WO2017098539A1 - 鉄道車両用制御装置、列車編成および主電動機制御方法 - Google Patents

鉄道車両用制御装置、列車編成および主電動機制御方法 Download PDF

Info

Publication number
WO2017098539A1
WO2017098539A1 PCT/JP2015/006140 JP2015006140W WO2017098539A1 WO 2017098539 A1 WO2017098539 A1 WO 2017098539A1 JP 2015006140 W JP2015006140 W JP 2015006140W WO 2017098539 A1 WO2017098539 A1 WO 2017098539A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
torque
main motor
internal combustion
specific
Prior art date
Application number
PCT/JP2015/006140
Other languages
English (en)
French (fr)
Inventor
秋山 悟
岩永 慎一郎
輝之 ▲高▼橋
山田 穣二
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US16/060,976 priority Critical patent/US11260758B2/en
Priority to CN201580085140.6A priority patent/CN108367692B/zh
Priority to JP2017554663A priority patent/JP6564470B2/ja
Priority to PCT/JP2015/006140 priority patent/WO2017098539A1/ja
Priority to TW105140624A priority patent/TWI652187B/zh
Publication of WO2017098539A1 publication Critical patent/WO2017098539A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C3/00Electric locomotives or railcars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Definitions

  • the present invention relates to a control device for a railway vehicle, a train organization provided with the control device, and a method for controlling a main motor or an internal combustion engine of the railway vehicle.
  • railway vehicles have a plurality of noise sources peculiar to railway vehicles, such as underfloor equipment, main motors mounted on carriages, and gears and gear-type shaft joints that transmit power between the main motors and wheel shafts.
  • an internal combustion engine is also a noise source in a pneumatic vehicle.
  • the noises from these multiple noise sources are combined into the noise inside and outside the railway vehicle.
  • Conventionally, various techniques for reducing the noise inside and outside a railway vehicle have been proposed.
  • Patent Document 1 discloses a vehicle control device that determines the number of inverters to be operated according to a load of a train with reference to a pattern stored in advance.
  • Patent Document 2 discloses a control device that causes a main motor to output a power running torque or a regenerative torque during coasting so as to close a gap between tooth surfaces of a gear shaft joint.
  • Some train formations are composed of multiple vehicles with different grades. Higher grade vehicles are designed to provide more comfort to passengers. Therefore, it is desirable to provide a quieter environment for high-grade vehicles even in the same train organization.
  • the power source is one of the noise sources in railway vehicles
  • the quietness may be further enhanced by making a high-grade vehicle an accompanying vehicle.
  • the ratio of powered vehicles in train formation has increased, and therefore, not all high-grade vehicles can be associated vehicles.
  • a high-grade vehicle is a powered vehicle, it is difficult to provide a special and quiet environment within the vehicle.
  • a certain device is mounted only on a specific vehicle within one train organization, and that device may be one of noise sources.
  • a current collector for example, a pantograph
  • the vehicle interior noise of a vehicle equipped with a device that is a noise source may be larger than the vehicle interior noise of a vehicle without the device.
  • Patent Documents 1 and 2 do not take any measures against such a situation.
  • an object of the present invention is to reduce the noise of a specific vehicle within one train formation.
  • a railcar control device is a railcar control device that controls a plurality of main motors provided in train formation, and includes a control command input unit to which a control command is input, and the control command input
  • the required torque based on the control command input to the unit is less than the maximum value
  • the torque of the specific main motor among the plurality of main motors is made smaller than the torque of other main motors other than the specific main motor.
  • a torque command determination unit that determines torque commands for the plurality of main motors.
  • a railcar control device is a railcar control device that controls a plurality of internal combustion engines included in train formation, and a control command input unit to which a control command is input, and the input
  • a control command input unit to which a control command is input, and the input
  • the required output of the internal combustion engine based on the control command is less than the maximum value, among the plurality of internal combustion engines, the output of the specific internal combustion engine is made smaller than the output of other internal combustion engines other than the specific internal combustion engine.
  • An output command determining unit that determines outputs of the plurality of internal combustion engines.
  • the train organization includes such a railway vehicle control device.
  • a method for controlling a main motor of a railway vehicle includes a specific main motor among the plurality of main motors when a control command is input and a required torque based on the input control command is less than a maximum value.
  • the torque command for the plurality of main motors is performed so that the torque of the main motor other than the specific main motor is smaller than that of the main motor.
  • a method for controlling an internal combustion engine of a railway vehicle wherein a control command is input, and when the required output of the internal combustion engine based on the input control command is less than a maximum value, Of these, an output command is issued to the plurality of internal combustion engines so that the output of the specific internal combustion engine is made smaller than the output of the internal combustion engine other than the specific internal combustion engine.
  • the torque (output) of the specific main motor (specific internal combustion engine) is smaller than that of the other main motor (other internal combustion engine). Therefore, the noise from the specific main motor (specific internal combustion engine) is reduced more than the noise from the other main motor (other internal combustion engine). Therefore, it is possible to reduce the noise around the carriage (around the specific internal combustion engine) driven by the specific main motor (specific internal combustion engine) as compared to other areas in the train formation.
  • noise of a specific vehicle can be reduced within one train formation.
  • FIG. 1 is a conceptual diagram of a main circuit and a control device according to a first embodiment. It is a graph showing the torque command map which concerns on 1st Embodiment.
  • 4A shows the torque of the main motor in the embodiment
  • FIG. 4B shows the torque of the main motor in the comparative example.
  • It is a conceptual diagram of the train organization which concerns on 2nd Embodiment.
  • It is a key map of train organization concerning a 3rd embodiment.
  • It is a conceptual diagram of the train organization which concerns on 4th Embodiment.
  • It is a conceptual diagram of the train organization which concerns on 5th Embodiment.
  • FIG. 10A is a graph showing an output command map according to the fifth embodiment
  • FIG. 10B is a graph showing a speed stage command map according to the fifth embodiment.
  • FIG. 1 shows a train organization 1 according to the first embodiment.
  • the train organization 1 is composed of a plurality of vehicles 2.
  • each vehicle 2 is a bogie equipped with a vehicle body 3 and two carriages 4.
  • the two trolleys 4 are arranged away from each other in the vehicle length direction, and each trolley 4 includes two wheel shafts 5 that roll on the rail R.
  • the vehicle body 3 is supported by two carriages 4.
  • An underfloor device 6 is installed under the floor of the vehicle body 3 and disposed between the two carriages 4.
  • blocks AC, CP, TM, CI, MTr, or Pan are described so as to correspond to each vehicle 2, but this description schematically shows devices provided in each vehicle 2.
  • the air conditioner AC, the air compressor CP, the main motor TM, the main converter CI, and the main transformer MTr constitute the underfloor device 6.
  • the pantograph Pan is provided on the roof, the pantograph Pan is written together with the underfloor equipment 6 (the same applies to FIGS. 6 and 8).
  • the air conditioner AC may be provided on the roof (see the fifth embodiment shown in FIG. 8).
  • the train organization 1 is composed by connecting two vehicles 2 adjacent in the vehicle length direction with a connector (not shown).
  • each electric vehicle 2M is equipped with one or more main motors 21.
  • the output shaft of each main motor 21 is connected to one or more wheel shafts 5 via a power transmission mechanism (not shown), and each main motor 21 rotationally drives the corresponding one or more wheel shafts 5.
  • the wheel shaft connected to the main motor 21 via the power transmission mechanism may be referred to as “dynamic shaft 5a” (see the black circle in FIG. 1).
  • the main motor 21 has a one-to-one correspondence with the dynamic shaft 5a and rotationally drives one corresponding dynamic shaft 5a.
  • the four wheel shafts 5 of the electric vehicle 2M are all dynamic shafts 5a.
  • Two main motors 21 are provided in one carriage 4 of the electric vehicle 2M, and four main motors 21 are mounted on one electric vehicle 2M.
  • the number of main motors 21 in one electric vehicle M can be changed as appropriate.
  • One carriage 4 of the electric vehicle 2M may be equipped with one main motor 21, and the main motor 21 may drive the two wheel shafts 5 of the carriage 4.
  • Each vehicle 2 is a passenger vehicle having a cabin in the vehicle body 3.
  • the guest rooms are classified as “special (or first-class) area 3a” and “general (or second-class) area 3b”.
  • a general seat is installed in the general area 3b.
  • special seats that are more expensive than general seats are installed in terms of properties (size, hardness, material of the upholstery, etc.) and functions.
  • the “seat” in this document refers to a facility that allows passengers to leave their bodies while riding, and may be a seat or a bed.
  • a passenger car having the entire guest room as the general area 3b may be referred to as a "general car”
  • a passenger car having a part or all of the guest room as the special area 3a may be referred to as a "special car”.
  • a vehicle having a special area 3a and a general area 3b as a guest room may be particularly referred to as a “synthetic vehicle” (see the second embodiment).
  • This train organization 1 has two or more grades.
  • one vehicle 2 is a special vehicle, and the remaining vehicles 2 are ordinary vehicles.
  • all of the guest rooms of the special vehicle are the special area 3a, and the special vehicle is the electric vehicle 2M.
  • a special vehicle that is an electric vehicle may be referred to as an “electric special vehicle 2Ma”, and a general vehicle that is an electric vehicle may be referred to as an “electric general vehicle 2Mb”.
  • the torque of the four main motors 21 mounted on the electric special vehicle 2Ma is smaller than the torque of the remaining main motors 21.
  • the quietness in the special area 3a is improved, and the in-vehicle environment provided to the passengers of the special vehicle is improved.
  • specific main motor 21 a the torque that may be particularly reduced in this way
  • normal main motor 21 b main motors other than the specific main motor 21 a
  • all four main motors 21 mounted on the electric special vehicle 2Ma are the specific main motors 21a.
  • FIG. 2 schematically shows the configuration of the main circuit 20 and the control device 30 of the train organization 1.
  • the main circuit 20 is a main electric circuit that drives the main motor 21 by connecting the main motor 21 to a power source.
  • Examples of the main circuit equipment constituting the main circuit 20 include a current collector, a main transformer, and a main converter in addition to the main motor 21.
  • the train organization 1 includes, as main circuit equipment, a plurality of devices appropriately selected from those exemplified here and those not exemplified in accordance with specifications such as an electric method, a main motor type, and a control method.
  • the main circuit device includes a main conversion device (hereinafter referred to as a controlled device 29) controlled by the vehicle control device.
  • the controlled device 29 controls, operates, or adjusts power generated by the main motor 21.
  • the main motor 21 is an AC motor
  • the control method is inverter control
  • the main circuit device includes a pantograph 22 as a current collector, a main transformer 23, and a main converter 24.
  • the main transformer 23 and the main converter 24 constitute the underfloor equipment 6.
  • the inverter 24 a included in the main converter 24 corresponds to the controlled device 29.
  • Train formation 1 includes two or more controlled devices 29, and each controlled device 29 is connected to one or more main motors 21 on the opposite side of the main circuit 20 from the power source.
  • the controlled device 29 is divided into one or more “specific controlled devices 29 a” corresponding to the specific main motor 21 a and one or more “normal controlled devices 29 b” corresponding to the normal main motor 21 b.
  • the control device 30 includes a master controller 31 and a vehicle control device 32.
  • the vehicle control device 32 includes a central unit 33 and two or more terminal units 34.
  • the master controller 31 includes an operating device 35 installed in the cab 3c (see FIG. 1) of the control vehicle 2C.
  • the operation device 35 is one or more levers or handles installed in the cab 3c, and the driver can input a control command to the operation device 35.
  • the control command includes a power running command and a braking command
  • the operating device 35 includes a power running operator that inputs a power running command, a braking command device that inputs a braking command, and the like.
  • the powering operation device may be provided separately from the braking operation device or may be integrated.
  • the central unit 33 is mounted on the control vehicle 2C and includes an input unit 36 and a command determination unit 37.
  • the input unit 36 inputs a control command from the operation device 35.
  • the input unit 36 may input a control command wirelessly from an automatic train driving system outside the vehicle.
  • the command determination unit 37 determines the torque to be commanded to the plurality of main motors 21 based on the control command input to the input unit 36, and outputs the determined torque command to the terminal unit 34.
  • the terminal unit 34 constitutes the underfloor device 6 and corresponds to the controlled device 29 on a one-to-one basis (and corresponds to the main motor 21 connected to the controlled device 29).
  • the terminal unit 34 controls the operation or state of the controlled device 29 in accordance with the torque command from the command determination unit 37 of the central unit 33, thereby controlling the power generated by the corresponding main motor 21.
  • the controlled device 29 is the inverter 24a as in the above example
  • the terminal unit 34 controls the operation of the corresponding inverter 24a, and the inverter 24a, which is the controlled device 29, changes the applied voltage and frequency of the main motor 21.
  • the torque and output of the main motor 21 are controlled.
  • the main motor 21 outputs the torque determined by the command determination unit 37.
  • the terminal unit 34 is divided into one or more “specific terminal units 34a” corresponding to the specific controlled device 29a and one or more “normal terminal units 34b” corresponding to the normal controlled device 29b.
  • the electric special vehicle 2Ma includes one specific controlled device 29a and one specific terminal unit 34a
  • the one specific controlled device 29a includes four specific main motors 21a mounted on the electric special vehicle 2Ma.
  • the one specific terminal unit 34a may control the torque and the output of the four specific main motors 21a through the control of the operation of the one specific controlled device 29a.
  • one normal controlled device 29b and one normal terminal unit 34b are mounted on one electric general vehicle 2Mb
  • the normal controlled device 29b includes four normal main motors 21b of the electric general vehicle 2Mb.
  • the normal controlled device 29b may be connected to a normal main motor 21b mounted in another adjacent electric general vehicle 2Mb, and one normal terminal unit 34b may output torque and outputs of a total of eight normal main motors 21b. Collective control may be performed.
  • a powering operation device for inputting a powering command is capable of reciprocating linear motion or reciprocating rotation within a predetermined movable range, and a plurality of predetermined operation positions are discretely set within the movable range.
  • cut position the operation position at one end of the movable range
  • maximum power running position the operation position at the other end of the movable range
  • the power running controller When the power running controller is in the off position, the power running controller outputs a “notch-off command” as a control command (power running command). When the power running controller is at the maximum power running position, the power running controller outputs a “full notch command” as a control command (power running command).
  • the command determination unit 37 determines the torque required for the train organization 1 as a whole (hereinafter referred to as “necessary torque”) based on the control command input to the input unit 36.
  • the required torque in addition to the control command, the load, the traveling speed, and the current location gradient may be referred to. For example, when a notch-off command is input, the necessary torque based on the command is set to zero, and the vehicle is coasted. When a full notch command is input, the required torque based on the command may be maximized. At this time, the train formation 1 accelerates or climbs up with the maximum traction performance.
  • the command determination unit 37 determines the torque to be commanded with reference to the torque command map 38, and outputs the determined torque command to the terminal unit 34, respectively.
  • the terminal unit 34 controls the operation of the controlled device 29 in accordance with the torque command output from the command determination unit 37, whereby the main motor 21 outputs the determined torque.
  • the operating device 35 and the input unit 36 constitute a control command input unit 39 to which a control command is input.
  • the command determining unit 37 and the terminal unit 34 constitute a torque command determining unit 40 that determines torque commands for the plurality of main motors 21 in accordance with the required torque based on the input control command.
  • the torque command map 38 defines, for example, the correlation of the torque command with the required torque, and is stored in advance in the vehicle control device 32 (for example, the central unit 33).
  • the torque command determination unit 40 (command determination unit 37) provides a torque command to the main motor 21 so that the torque of the specific main motor 21a is smaller than the torque of the normal main motor 21b when the required torque is less than the maximum value. To decide.
  • the torque command determination unit 40 (command determination unit 37) refers to the torque command map 38 and derives the torque command for the specific main motor 21a and the torque command for the normal main motor 21b according to the required torque. .
  • the torque command for the specific main motor 21a is output from the command determination unit 37 to the specific terminal unit 34a.
  • the torque command for the normal main motor 21b is output from the command determination unit 37 to the normal terminal unit 34b.
  • the torque command for the specific main motor 21a is used so that the ability of all the main motors 21 and the traction performance of the train formation 1 can be maximized.
  • the torque command for the normal main motor 21b is also set to the maximum value (100%).
  • the torque command for the specific main motor 21a is set to a limit value.
  • the limit value is, for example, zero, and in that case, torque is not generated in the specific main motor 21a.
  • the torque command for the normal main motor 21b As the required torque increases from zero, the torque command for the normal main motor 21b also increases. On the other hand, the torque command for the specific main motor 21a is maintained at the limit value. When the required torque increases until reaching a predetermined startup value T1 that is less than the maximum value, the torque command for the normal main motor 21b reaches the maximum value. When the required torque further increases, the torque command for the normal main motor 21b is maintained at the maximum value, while the torque command for the specific main motor 21a increases from the limit value. When the required torque reaches the maximum value, the torque command for the specific main motor 21a also reaches the maximum value. FIG.
  • the change in torque command relative to the change in required torque may be non-linear or stepped, and the limit value may be set to a value other than zero as described later.
  • FIG. 4A and 4B show the generated torque of the main motor 21 when the power running controller is at an intermediate operation position between the cutting position and the maximum power running position and the required torque is 30% of the maximum value.
  • the startup value T1 (see FIG. 3) is a value larger than 30% of the required maximum torque value.
  • the torque command is set to the same value for all the main motors 21, and each main motor 21 equally shares the required torque. For this reason, each main motor 21 generates a torque of 30% with respect to the maximum value of the torque that can be generated by itself.
  • the torque command for the specific main motor 21a is suppressed to a limit value.
  • the normal main controller 21b compensates for the insufficient torque because the torque command for the specific main motor 21a is suppressed to the limit value. At this time, for example, the normal main motor 21a equally shares the torque to be compensated. In the illustrated example, the required torque is 30% of the maximum value, the normal main motor 21b is five times the specific main motor 21a, and the limit value is zero. Therefore, each normal main motor 21b is compared with the comparative example. Generate 6% more torque. As a result, the required torque is usually covered by the main motor 21b.
  • the noise level from the main motor 21 is the same in any of the electric vehicles 2M.
  • the torque of the specific main motor 21a is smaller than the torque of the normal main motor 21b. Therefore, if the required torque is less than the maximum value, the noise around the location where the specific main motor 21a is mounted is smaller than the noise around the location where the normal main motor 21b is mounted.
  • all the main motors 21 of the electric special vehicle 2Ma are the specific main motors 21a.
  • the quietness of the special vehicle is improved, and a passenger cabin with a special vehicle seat can be provided.
  • One of the factors that make a special vehicle an electric vehicle 2M is that the ratio of electric vehicles is increasing in order to meet the demand for higher speeds of railway vehicles. From this point, according to the present embodiment, it is possible to satisfy both the speeding up of the railway vehicle and the improvement of the interior environment of the special vehicle.
  • both the specific main motor 21a and the normal main motor 21b generate the maximum torque. As a result, the traction performance of the train organization 1 can be maximized and accelerated or climbed.
  • the torque command for the main controller 21b normally increases from the limit value, while the torque command for the specific main motor 21a is maintained at the limit value. For this reason, while being able to adjust the speed of the train organization 1 according to a control command (power running command), the noise generated from the specific main motor 21a can be continuously suppressed.
  • This limit value is normally maintained until the torque command for the main controller 21b reaches the maximum value. For this reason, the control area which continues suppressing the noise generated from the specific main motor 21a becomes wide.
  • this limit value is set to zero, but the limit value may be a value exceeding zero.
  • the power transmission mechanism that transmits the driving force of the specific main motor 21a to the dynamic shaft 5a includes a gear-type shaft coupling, if the torque of the main motor 21 is zero, the shaft coupling may generate a tooth contact sound. is there.
  • the limit value is set to a value that can maintain a state in which the tooth surfaces are in close contact with each other by closing the gap between the tooth surfaces, so that the tooth contact noise is suppressed, and the vehicle interior noise around the mounting location of the specific main motor 21a is further increased. Get smaller. Therefore, the limit value may be, for example, a value within a range of 1% to 10% of the maximum torque value that can be generated by the specific main motor 21a.
  • the control command is a powering command, but the same applies when regenerative braking is performed using the main motor 21 in accordance with the braking command as the control command.
  • the regenerative brake amount required based on the braking command is from zero to a predetermined regenerative start-up value
  • the normal main motor 21a increases the regenerative brake amount with the normal main motor 21b as the required regenerative brake amount increases.
  • the brake torque command is increased, the regenerative brake amount of the specific main motor 21a is maintained at a predetermined regenerative limit value (for example, zero).
  • the required regenerative brake amount is between the regenerative start-up value and the maximum value, the regenerative brake amount of the specific main motor 21a is increased as the required regenerative brake amount increases.
  • the brake torque command for the specific main motor 21a is smaller than the brake torque command for the normal main motor 21b. Therefore, the noise around the location where the specific main motor 21a is mounted is smaller than the noise around the location where the normal main motor 21b is mounted.
  • the main motor mounted in each special vehicle may be a specific main motor.
  • the specific main motor 21a is mounted on a synthetic vehicle having a special area 3a as a half of the cabin and a general area 3b as the other half.
  • the electric vehicle which is a combined vehicle will be referred to as “electric combined vehicle 2Mc”, and description will be made focusing on differences from the first embodiment.
  • the electric combined vehicle 2Mc In the electric combined vehicle 2Mc, one side in the vehicle length direction of the guest room is the special area 3a, and the other side in the vehicle length direction is the general area 3b.
  • the electric combined vehicle 2Mc has two carriages 4a and 4b separated in the vehicle length direction, and each carriage 4a and 4b has two moving shafts 5a.
  • a total of four wheel shafts are the dynamic shafts 5a, and each of the carts 4a and 4b is equipped with two main motors 21.
  • the first cart 4a on one side in the vehicle length direction is positioned below the special area 3a
  • the second cart 4b on the other side in the vehicle length direction is positioned below the general area 3b.
  • the main motor 21 provided in the first carriage 4a is the specific main motor 21a
  • the main motor 21 provided in the second carriage 4b is the normal main motor 21b.
  • the noise source of the railway vehicle is not limited to the main motor 21, and the air compressor CP, the pantograph 22, the main transformer 23 (see FIG. 2), and the main converter 24 (see FIG. 2) also generate noise.
  • Such noise generating devices are not installed in all vehicles. Then, in the specific vehicle equipped with the noise generating device, the noise becomes larger than that of the vehicle not equipped with the noise generating device.
  • two electric vehicles 2M are specific vehicles 2Md equipped with pantographs 22, and other electric vehicles 2M are not equipped with pantographs. Accordingly, the main motor 21 of the specific vehicle 2Md is referred to as a specific main motor 21a, and the main motor 21 of the electric vehicle 2M not equipped with the pantograph 22 is referred to as a normal main motor 21b.
  • the specific vehicle 2Md may be an electric vehicle equipped with at least one of the air compressor CP and the main converter 24 (see FIG. 2) instead of or in addition to the pantograph 22.
  • a room or space that is independent from the guest room may be formed at the end in the vehicle length direction.
  • a toilet w, a conductor room ca, and an in-car sales preparation room k can be exemplified.
  • the main motor 21 of the carriage 4 disposed below the space.
  • the control may be executed with the normal main motor 21b and the main motor 21 of the remaining cart 4 as the specific main motor 21a.
  • the train formation 301 includes one special electric vehicle 2Ma, and there is a specific vehicle 2Md equipped with a pantograph 22 as a noise source other than the main motor 21 in a general electric vehicle.
  • the main motor 21 mounted on the special electric vehicle 2Ma and the main motor 21 mounted on the specific vehicle 2Md may be the specific main motor 21a.
  • the specific main motor 21a may be given the same torque command.
  • the specific main motor 21 a may be divided into a first specific main motor 121 and a second specific main motor 221. After the torque command for the normal main motor 21b reaches the maximum value, the torque command for the second specific main motor 221 is increased from the limit value as the required torque increases, while the torque for the first specific main motor 121 is increased. The command may be maintained at a limit value. After the torque command for the second specific main motor 221 reaches the maximum value, the torque command for the first specific main motor 121 may be increased from the limit value as the required torque increases.
  • the main motor 21 of the electric special vehicle 2Ma is the first specific main motor 121, but the main motor 21 of the specific vehicle 2Md may be the first specific main motor 121.
  • a part or all of the vehicle 502 is a diesel car 502E.
  • all four cars composing the train formation 501 are diesel cars 502E, one of which is a synthetic car and the other three are ordinary cars.
  • the combined vehicle that is a pneumatic vehicle is referred to as “pneumatic combined vehicle 502Ec”
  • the general vehicle that is a pneumatic vehicle is referred to as “pneumatic general vehicle 502Eb”.
  • the pneumatic car 502Ec one side in the vehicle length direction of the guest room is the special area 3a, and the other side in the vehicle length direction of the guest room is the general area 3b.
  • the pneumatic combined vehicle 502Ec includes a first cart 504a disposed on one side in the vehicle length direction and positioned below the special area 3a, and a second cart disposed on the other side in the vehicle length direction and positioned below the general area 3b. 504b.
  • the pneumatic vehicle 502E includes an engine unit 521 that rotates the wheel shaft 505 as a part of the underfloor equipment.
  • the cart driven by the engine unit 521 is referred to as a “powered cart”.
  • the power transmitted from the engine unit 521 is referred to as “dynamic shaft 505 a” (see the black circle in FIG. 8), and the power transmitted from the engine unit 521 is not referred to as “slave shaft 505 b” (FIG. 8).
  • the engine unit 521 includes an internal combustion engine 522 and a power transmission device 523.
  • This pneumatic vehicle 502E is a liquid diesel vehicle. That is, the internal combustion engine 522 is a diesel engine, and the power transmission device 523 includes a transmission 524 having a fluid torque converter (not shown).
  • the output of the internal combustion engine 522 is controlled by the fuel injection amount of the fuel injection device 525 provided in the internal combustion engine 522.
  • the output shaft of the internal combustion engine 522 is connected to the input shaft of the transmission 524, and the power generated by the internal combustion engine 522 is input to the transmission 524.
  • the transmission 524 changes the rotational power at a speed ratio corresponding to the speed stage and transmits it to the output shaft.
  • the speed stage of the transmission 524 includes “shift stage”, “direct connection stage”, and “neutral stage”.
  • the transmission 525 includes a clutch 526 for switching the speed stage, and the speed stage can be switched by operating the clutch. In order to simplify the description, one gear stage and one direct gear stage are used here, but a plurality of gear stages and direct gear stages may be provided.
  • the gear stage is a low speed stage (first speed) used in a low vehicle speed range
  • the direct connection stage is a high speed stage (second speed) used in a high vehicle speed range.
  • the gear position is selected
  • the input power is transmitted to the output shaft of the transmission 524 via the fluid torque converter.
  • the direct coupling stage is selected, the input power is mechanically transmitted to the output shaft of the transmission 524 without going through the fluid torque converter.
  • the neutral stage is selected, the internal combustion engine 522 is in a no-load state separated from the dynamic shaft 505a, and no power is transmitted between the input and output shafts of the transmission 525.
  • the engine unit 521 has a one-to-one correspondence with the power truck 504, and rotationally drives one of the two wheel shafts provided in the power truck 504.
  • the output shaft of the transmission 525 is connected to one wheel shaft of the power carriage 504 via a power transmission mechanism such as a propulsion shaft or a final reduction gear.
  • the output and rotation speed of the internal combustion engine 522 of the engine unit 521 corresponding to the first carriage 504a is smaller than the output and rotation speed of the remaining internal combustion engine 522. Thereby, the quietness in the special area 3a is improved.
  • specific internal combustion engine 522 a the output and thus the rotational speed that may be particularly reduced are referred to as “specific internal combustion engine 522 a”, and internal combustion engines other than the specific internal combustion engine 522 a are “normally”. It is called “internal combustion engine 522b”.
  • the engine unit 521 including the specific internal combustion engine 522a is referred to as a “specific engine unit 521a”
  • the engine unit 521 including the normal internal combustion engine 522b is referred to as a “normal engine unit 521b”.
  • the internal combustion engine 522 corresponding to the first bogie 504a of the pneumatic combined vehicle 502Ec is the specific internal combustion engine 522a
  • the internal combustion engine 522 mounted on the vehicle 502Eb is a normal internal combustion engine 522b.
  • FIG. 9 conceptually shows the configuration of the engine unit 521 and the control device 530 of the train organization 501.
  • the control device 530 includes a master controller 31 as in the first embodiment.
  • the control device 530 includes a vehicle control device 532.
  • the vehicle control device 532 includes a central unit 533 mounted on the control vehicle 2C and two or more terminal units 534 that configure the underfloor equipment in one-to-one correspondence with the engine unit 521.
  • the terminal unit 534 is divided into a “specific terminal unit 534a” corresponding to the specific engine unit 521a and a “normal terminal unit 534b” corresponding to the normal engine unit 521b.
  • the central unit 533 includes an input unit 536 for inputting a control command from the master controller 31 and a command determining unit 537 for determining an output command for each internal combustion engine 522 based on the control command input to the input unit 536.
  • the command determination unit 537 determines an output necessary for the train organization 1 as a whole (hereinafter referred to as “necessary output”) based on the input control command. In determining the required output, in addition to the control command, the load, the traveling speed, and the current location gradient may be referred to. As the operation position of the powering operation unit of the master controller 31 shifts from the cut position toward the maximum powering position, the control command changes and the required output increases stepwise.
  • the command determining unit 537 determines an output to be commanded (in other words, a fuel injection amount or a fuel injection pressure) with reference to the output command map 538, and outputs the determined output command to the terminal unit 534.
  • the command determination unit 537 determines a speed stage (in other words, a clutch state) to be commanded according to the vehicle speed with reference to the speed stage command map 539, and outputs the determined speed stage to the terminal unit 534. To do. Maps 538 and 539 are stored in advance in vehicle control device 532 (particularly, central unit 533).
  • the terminal unit 534 includes an engine control device 540 and a transmission control device 541.
  • the engine control device 540 operates the fuel injection device 525 in accordance with the output command from the central unit 533, thereby controlling the output of the internal combustion engine 522.
  • the transmission control device 541 operates the clutch 526 in accordance with the speed stage command from the central unit 533, thereby automatically switching the speed stage established by the transmission 524.
  • the operating device 35 and the input unit 536 constitute a control command input unit 542 to which a control command is input.
  • the command determining unit 537 and the terminal unit 534 constitute an output command determining unit 543 that determines output commands for the plurality of internal combustion engines 522 according to the necessary output based on the input control command. ing.
  • FIG. 10A shows the output command map 538.
  • the required output is the maximum value (100%) (for example, the input control command is a full notch command)
  • both the specific internal combustion engine 522a and the normal internal combustion engine 522b have outputs that can be generated by themselves. Controlled to output maximum value.
  • the required output is the minimum value (for example, the input control command is a notch-off command)
  • the specific internal combustion engine 522a and the normal internal combustion engine 522b are controlled to perform idling operation.
  • the speed stage command becomes a command to establish a neutral stage, and the clutch 526 is disengaged. Thereby, the train organization 501 becomes a coasting state.
  • the output command for the normal internal combustion engine 522b increases.
  • the output command for the specific internal combustion engine 522a continues to be limited at the minimum value (the minimum value is the limit value).
  • the output command for the normal internal combustion engine 522b corresponds to the maximum value of the output that can be generated by the normal internal combustion engine 522b.
  • the startup value is a value less than the maximum value (100%), and the output command for the specific internal combustion engine 522a is maintained at a value smaller than the maximum value.
  • the output command for the internal combustion engine 522b is normally maintained at the maximum value.
  • the output command for the internal combustion engine 522b is normally maintained at the maximum value, while the output command for the specific internal combustion engine 522a increases.
  • the total generation output of the organization increases.
  • the output command for the specific internal combustion engine 522a reaches the maximum value (100%).
  • FIG. 10B shows a speed stage command map 539.
  • the speed stage command is a command to establish a neutral stage.
  • a command to establish a gear position is established in a section between a predetermined speed change speed immediately after the vehicle speed starts to be output.
  • a direct connection speed is established. Should be a directive.
  • a command to establish a neutral stage is maintained in a section between the vehicle speed of zero and a predetermined medium-to-straight switching speed, and a command to establish a direct connection stage when the vehicle speed exceeds the medium-to-straight switching speed. It becomes.
  • the speed stage switching point related to the speed differs between the normal engine unit and the specific engine unit, and the gear stage is not used in the specific engine unit.
  • the medium / vertical switching speed is set to be lower than the variable / vertical switching speed.
  • the torque amplified by the fluid torque converter is transmitted to the dynamic shaft 505a corresponding to the normal engine unit 521b, and the vehicle speed increases.
  • the specific engine unit 521a the specific internal combustion engine is in a no-load state while idling operation is continued. For this reason, the quietness in the specific area 3a can be maintained in the same manner as when the vehicle is stopped.
  • the speed In the power running process, the speed first reaches the mid-straight switching speed before reaching the transversal switching speed. When the speed reaches the mid-straight switching speed, the speed stage becomes the direct connection stage in the specific engine unit.
  • the output of the normal internal combustion engine 522b normally reaches the maximum value, the specific internal combustion engine 522 exits the idling operation, and the output is generated although it is less than the maximum value.
  • the output is transmitted to the dynamic shaft 505a of the first carriage 504a through the power transmission device 523 during selection of the direct coupling stage.
  • the technology for reducing the noise of a specific vehicle in a train organization that employs a power distribution method can be applied not only to electric vehicles as shown in the first to fourth embodiments but also to pneumatic vehicles.
  • noise in a specific vehicle can be reduced in the same manner as in the first to fourth embodiments.
  • the fluid torque converter may be omitted from the specific engine unit 521a.
  • a short-term shift stage may be used.
  • the engine unit (power transmission device, transmission) mounted on the diesel car is not limited to the liquid type, but may be a mechanical type or an electric type.
  • the engine mounted on the diesel car is not limited to a diesel engine.
  • control may be executed with the internal combustion engine of a special vehicle having the entire cabin as a special area as a specific internal combustion engine, or control may be executed with the internal combustion engine of a pneumatic vehicle equipped with a noise generating device as the specific internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

鉄道車両用制御装置は、列車編成に備わる複数の主電動機を制御する。鉄道車両用制御装置は、制御指令が入力される制御指令入力部と、制御指令入力部に入力された制御指令に基づく必要トルクが最大値未満であるときに、複数の主電動機のうち特定主電動機のトルクを特定主電動機以外の他主電動機のトルクよりも小さくするように、複数の主電動機に対するトルク指令を決定するトルク指令決定部と、を備える。

Description

鉄道車両用制御装置、列車編成および主電動機制御方法
 本発明は、鉄道車両用の制御装置、制御装置を備えた列車編成、および鉄道車両の主電動機または内燃機関を制御する方法に関する。
 鉄道車両には、例えば床下機器、台車に搭載される主電動機、および主電動機と輪軸の間で動力を伝達する歯車や歯車形軸継手のように、鉄道車両特有の騒音源が複数ある。あるいは気動車においては内燃機関も騒音源となる。こういった複数の騒音源からの騒音が複合されて、鉄道車両の車内および車外騒音となる。従来、鉄道車両の車内および車外騒音を低減するための技術が種々提案されている。
 特許文献1は、予め記憶したパターンを参照して一編成の荷重に応じてインバータの運転台数を決定する車両制御装置を開示している。
 特許文献2は、歯車形軸継手の歯面間ギャップを詰めるように、惰行時に主電動機に力行トルクまたは回生トルクを出力させる制御装置を開示している。
特開平6-335107号公報 特開平7-87612号公報
 列車編成には、等級が異なる複数の車両で組成されたものがある。等級の高い車両は、乗客により多くの快適さを提供できるように設計される。そのため、同じ列車編成内においても、等級の高い車両にはより静粛な環境を提供できると望ましい。動力源が鉄道車両における騒音源の一つであることに照らし、等級の高い車両を付随車とすることによってその静粛性をより高めようとすることがある。しかし、鉄道車両の高速化への要請を充たすために列車編成内の動力車比率が高くなってきており、そのため、等級の高い車両の全てを付随車とすることができないこともある。等級の高い車両が動力車である場合、その車内に特別静粛な環境を提供することは難しい。
 ある機器が一列車編成内で特定の車両にのみ搭載され、その機器が騒音源の一つとなることがある。集電装置(例えば、パンタグラフ)はその一例である。騒音源である機器を搭載した車両の車内騒音は、当該機器のない車両の車内騒音よりも大きくなる可能性がある。
 このように、一列車編成内で、特定の車両の車内環境がより高い静粛性を求められることがあり、また、特定の車両の車内騒音がより大きくなることがある。しかし、特許文献1および2では、このような事情への対策が何ら講じられていない。
 そこで本発明は、一列車編成内で特定の車両の騒音を低減することを目的とする。
 本発明の一形態に係る鉄道車両用制御装置は、列車編成に備わる複数の主電動機を制御する鉄道車両用制御装置であって、制御指令が入力される制御指令入力部と、前記制御指令入力部に入力された制御指令に基づく必要トルクが最大値未満であるときに、前記複数の主電動機のうち特定主電動機のトルクを前記特定主電動機以外の他主電動機のトルクよりも小さくするように、前記複数の主電動機に対するトルク指令を決定するトルク指令決定部と、を備える。
 本発明の他形態に係る鉄道車両用制御装置は、列車編成に備わる複数の内燃機関を制御する鉄道車両用制御装置であって、制御指令が入力される制御指令入力部と、前記入力された制御指令に基づく前記内燃機関の必要出力が最大値未満であるときに、前記複数の内燃機関のうち特定内燃機関の出力を前記特定内燃機関以外の他内燃機関の出力よりも小さくするように、前記複数の内燃機関の出力を決定する出力指令決定部と、を備える。
 本発明の一形態に係る列車編成は、かかる鉄道車両用制御装置を備える。
 本発明の一形態に係る鉄道車両の主電動機制御方法は、制御指令を入力し、入力された制御指令に基づく必要トルクが最大値未満であるときに、前記複数の主電動機のうち特定主電動機のトルクを前記特定主電動機以外の他主電動機のトルクよりも小さくするように、前記複数の主電動機に対するトルク指令を行う。
 本発明の一形態に係る鉄道車両の内燃機関制御方法は、制御指令を入力し、入力された制御指令に基づく前記内燃機関の必要出力が最大値未満であるときに、前記複数の内燃機関のうち特定内燃機関の出力を前記特定内燃機関以外の他内燃機関の出力よりも小さくするように、前記複数の内燃機関に対する出力指令を行う。
 前記構成によれば、制御指令に基づく必要トルク(必要出力)が最大値未満であるときに、特定主電動機(特定内燃機関)のトルク(出力)が他主電動機(他内燃機関)よりも小さくなるので、特定主電動機(特定内燃機関)からの騒音が他主電動機(他内燃機関)からの騒音よりも低減する。したがって、特定主電動機(特定内燃機関)により駆動される台車周辺(特定内燃機関周辺)の騒音を、列車編成内の他のエリアよりも低減できる。
 本発明によれば、一列車編成内で特定の車両の騒音を低減できる。
第1実施形態に係る列車編成の概念図である。 第1実施形態に係る主回路および制御装置の概念図である。 第1実施形態に係るトルク指令マップを表すグラフである。 図4Aが実施例における主電動機のトルクを示し、図4Bが比較例における主電動機のトルクを示す。 第2実施形態に係る列車編成の概念図である。 第3実施形態に係る列車編成の概念図である。 第4実施形態に係る列車編成の概念図である。 第5実施形態に係る列車編成の概念図である。 第5実施形態に係るエンジンユニットおよび制御装置の概念図である。 図10Aが第5実施形態に係る出力指令マップを表すグラフであり、図10Bが第5実施形態に係る速度段指令マップを表すグラフである。
 以下、図面を参照して実施形態について説明する。
 [第1実施形態]
 (列車編成)
 図1は、第1実施形態に係る列車編成1を示す。列車編成1は、複数の車両2で組成される。図の例では、各車両2が、車体3および2つの台車4を備えたボギー車である。2つの台車4は車長方向に離れて配置され、各台車4はレールR上で転動する2つの輪軸5を備える。車体3は2つの台車4に支持される。床下機器6が、車体3の床下に設置され、2つの台車4の間に配置されている。なお、図1上部では、各車両2に対応するように、ブロックAC、CP、TM、CI、MTrまたはPanを記載しているが、この記載は、各車両2に備わる機器を模式的に示したものである。そのうち空気調和装置AC、空気圧縮機CP、主電動機TM、主変換装置CIおよび主変圧器MTrは、床下機器6を構成する。パンタグラフPanは屋根に設けられるが、床下機器6と併記する(図6および図8も同様)。なお、空気調和装置ACは屋根に設けられていてもよい(図8に示す第5実施形態を参照)。列車編成1は、車長方向に隣り合う2つの車両2を連結器(図示せず)で連結することで組成される。
 この列車編成1では、車両2の一部または全部(図の例は一部)が電動車2Mであり、各電動車2Mは、1以上の主電動機21を搭載する。各主電動機21の出力軸は動力伝達機構(図示せず)を介して1以上の輪軸5と連結され、各主電動機21は対応する1以上の輪軸5を回転駆動する。以下、主電動機21と動力伝達機構を介して連結された輪軸を「動軸5a」(図1の黒塗り丸を参照)と呼ぶことがある。
 例えば、主電動機21は、動軸5aと一対一で対応し、対応する1つの動軸5aを回転駆動する。電動車2Mの4つの輪軸5は全て動軸5aである。2つの主電動機21が電動車2Mの1つの台車4に設けられ、4つの主電動機21が1つの電動車2Mに搭載される。ただし、1つの電動車Mにおける主電動機21の個数は適宜変更可能である。電動車2Mの1つの台車4が主電動機21を1つ搭載し、その主電動機21が当該台車4の2つの輪軸5を駆動してもよい。
 各車両2は、車体3内に客室を有する旅客車である。客室は、「特別(または一等)エリア3a」、「一般(または二等)エリア3b」のように、等級分けされる。一般エリア3bには一般座席が設置される。特別エリア3aでは、一般エリア3bよりも快適な車内環境を提供するため、性状面(大きさ、硬さ、上張りの材質など)や機能面で一般座席と比べて高級な特別座席が設置される。本書の「座席」は、乗客が乗車中に身体を預ける設備をいい、腰掛でも寝台でもよい。以下、客室の全部を一般エリア3bとする旅客車を「一般車」と呼び、客室の一部または全部を特別エリア3aとする旅客車を「特別車」と呼ぶことがある。特別車のうち、客室として特別エリア3aと一般エリア3bとを有する車両については、特に「合造車」と呼ぶことがある(第2実施形態を参照)。
 この列車編成1には、2種以上の等級が存在する。例えば、1つの車両2が特別車、残余の車両2が一般車である。本実施形態では、特別車の客室の全部が特別エリア3aであり、また、その特別車が電動車2Mである。以下、電動車たる特別車を「電動特別車2Ma」と呼び、電動車たる一般車を「電動一般車2Mb」と呼ぶことがある。
 本実施形態では、状況により、電動特別車2Maに搭載された4つの主電動機21のトルクが、残余の主電動機21のトルクよりも小さくなる。それにより、特別エリア3aでの静粛性が向上し、特別車の乗客に提供される車内環境の向上を図る。以下、列車編成1内の主電動機21のうち、このようにトルクを特別に小さくする場合があるものを「特定主電動機21a」と呼び、特定主電動機21a以外の主電動機を「通常主電動機21b」と呼ぶことがある。本実施形態では、電動特別車2Maに搭載された4つ全ての主電動機21が特定主電動機21aである。
 (主回路機器、制御装置)
 図2は、列車編成1の主回路20および制御装置30の構成を概略的に示す。主回路20は、主電動機21を電源と接続して主電動機21を駆動する主要な電気回路である。主回路20を構成する主回路機器として、主電動機21の他、集電装置、主変圧器、主変換装置を例示できる。列車編成1は、電気方式、主電動機の形式および制御方式といった仕様に応じて、ここに例示したものおよび例示していないものから適宜取捨選択された複数の機器を主回路機器として備える。主回路機器には、車両制御装置が制御する主変換装置(以下、被制御機器29と呼ぶ)が含まれる。被制御機器29は、主電動機21で発生される動力を制御、操作または調整する。例えば、列車編成1が架空電車線方式の単相交流電化区間を走行する交流電気車であって、主電動機21が交流電動機であって、制御方式がインバータ制御である場合、当該列車編成1が、主回路機器として、集電装置としてのパンタグラフ22、主変圧器23および主変換装置24を備える。主変圧器23および主変換装置24は床下機器6を構成する。この例では、主変換装置24に備わるインバータ24aが被制御機器29に相当する。
 列車編成1は2以上の被制御機器29を備え、各被制御機器29は主回路20において電源と反対側で1以上の主電動機21と接続される。被制御機器29は、特定主電動機21aと対応する1以上の「特定被制御機器29a」と、通常主電動機21bと対応する1以上の「通常被制御機器29b」とに分かれる。
 制御装置30は、主幹制御器31および車両制御装置32を備える。車両制御装置32は、中央ユニット33および2以上の端末ユニット34を含む。主幹制御器31は、制御車2Cの運転室3c(図1参照)内に設置された操作器35を含む。操作器35は、運転室3cに設置された1以上のレバーまたはハンドルであり、運転手は操作器35に制御指令を入力操作できる。制御指令には、力行指令および制動指令が含まれ、操作器35には、力行指令を入力する力行操作器や、制動指令を入力する制動指令器などが含まれる。なお、力行操作器は制動操作器と別々に設けられていてもよく、一体化されていてもよい。
 中央ユニット33は、制御車2Cに搭載されており、入力部36および指令決定部37を含む。入力部36は、操作器35から制御指令を入力する。なお、入力部36は、車外の自動列車運転システムから無線で制御指令を入力してもよい。指令決定部37は、入力部36に入力された制御指令に基づいて複数の主電動機21に指令すべきトルクを決定し、決定されたトルク指令を端末ユニット34に出力する。
 端末ユニット34は、床下機器6を構成し、被制御機器29と一対一で対応する(そして、当該被制御機器29と接続された主電動機21と対応する)。端末ユニット34は、中央ユニット33の指令決定部37からのトルク指令に従って、被制御機器29の動作または状態を制御し、それにより対応する主電動機21で発生される動力を制御する。被制御機器29が上記一例のとおりインバータ24aであれば、端末ユニット34は、対応するインバータ24aの動作を制御し、被制御機器29たるインバータ24aは、主電動機21の印加電圧や周波数を変化させることで、主電動機21のトルクや出力を制御する。こうして、主電動機21は、指令決定部37で決定されたトルクを出力する。
 端末ユニット34は、特定被制御機器29aと対応する1以上の「特定端末ユニット34a」と、通常被制御機器29bと対応する1以上の「通常端末ユニット34b」とに分かれる。例えば、電動特別車2Maが、1つの特定被制御機器29aおよび1つの特定端末ユニット34aを搭載し、当該1つの特定被制御機器29aが、電動特別車2Maに搭載された4つの特定主電動機21aと接続され、当該1つの特定端末ユニット34aが、当該1つの特定被制御機器29aの動作の制御を通じて当該4つの特定主電動機21aのトルクおよび出力を制御してもよい。図の例では、1つの通常被制御機器29bおよび1つの通常端末ユニット34bが1つの電動一般車2Mbに搭載され、当該通常被制御機器29bが当該電動一般車2Mbの4つの通常主電動機21bと対応する。ただし、通常被制御機器29bは隣接する別の電動一般車2Mbに搭載された通常主電動機21bと接続されてもよく、1つの通常端末ユニット34bが計8つの通常主電動機21bのトルクおよび出力を一括制御してもよい。
 説明の単純化のため、まず、制御指令を力行指令に限って説明する。力行指令を入力するための力行操作器は、所定の可動域内で往復直動または往復回動可能であり、この可動域内に、所定の複数の操作位置が離散的に設定されている。以下、力行操作器の操作位置のうち可動域一端の操作位置を「切位置」と呼び、可動域他端の操作位置を「最大力行位置」と呼ぶ。
 力行操作器が切位置にあると、力行操作器が制御指令(力行指令)として「ノッチオフ指令」を出力する。力行操作器が最大力行位置にあると、力行操作器が制御指令(力行指令)として「フルノッチ指令」を出力する。
 指令決定部37は、入力部36に入力された制御指令に基づき、列車編成1が全体として必要なトルク(以下、「必要トルク」と呼ぶ)を決定する。必要トルクの決定には、制御指令のほか、荷重、走行速度、現在地勾配を参照してもよい。例えば、ノッチオフ指令が入力された場合、その指令に基づく必要トルクはゼロとされ、車両を惰行状態にする。フルノッチ指令が入力された場合、その指令に基づく必要トルクは最大となる場合があり、このときには、列車編成1が牽引性能を最大限に生かして加速または登坂する。力行操作器の操作位置が切位置から最大力行位置に向かってシフトしていくにつれ、制御指令(力行指令)が変化し、必要トルクが段階的に大きくなっていく。指令決定部37は、トルク指令マップ38を参照して指令すべきトルクを決定し、決定されたトルク指令を端末ユニット34にそれぞれ出力する。上記のとおり、端末ユニット34は、指令決定部37から出力されたトルク指令に従って被制御機器29の動作を制御し、それにより主電動機21は、決定されたトルクを出力する。
 以上の構成において、操作器35および入力部36は、制御指令が入力される制御指令入力部39を構成している。また、指令決定部37および端末ユニット34は、入力された制御指令に基づく必要トルクに応じて複数の主電動機21に対するトルク指令を決定するトルク指令決定部40を構成している。トルク指令マップ38は、例えば必要トルクに対するトルク指令の相関を定義し、車両制御装置32(例えば、中央ユニット33)に予め記憶される。
 トルク指令決定部40(指令決定部37)は、必要トルクが最大値未満であるときに、特定主電動機21aのトルクが通常主電動機21bのトルクよりも小さくなるように、主電動機21に対するトルク指令を決定する。本実施形態では、トルク指令決定部40(指令決定部37)は、トルク指令マップ38を参照し、必要トルクに従って、特定主電動機21a用のトルク指令と通常主電動機21b用のトルク指令とを導き出す。特定主電動機21a用のトルク指令は指令決定部37から特定端末ユニット34aに出力される。通常主電動機21b用のトルク指令は指令決定部37から通常端末ユニット34bに出力される。
 図3に示すように、必要トルクが最大値(100%)であれば、全主電動機21の能力ひいては列車編成1の牽引性能が最大限発揮されるように、特定主電動機21a用のトルク指令も通常主電動機21b用のトルク指令も最大値(100%)に設定される。必要トルクがゼロであれば(例えば、制御指令がノッチオフ指令であれば)、特定主電動機21a用のトルク指令は制限値に設定される。制限値は、例えばゼロであり、その場合、特定主電動機21aにトルクを発生させない。
 必要トルクがゼロから増えるにつれ、通常主電動機21b用のトルク指令も増加する。一方、特定主電動機21a用のトルク指令は制限値で維持される。必要トルクが最大値未満の所定の立上げ値T1になるまで増えると、通常主電動機21b用のトルク指令は最大値に達する。必要トルクがそこから更に増えると、通常主電動機21b用のトルク指令が最大値で維持される一方、特定主電動機21a用のトルク指令が制限値から増加する。必要トルクが最大値に達すると、特定主電動機21a用のトルク指令も最大値に達する。なお、図3は、通常主電動機21b用のトルク指令および特定主電動機21a用のトルク指令が線形で増減していること、および特定主電動機21a用のトルク指令の制限値が0であることを示すが、これは単なる一例である。必要トルクの変化に対するトルク指令の変化(すなわち、グラフ傾き)は非線形や階段状でもよく、制限値は後述のとおりゼロ以外の値に設定されてもよい。
 図4Aおよび図4Bは、力行操作器が切位置と最大力行位置との中間の操作位置にあり、必要トルクが最大値の30%とされる場合の主電動機21の発生トルクを示す。なお、立上げ値T1(図3参照)は必要トルク最大値の30%よりも大きい値である。図4Bの比較例では、全主電動機21に対してトルク指令が同じ値とされ、各主電動機21が必要トルクを均等に分担する。このため、各主電動機21が、自身が発生できるトルクの最大値に対して30%のトルクを発生する。図4Aの実施例では、特定主電動機21a用のトルク指令は制限値に抑えられている。通常主制御機21bは、特定主電動機21a用のトルク指令が制限値に抑えられることで不足したトルクを補償する。このとき例えば、通常主電動機21aは、補償すべきトルクを均等に分担する。図の例では、必要トルクが最大値の30%であり、通常主電動機21bが特定主電動機21aの5倍存在し、制限値がゼロであるので、各通常主電動機21bは、比較例と比べて6%分多くトルクを発生する。これにより、必要トルクが通常主電動機21bによって賄われる。
 図4Bの比較例では、いずれの電動車2Mにおいても、主電動機21からの騒音レベルが同じとなる。図4Aの実施例では、必要トルクが最大値未満のときに、特定主電動機21aのトルクが通常主電動機21bのトルクよりも小さい。したがって、必要トルクが最大値未満であれば、特定主電動機21aが搭載された個所周辺における騒音が、通常主電動機21bが搭載された個所周辺における騒音よりも小さくなる。
 本実施形態では、電動特別車2Maの主電動機21が全て特定主電動機21aである。このため、特別車の車内の静粛性が改善され、特別車の座席を確保した乗客に相応の車内環境を提供できる。特別車が電動車2Mとなる要因の一つには、鉄道車両の高速化への要請に応えるために電動車比率が高くなってきていることを挙げられる。この点から、本実施形態によれば、鉄道車両の高速化を充たすことと、特別車の車内環境を向上することとを両立できる。
 必要トルクが最大値であれば、特定主電動機21aも通常主電動機21bも最大トルクを発生する。これにより、列車編成1の牽引性能を最大限発揮して、加速または登坂できる。
 必要トルクが増えるにつれて通常主制御機21b用のトルク指令は制限値から上昇する一方、特定主電動機21a用のトルク指令は制限値で維持される。このため、制御指令(力行指令)に応じて列車編成1の速度を調整できるとともに、特定主電動機21aから発生される騒音を抑え続けることができる。この制限値の維持は通常主制御機21b用のトルク指令が最大値に達するまで行われる。このため、特定主電動機21aから発生される騒音を抑え続ける制御領域が広範になる。
 上記実施例では、この制限値をゼロとしたが、制限値はゼロを超える値でもよい。特定主電動機21aの駆動力を動軸5aに伝達する動力伝達機構が歯車形軸継手を備える場合には、主電動機21のトルクがゼロであると、軸継手が歯当たり音を発生することがある。制限値が歯面間ギャップを詰めて歯面同士を密着させる状態を維持できるような値に設定されることで、歯当たり音が抑制され、特定主電動機21aの搭載個所周辺における車内騒音が更に小さくなる。そのため、制限値は、例えば、特定主電動機21aが発生できるトルク最大値の1%以上10%以下の範囲内の値としてもよい。
 ここまで、制御指令が力行指令であるとしたが、制御指令としての制動指令に応じて主電動機21を用いて回生ブレーキを行うときも同様である。制動指令に基づき必要とされる回生ブレーキ量がゼロから所定の回生立上げ値までの間は、必要回生ブレーキ量の増加に伴って通常主電動機21bで回生ブレーキ量を増加させるべく通常主電動機21aのブレーキトルク指令を増加させる一方、特定主電動機21aの回生ブレーキ量は所定の回生制限値(例えば、ゼロ)で維持する。必要回生ブレーキ量が回生立上げ値と最大値との間は、必要回生ブレーキ量の増加に伴って特定主電動機21aの回生ブレーキ量を増加させる。これにより、制動時でも、必要制動トルクが最大値未満であるときに、特定主電動機21a用のブレーキトルク指令が通常主電動機21b用のブレーキトルク指令よりも小さくなる。よって、特定主電動機21aが搭載された個所周辺における騒音が、通常主電動機21bが搭載された個所周辺における騒音よりも小さくなる。
 列車編成1内の特別車の両数を1としたが、複数の特別車が列車編成に含まれていてもよい。その場合、各特別車に搭載された主電動機が特定主電動機であってもよい。
 [第2実施形態]
 図5に示すように、第2実施形態に係る列車編成101においては、特定主電動機21aが、客室の半分を特別エリア3aとし、残り半分を一般エリア3bとした合造車に搭載される。以下、合造車たる電動車を「電動合造車2Mc」と呼び、第1実施形態との相違を中心に説明する。
 電動合造車2Mcでは、客室の車長方向一方側が特別エリア3aであり、車長方向他方側が一般エリア3bである。電動合造車2Mcは、車長方向に離れた2つの台車4a,4bを有し、各台車4a,4bが2つの動軸5aを有する。合計4つの輪軸は全て動軸5aであり、各台車4a,4bが2つの主電動機21を搭載する。車長方向一方側の第1台車4aは、特別エリア3aの下方に位置付けられ、車長方向他方側の第2台車4bは、一般エリア3bの下方に位置付けられる。第1台車4aに設けた主電動機21が特定主電動機21aであり、第2台車4bに設けた主電動機21が通常主電動機21bである。
 これにより、特別エリア3aに的を絞って静粛性を向上させることができる。これに伴い、合造車においても、必要トルクが立上げ値未満であってもトルクを発生できる。なお、複数の電動合造車が列車編成に含まれていてもよい。
 [第3実施形態]
 図6に示すように、第3実施形態に係る列車編成201では、電動車2Mが全て一般車であり、電動車2Mの客室等級は全て同じに揃えられている。しかし、鉄道車両の騒音源は、主電動機21に限られず、空気圧縮機CP、パンタグラフ22、主変圧器23(図2参照)、主変換装置24(図2参照)も騒音を発生する。このような騒音発生機器は全車両に搭載されているわけではない。すると、騒音発生機器を搭載した特定車両においては、騒音発生機器を搭載していない車両と比べて、騒音が大きくなる。
 図の例では、2つの電動車2Mがパンタグラフ22を搭載した特定車両2Mdであり、その他の電動車2Mはパンタグラフを搭載していない。そこで、特定車両2Mdの主電動機21を特定主電動機21aとし、パンタグラフ22を搭載していない電動車2Mの主電動機21を通常主電動機21bとする。
 これにより、騒音源が集中している特定車両2Mdにおいて、主電動機21からの騒音を抑えることができ、特定車両2Mdからの騒音が過大となるのを抑制できる。特定車両2Mdは、パンタグラフ22に代えてまたはこれに加えて、空気圧縮機CP、主変換装置24(図2参照)の少なくとも1つを搭載した電動車であればよい。
 車内には、客室から独立した部屋またはスペースが車長方向の端部に形成されることがある。例えば、便所w、車掌室ca、車内販売準備室kを例示できる。このようなスペースが、パンタグラフ22や主変圧器23(図2参照)のような騒音発生機器を搭載した車両に設けられた場合、このようなスペースの下方に配置された台車4の主電動機21を通常主電動機21bとし、残りの台車4の主電動機21を特定主電動機21aとして制御を実行してもよい。
 [第4実施形態]
 図7に示すように、第4実施形態では、列車編成301が1つの特別電動車2Maを備え、一般電動車のなかに主電動機21以外の騒音源としてパンタグラフ22を搭載した特定車両2Mdが存在する。このような場合、特別電動車2Maに搭載された主電動機21も特定車両2Mdに搭載された主電動機21も、特定主電動機21aとされてもよい。この場合、特定主電動機21aは同じトルク指令を与えられてもよい。
 特定主電動機21aは、第1特定主電動機121と第2特定主電動機221とに分かれていてもよい。通常主電動機21b用のトルク指令が最大値に達した後、必要トルクの増大に伴って第2特定主電動機221用のトルク指令を制限値から増加させる一方、第1特定主電動機121用のトルク指令を制限値で維持してもよい。第2特定主電動機221用のトルク指令が最大値に達した後、必要トルクの増大に伴って第1特定主電動機121用のトルク指令を制限値から増加させてもよい。図の例では、電動特別車2Maの主電動機21が第1特定主電動機121であるが、特定車両2Mdの主電動機21が第1特定主電動機121であってもよい。
 [第5実施形態]
 図8に示すように、第5実施形態の列車編成501では、車両502の一部または全部が気動車502Eである。図の例では、列車編成501を組成する4両全てが気動車502Eであり、そのうち1両が合造車、残り3両が一般車である。以下、気動車たる合造車を「気動合造車502Ec」と呼び、気動車たる一般車を「気動一般車502Eb」と呼ぶ。気動合造車502Ecでは、客室の車長方向一方側が特別エリア3aとされ、客室の車長方向他方側が一般エリア3bとされる。気動合造車502Ecは、車長方向一側に配置され特別エリア3aの下方に位置付けられた第1台車504aと、車長方向他側に配置され一般エリア3bの下方に位置付けられた第2台車504bとを有する。
 気動車502Eは、床下機器の一部として、輪軸505を回転駆動するエンジンユニット521を備える。以降、エンジンユニット521によって駆動される台車を「動力台車」と呼ぶ。輪軸505のうち、エンジンユニット521から動力が伝達されるものを「動軸505a」(図8の黒塗り丸参照)と呼び、エンジンユニット521から動力が伝達されないものを「従軸505b」(図8の白抜き丸参照)と呼ぶ。
 エンジンユニット521は、内燃機関522および動力伝達装置523を備える。この気動車502Eは、液体式ディーゼル動車である。すなわち、内燃機関522がディーゼル機関であり、動力伝達装置523が、流体トルクコンバータ(図示せず)を有した変速機524を備える。
 内燃機関522の出力は、内燃機関522に備わる燃料噴射装置525の燃料噴射量により制御される。内燃機関522の出力軸は変速機524の入力軸に接続され、内燃機関522で発生された動力が変速機524に入力される。変速機524は、速度段に応じた速比で回転動力を変速して出力軸に伝達する。変速機524の速度段には、「変速段」、「直結段」および「中立段」が含まれる。変速機525は、速度段を切り換えるクラッチ526を備え、クラッチを操作することで速度段を切り換えることができる。説明を単純化するため、ここでは変速段も直結段も1段ずつとするが、変速段数および直結段数は複数でもよい。
 概して、変速段は低車速域で利用される低速段(1速)であり、直結段は高車速域で利用される高速段(2速)である。変速段の選択時、入力された動力は、流体トルクコンバータを介して変速機524の出力軸に伝達される。直結段の選択時、入力された動力は、流体トルクコンバータを介さず、機械的に変速機524の出力軸に伝達される。中立段の選択時、内燃機関522は動軸505aから切り離された無負荷状態となり、変速機525の入出力軸間で動力は伝達されない。
 本実施形態では、エンジンユニット521が、動力台車504と一対一で対応し、動力台車504に備わる2つの輪軸のうち1つを回転駆動する。変速機525の出力軸は、推進軸や最終減速機などの動力伝達機構を介し、動力台車504の1つの輪軸と接続される。
 第1および第2実施形態と同様に、第1台車504aに対応するエンジンユニット521の内燃機関522の出力ひいては回転数は、残余の内燃機関522の出力ひいては回転数よりも小さくなる。それにより、特別エリア3aでの静粛性を向上させる。
 以下、列車編成501内の内燃機関522のうち、このように出力ひいては回転数を特別に小さくする場合があるものを「特定内燃機関522a」と呼び、特定内燃機関522a以外の内燃機関を「通常内燃機関522b」と呼ぶ。また、特定内燃機関522aを含むエンジンユニット521を「特定エンジンユニット521a」と呼び、通常内燃機関522bを含むエンジンユニット521を「通常エンジンユニット521b」と呼ぶ。
 本実施形態では、気動合造車502Ecの第1台車504aに対応する内燃機関522が、特定内燃機関522aであり、気動合造車502Ecの第2台車504bに対応する内燃機関522および気動一般車502Ebに搭載された内燃機関522が、通常内燃機関522bである。
 図9は、列車編成501のエンジンユニット521および制御装置530の構成を概念的に示す。図9に示すように、制御装置530は、第1実施形態と同様、主幹制御器31を備える。制御装置530は車両制御装置532を備える。車両制御装置532は、制御車2Cに搭載された中央ユニット533、およびエンジンユニット521と一対一で対応して床下機器を構成する2以上の端末ユニット534を備える。端末ユニット534は、特定エンジンユニット521aと対応する「特定端末ユニット534a」と、通常エンジンユニット521bと対応する「通常端末ユニット534b」とに分けられる。
 中央ユニット533は、主幹制御器31から制御指令を入力する入力部536、入力部536に入力された制御指令に基づき各内燃機関522に対する出力指令を決定する指令決定部537を含む。
 指令決定部537は、入力された制御指令に基づき、列車編成1が全体として必要な出力(以下、「必要出力」と呼ぶ)を決定する。必要出力の決定には、制御指令のほか、荷重、走行速度、現在地勾配を参照してもよい。主幹制御器31の力行操作器の操作位置が切位置から最大力行位置に向かってシフトしていくにつれ、制御指令は変化し、必要出力は段階的に大きくなっていく。指令決定部537は、出力指令マップ538を参照して指令すべき出力(換言すれば、燃料噴射量または燃料噴射圧)を決定し、決定された出力指令を端末ユニット534に出力する。更に、指令決定部537は、速度段指令マップ539を参照して車速に応じて指令すべき速度段(換言すれば、クラッチの状態)を決定し、決定された速度段を端末ユニット534に出力する。マップ538,539は、車両制御装置532(特に、中央ユニット533)に予め記憶されている。
 端末ユニット534は、機関制御装置540と変速機制御装置541を含む。機関制御装置540は、中央ユニット533からの出力指令に従って燃料噴射装置525を操作し、それにより内燃機関522の出力を制御する。変速機制御装置541は、中央ユニット533からの速度段指令に従ってクラッチ526を操作し、それにより変速機524で設立される速度段を自動的に切り換える。
 以上の構成において、操作器35および入力部536は制御指令が入力される制御指令入力部542を構成している。また、指令決定部537および端末ユニット534(特に機関制御装置540)は、入力された制御指令に基づく必要出力に応じて複数の内燃機関522に対する出力指令を決定する出力指令決定部543を構成している。
 図10Aは、出力指令マップ538を表す。図10Aに示すとおり、必要出力が最大値(100%)である(例えば、入力される制御指令がフルノッチ指令である)ときには、特定内燃機関522aも通常内燃機関522bも、自身が発生できる出力の最大値を出力するように制御される。必要出力が最低値である(例えば、入力される制御指令がノッチオフ指令である)ときには、特定内燃機関522aも通常内燃機関522bもアイドリング運転するように制御される。なお、入力される力行指令がノッチオフ指令であって制動指令が入力されていないときには、速度段指令が中立段を設立すべき指令となり、クラッチ526が切れる。これにより、列車編成501が惰行状態となる。
 必要出力が最低値から上昇していくにつれ(例えば、力行操作器の操作位置が切位置から最大力行位置側へシフトしていくにつれ)、通常内燃機関522b用の出力指令は大きくなっていく。一方で、特定内燃機関522a用の出力指令は最低値で制限され続ける(最低値が制限値)。必要出力が所定の立上げ値に達したとき、通常内燃機関522b用の出力指令は、通常内燃機関522bで発生できる出力の最大値相当となる。立上げ値は最大値(100%)未満の値であり、特定内燃機関522a用の出力指令が最大値よりも小さい値で維持される。必要出力がそこから上昇すると、通常内燃機関522b用の出力指令は最大値で維持される。必要出力がそこから上昇すると、通常内燃機関522b用の出力指令は最大値で維持される一方、特定内燃機関522a用の出力指令は上昇する。編成の合計発生出力は上昇する。必要出力が最大値で達したところで、特定内燃機関522a用の出力指令が最大値(100%)に達する。
 図10Bは、速度段指令マップ539を表す。図10Bに示すように、特定エンジンユニット521aも通常エンジンユニット521bも、車速がゼロのときには、速度段指令が中立段を設立すべき指令となる。通常エンジンユニット521bについては、車速が出始めた直後から所定の変直切換速度の間の区間で、変速段を設立すべき指令となり、車速が変直切換速度を超えると、直結段を設立すべき指令となる。特定エンジンユニット521aについては、車速がゼロから所定の中直切換速度の間の区間で、中立段を設立すべき指令で維持され、車速が中直切換速度を超えると直結段を設立すべき指令となる。このように、通常エンジンユニットと、特定エンジンユニットとで、速度に関する速度段の切換点が異なり、特定エンジンユニットでは、変速段が利用されない。中直切換速度は、変直切換速度よりも低速に設定される。
 これらマップ538,539を参照して指令を決定して制御を実行する場合について発車からの時間経過に沿って説明すると、まず、停車時は力行操作器が切位置にあるので、全エンジンユニット521でクラッチ526が切られて中立段が設立される。また、必要出力が最低値であるので、全内燃機関522がアイドリング運転する。内燃機関の回転数は使用域内で最低レベルとなり、車内のどのエリアも静粛である。力行操作器が切位置から最大力行位置へ操作されると、通常内燃機関522bの出力および回転数が次第に大きくなっていき、また、速度段が中立段から変速段に切り換わる。流体トルクコンバータにより増幅されたトルクが、通常エンジンユニット521bに対応する動軸505aに伝達され、車速が上昇していく。この発進時、特定エンジンユニット521aでは、特定内燃機関は、アイドリング運転を継続した状態で無負荷状態となる。このため、特定エリア3aでの静粛性を停車時同様に保てる。力行過程で、速度は変直切換速度に達するよりも前に、まず、中直切換速度に達する。速度が中直切換速度に達すると、特定エンジンユニットにおいて速度段が直結段となる。一方で、力行操作器が所定の中間位置に位置付けられると、通常内燃機関522bの出力が最大値に達し、特定内燃機関522がアイドリング運転を脱し、出力を最大値未満ではあるが発生する。その出力は直結段選択中の動力伝達装置523を介し、第1台車504aの動軸505aに伝達される。
 以上のとおり、動力分散方式を採用した列車編成内で特定車両の騒音を低減させる技術は、第1~第4実施形態で示したような電気車のみならず、気動車にも応用できる。本実施形態においても、第1~第4実施形態と同様にして特定の車両(特に、気動合造車502Ecの特定エリア3a)における騒音を低減できる。
 なお、上記の例では、特定エンジンユニット521aにおいて、流体トルクコンバータを介した動力の伝達が行われない。そこで、特定エンジンユニット521aからは流体トルクコンバータを省略してもよい。流体トルクコンバータは設けたままとした場合は、例えば、中立段から直結段へと切り換える際、短期間変速段を経由してもよい。
 気動車が搭載するエンジンユニット(動力伝達装置、変速機)は、液体式に限定されず、機械式、電気式でもよい。また、気動車が搭載する機関はディーゼル機関に限定されない。
 上記の例では、気動合造車を含む場合、すなわち、第1~第4実施形態のうち第2実施形態と対応する形態を説明したが、第1実施形態または第3実施形態と対応する形態を気動車でも実現可能である。客室全部を特別エリアとする特別車の内燃機関を特定内燃機関として制御を実行してもよく、騒音発生機器を搭載した気動車の内燃機関を特定内燃機関として制御を実行してもよい。
 [他の実施形態]
 これまで実施形態について説明したが、上記構成は一例であり適宜変更、削除、追加可能である。前記各実施形態は互いに任意に組み合わせてもよく、例えば1つの実施形態中の一部の構成又は方法を他の実施形態に適用してもよい。また、実施形態中の一部の構成は、その実施形態中の他の構成から分離して任意に抽出可能である。
1,101,201,301,501 列車編成
2,502 車両
2M 電動車
2Ma 電動特別車
2Mc 電動合造車
2Md 特定車両
502E 気動車
502Eb 気動合造車
3 車体
3a 特別エリア(一等エリア)
3b 一般エリア(二等エリア)
4,504 台車
4a,504a 合造車の第1台車
4b,504b 合造車の第2台車
21 主電動機
21a 特定主電動機
21b 通常主電動機(他主電動機)
22 パンタグラフ
23 主変圧器
24 主変換装置
522 内燃機関
522a 特定内燃機関
522b 通常内燃機関
30,530 制御装置
31 主幹制御器
32,532 車両制御装置
39,541 制御指令入力部
40 トルク指令決定部
542 出力指令決定部
CP 空気圧縮機
 

Claims (14)

  1.  列車編成に備わる複数の主電動機を制御する鉄道車両用制御装置であって、
     制御指令が入力される制御指令入力部と、
     前記入力された制御指令に基づく必要トルクが最大値未満であるときに、前記複数の主電動機のうち特定主電動機のトルクを前記特定主電動機以外の他主電動機のトルクよりも小さくするように、前記複数の主電動機に対するトルク指令を決定するトルク指令決定部と、を備える、鉄道車両用制御装置。
  2.  前記入力される制御指令が力行指令であり、
     前記力行指令に基づく必要トルクが最大値であるときに、前記トルク指令決定部は、前記特定主電動機を含む前記複数の主電動機の全てのトルクが同じトルクとなるように、前記複数の主電動機に対するトルク指令を決定する、請求項1に記載の鉄道車両用制御装置。
  3.  前記入力される制御指令が力行指令であり、
     前記力行指令に基づく必要トルクが最大値未満の範囲内で大きくなるにつれ、前記トルク指令決定部は、前記他主電動機のトルクを最大値まで上昇させる一方、前記特定主電動機のトルクを所定の制限値で維持する、請求項1または2に記載の鉄道車両制御装置。
  4.  前記他主電動機のトルクが最大値に達した後に、力行指令に基づく必要トルクが大きくなるにつれ、前記トルク指令決定部は、前記特定主電動機のトルクを前記制限値から最大値まで上昇させる、請求項3に記載の鉄道車両用制御装置。
  5.  前記入力される制御指令が制動指令であり、
     前記トルク指令決定部は、前記複数の主電動機に対し、回生ブレーキとして発生させるブレーキトルク指令を行う、請求項1乃至4のいずれか1項に記載の鉄道車両用制御装置。
  6.  前記列車編成は、少なくとも1以上の特別車両を含み、前記特定主電動機が前記特別車両を駆動する、請求項1乃至5のいずれか1項に記載の鉄道車両用制御装置。
  7.  前記列車編成は、主電動機を含む少なくとも1以上の合造車を含み、
     前記合造車が、
      車両長手方向の一側に配置され、少なくとも1つの主電動機を有する第1台車、
      前記車両長手方向の他側に配置され、少なくとも1つの主電動機を有する第2台車、
      前記合造車内で前記車両長手方向の前記一側に形成された一等エリア、および
      前記合造車内で前記車両長手方向の前記他側に形成された二等エリア、を含み、
     前記第1台車の前記主電動機が前記特定主電動機であり、前記第2台車の前記主電動機が前記他主電動機である、請求項1乃至6のいずれか1項に記載の鉄道車両用制御装置。
  8.  前記列車編成が複数の電動車を含み、前記複数の電動車のうち1以上の特定車両が騒音発生機器を搭載しており、前記特定主電動機が前記特定車両を駆動する、請求項1乃至7のいずれか1項に記載の鉄道車両用制御装置。
  9.  前記騒音発生機器が、空気圧縮機、主変換装置、主制御器およびパンタグラフの少なくとも1つである、請求項8に記載の鉄道車両用制御装置。
  10.  列車編成に備わる複数の内燃機関を制御する鉄道車両用制御装置であって、
     制御指令が入力される制御指令入力部と、
     前記入力された制御指令に基づく前記内燃機関の必要出力が最大値未満であるときに、前記複数の内燃機関のうち特定内燃機関の出力を前記特定内燃機関以外の他内燃機関の出力よりも小さくするように、前記複数の内燃機関の出力を決定する出力指令決定部と、を備える、鉄道車両用制御装置。
  11.  前記出力指令決定部は、前記入力された制御指令に基づく前記内燃機関の必要出力が最大値未満であるときに、前記複数の内燃機関のうち特定内燃機関の出力を前記特定内燃機関以外の他内燃機関の出力よりも小さくするように、前記複数の内燃機関の燃料噴射量を決定する、請求項10に記載の鉄道車両用制御装置。
  12.  請求項1乃至11のいずれか1項に記載の鉄道車両用制御装置を備える列車編成。
  13.  列車編成に備わる複数の主電動機を制御する鉄道車両の主電動機制御方法であって、
     制御指令を入力し、
     入力された制御指令に基づく必要トルクが最大値未満であるときに、前記複数の主電動機のうち特定主電動機のトルクを前記特定主電動機以外の他主電動機のトルクよりも小さくするように、前記複数の主電動機に対するトルク指令を行う、鉄道車両の主電動機制御方法。
  14.  列車編成に備わる複数の内燃機関を制御する鉄道車両の内燃機関制御方法であって、
     制御指令を入力し、
     入力された制御指令に基づく前記内燃機関の必要出力が最大値未満であるときに、前記複数の内燃機関のうち特定内燃機関の出力を前記特定内燃機関以外の他内燃機関の出力よりも小さくするように、前記複数の内燃機関に対する出力指令を行う、鉄道車両の内燃機関制御方法。
     
PCT/JP2015/006140 2015-12-09 2015-12-09 鉄道車両用制御装置、列車編成および主電動機制御方法 WO2017098539A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/060,976 US11260758B2 (en) 2015-12-09 2015-12-09 Railcar control device, train set, and method of controlling traction motor
CN201580085140.6A CN108367692B (zh) 2015-12-09 2015-12-09 铁道车辆用控制装置、列车编组及主电动机控制方法
JP2017554663A JP6564470B2 (ja) 2015-12-09 2015-12-09 鉄道車両用制御装置、列車編成および主電動機制御方法
PCT/JP2015/006140 WO2017098539A1 (ja) 2015-12-09 2015-12-09 鉄道車両用制御装置、列車編成および主電動機制御方法
TW105140624A TWI652187B (zh) 2015-12-09 2016-12-08 鐵道車輛用控制裝置、列車編成及主電動機控制方法及鐵道車輛之內燃機控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/006140 WO2017098539A1 (ja) 2015-12-09 2015-12-09 鉄道車両用制御装置、列車編成および主電動機制御方法

Publications (1)

Publication Number Publication Date
WO2017098539A1 true WO2017098539A1 (ja) 2017-06-15

Family

ID=59013795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006140 WO2017098539A1 (ja) 2015-12-09 2015-12-09 鉄道車両用制御装置、列車編成および主電動機制御方法

Country Status (5)

Country Link
US (1) US11260758B2 (ja)
JP (1) JP6564470B2 (ja)
CN (1) CN108367692B (ja)
TW (1) TWI652187B (ja)
WO (1) WO2017098539A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
CN109017636A (zh) * 2018-08-24 2018-12-18 郑州飞机装备有限责任公司 电动轨道货运车控制系统及协调控制方法
US11038442B2 (en) 2019-11-06 2021-06-15 Caterpillar Inc. Control system for DC bus regulation
JP2021139343A (ja) * 2020-03-06 2021-09-16 ナブテスコ株式会社 鉄道車両用空気圧縮装置、鉄道車両用空気圧縮装置の制御方法
FR3139767A1 (fr) * 2022-09-19 2024-03-22 Alstom Holdings Véhicule ferroviaire et procédé de commande associé

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308004A (ja) * 1994-05-12 1995-11-21 Hitachi Ltd 電気車制御装置
JP2000134723A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 軸重補償形トルク適正配分運転方式
JP2000134701A (ja) * 1998-10-21 2000-05-12 Toshiba Corp 鉄道車両用電力変換装置
JP2004328993A (ja) * 2003-04-10 2004-11-18 Hitachi Ltd 列車制御システム,車上通信ネットワークシステム、及び列車制御装置
JP2005027447A (ja) * 2003-07-03 2005-01-27 Hitachi Ltd 鉄道車両駆動システム
WO2012095895A1 (ja) * 2011-01-14 2012-07-19 川崎重工業株式会社 回路遮断ユニットおよびそれを備えた鉄道車両
JP2014140294A (ja) * 2011-01-31 2014-07-31 Hitachi Ltd 駆動システム、鉄道車両用駆動システムおよびこれを搭載した鉄道車両、編成列車
JP2014171279A (ja) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp 推進制御装置及び推進制御方法
JP2014236547A (ja) * 2013-05-31 2014-12-15 東日本旅客鉄道株式会社 鉄道車両の制御システムおよび制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06335107A (ja) 1993-05-21 1994-12-02 Hitachi Ltd 車両制御装置
JPH0787612A (ja) 1993-09-20 1995-03-31 Hitachi Ltd 電気車の制御装置
JPH07212906A (ja) * 1994-01-17 1995-08-11 Hitachi Ltd 車両の制御装置
KR100675079B1 (ko) * 2004-09-01 2007-01-30 가부시끼가이샤 도시바 철도 차량 정보 제어 시스템
EP1641099A1 (en) * 2004-09-24 2006-03-29 Conception et Développement Michelin S.A. Detachable charge control circuit for balancing the voltage of supercapacitors connected in series
JP2007211381A (ja) * 2006-02-10 2007-08-23 Shima Seiki Mfg Ltd 横編機のキャリッジ駆動用モータの制御装置
FR2900241B1 (fr) * 2006-04-21 2008-07-11 Alstom Transport Sa Procede de depistage d'un court-circuit resistif, systeme, module et support d'enregistrement pour ce procede
US9073448B2 (en) * 2007-05-07 2015-07-07 General Electric Company Method of operating propulsion system
JP5604245B2 (ja) * 2010-09-28 2014-10-08 株式会社日立製作所 鉄道車両の発電システム
JP2013055831A (ja) * 2011-09-06 2013-03-21 Hitachi Ltd 鉄道編成車両駆動システム
DE102013207047B3 (de) 2013-04-18 2014-08-14 Bombardier Transportation Gmbh Betrieb einer Anordnung mit mehreren Verbrennungsmotoren und elektrischen Maschinen zum Versorgen eines Schienenfahrzeugs mit elektrischer Energie
US9221480B2 (en) * 2014-01-09 2015-12-29 General Electric Company Systems and methods for identifying different types of traction motors in a vehicle system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308004A (ja) * 1994-05-12 1995-11-21 Hitachi Ltd 電気車制御装置
JP2000134701A (ja) * 1998-10-21 2000-05-12 Toshiba Corp 鉄道車両用電力変換装置
JP2000134723A (ja) * 1998-10-27 2000-05-12 Hitachi Ltd 軸重補償形トルク適正配分運転方式
JP2004328993A (ja) * 2003-04-10 2004-11-18 Hitachi Ltd 列車制御システム,車上通信ネットワークシステム、及び列車制御装置
JP2005027447A (ja) * 2003-07-03 2005-01-27 Hitachi Ltd 鉄道車両駆動システム
WO2012095895A1 (ja) * 2011-01-14 2012-07-19 川崎重工業株式会社 回路遮断ユニットおよびそれを備えた鉄道車両
JP2014140294A (ja) * 2011-01-31 2014-07-31 Hitachi Ltd 駆動システム、鉄道車両用駆動システムおよびこれを搭載した鉄道車両、編成列車
JP2014171279A (ja) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp 推進制御装置及び推進制御方法
JP2014236547A (ja) * 2013-05-31 2014-12-15 東日本旅客鉄道株式会社 鉄道車両の制御システムおよび制御方法

Also Published As

Publication number Publication date
US20180361878A1 (en) 2018-12-20
TWI652187B (zh) 2019-03-01
CN108367692A (zh) 2018-08-03
CN108367692B (zh) 2021-08-03
TW201726449A (zh) 2017-08-01
US11260758B2 (en) 2022-03-01
JP6564470B2 (ja) 2019-08-21
JPWO2017098539A1 (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6564470B2 (ja) 鉄道車両用制御装置、列車編成および主電動機制御方法
CA2177628C (en) Rail-borne passenger vehicle
JP5801999B2 (ja) 鉄道用車上電気機器を搭載した鉄道車両の編成列車
US7061131B2 (en) Method and system for optimizing energy storage in hybrid off-highway vehicle systems and trolley connected OHV systems
CN102300742B (zh) 被驱动的汽车轴
CN108349369A (zh) 混合动力车辆的驱动设备的运行和混合动力车辆
GB2425290A (en) Bogie comprising flywheel and prime mover
CN111619594A (zh) 一种轨道交通列车安全起动控制系统及方法
US20120035791A1 (en) Method for controlling a railway vehicle
US20160167677A1 (en) Railcar having natural gas engine
US20140117167A1 (en) Communication system for multiple locomotives
JP6186231B2 (ja) 鉄道車両用駆動システム
CN105658464A (zh) 用于机动车辆的动力系统以及运行方法
US10207724B2 (en) Method for operating a vehicle
JP6629138B2 (ja) 圧縮空気供給装置
KR101584325B1 (ko) 모노레일 차량용 공유압 제동 장치
JP2008049809A (ja) ディーゼル動車のハイブリッド型駆動装置
CN111806510B (zh) 轨道车辆制动控制方法和系统、以及轨道车辆
JP4180146B2 (ja) 電車と併結運転可能な気動車の動力制御装置
JP5291414B2 (ja) 軌道車両用駆動システム及び軌道車両
EP4265502A1 (en) Self-propelled railway vehicle comprising a hybrid motorization and control method for said self-propelled railway vehicle
Hartono et al. Development of new drive system of diesel electric multiple unit (DEMU) for Indonesia railway
CN109572674A (zh) 混合动力汽车及其动力系统和整车控制方法
JP2009095077A (ja) リニアモータ電気車の駆動制御システム
JP5307436B2 (ja) 動力分散方式のレール運搬車における定低速運転制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910158

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910158

Country of ref document: EP

Kind code of ref document: A1