WO2017099099A1 - 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法 - Google Patents

放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法 Download PDF

Info

Publication number
WO2017099099A1
WO2017099099A1 PCT/JP2016/086300 JP2016086300W WO2017099099A1 WO 2017099099 A1 WO2017099099 A1 WO 2017099099A1 JP 2016086300 W JP2016086300 W JP 2016086300W WO 2017099099 A1 WO2017099099 A1 WO 2017099099A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive
cesium
strontium
adsorbent
less
Prior art date
Application number
PCT/JP2016/086300
Other languages
English (en)
French (fr)
Inventor
貴志 佐久間
小松 誠
出水 丈志
慎介 宮部
木ノ瀬 豊
政博 菊池
坂本 剛
Original Assignee
株式会社荏原製作所
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所, 日本化学工業株式会社 filed Critical 株式会社荏原製作所
Priority to EP16872996.0A priority Critical patent/EP3385954A4/en
Priority to US16/060,636 priority patent/US20190013107A1/en
Priority to CA3007460A priority patent/CA3007460C/en
Publication of WO2017099099A1 publication Critical patent/WO2017099099A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium, and in particular, radioactive cesium contained in waste liquid containing contaminating ions such as Na ions, Ca ions and / or Mg ions generated in a nuclear power plant.
  • the present invention relates to a method for treating radioactive liquid waste that removes both elements of radioactive strontium.
  • radioactive liquid waste containing radioactive iodine has been generated due to the accident that occurred at the Fukushima Daiichi Nuclear Power Station due to the Great East Japan Earthquake on March 11, 2011.
  • This radioactive liquid waste includes contaminated water generated by the reactor pressure vessel, containment vessel, and cooling water injected into the spent fuel pool, trench water remaining in the trench, and subdrains around the reactor building.
  • Radioactive substances are removed from these radioactive waste liquids at a processing facility called Sally (SARRY, Simplified Active Water Retrieve and Recovery System (Cesium Removal System) or Alps (ALPS)).
  • Sally Simplified Active Water Retrieve and Recovery System
  • APS Alps
  • substances that can selectively adsorb and remove radioactive cesium include ferrocyan compounds such as bitumen, mordenite, which is a kind of zeolite, aluminosilicate, and titanium silicate (CST).
  • ferrocyan compounds such as bitumen, mordenite, which is a kind of zeolite, aluminosilicate, and titanium silicate (CST).
  • CST titanium silicate
  • UOP IE96 which is an aluminosilicate
  • UOP IE911 which is CST
  • substances that can selectively adsorb and remove radioactive strontium include natural zeolite, synthetic A-type and X-type zeolite, titanate, and CST.
  • an adsorbent that is titanate is used to remove radioactive strontium.
  • Non-Patent Document 1 published by the Japan Atomic Energy Society Backend Committee, IE910 manufactured by UOP, which is a powdery CST, and molding Regarding the adsorption performance of UOP IE911 cesium and strontium, which is a formed CST, the powdered CST has the ability to adsorb radioactive cesium and strontium, and the molded CST has high cesium adsorption performance but low strontium adsorption performance Has been reported.
  • a modified CST obtained by bringing a titanium silicate compound into contact with a sodium hydroxide aqueous solution having a sodium hydroxide concentration in the range of 0.5 mol / L or more and 2.0 mol / L to perform surface treatment, It has been reported that a cesium removal efficiency of 99% or more and a strontium removal efficiency of 95% or more are achieved (Patent Document 1).
  • Powdered CST can be used in methods such as coagulation sedimentation, but is suitable for the method of filling the column with the adsorbent and passing the water to be treated, which is adopted in Sally and Alps. Absent.
  • Patent Document 1 In order to improve the strontium adsorption performance of the molded CST, the treatments and operations shown in Patent Document 1 and Non-Patent Document 2 have been studied, but there is a problem that a large amount of chemicals is required and the cost is increased.
  • CST is weak to heat, and when it is ignited, the composition changes and the adsorption ability of cesium and strontium decreases.
  • the zeolite molded body uses a binder such as clay mineral and is fired at 500 to 800 ° C. to improve the strength of the molded body.
  • the adsorptive capacity decreases. It cannot be fired. For this reason, it was necessary to mold CST without igniting it.
  • Non-patent Document 2 Non-patent Document 2
  • the inventors of the present invention have the general formula; Na 4 Ti 4 Si 3 O 16 .nH 2 O, (Na x K (1-x )) 4 Ti 4 Si 3 O 16 ⁇ nH 2 O and K 4 Ti 4 Si 3 O 16 ⁇ nH 2 O ( in these formulas, x is a number from 0 to less ultra 1, the number of n is 0-8 And at least one selected from crystalline silicotitanates represented by general formula: Na 4 Ti 9 O 20 ⁇ mH 2 O, (Na y K (1-y) ) 4 Ti 9 O 20 ⁇ mH Selected from titanates represented by 2 O and K 4 Ti 9 O 20 ⁇ mH 2 O (wherein y represents a number greater than 0 and less than 1 and m represents a number from 0 to 10).
  • Cesium or strontium including at least one of The method proposed adsorbent and its preparation (
  • An object of the present invention is to provide a method for treating a radioactive liquid waste that can easily remove both radioactive cesium and radioactive strontium with high removal efficiency by a method of filling a column with an adsorbent and passing water to be treated. It is to provide.
  • both radioactive cesium and radioactive strontium are obtained by passing radioactive waste liquid through an adsorption tower packed with a specific adsorbent material under specific water flow conditions. Has been found to be easily and efficiently removed, and the present invention has been completed.
  • the present invention includes the following aspects.
  • the adsorbent has a crystalline silicotitanate peak of 1 or more when X-ray diffraction measurement is performed with Cu—K ⁇ as an X-ray source and a diffraction angle (2 ⁇ ) of 5 to 80 °. 1 or more of the titanate peak is observed and the ratio of the height of the main peak of the titanate to the height of the main peak of the crystalline silicotitanate is 5% or more and 70% or less.
  • both radioactive cesium and radioactive strontium can be easily removed with high removal efficiency by a method in which an adsorbent is filled in an adsorption tower and water to be treated is passed.
  • FIG. 6 is a graph showing cesium adsorption / removal performance in Example 3.
  • 6 is a graph showing the strontium adsorption removal performance in Example 3.
  • 6 is a graph showing cesium adsorption / removal performance in Example 4;
  • 6 is a graph showing strontium adsorption removal performance in Example 4.
  • 10 is a graph showing the cesium adsorption removal performance in Example 7.
  • 10 is a graph showing the strontium adsorption removal performance in Example 7.
  • the present invention relates to the general formulas: Na 4 Ti 4 Si 3 O 16 .nH 2 O, (Na x K (1-x) ) 4 Ti 4 Si 3 O 16 .mH 2 O and K 4 Ti 4 Si 3 O 16. At least one selected from crystalline silicotitanates represented by 1H 2 O (wherein x represents a number greater than 0 and less than 1 and n, m and l each represent a number from 0 to 8) And general formulas: Na 4 Ti 9 O 20 ⁇ qH 2 O, (Na y K (1-y) ) 4 Ti 9 O 20 ⁇ rH 2 O and K 4 Ti 9 O 20 ⁇ tH 2 O (these formulas) Wherein y represents a number greater than 0 and less than 1, and q, r, and t each represent a number of 0 to 10.) An adsorbent of cesium or strontium, containing at least one selected from titanates In which the particle diameter is 250 ⁇ m or more and 1200
  • the adsorbing tower packed with the formed adsorbent at a layer height of 10 cm to 300 cm is filled with a radioactive waste liquid containing radioactive cesium and radioactive strontium at a water flow velocity (LV) of 1 m / h to 40 m / h, space velocity (SV) It relates to a method for treating radioactive liquid waste containing radioactive cesium and radioactive strontium, comprising passing water at 200 h ⁇ 1 or less to adsorb the radioactive cesium and radioactive strontium to the adsorbent.
  • LV water flow velocity
  • SV space velocity
  • the adsorbent used in the treatment method of the present invention is an adsorbent obtained by a production method disclosed in Japanese Patent No. 5696244 with a hydrothermal reaction of 300 ° C. or lower and a drying condition of 200 ° C. or lower.
  • it is formed into a particle shape of 300 ⁇ m or more and 800 ⁇ m or less, more preferably 300 ⁇ m or more and 600 ⁇ m or less.
  • the particle size of the adsorbent of the present invention is finer than that of a commercially available general adsorbent (for example, a zeolite adsorbent is a pellet having a particle size of about 1.5 mm), and the adsorption rate is high. high.
  • the powdery adsorbent flows out when the adsorption tower is filled and subjected to water treatment, it is preferably formed into a predetermined particle size.
  • Mixing gel of crystalline silicotitanate and titanate in a water-containing state for example, stirring and mixing granulation, rolling granulation, extrusion granulation, crushing granulation, fluidized bed granulation, spray drying granulation (spray drying), compression It can be formed into particles using a known granulation method such as granulation or melt granulation.
  • polyvinyl alcohol for example, polyvinyl alcohol, polyethylene oxide, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose, methyl cellulose, ethyl cellulose, starch, corn starch, molasses, lactose, gelatin, It may be granulated using a known binder such as dextrin, gum arabic, alginic acid, polyacrylic acid, glycerin, polyethylene glycol, polyvinyl pyrrolidone, alumina, or may be granulated without using these binders.
  • a known binder such as dextrin, gum arabic, alginic acid, polyacrylic acid, glycerin, polyethylene glycol, polyvinyl pyrrolidone, alumina, or may be granulated without using these binders.
  • Adsorbents granulated without using a binder are preferable because the amount of adsorbent per volume increases, and in the treatment method of the present invention used by filling the adsorption tower, the amount of treatment per volume of the same adsorption tower increases.
  • the mixed gel of crystalline silicotitanate and titanate in a water-containing state may be dried and then pulverized to form particles. After forming into particles, the particles can be classified using a sieve to obtain particles having a predetermined particle size range.
  • the adsorbent formed into particles having a particle size in the predetermined range used in the present invention preferably has a strength of 0.1 N or more in a wet state, and the radioactive waste liquid to be treated is passed through. It does not disintegrate due to the pressure (generally 0.1 to 1.0 MPa) or water for a long time.
  • the adsorbent is packed in an adsorption tower so as to have a layer height of 10 cm to 300 cm, preferably 20 cm to 250 cm, more preferably 50 cm to 200 cm. If the bed height is less than 10 cm, the adsorbent layer cannot be uniformly packed when the adsorbent is packed in the adsorption tower, causing a short path during water flow, resulting in deterioration of the quality of treated water.
  • a higher bed height is preferable because an appropriate water flow differential pressure can be realized, the treated water quality is stabilized, and the total amount of treated water is increased. However, when the bed height exceeds 300 cm, the water flow differential pressure becomes too large.
  • the radioactive waste liquid containing radioactive cesium and radioactive strontium has a water flow velocity (LV) of 1 m / h to 40 m / h, preferably 5 m / h to 30 m / h, more preferably 10 m / h than 20 m / h less, space velocity (SV) 200h -1 or less, preferably 100h -1 or less, more preferably 50h -1 or less, preferably 5h -1 or more, more preferably 10h -1 Pass water through the above.
  • LV water flow velocity
  • the water flow velocity exceeds 40 m / h, the water differential pressure increases, and if it is less than 1 m / h, the amount of treated water is small.
  • Space velocity (SV) is typical wastewater treatment in 20h -1 or less used, but can also obtain the effect of the adsorbent of the present invention in particular 10h approximately -1, 20h in wastewater treatment using conventional adsorbents -
  • SV space velocity
  • the water flow velocity and space velocity can be increased without increasing the size of the adsorption tower.
  • the water line flow velocity is a value obtained by dividing the amount of water (m 3 / h) passing through the adsorption tower by the cross-sectional area (m 2 ) of the adsorption tower.
  • the space velocity is a value obtained by dividing the volume of the adsorbent filled in the adsorption tower water (m 3 / h) which passed through the adsorption tower (m 3).
  • the treatment method of the present invention is suitable for decontamination of waste liquid containing Na ions, Ca ions and / or Mg ions.
  • ⁇ X-ray diffraction> Bruker D8 AdvanceS was used.
  • Cu-K ⁇ was used as the radiation source.
  • the measurement conditions were a tube voltage of 40 kV, a tube current of 40 mA, and a scanning speed of 0.1 ° / sec.
  • the obtained mixed gel was put in an autoclave, heated to 170 ° C. over 1 hour, and then reacted for 24 hours with stirring while maintaining this temperature.
  • the slurry after the reaction was filtered, washed and dried to obtain an adsorbent (a mixture of crystalline silicotitanate and titanate).
  • the X-ray diffraction chart (after baseline correction) of the obtained adsorbent is shown in FIG.
  • the molar ratio of crystalline silicotitanate and sodium titanate was determined by the following method.
  • A The adsorbent is put in a suitable container (aluminum ring or the like), sandwiched between dies, and pelletized by applying a pressure of 10 MPa with a press machine to obtain a measurement sample.
  • This sample was subjected to a fluorescent X-ray apparatus (device name: ZSX100e, tube: Rh (4 kW), atmosphere: vacuum, analysis window: Be (30 ⁇ m), measurement mode: SQX analysis (EZ scan), measurement diameter: 30 mm ⁇ , (stock ) All elements are measured with Rigaku).
  • the content (mass%) of SiO 2 and TiO 2 in the adsorbent is calculated by calculating by the SQX method which is a semi-quantitative analysis method.
  • B the obtained content of SiO 2 and TiO 2 (mass%) divided by the respective molecular weight, obtaining the number of moles of SiO 2 and TiO 2 in the adsorbent 100 g.
  • C One third of the number of moles of SiO 2 in the adsorbent determined above is assumed to be the number of moles of the crystalline silicotitanate (Na 4 Ti 4 Si 3 O 16 .nH 2 O) in the adsorbent. To do. Moreover, since the number of moles of Ti atoms in 1 mole of the crystalline silicotitanate is 4, the number of moles of the titanate in the adsorbent is determined by the following formula (1).
  • Table 1 shows the composition determined from the X-ray diffraction structure and the molar ratio of crystalline silicotitanate and sodium titanate obtained by the above method.
  • the mixed slurry of the above crystalline silicotitanate and titanate was put into a cylindrical extruder having a screen with a true circle equivalent diameter of 0.6 mm at the tip, and extruded.
  • the water-containing molded body extruded from the screen was dried at 120 ° C. for 1 day at normal pressure.
  • the obtained dried product was lightly pulverized and then passed through a sieve having an opening of 600 ⁇ m.
  • the residue on the sieve was ground again, and the entire amount was passed through a sieve having an opening of 600 ⁇ m.
  • the entire amount that passed through the sieve having an opening of 600 ⁇ m was collected and passed through a sieve having an opening of 300 ⁇ m, and the residue on the sieve was collected to prepare a sample.
  • Production Example 2 In Production Example 1, powdery crystalline silicotitanate that passed through a sieve having an opening of 300 ⁇ m was formed into a granular shape by a melt granulation method using polyvinyl alcohol as a binder. After molding, the sample was thoroughly washed, and a sample having a particle size of 0.35 to 1.18 mm was obtained with a sieve.
  • Production Example 3 In Production Example 1, powdery crystalline silicotitanate that passed through a sieve having an opening of 300 ⁇ m was formed into granules by melt granulation using alginic acid as a binder. After molding, the sample was thoroughly washed, and a sample having a particle size of 0.35 to 1.18 mm was obtained with a sieve.
  • Production Example 4 In Production Example 1, powdery crystalline silicotitanate that passed through a sieve having an opening of 300 ⁇ m was formed into a column shape by extrusion using alumina as a binder. After molding, a sample having a particle size of 0.30 to 0.60 mm was obtained with a sieve.
  • Example 1 ⁇ Preparation of simulated contaminated seawater 1> Simulated contaminated water containing non-radioactive cesium and strontium simulating contaminated water from the Fukushima Daiichi nuclear power plant was prepared by the following procedure.
  • cesium chloride was added so that the cesium concentration was 1 mg / L to prepare simulated contaminated seawater 1 having a cesium concentration of 1.0 mg / L.
  • a part of the simulated contaminated seawater 1 was collected and analyzed by ICP-MS.
  • the cesium concentration was 1.07 mg / L and the strontium concentration was 6.39 mg / L.
  • a 100 ml Erlenmeyer flask was filled with 0.5 g of the adsorbent having a particle size of 300 ⁇ m or more and 600 ⁇ m or less prepared in Production Example 1, 50 ml of simulated contaminated seawater 1 was added, and the mixture was allowed to stand for 24 hours. When a part was collected and the cesium and strontium concentrations were measured, the cesium concentration was 0.06 mg / L and the strontium concentration was 1.03 mg / L.
  • the removal rate was calculated from the cesium and strontium concentrations before and after treatment with the adsorbent. The results are shown in Table 2.
  • Example 2 ⁇ Preparation of simulated contaminated seawater 2> Simulated contaminated water containing non-radioactive cesium and strontium simulating contaminated water from the Fukushima Daiichi nuclear power plant was prepared by the following procedure.
  • an aqueous solution was prepared using normal salt so that the salinity concentration became 0.3 wt%. Then, cesium chloride and strontium chloride were added so that the cesium concentration was 1 mg / L and the strontium concentration was 10 mg / L to prepare simulated contaminated seawater 2 having a cesium concentration of 1.0 mg / L and a strontium concentration of 10 mg / L. did. A part of the simulated contaminated seawater 2 was collected and analyzed by ICP-MS. As a result, the cesium concentration was 1.08 mg / L and the strontium concentration was 9.74 mg / L.
  • a 100 ml Erlenmeyer flask is filled with 0.5 g of the adsorbent having a particle size of 300 to 600 ⁇ m prepared in Production Example 1, 50 ml of simulated contaminated seawater 2 is added, and the mixture is allowed to stand for 24 hours.
  • cesium and strontium concentrations were measured by sampling a portion, the cesium concentration was 0.09 mg / L and the strontium concentration was 0.15 mg / L.
  • Example 3 ⁇ Preparation of simulated contaminated seawater 3> Simulated contaminated water containing non-radioactive cesium and strontium simulating contaminated water from the Fukushima Daiichi nuclear power plant was prepared by the following procedure.
  • an aqueous solution was prepared by using Marine Art SF-1 which is a chemical for producing artificial seawater by Osaka Yakuken Co., Ltd. so that the salt concentration becomes 0.17 wt%.
  • cesium chloride was added so that the cesium concentration was 1 mg / L, and a simulated contaminated seawater 3 having a cesium concentration of 1.0 mg / L was prepared.
  • the cesium concentration was 0.81 to 1.26 mg / L and the strontium concentration was 0.26 to 0.42 mg / L.
  • the removal performance of cesium is shown in FIG. 2, and the removal performance of strontium is shown in FIG. 2 and 6, the horizontal axis indicates how many times the amount of simulated contaminated seawater has passed through the adsorbent volume.
  • V The vertical axis represents values obtained by dividing the concentration of cesium or strontium at the column outlet by the concentration of cesium or strontium at the column inlet, respectively.
  • the height of the layer is 10 cm and the space velocity is 200 h ⁇ 1 . V. It can be seen that almost 100% of cesium can be adsorbed and removed up to about 13,000.
  • the adsorption / removal performance of strontium is inferior to the adsorption / removal performance of cesium at a bed height of 10 cm and a space velocity of 200 h ⁇ 1 in the adsorption tower.
  • V. Strontium can be removed by about 50 to 60% up to about 15000.
  • Example 4 Simulated contaminated seawater 4 (cesium concentration adjusted in the same manner as simulated contaminated seawater 3 was prepared by filling 200 ml of an adsorbent having a particle diameter of 300 ⁇ m or more and 600 ⁇ m or less prepared in Production Example 1 into a glass column having an inner diameter of 16 mm so as to have a layer height of 100 cm. 0.83 to 1.24 mg / L, strontium concentration 0.24 to 0.30 mg / L) at a flow rate of 67 ml / min (water flow velocity 20 m / h, space velocity 20 h ⁇ 1 ) Were collected periodically to measure cesium and strontium concentrations. As a result of analyzing the outlet water, the cesium concentration was 0.00 to 0.01 mg / L, and the strontium concentration was 0.00 to 0.27 mg / L.
  • Fig. 4 shows the cesium removal performance
  • Fig. 5 shows the strontium removal performance
  • the horizontal axis indicates how many times the amount of simulated contaminated seawater passed through the adsorbent volume.
  • V The vertical axis represents values obtained by dividing the concentration of cesium or strontium at the column outlet by the concentration of cesium or strontium at the column inlet, respectively.
  • Example 5 Simulated contaminated seawater 5 (cesium concentration adjusted in the same manner as simulated contaminated seawater 3 was prepared by filling 20 ml of an adsorbent having a particle diameter of 300 ⁇ m or more and 600 ⁇ m or less prepared in Production Example 1 into a glass column having an inner diameter of 16 mm so as to have a layer height of 10 cm.
  • 40 ml of the adsorbent having a particle diameter of 300 ⁇ m or more and 600 ⁇ m or less prepared in Production Example 1 is packed into a glass column having an inner diameter of 16 mm so as to have a layer height of 20 cm, and the simulated contaminated seawater 5 is flowed at a flow rate of 134 ml / min (water passage line). Water was passed at a flow rate of 40 m / h and a space velocity of 200 h ⁇ 1 ), and outlet water was collected periodically to measure cesium and strontium concentrations. As a result of analyzing the outlet water, the cesium concentration was 0.00 to 0.07 mg / L, and the strontium concentration was 0.11 to 0.32 mg / L.
  • the value obtained by dividing the column outlet concentration by the column inlet concentration (C / C0) is 0.1 for cesium and 1.0 for strontium.
  • Table 4 shows the values. As can be seen from Table 4, when the space velocity exceeds 200h -1 (285h -1 and 400h -1 ) compared to the case where the space velocity is 200h -1 or less (20h -1 and 200h -1 ), C / C0 is 0.1 for cesium and 1.0 for strontium. V. It was confirmed that the removal performance of both cesium ions and strontium ions was lowered.
  • Example 6 20 ml of the adsorbent prepared in Production Examples 1, 2, and 3 was packed in a glass column having an inner diameter of 16 mm so as to have a layer height of 10 cm, and the simulated contaminated seawater 6 adjusted in the same manner as the simulated contaminated seawater 3 (the cesium concentration was 0. 0). 81 to 1.39 mg / L, the strontium concentration was 0.27 to 0.40 mg / L) at a flow rate of 67 ml / min (water flow velocity 20 m / h, space velocity 200 h ⁇ 1 ), The outlet water was collected periodically to measure cesium and strontium concentrations. As a result of analyzing the outlet water, the cesium concentration was 0.00 to 0.11 mg / L, and the strontium concentration was 0.07 to 0.34 mg / L.
  • the value obtained by dividing the column outlet concentration by the column inlet concentration (C / C0) is 0.1 for cesium and 1.0 for strontium.
  • Table 5 shows values obtained by dividing the value by the net specific gravity (specific gravity excluding the binder) of the mixture of crystalline silicotitanate and titanate. As can be seen from Table 5, it was confirmed that Production Examples 2 and 3 using a binder had substantially the same cesium ion and strontium ion removal performance as compared to Production Example 1 in which no binder was used.
  • Example 7 20 ml of the adsorbent prepared in Production Examples 2 and 4 was packed in a glass column having an inner diameter of 16 mm so as to have a layer height of 10 cm, and the simulated contaminated seawater 7 adjusted in the same manner as the simulated contaminated seawater 3 (cesium concentration was 0.85 to 0.96 mg / L and the strontium concentration was 0.17 to 0.38 mg / L) at a flow rate of 6.5 ml / min (water flow velocity 2 m / h, space velocity 20 h ⁇ 1 ), The outlet water was collected periodically to measure cesium and strontium concentrations. As a result of analyzing the outlet water, the cesium concentration was 0.00 to 0.02 mg / L, and the strontium concentration was 0.00 to 0.35 mg / L.
  • the cesium removal performance is shown in FIG. 6, and the strontium removal performance is shown in FIG. 6 and 10, the horizontal axis is BV indicating how many times the amount of simulated contaminated seawater was passed with respect to the volume of the adsorbent, and the vertical axis represents the concentration of cesium or strontium at the column outlet and cesium at the column inlet. Or it is a value (C / C0) divided by the concentration of strontium.
  • strontium can be removed by adsorption up to about V5000.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

一般式:NaTiSi16・nHO、(Na(1-x)TiSi16・mHO及びKTiSi16・lHO(これらの式中、xは0超1未満の数を示し、n、m及びlはそれぞれ0~8の数を示す。)で表される結晶性シリコチタネートから選ばれる少なくとも一種と、一般式:NaTi20・qHO、(Na(1-y)Ti20・rHO及びKTi20・tHO(これらの式中、yは0超1未満の数を示し、q、r及びtはそれぞれ0~10の数を示す。)で表されるチタン酸塩から選ばれる少なくとも一種を含む粒径250μm以上1200μm以下の粒子状の吸着材を10cm以上30cm以下の層高で充填した吸着塔に、放射性セシウム及び放射性ストロンチウムを含む廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水する。

Description

放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法
 本発明は、放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法に関し、特に原子力発電プラント内で発生するNaイオン、Caイオン及び/又はMgイオンなどの夾雑イオンを含む廃液中に含まれる放射性セシウムと放射性ストロンチウムの両方の元素を除去する放射性廃液の処理方法に関する。
 2011年3月11日の東日本大震災により福島第一原子力発電所で発生した事故により、放射性ヨウ素を含む放射性廃液が大量に発生している。この放射性廃液には、原子炉圧力容器や格納容器、使用済み燃料プールに注水される冷却水に起因して発生する汚染水や、トレンチ内に滞留しているトレンチ水、原子炉建屋周辺のサブドレンと呼ばれる井戸より汲み上げられるサブドレン水、地下水、海水などがある(以下「放射性廃液」と称す。)。これらの放射性廃液は、サリー(SARRY, Simplified Active Water Retrieve and Recovery System(単純型汚染水処理システム)セシウム除去装置)やアルプス(ALPS, 多核種除去装置)などと呼ばれる処理設備にて放射性物質が除去され、処理された水はタンクに回収されている。
 放射性物質のうち、放射性セシウムを選択的に吸着除去することができる物質として、紺青等のフェロシアン化合物や、ゼオライトの一種であるモルデナイト、アルミノケイ酸塩、チタンケイ酸塩(CST)などがある。たとえばサリーでは、放射性セシウムを除去するために、アルミノケイ酸塩であるUOP社製のIE96とCSTであるUOP社製のIE911が使用されている。放射性ストロンチウムを選択的に吸着除去することができる物質として、天然ゼオライトや合成A型及びX型ゼオライト、チタン酸塩、CSTなどがある。たとえばアルプスでは、放射性ストロンチウムを除去するためにチタン酸塩である吸着材が使用されている。
 日本原子力学会バックエンド部会にて公開されている「福島第一原子力発電所内汚染水処理技術のための基礎データ」(非特許文献1)では、粉状のCSTであるUOP社製IE910、及び成型されたCSTであるUOP社製IE911のセシウム及びストロンチウムの吸着性能について、粉状のCSTは放射性セシウム及びストロンチウムの吸着能があり、成形されたCSTはセシウム吸着性能が高いがストロンチウム吸着性能は低いことが報告されている。
 また、チタンケイ酸塩化合物に0.5モル/L以上2.0モル/Lの範囲内の水酸化ナトリウム濃度を有する水酸化ナトリウム水溶液を接触させて表面処理することにより得られる改質CSTが、セシウムの除去効率99%以上及びストロンチウムの除去効率95%以上を達成すること(特許文献1)が報告されている。
 粉状のCSTは、凝集沈殿により処理する方法などでは使用することができるが、サリーやアルプスで採用されている、吸着材をカラムに充填して被処理水を通水する方法には適していない。
 成型したCSTのストロンチウム吸着性能を向上させるため、特許文献1や非特許文献2に示される処理や操作が検討されているが、大量の薬品が必要となりコストアップにつながる問題があった。
 このため煩雑な処理や操作をすることなく、セシウム及びストロンチウムの両方の吸着性能が高く、吸着カラムによる通水処理に適する成型されたCSTを使用した放射性廃液処理方法が望まれている。一方で、CSTは熱に弱く、強熱すると組成変化を起こし、セシウム及びストロンチウムの吸着能が低下する。ゼオライト成型体では粘土鉱物などのバインダを使用し、500~800℃にて焼成し、成型体の強度を向上させているが、CSTは前述の通り強熱することで吸着能が低下するため、焼成することができない。このため、CSTを強熱せずに成型することが必要であった。
 また、ナトリウムイオンは、放射性セシウムとCSTとのイオン交換反応を抑制する傾向があることが報告されており(非特許文献2)、濃度が高い海水中からの放射性セシウム及び放射性ストロンチウムの除去性能が低下するという問題がある。
 本発明者らは、ナトリウムイオンを含む海水からのセシウム及びストロンチウムの吸着性能を高めることを目的として、一般式;NaTiSi16・nHO、(Na(1-x)TiSi16・nHO及びKTiSi16・nHO(これらの式中、xは0超1未満の数を示し、nは0~8の数を示す。)で表される結晶性シリコチタネートから選ばれる少なくとも一種と、一般式;NaTi20・mHO、(Na(1-y)Ti20・mHO及びKTi20・mHO(これらの式中、yは0超1未満の数を示し、mは0~10の数を示す。)で表されるチタン酸塩から選ばれる少なくとも一種を含む、セシウム又はストロンチウムの吸着材及びその製造方法を提案した(特許文献2)。
特許5285183号公報 特許5696244号公報
「福島第一原子力発電所内汚染水処理技術のための基礎データ」http://www.nuce-aesj.org/projects:clwt:start JAEA-Research 2011-037
 本発明の目的は、吸着材をカラムに充填して被処理水を通水する方法により放射性セシウム及び放射性ストロンチウムの両者を高い除去効率にて簡易に除去することができる、放射性廃液の処理方法を提供することにある。
 上記課題を解決するため、本発明者らは鋭意研究した結果、特定の吸着材を充填した吸着塔に特定の通水条件にて放射性廃液を通水することによって、放射性セシウム及び放射性ストロンチウムの両者を簡易に効率よく除去できることを知見し、本発明を完成するに至った。
 本発明は以下の態様を含む。
[1]一般式:NaTiSi16・nHO、(Na(1-x)TiSi16・mHO及びKTiSi16・lHO(これらの式中、xは0超1未満の数を示し、n、m及びlはそれぞれ0~8の数を示す。)で表される結晶性シリコチタネートから選ばれる少なくとも一種と、一般式:NaTi20・qHO、(Na(1-y)Ti20・rHO及びKTi20・tHO(これらの式中、yは0超1未満の数を示し、q、r及びtはそれぞれ0~10の数を示す。)で表されるチタン酸塩から選ばれる少なくとも一種を含む、セシウム又はストロンチウムの吸着材であって、粒径250μm以上1200μm以下の粒子状に成形された吸着材を10cm以上300cm以下の層高で充填した吸着塔に、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水して、当該吸着材に放射性セシウム及び放射性ストロンチウムを吸着させることを含む、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液の処理方法。
[2]前記放射性廃液は、Naイオン、Caイオン及び/又はMgイオンを含む廃液である、[1]に記載の処理方法。
[3]前記吸着材は、X線源にCu-Kαを用いて回折角(2θ)が5~80゜の他囲でX線回折測定したときに、前記結晶性シリコチタネートのピークが1以上観察されると共に前記チタン酸塩のピークが1以上観察され、前記結晶性シリコチタネートの主ピークの高さに対する前記チタン酸塩の主ピークの高さの比が5%以上70%以下である、[1]又は[2]に記載の処理方法。
[4]前記吸着材は、X線源にCu-Kαを用いて回折角(2θ)が5~80゜の範囲でX線回折測定したときに、前記チタン酸塩の主ピークが回折角(2θ)8~10゜以下に観察される、[1]~[3]のいずれかに記載の処理方法。
 本発明によれば、吸着材を吸着塔に充填して被処理水を通水する方法により放射性セシウム及び放射性ストロンチウムの両者を高い除去効率にて簡易に除去することができる。
製造例1において製造した吸着材のX線回折スペクトルである。 実施例3におけるセシウム吸着除去性能を示すグラフである。 実施例3におけるストロンチウム吸着除去性能を示すグラフである。 実施例4におけるセシウム吸着除去性能を示すグラフである。 実施例4におけるストロンチウム吸着除去性能を示すグラフである。 実施例7におけるセシウム吸着除去性能を示すグラフである。 実施例7におけるストロンチウム吸着除去性能を示すグラフである。
 本発明は、一般式:NaTiSi16・nHO、(Na(1-x)TiSi16・mHO及びKTiSi16・lHO(これらの式中、xは0超1未満の数を示し、n、m及びlはそれぞれ0~8の数を示す。)で表される結晶性シリコチタネートから選ばれる少なくとも一種と、一般式:NaTi20・qHO、(Na(1-y)Ti20・rHO及びKTi20・tHO(これらの式中、yは0超1未満の数を示し、q、r及びtはそれぞれ0~10の数を示す。)で表されるチタン酸塩から選ばれる少なくとも一種を含む、セシウム又はストロンチウムの吸着材であって、粒子径250μm以上1200μm以下の粒子状に成形された吸着材を10cm以上300cm以下の層高で充填した吸着塔に、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水して、当該吸着材に放射性セシウム及び放射性ストロンチウムを吸着させることを含む、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液の処理方法に関する。
 本発明の処理方法において用いる吸着材は、日本特許5696244号に開示されている300℃以下の水熱反応及び200℃以下の乾燥条件とする製造方法で得られる吸着材を粒径250μm以上1200μm以下、好ましくは300μm以上800μm以下、より好ましくは300μm以上600μm以下の粒子状に成形したものである。本発明の吸着材の粒径は市販されている一般的な吸着材(例えばゼオライト系吸着材は粒径1.5mm程度のペレットである)と比較して微細な粒子状であり、吸着速度が高い。一方、粉末状の吸着材では、吸着塔に充填して通水処理を行うと流出してしまうため、所定粒径に成形することが好ましい。含水状態の結晶性シリコチタネートとチタン酸塩との混合ゲルを例えば攪拌混合造粒、転動造粒、押し出し造粒、破砕造粒、流動層造粒、噴霧乾燥造粒(スプレードライ)、圧縮造粒、溶融造粒等の公知の造粒方法を用いて、粒子状に成形することができる。造粒の際には、例えばポリビニルアルコール、ポリエチレンオキサイド、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、デンプン、コーンスターチ、糖蜜、乳糖、ゼラチン、デキストリン、アラビアゴム、アルギン酸、ポリアクリル酸、グリセリン、ポリエチレングリコール、ポリビニルピロリドン、アルミナ等の公知のバインダを用いて造粒したものでも、これらのバインダを用いずに造粒したものでもよい。バインダを用いずに造粒した吸着材は、体積当たりの吸着材量が増えるため、吸着塔に充填して用いる本発明の処理方法においては同じ吸着塔の体積当たりの処理量が増加するので好ましい。あるいは、含水状態の結晶性シリコチタネートとチタン酸塩との混合ゲルを乾燥させた後、粉砕して粒子状としてもよい。粒子状に成形した後、篩を用いて分級して所定粒径範囲の粒子を得ることができる。
 また、本発明で用いる上記所定範囲の粒径を有する粒子状に成形されている吸着材は、湿潤状態で0.1N以上の強度を有することが好ましく、処理対象となる放射性廃液の通水時の圧力(一般的には、0.1~1.0MPa)や長期間の通水によって崩壊しない。
 本発明の処理方法において、前記吸着材を10cm以上300cm以下の層高、好ましくは20cm以上250cm以下、より好ましくは50cm以上200cm以下の層高となるように吸着塔に充填する。層高10cm未満では、吸着材を吸着塔に充填する際に吸着材層を均一に充填することができず、通水時のショートパスを引き起こし、結果として処理水質が悪化する。層高が高い程、適切な通水差圧が実現でき、処理水質が安定化し、処理水の総量も多くなるため好ましいが、層高300cmを越えると通水差圧が大きくなりすぎる。
 前記吸着材を充填した吸着塔に対して、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液を通水線流速(LV)1m/h以上40m/h以下、好ましくは5m/h以上30m/h以下、より好ましくは10m/h以上20m/h以下、空間速度(SV)200h-1以下、好ましくは100h-1以下、より好ましくは50h-1以下、好ましくは5h-1以上、より好ましくは10h-1以上で通水する。通水線流速が40m/hを越えると通水差圧が大きくなり、1m/h未満では処理水量が少ない。空間速度(SV)は一般的な廃液処理で用いられる20h-1以下、特に10h-1程度でも本発明の吸着材の効果を得ることができるが、通常の吸着材を用いる廃液処理では20h-1を越える大きな空間速度(SV)では安定した処理水質を実現できず、除去効果を得る事ができない。本発明においては、吸着塔を大型化せずに通水線流速及び空間速度を大きくすることができる。
 なお、通水線流速とは、吸着塔に通水する水量(m/h)を吸着塔の断面積(m)で除した値である。空間速度とは、吸着塔に通水する水量(m/h)を吸着塔に充填した吸着材の体積(m)で除した値である。
 本発明の処理方法は、Naイオン、Caイオン及び/又はMgイオンを含む廃液の除染に適する。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。各種成分及び吸着材の分析は下記に示す装置及び条件で行った。
 <X線回折>
 Bruker社 D8 AdvanceSを用いた。線源としてCu-Kαを用いた。測定条件は、管電圧40kV、管電流40mA、走査速度0.1°/secとした。
 <セシウム濃度及びストロンチウム濃度>
 アジレントテクノロジー社製誘導結合プラズマ質量分析装置(ICP-MS)型式:Agilent 7700xを用いて、セシウム133とストロンチウム88の定量分析を行った。試料は希硝酸で1000倍希釈し0.1%硝酸マトリックスとして分析した。標準試料はストロンチウムを0.05ppb、0.5ppb、1.0ppb、5.0ppb及び10.0ppb含有した水溶液、並びにセシウムを0.005ppb、0.05ppb、0.1ppb、0.5ppb及び1.0ppb含有した水溶液を使用した。
 [製造例1]
 3号ケイ酸ソーダ(日本化学工業株式会社製[SiO:28.96%、NaO:9.37%、HO:61.67%、SiO/NaO=3.1])90g、苛性ソーダ水溶液(工業用25%水酸化ナトリウム[NaOH:25%、HO:75%])667.49g及び純水84.38gを混合し撹拌して混合水溶液を得た。この混合水溶液に、四塩化チタン水溶液(株式会社大阪チタニウムテクノロジーズ社製36.48%水溶液)443.90gをペリスタポンプで1時間20分にわたって連続的に添加して混合ゲルを製造した。この混合ゲルを、四塩化チタン水溶液の添加後、1時間にわたり室温で静置熟成した。このとき混合ゲル中のTiとSiとのモル比はTi:Si=2:1であった。また混合ゲル中のSiOの濃度は2%、TiOの濃度は5.3%、NaO換算したナトリウム濃度は3.22%であった。
 得られた混合ゲルをオートクレーブに入れ、1時間かけて170℃に昇温したのち、この温度を維持しながら撹拌下に24時間反応を行った。反応後のスラリーをろ過、洗浄、乾燥して吸着材(結晶性シリコチタネート及びチタン酸塩の混合物)を得た。得られた吸着材のX線回折チャート(ベースライン補正後)を図1に示す。図1に示すように、X線回折チャートにおいては、2θ=10~13°の範囲に、前記結晶性シリコチタネートのメインピーク(M.P.)(Na4Ti4Si316・6H2Oに由来)が検出されるとともに、2θ=8~10°に前記チタン酸塩であるチタン酸ナトリウムのメインピーク(Na4Ti920・5~7H2Oに由来)が検出された。図1に示す補正後のX線回折チャートに基づき、結晶性シリコチタネートのメインピークの高さに対してチタン酸ナトリウムのメインピークの高さの比(%)を求めた。
 結晶性シリコチタネートとチタン酸ナトリウムのモル比を下記方法で求めた。
(a)吸着材を、適当な容器(アルミリング等)に入れ、ダイスで挟みこんでからプレス機で10MPaの圧力をかけてペレット化することにより測定用試料を得る。この試料を蛍光X線装置(装置名:ZSX100e、管球:Rh(4kW)、雰囲気:真空、分析窓:Be(30μm)、測定モード:SQX分析(EZスキャン)、測定径:30mmφ、(株)リガク製)で全元素測定する。吸着材中のSiO2及びTiO2の含有量(質量%)を、半定量分析法であるSQX法で計算することで算出する。
(b)求めたSiO2及びTiO2の含有量(質量%)をそれぞれの分子量で割り、吸着材100g中のSiO2及びTiO2のモル数を得る。
(c)前記で求めた吸着材中のSiO2のモル数の3分の1を吸着材中の前記結晶性シリコチタネート(Na4Ti4Si316・nH2O)のモル数と仮定する。また、前記結晶性シリコチタネート1モル中のTi原子のモル数が4であることから、下記式(1)により吸着材中の前記チタン酸塩のモル数を求める。
Figure JPOXMLDOC01-appb-M000001
(d)得られた結晶性シリコチタネートのモル数及びチタン酸塩のモル数からモル比を得る。
 X線回折構造から判断される組成、及び上記方法により求めた結晶性シリコチタネートとチタン酸ナトリウムとのモル比を表1に示す。
Figure JPOXMLDOC01-appb-T000002
    
 上記の結晶性シリコチタネート及びチタン酸塩の混合スラリーを、真円換算径0.6mmのスクリーンを先端部に備えた筒型の押出成形器に投入して押出成形した。スクリーンから押し出された含水成形体を、120℃で1日、常圧で乾燥させた。得られた乾燥物を軽く粉砕した後、目開き600μmの篩にかけた。篩上の残渣を再度粉砕し、全量を目開き600μmの篩に通した。次に、目開き600μmの篩を通過した全量を回収して目開き300μmの篩にかけ、篩上の残渣を回収し、サンプルとした。
 [製造例2]
 製造例1にて、目開き300μmの篩を通過した粉状の結晶性シリコチタネートを、溶融造粒法にて、ポリビニルアルコールをバインダとして使用し、粒状に成形した。成形後はよく洗浄を行い、篩にて粒径が0.35~1.18mmのサンプルを得た。
 [製造例3]
 製造例1にて、目開き300μmの篩を通過した粉状の結晶性シリコチタネートを、溶融造粒法にて、アルギン酸をバインダとして使用し、粒状に成形した。成形後はよく洗浄を行い、篩にて粒径が0.35~1.18mmのサンプルを得た。
 [製造例4]
 製造例1にて、目開き300μmの篩を通過した粉状の結晶性シリコチタネートを、押し出し法にて、アルミナをバインダとして使用し、柱状に成形した。成形後、篩にて粒径が0.30~0.60mmのサンプルを得た。
 [実施例1]
 <模擬汚染海水1の調製>
 以下の手順にて、福島第一原発の汚染水を模擬した非放射性セシウム及びストロンチウムを含む模擬汚染水を調製した。
 まず、大阪薬研株式会社の人工海水製造用薬品であるマリンアートSF-1(塩化ナトリウム22.1g/L、塩化マグネシウム六水和物9.9g/L、塩化カルシウム二水和物1.5g/L、無水硫酸ナトリウム3.9g/L、塩化カリウム0.61g/L、炭酸水素ナトリウム0.19g/L、臭化カリウム96mg/L、ホウ砂78mg/L、無水塩化ストロンチウム0.19g/L、フッ化ナトリウム3mg/L、塩化リチウム1mg/L、ヨウ化カリウム81μg/L、塩化マンガン四水和物0.6μg/L、塩化コバルト六水和物2μg/L、塩化アルミニウム六水和物8μg/L、塩化第二鉄六水和物5μg/L、タングステン酸ナトリウム二水和物2μg/L、モリブデン酸アンモニウム四水和物18μg/L)を用いて塩分濃度が3.0wt%になるように水溶液を作成した。そこに、セシウム濃度が1mg/Lとなるように塩化セシウムを添加し、セシウム濃度1.0mg/Lの模擬汚染海水1を調製した。模擬汚染海水1の一部を採取して、ICP-MSにより分析したところ、セシウム濃度は1.07mg/L、ストロンチウム濃度は6.39mg/Lであった。
 製造例1で調製した粒径300μm以上600μm以下の吸着材0.5gを100mlの三角フラスコに充填し、50mlの模擬汚染海水1を添加して、24時間静置した後、模擬汚染海水1の一部を採取してセシウム及びストロンチウム濃度を測定したところ、セシウム濃度は0.06mg/L、ストロンチウム濃度は1.03mg/Lであった。
 吸着材による処理前及び処理後のセシウム及びストロンチウム濃度から、それぞれの除去率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
    
 [実施例2]
 <模擬汚染海水2の調製>
 以下の手順にて、福島第一原発の汚染水を模擬した非放射性セシウム及びストロンチウムを含む模擬汚染水を調製した。
 まず、並塩を用いて塩分濃度が0.3wt%になるように水溶液を作成した。そこに、セシウム濃度が1mg/L、ストロンチウム濃度が10mg/Lとなるように塩化セシウムと塩化ストロンチウムを添加し、セシウム濃度1.0mg/L、ストロンチウム濃度が10mg/Lの模擬汚染海水2を調製した。模擬汚染海水2の一部を採取して、ICP-MSにより分析したところ、セシウム濃度は1.08mg/L、ストロンチウム濃度は9.74mg/Lであった。
 製造例1で調製した粒径300~600μmの吸着材0.5gを100mlの三角フラスコに充填し、50mlの模擬汚染海水2を添加して、24時間静置した後、模擬汚染海水2の一部を採取してセシウム及びストロンチウム濃度を測定したところ、セシウム濃度は0.09mg/L、ストロンチウム濃度は0.15mg/Lであった。
 吸着材による処理前及び処理後のセシウム及びストロンチウム濃度から、それぞれの除去率を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
    
 [実施例3]
 <模擬汚染海水3の調製>
 以下の手順にて、福島第一原発の汚染水を模擬した非放射性セシウム及びストロンチウムを含む模擬汚染水を調製した。
 まず、大阪薬研株式会社の人工海水製造用薬品であるマリンアートSF-1を用いて塩分濃度が0.17wt%になるように水溶液を作成した。そこに、セシウム濃度が1mg/Lとなるように塩化セシウムを添加し、セシウム濃度1.0mg/Lの模擬汚染海水3を調製した。模擬汚染海水3の一部を採取して、ICP-MSにより分析したところ、セシウム濃度は0.81~1.26mg/L、ストロンチウム濃度は0.26~0.42mg/Lであった。
 製造例1で調製した粒径300~600μmの吸着材20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水3を67ml/minの流量(通水線流速20m/h、空間速度200h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.11mg/L、ストロンチウム濃度は0.09~0.26mg/Lであった。
 セシウムの除去性能を図2に、ストロンチウムの除去性能を図3に示す。図2及び6において、横軸は吸着材の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度をカラム入口のセシウム又はストロンチウムの濃度でそれぞれ除した値である。
 図2より、層高10cm、空間速度200h-1としても、B.V.13000程度までセシウムをほぼ100%近く吸着除去できていることがわかる。
 図3より、吸着塔における吸着材の層高10cm、空間速度200h-1では、セシウムの吸着除去性能と比較して、ストロンチウムの吸着除去性能が劣っているが、B.V.15000程度までストロンチウムを50~60%程度除去できている。
 [実施例4]
 製造例1で調製した粒径300μm以上600μm以下の吸着材200mlを内径16mmのガラスカラムに100cmの層高となるように充填し、模擬汚染海水3と同様に調整した模擬汚染海水4(セシウム濃度0.83~1.24mg/L、ストロンチウム濃度0.24~0.30mg/L)を67ml/minの流量(通水線流速20m/h、空間速度20h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.01mg/L、ストロンチウム濃度は0.00~0.27mg/Lであった。
 セシウムの除去性能を図4に、ストロンチウムの除去性能を図5に示す。図4及び8において、横軸は吸着材の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度をカラム入口のセシウム又はストロンチウムの濃度でそれぞれ除した値である。
 図4より、B.V.13000程度までセシウムをほぼ100%近く吸着除去できていることがわかる。図4を図2と比較すると、セシウムの吸着除去に対しては、層高10cm、空間速度200h-1と層高100cm、空間速度20h-1とで、セシウムの吸着除去性能に差違がないといえる。
 図5から、B.V.9000程度までストロンチウムをほぼ100%近く吸着除去できるが、B.V.10000を越えると急激に吸着除去性能が低下し、B.V.13000程度でC/C0=1.0に達し、完全破過することがわかる。図5を図3と比較すると、層高100cm、空間速度20h-1としたことで、B.V.9000程度までの範囲ではストロンチウムの吸着除去性能が顕著に向上したことがわかる。
 したがって、吸着材の層高を高くすること、及び空間速度を遅くすることでセシウムの吸着性能は維持したまま、ストロンチウムの吸着除去性能を顕著に向上させることが確認できた。
 [実施例5]
 製造例1で調製した粒径300μm以上600μm以下の吸着材20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水3と同様に調整した模擬汚染海水5(セシウム濃度0.91~1.24mg/L、ストロンチウム濃度0.24~0.48mg/L)を6.5~67ml/minの流量(通水線流速2m/h、空間速度20h-1~通水線流速20m/h、空間速度200h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.12mg/L、ストロンチウム濃度は0.00~0.34mg/Lであった。
 また、製造例1で調製した粒径300μm以上600μm以下の吸着材40mlを内径16mmのガラスカラムに20cmの層高となるように充填し、模擬汚染海水5を134ml/minの流量(通水線流速40m/h、空間速度200h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.07mg/L、ストロンチウム濃度は0.11~0.32mg/Lであった。
 製造例1で調製した粒径300μm以上600μm以下の吸着材200mlを内径16mmのガラスカラムに100cmの層高となるように充填し、模擬汚染海水5を67ml/minの流量(通水線流速20m/h、空間速度20h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.01mg/L、ストロンチウム濃度は0.00~0.31mg/Lであった。
 比較例として、製造例1で調製した粒径300μm以上600μm以下の吸着材14mlを内径16mmのガラスカラムに7cmの層高となるように充填し、模擬汚染海水5を67ml/minの流量(通水線流速20m/h、空間速度285h-1)、製造例1で調製した粒径300μm以上600μm以下の吸着材20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水5を134ml/minの流量(通水線流速40m/h、空間速度400h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.76mg/L、ストロンチウム濃度は0.04~0.39mg/Lであった。
 その結果のうち、カラム出口濃度をカラム入口濃度で除した値(C/C0)が、セシウムで0.1、ストロンチウムで1.0となるB.V.の値を表4に示す。表4からわかるように、空間速度が200h-1以下の場合(20h-1及び200h-1)と比較して、空間速度が200h-1を超す(285h-1及び400h-1)と、C/C0がセシウムで0.1、ストロンチウムで1.0となるB.V.の値が低くなり、セシウムイオン、ストロンチウムイオンの両方の除去性能が低下することが確認された。
Figure JPOXMLDOC01-appb-T000005
 [実施例6]
 製造例1、2、3で調製した吸着材20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水3と同様に調整した模擬汚染海水6(セシウム濃度は0.81~1.39mg/L、ストロンチウム濃度は0.27~0.40mg/Lであった)を67ml/minの流量(通水線流速20m/h、空間速度200h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.11mg/L、ストロンチウム濃度は0.07~0.34mg/Lであった。
 その結果のうち、カラム出口濃度をカラム入口濃度で除した値(C/C0)が、セシウムで0.1、ストロンチウムで1.0となるB.V.の値を結晶性シリコチタネート及びチタン酸塩の混合物の正味比重(バインダを除いた比重)で除した値を表5に示す。表5からわかるように、バインダを使用しなかった製造例1と比較して、バインダを使用した製造例2及び3でも、ほぼ同等のセシウムイオン、ストロンチウムイオン除去性能を有することが確認された。
Figure JPOXMLDOC01-appb-T000006
 [実施例7]
 製造例2、4で調製した吸着材20mlを内径16mmのガラスカラムに10cmの層高となるように充填し、模擬汚染海水3と同様に調整した模擬汚染海水7(セシウム濃度は0.85~0.96mg/L、ストロンチウム濃度は0.17~0.38mg/Lであった)を6.5ml/minの流量(通水線流速2m/h、空間速度20h-1)で通水し、出口水を定期的に採取してセシウム及びストロンチウム濃度を測定した。なお出口水の分析結果は、セシウム濃度は0.00~0.02mg/L、ストロンチウム濃度は0.00~0.35mg/Lであった。
 セシウムの除去性能を図6に、ストロンチウムの除去性能を図7に示す。図6及び10において、横軸は吸着材の体積に対して何倍量の模擬汚染海水を通水したのかを示すB.V.であり、縦軸はカラム出口のセシウム又はストロンチウムの濃度をカラム入口のセシウム又はストロンチウムの濃度でそれぞれ除した値(C/C0)である。
 図6より、層高10cm、空間速度20h-1では、B.V.9000程度までセシウムをほぼ100%近く吸着除去できていることがわかる。
 図7より、層高10cm、空間速度20h-1では、B.V5000程度までストロンチウムを吸着除去できることが分かる。
 

Claims (4)

  1. 一般式:NaTiSi16・nHO、(Na(1-x)TiSi16・mHO及びKTiSi16・lHO(これらの式中、xは0超1未満の数を示し、n、m及びlはそれぞれ0~8の数を示す。)で表される結晶性シリコチタネートから選ばれる少なくとも一種と、一般式:NaTi20・qHO、(Na(1-y)Ti20・rHO及びKTi20・tHO(これらの式中、yは0超1未満の数を示し、q、r及びtはそれぞれ0~10の数を示す。)で表されるチタン酸塩から選ばれる少なくとも一種を含む、セシウム又はストロンチウムの吸着材であって、粒径250μm以上1200μm以下の粒子状に成形された吸着材を10cm以上300cm以下の層高で充填した吸着塔に、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液を通水線流速(LV)1m/h以上40m/h以下、空間速度(SV)200h-1以下で通水して、当該吸着材に放射性セシウム及び放射性ストロンチウムを吸着させることを含む、放射性セシウム及び放射性ストロンチウムを含有する放射性廃液の処理方法。
  2. 前記放射性廃液は、Naイオン、Caイオン及び/又はMgイオンを含む廃液である、請求項1に記載の処理方法。
  3. 前記吸着材は、X線源にCu-Kαを用いて回折角(2θ)が5~80゜の他囲でX線回折測定したときに、前記結晶性シリコチタネートのピークが1以上観察されると共に前記チタン酸塩のピークが1以上観察され、前記結晶性シリコチタネートの主ピークの高さに対する前記チタン酸塩の主ピークの高さの比が5%以上70%以下である、請求項1又は2に記載の処理方法。
  4. 前記吸着材は、X線源にCu-Kαを用いて回折角(2θ)が5~80゜の範囲でX線回折測定したときに、前記チタン酸塩の主ピークが回折角(2θ)8~10゜以下に観察される、請求項1~3のいずれかに記載の処理方法。
     
PCT/JP2016/086300 2015-12-10 2016-12-07 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法 WO2017099099A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16872996.0A EP3385954A4 (en) 2015-12-10 2016-12-07 Treatment method for radioactive waste liquid comprising radioactive cesium and radioactive strontium
US16/060,636 US20190013107A1 (en) 2015-12-10 2016-12-07 Treatment method of radioactive waste water containing radioactive cesium and radioactive strontium
CA3007460A CA3007460C (en) 2015-12-10 2016-12-07 Treatment method of radioactive waste water containing radioactive cesium and radioactive strontium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240941A JP6279539B2 (ja) 2015-12-10 2015-12-10 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法
JP2015-240941 2015-12-10

Publications (1)

Publication Number Publication Date
WO2017099099A1 true WO2017099099A1 (ja) 2017-06-15

Family

ID=59013213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086300 WO2017099099A1 (ja) 2015-12-10 2016-12-07 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法

Country Status (5)

Country Link
US (1) US20190013107A1 (ja)
EP (1) EP3385954A4 (ja)
JP (1) JP6279539B2 (ja)
CA (1) CA3007460C (ja)
WO (1) WO2017099099A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3389054B1 (en) * 2015-12-10 2022-06-15 Ebara Corporation Method for treating radioactive waste liquid containing radioactive cesium and radioactive strontium
CN110193350A (zh) * 2019-06-27 2019-09-03 中国科学院青海盐湖研究所 负载钛酸盐的生物质碳气凝胶吸附剂及其制备方法与应用
JP2021041378A (ja) * 2019-09-13 2021-03-18 旭化成株式会社 多孔性成形体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042395A (ja) * 2013-08-26 2015-03-05 栗田工業株式会社 ストロンチウム吸着剤の製造方法
JP5696244B1 (ja) * 2014-03-27 2015-04-08 日本化学工業株式会社 吸着材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI370012B (en) * 2004-04-02 2012-08-11 Kureha Corp Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
FI118177B (fi) * 2004-09-24 2007-08-15 Kemira Oyj Menetelmä rautaoksihydroksidia sisältävän adsorbenttimateriaalin valmistamiseksi, adsorbenttimateriaali sekä sen käyttö
EP2198946B8 (en) * 2008-12-22 2019-08-07 Glatt Systemtechnik GmbH Composite adsorbent bead, process for its production and gas separation process
US8657924B2 (en) * 2011-08-10 2014-02-25 Praxair Technology, Inc. Process for separating gases and adsorbent compositions used therein
JP6053325B2 (ja) * 2012-05-22 2016-12-27 スリーエム イノベイティブ プロパティズ カンパニー 焼成物、金属イオン吸着材、金属イオンの除去方法、及び金属イオン除去設備
JP5285171B1 (ja) * 2012-07-31 2013-09-11 日立Geニュークリア・エナジー株式会社 放射性廃液の処理方法及び放射性廃液処理装置
JP5285183B1 (ja) * 2012-12-20 2013-09-11 日立Geニュークリア・エナジー株式会社 放射性核種吸着材の製造方法、その製造装置及び放射性核種吸着材
EP3389054B1 (en) * 2015-12-10 2022-06-15 Ebara Corporation Method for treating radioactive waste liquid containing radioactive cesium and radioactive strontium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042395A (ja) * 2013-08-26 2015-03-05 栗田工業株式会社 ストロンチウム吸着剤の製造方法
JP5696244B1 (ja) * 2014-03-27 2015-04-08 日本化学工業株式会社 吸着材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3385954A4 *

Also Published As

Publication number Publication date
EP3385954A4 (en) 2018-12-19
CA3007460C (en) 2019-06-04
EP3385954A1 (en) 2018-10-10
US20190013107A1 (en) 2019-01-10
CA3007460A1 (en) 2017-06-15
JP6279539B2 (ja) 2018-02-14
JP2017106817A (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2017099099A1 (ja) 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法
JP2013241312A (ja) 焼成物、金属イオン吸着材、金属イオンの除去方法、及び金属イオン除去設備
CA3007617C (en) Adsorbent for radioactive antimony, radioactive iodine and radioactive ruthenium, and treatment method of radioactive waste water using the adsorbent
CN107847902B (zh) 吸附碘化合物及/或锑的吸附剂及其制造方法以及使用该吸附剂的放射性废液的处理方法及装置
EP3231509A1 (en) Adsorbent and method for producing same
JP6708663B2 (ja) 放射性セシウム及び放射性ストロンチウムを含む放射性廃液の処理方法
WO2018066634A1 (ja) 放射性セシウムを含有する放射性廃液の処理方法
JP5793231B1 (ja) ヨウ素酸イオン吸着剤及びその製造方法
JP6158014B2 (ja) 放射性物質吸着剤、その製造方法およびその製造装置
JP6470354B2 (ja) シリコチタネート成形体及びその製造方法、シリコチタネート成形体を含むセシウム又はストロンチウムの吸着剤、及び当該吸着剤を用いる放射性廃液の除染方法
JP6773511B2 (ja) 放射性ストロンチウムを含有する放射性廃液の処理方法
JP2013078725A (ja) 低結晶性乃至無定形水酸化チタンを含む吸着剤とその製造方法とセシウムイオンを含む水溶液の処理方法
EP3848116A1 (en) Cobalt ion adsorbent, method for producing same and treatment apparatus for cobalt ion-containing liquid
JP2015171958A (ja) 多孔性チタン酸塩及びその製造方法、金属イオン吸着材、金属イオンの除去方法、並びに金属イオン除去設備
JP6807374B2 (ja) 放射性ヨウ素含有流体の処理方法
Papynov et al. Manganese oxide-based sorbent for Sr-90 radionuclide removal from seawater
JPWO2016056530A1 (ja) 吸着材
JP2016043329A (ja) チタン酸塩イオン交換体およびその製造方法
JP2014186033A (ja) 水酸化チタンを含むセシウム吸着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3007460

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872996

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016872996

Country of ref document: EP

Effective date: 20180705