電電極と、絶縁ロールとしてシリコーン被膜ロールとを用い、放電電極と絶縁ロールとのギャップを5mm、ライン処理速度を15m/分、印加エネルギー密度を4,200J/mとした。続いて、金属ニップロールを用いて後述する表面処理剤を塗布した後、80℃で熱風乾燥してロール状に巻き取った。このようにして、製造例1の延伸多孔性フィルムに表面処理を行うことにより、実施例1の延伸多孔性フィルムを得た。
 表面処理剤としては、4級アンモニウム塩系ポリマー(三菱化学(株)製、商品名:サフトマーST-1000)固形分0.5質量%、プロピレンオキサイド変性ポリエチレンイミン(日本触媒(株)製、商品名:エポミンPP-061)固形分濃度0.5質量%、ポリアミド・エピクロロヒドリン樹脂(星光PMC(株)製、商品名:WS4002)固形分濃度0.5質量%の水溶液を用いた。
<実施例2~12,14,15,比較例1~5>
 製造例1の延伸多孔性フィルムに代えて、表2に示す製造例2~17の延伸多孔性フィルムを用いた以外は、実施例1と同様に表面処理を行い、実施例2~12,14,15,比較例1~5の延伸多孔性フィルムを得た。実施例3のポリオレフィン延伸多孔性フィルムは、表面のぬれ張力が39mN/mであった。
<実施例13,比較例6,7>
 表2に示す製造例3,18,19の延伸多孔性フィルムをそのまま用いて、表面処理を行わなかったものを、実施例13,比較例6,7の延伸多孔性フィルムとした。実施例13のポリオレフィン延伸多孔性フィルムは、表面のぬれ張力が41mN/mであった。
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
[評価]
 表2,表3に延伸多孔性フィルムの製造条件、物性、及び評価結果をまとめて示す。
 表3に示すとおり、ステアリン酸亜鉛処理によって表面を疎水化した微細フィラーを含む実施例1の延伸多孔性フィルムは、難透水性と透湿性とを兼ね備えたものなっている。さらに、疎水性表面を有する微細フィラーと、水酸化アルミニウム処理によって親水性表面を有する微細フィラーとを含む実施例2の延伸多孔性フィルムは、実施例1よりも透湿度が高まり、難透水性と透湿性とを兼ね備えたものなっている。
 また、ステアリン酸アルミニウム処理によって疎水性表面を有する微細フィラーと、親水性表面を有する微細フィラーとを含む実施例3~15の延伸多孔性フィルムも同様に、難透水性と透湿性とを兼ね備えたものなっている。
 これに対し、疎水性表面を有するが粒子径が粗大な炭酸カルシウムを多く含む比較例1~5は、難透水性と透湿性の両立が困難であった。たとえば比較例1では全体ボイドに対して連通ボイドの割合が比較的に高く、比較例2~5は、逆に連通ボイドが乏しいことが分かる。
 また、比較例6、7は、疎水性表面を有する微細フィラーを含まないものであり、透水度の値がきわめて低く、水がきわめて浸透しやすいものであることが分かる。
 ここで、実施例1~15、比較例6の延伸多孔性フィルムは、全体ボイド率から、フィルムの内部に十分にボイドが形成されていることが分かる。さらに、連通ボイド率、及び(連通ボイド率/全体ボイド率)から、連通ボイドが良好に形成されていることが分かる。このとき、実施例1~15の延伸多孔性フィルムは透水度及び透湿度が適切な値を示すのに対して、比較例6の延伸多孔性フィルムは透水度がきわめて高いことから、実施例1~15では、連通ボイドを通じた水の透過を、疎水性表面を有する微細フィラーによって制御できていることが分かる。またさらに、実施例1~15の延伸多孔性フィルムは、ρ-ρが所定の範囲であることにより、難透水性を発揮するものとなっている。
 実施例3、10、12を対比すると、密度ρが0.45g/cm3より低いと透水度が低く(水を浸透しやすく)、透湿度が高く(水蒸気を通しやすく)なる傾向があり、密度が0.7g/cm3より高いと透水度が高く、透湿度が低くなる傾向にあることがわかる。

Claims (10)

  1.  ポリオレフィン系樹脂と、平均一次粒子径が0.05~0.8μmの微細フィラーを含み、連通ボイドを有するポリオレフィン延伸多孔性フィルムであり、
     前記ポリオレフィン延伸多孔性フィルムが疎水化剤を含み、
     JIS Z0221で測定した透水度が10,000~85,000秒であり、
     JIS Z0208で測定した透湿度が700~2,500g/m2・24hである
    ことを特徴とする、ポリオレフィン延伸多孔性フィルム。
  2.  25~65質量%の前記ポリオレフィン系樹脂と、32~72質量%の前記微細フィラーとを含む、
    請求項1に記載のポリオレフィン延伸多孔性フィルム。
  3.  JIS P8117で測定した透気度が5,000~85,000秒である、
    請求項1又は2に記載のポリオレフィン延伸多孔性フィルム。
  4.  ぬれ張力が31~42mN/mである、
    請求項1~3のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
  5.  密度が0.45~0.7g/cm3である、
    請求項1~4のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
  6.  浸漬液に蒸留水を用いてJIS K7112のA法で測定したフィルム密度をρとし、浸漬液の表面張力が27.3mN/mの液体を用いてJIS K7112のA法で測定したフィルム密度をρとしたとき、密度ρと密度ρとの差が、0.15~1.15である、
    請求項1~5のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
  7.  浸漬液に蒸留水を用いてJIS K7112のA法で測定した延伸前のフィルム密度をρ、延伸後のフィルム密度をρとし、浸漬液の表面張力が27.3mN/mの液体を用いてJIS K7112のA法で測定したフィルム密度をρとしたとき、下記式で定義される連通ボイド率と前記全体ボイド率との比(連通ボイド率/全体ボイド率)が、0.4~0.85である、
    請求項1~6のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
    Figure JPOXMLDOC01-appb-M000001
  8.  前記疎水化剤が、有機カルボン酸、有機カルボン酸の塩、有機カルボン酸のアミド、有機カルボン酸と炭素数1~6のアルコールとのエステル、ポリ(メタ)アクリル酸、及びシランカップリング剤から選ばれた少なくとも一種を含む、
    請求項1~7のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
  9.  前記微細フィラーが、前記疎水化剤を表面に有する無機微細粉末を含む、
    請求項1~8のいずれか1項に記載のポリオレフィン延伸多孔性フィルム。
  10.  前記無機微細粉末が、炭酸カルシウムである、
    請求項9に記載のポリオレフィン延伸多孔性フィルム。

     
PCT/JP2016/086544 2015-12-11 2016-12-08 ポリオレフィン延伸多孔性フィルム WO2017099179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16873072.9A EP3388476A4 (en) 2015-12-11 2016-12-08 POLYOLEF STRETCHED POROUS FILM
JP2017555134A JP6854777B2 (ja) 2015-12-11 2016-12-08 ポリオレフィン延伸多孔性フィルム
CN201680072278.7A CN108473705A (zh) 2015-12-11 2016-12-08 聚烯烃拉伸多孔膜
US15/781,596 US20190194412A1 (en) 2015-12-11 2016-12-08 Polyolefin stretched porous film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015241725 2015-12-11
JP2015-241725 2015-12-11

Publications (1)

Publication Number Publication Date
WO2017099179A1 true WO2017099179A1 (ja) 2017-06-15

Family

ID=59014280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086544 WO2017099179A1 (ja) 2015-12-11 2016-12-08 ポリオレフィン延伸多孔性フィルム

Country Status (5)

Country Link
US (1) US20190194412A1 (ja)
EP (1) EP3388476A4 (ja)
JP (1) JP6854777B2 (ja)
CN (1) CN108473705A (ja)
WO (1) WO2017099179A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163356A (ja) * 2018-03-19 2019-09-26 三井化学東セロ株式会社 透湿性フィルム、包装体および透湿性フィルムの製造方法
JP2019178265A (ja) * 2018-03-30 2019-10-17 株式会社ユポ・コーポレーション 合成紙の製造方法
WO2020090313A1 (ja) * 2018-10-30 2020-05-07 株式会社日本製鋼所 多孔質フィルムの製造方法および多孔質フィルム
WO2020202890A1 (ja) * 2019-03-29 2020-10-08 株式会社Tbm 通気性フィルム用樹脂組成物、通気性フィルム及びその製法
JP2021031644A (ja) * 2019-08-28 2021-03-01 株式会社Tbm 樹脂組成物及び成形品
JP2021172822A (ja) * 2020-04-24 2021-11-01 南亞塑膠工業股▲分▼有限公司Nan Ya Plastics Corporation 透湿防水膜、透湿防水膜の製造方法及び透湿防水織物
JP7100933B1 (ja) 2022-03-03 2022-07-14 株式会社Tbm 積層シート及び食品包装容器
WO2023190415A1 (ja) * 2022-03-29 2023-10-05 株式会社ユポ・コーポレーション 記録用紙

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3192951A1 (en) * 2020-09-17 2022-03-24 Reuven Hugi Breathable film
CN112549717A (zh) * 2020-12-03 2021-03-26 深圳大学 一种复合布及其制备方法与应用
CN112521676A (zh) * 2020-12-15 2021-03-19 上大新材料(泰州)研究院有限公司 一种反射透气地膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231873A (ja) 1994-12-15 1996-09-10 Bayer Corp 水を基にする塗料のための顔料の表面処理に有効な、リン酸モノエステル類
JPH11349846A (ja) 1998-04-10 1999-12-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム填料、その製造方法、並びに該填料を配合してなる樹脂組成物
WO2001027193A1 (fr) 1999-10-13 2001-04-19 Maruo Calcium Company Limited Additif de matage pour resine thermoplastique et composition a base de resine thermoplastique contenant ledit additif
JP2001181423A (ja) * 1999-12-28 2001-07-03 Yupo Corp 多孔性樹脂フィルム
JP2002363443A (ja) 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
WO2004006871A1 (ja) 2002-07-16 2004-01-22 Shiseido Company, Ltd. 粉末含有水中油型乳化組成物
JP2005082756A (ja) 2003-09-10 2005-03-31 Shiraishi Chuo Kenkyusho:Kk 多孔質樹脂シート及びその製造方法
JP2013184292A (ja) * 2012-03-05 2013-09-19 Mitsubishi Plastics Inc 積層多孔性フィルム
JP2014080025A (ja) 2012-09-28 2014-05-08 Yupo Corp 樹脂延伸フィルム、その製造方法およびその樹脂延伸フィルムを用いた積層体
JP5701461B1 (ja) * 2014-03-03 2015-04-15 株式会社ユポ・コーポレーション ラベル付きプラスチック容器
JP2015166175A (ja) * 2014-11-28 2015-09-24 株式会社ユポ・コーポレーション インモールドラベル及びラベル付きプラスチック容器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625277B2 (ja) * 1985-05-17 1994-04-06 三菱化成株式会社 親水化された多孔質フイルムまたはシ−ト
JPS62148537A (ja) * 1985-12-23 1987-07-02 Mitsui Toatsu Chem Inc 多孔性フイルムの製造法
JPH0721078B2 (ja) * 1987-02-26 1995-03-08 株式会社トクヤマ 微多孔性フイルムの製造方法
FI97300C (fi) * 1987-08-27 1996-11-25 Mitsubishi Chemical Mkv Compan Huokoinen kalvo sekä imukykyiset saniteettituotteet
US6072005A (en) * 1997-10-31 2000-06-06 Kimberly-Clark Worldwide, Inc. Breathable films and process for producing them
EP1002826A1 (en) * 1998-11-19 2000-05-24 Tokuyama Corporation Polyolefin base porous film
JP2001233982A (ja) * 1999-12-14 2001-08-28 Tokuyama Corp 多孔質ポリオレフィンフィルム及びその製造方法
GB2383046A (en) * 2001-12-12 2003-06-18 Imerys Minerals Ltd Calcium carbonate filler in stretched polyolefin film
BR0309946A (pt) * 2002-05-09 2005-02-09 Dow Chemical Co Compósito permeável a vapor d'água em camadas, produtos contendo-o e método para produzi-lo
TWI330587B (en) * 2002-07-26 2010-09-21 Clopay Plastic Prod Co Breathable materials comprising low-elongation fabrics, and methods
US20050118435A1 (en) * 2003-12-01 2005-06-02 Kimberly-Clark Worldwide, Inc. Films and methods of forming films having polyorganosiloxane enriched surface layers

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231873A (ja) 1994-12-15 1996-09-10 Bayer Corp 水を基にする塗料のための顔料の表面処理に有効な、リン酸モノエステル類
JPH11349846A (ja) 1998-04-10 1999-12-21 Maruo Calcium Co Ltd 表面処理炭酸カルシウム填料、その製造方法、並びに該填料を配合してなる樹脂組成物
WO2001027193A1 (fr) 1999-10-13 2001-04-19 Maruo Calcium Company Limited Additif de matage pour resine thermoplastique et composition a base de resine thermoplastique contenant ledit additif
JP2001181423A (ja) * 1999-12-28 2001-07-03 Yupo Corp 多孔性樹脂フィルム
JP2002363443A (ja) 2001-06-01 2002-12-18 Maruo Calcium Co Ltd 表面処理無機フィラー及びこれを配合した樹脂組成物
WO2004006871A1 (ja) 2002-07-16 2004-01-22 Shiseido Company, Ltd. 粉末含有水中油型乳化組成物
JP2005082756A (ja) 2003-09-10 2005-03-31 Shiraishi Chuo Kenkyusho:Kk 多孔質樹脂シート及びその製造方法
JP2013184292A (ja) * 2012-03-05 2013-09-19 Mitsubishi Plastics Inc 積層多孔性フィルム
JP2014080025A (ja) 2012-09-28 2014-05-08 Yupo Corp 樹脂延伸フィルム、その製造方法およびその樹脂延伸フィルムを用いた積層体
JP5701461B1 (ja) * 2014-03-03 2015-04-15 株式会社ユポ・コーポレーション ラベル付きプラスチック容器
JP2015166175A (ja) * 2014-11-28 2015-09-24 株式会社ユポ・コーポレーション インモールドラベル及びラベル付きプラスチック容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388476A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163356A (ja) * 2018-03-19 2019-09-26 三井化学東セロ株式会社 透湿性フィルム、包装体および透湿性フィルムの製造方法
JP2019178265A (ja) * 2018-03-30 2019-10-17 株式会社ユポ・コーポレーション 合成紙の製造方法
WO2020090313A1 (ja) * 2018-10-30 2020-05-07 株式会社日本製鋼所 多孔質フィルムの製造方法および多孔質フィルム
WO2020202890A1 (ja) * 2019-03-29 2020-10-08 株式会社Tbm 通気性フィルム用樹脂組成物、通気性フィルム及びその製法
JP2020164736A (ja) * 2019-03-29 2020-10-08 株式会社Tbm 通気性フィルム用樹脂組成物、通気性フィルム及びその製法
WO2021038972A1 (ja) * 2019-08-28 2021-03-04 株式会社Tbm 樹脂組成物及び成形品
JP2021031644A (ja) * 2019-08-28 2021-03-01 株式会社Tbm 樹脂組成物及び成形品
JP2021172822A (ja) * 2020-04-24 2021-11-01 南亞塑膠工業股▲分▼有限公司Nan Ya Plastics Corporation 透湿防水膜、透湿防水膜の製造方法及び透湿防水織物
JP7264935B2 (ja) 2020-04-24 2023-04-25 南亞塑膠工業股▲分▼有限公司 透湿防水膜、透湿防水膜の製造方法及び透湿防水織物
US11738545B2 (en) 2020-04-24 2023-08-29 Nan Ya Plastics Corporation Breathable and waterproof membrane and breathable and waterproof fabric
JP7100933B1 (ja) 2022-03-03 2022-07-14 株式会社Tbm 積層シート及び食品包装容器
JP2023128224A (ja) * 2022-03-03 2023-09-14 株式会社Tbm 積層シート及び食品包装容器
WO2023190415A1 (ja) * 2022-03-29 2023-10-05 株式会社ユポ・コーポレーション 記録用紙

Also Published As

Publication number Publication date
EP3388476A1 (en) 2018-10-17
EP3388476A4 (en) 2019-12-18
JP6854777B2 (ja) 2021-04-07
CN108473705A (zh) 2018-08-31
JPWO2017099179A1 (ja) 2018-09-27
US20190194412A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6854777B2 (ja) ポリオレフィン延伸多孔性フィルム
DK2315667T3 (en) Water vapor permeable shrinkable packaging material
KR100941184B1 (ko) 다층 미공성 필름 및 그 제조 방법
KR101249180B1 (ko) 다공성 폴리프로필렌 필름
JP5888439B2 (ja) 分離膜、シート流路材および分離膜エレメント
JP6580036B2 (ja) 改善された水蒸気透過速度を有するポリオレフィン系フィルム
KR20170113701A (ko) 가공용 박막 재료
WO2014088065A1 (ja) 透湿性フィルムおよびその製造方法
JP2001355173A (ja) 不織布積層体およびその用途
US20120282403A1 (en) Breathable Laminate With A High Abrasion Resistance and Method of Manufacturing the Same
GB2383046A (en) Calcium carbonate filler in stretched polyolefin film
JP4750749B2 (ja) 農業用光反射シート
JP6184823B2 (ja) 樹脂延伸フィルム、その製造方法およびその樹脂延伸フィルムを用いた積層体
WO2011135742A1 (ja) 透水性フィルムおよびその製造方法
JP5564322B2 (ja) 透水性フィルムおよびその製造方法
JP2018166478A (ja) 農業用フィルム
JP2004345327A (ja) 積層体
JP2021172822A (ja) 透湿防水膜、透湿防水膜の製造方法及び透湿防水織物
JPH0716939A (ja) 多孔性フィルムまたはシート
KR20200081385A (ko) 도공액
JP7135709B2 (ja) 多孔フィルム
KR100961263B1 (ko) 낙진방지용 필름
JP2022162592A (ja) 防護服の生地用の微多孔フィルム
KR20080064251A (ko) 통기성 필름
JP2002327081A (ja) 結露防止保護被覆材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016873072

Country of ref document: EP