WO2017097185A1 - 除雾器 - Google Patents

除雾器 Download PDF

Info

Publication number
WO2017097185A1
WO2017097185A1 PCT/CN2016/108700 CN2016108700W WO2017097185A1 WO 2017097185 A1 WO2017097185 A1 WO 2017097185A1 CN 2016108700 W CN2016108700 W CN 2016108700W WO 2017097185 A1 WO2017097185 A1 WO 2017097185A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
mist eliminator
draft tube
cylinder
liquid collecting
Prior art date
Application number
PCT/CN2016/108700
Other languages
English (en)
French (fr)
Inventor
聂江宁
凌斌
徐家礼
Original Assignee
江苏揽山环境科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏揽山环境科技股份有限公司 filed Critical 江苏揽山环境科技股份有限公司
Priority to RU2018116891A priority Critical patent/RU2686830C1/ru
Priority to US16/060,906 priority patent/US10857496B2/en
Priority to EP16872376.5A priority patent/EP3388133B1/en
Publication of WO2017097185A1 publication Critical patent/WO2017097185A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/16Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by the winding course of the gas stream, the centrifugal forces being generated solely or partly by mechanical means, e.g. fixed swirl vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C3/06Construction of inlets or outlets to the vortex chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C3/00Apparatus in which the axial direction of the vortex flow following a screw-thread type line remains unchanged ; Devices in which one of the two discharge ducts returns centrally through the vortex chamber, a reverse-flow vortex being prevented by bulkheads in the central discharge duct
    • B04C2003/006Construction of elements by which the vortex flow is generated or degenerated

Definitions

  • the invention relates to a gas-liquid separation device used in the industrial field, in particular to a novel mist eliminator suitable for industrial applications.
  • Gas-liquid separation is a common process in the industrial field.
  • the smaller slurry particle size contributes to the rapid progress of the gas-liquid reaction.
  • the flue gas after desulfurization will be saturated with the slurry droplet.
  • Small particle size droplets are easily carried by the airflow, causing contamination and severe corrosion of the fan, heat exchanger and flue, so the purified flue gas needs to be defogging before leaving the absorption tower.
  • Most of the existing mist eliminators can remove more than 70% of the droplets of 20 micrometers, but the droplet removal efficiency of the particle size of 10 micrometers is only about 30%.
  • the main reason for the excess particles in the desulfurization tower is fog.
  • the effective solution to the particulate matter brought out by the droplets is to reduce the droplets or reduce the emission of mist droplets, that is, to improve the gas-liquid separation efficiency of the flue gas after purification.
  • the present invention provides a novel mist eliminator with high demisting efficiency.
  • a novel mist eliminator comprising more than one demisting unit, characterized in that the defogging unit comprises a draft tube, a primary swirling vane group installed in the air inlet of the draft tube, and a set in the draft tube
  • the outer liquid collecting cylinder has at least one guiding tube in the liquid collecting cylinder, and the side wall of the guiding tube is provided with a water permeable structure, and a gap is left between the outer wall surface of the guiding tube and the inner wall surface of the liquid collecting cylinder to form a gap.
  • Mezzanine cavity comprising more than one demisting unit, characterized in that the defogging unit comprises a draft tube, a primary swirling vane group installed in the air inlet of the draft tube, and a set in the draft tube
  • the outer liquid collecting cylinder has at least one guiding tube in the liquid collecting cylinder, and the side wall of the guiding tube is provided with a water permeable structure, and a gap is left between the outer wall surface of the guiding tube
  • a bottom plate is disposed below the sandwich cavity, corresponding to a position of the bottom of the bottom plate, and the wall of the liquid collecting cylinder is provided with a concave portion, the concave portion is located below the lowest portion of the bottom plate, and communicates with the interlayer cavity to make the cavity in the interlayer cavity The effusion can flow out of the recess from the recess.
  • the interlayer cavity can be connected to an external device to form a negative pressure with respect to the air pressure in the draft tube, and at the same time, when the defogger is used When the clean mist is separated in the gas, a water absorbing material may be added to the interlayer cavity.
  • a plurality of secondary blade groups may be added in the rear section of the primary swirling blade group in the draft tube, in order to avoid
  • the increase in the number of layers of the blade group leads to an increase in the pressure loss of the demister, and the center piece of the secondary swirling blade group is set as a hollow cylinder, but compared to the position of the blade inlet of the secondary swirling blade group, the center The piece will grow a section on the side of the airflow.
  • the interlayer cavity also separates the individual cavity units, each cavity unit collects the droplets separated by the corresponding each group of swirling vane groups, the drain port of the upper chamber unit and the lower chamber unit Connect or connect to an external drain.
  • the liquid collecting cylinders of the adjacent defogging units are connected by a clamping member, the clamping member is provided with a base, a claw fixed above the base and a drain pipe connected under the base, and the adjacent defogging is fixed.
  • the clamping member is clamped at a position where the liquid collecting cylinder is provided with the concave portion, so that the concave portion communicates with the drainage pipe.
  • the cylinder wall of the liquid collecting cylinder is sequentially connected by a plurality of wall plates, the adjacent wall plates have an angle of 120°, and the concave portion is disposed at a corner of the liquid collecting cylinder.
  • the water permeable structure of the draft tube may take any of the following forms:
  • the draft tube is circumferentially opened on the wall of the cylinder to form the water permeable structure by a plurality of grooves;
  • the whole or partial cylinder of the draft tube is composed of a plurality of baffles, and a gap is formed between the baffles to form a water permeable structure, and the baffle is a straight plate or a curved plate;
  • the wall of the draft tube is provided with a water permeable mesh, membrane or filter cloth.
  • the cross section of the curved panel is set to an arcuate curve of increasing curvature.
  • the swirl plate includes a blade group and a support member for fixing the blade, the blades in the blade group are arranged in an annular shape, and an oblique flow path is formed between adjacent blades, the blade includes a curved plate, the curved piece
  • the cross section of the panel is a gradual curved curve whose curvature increases with the direction of the airflow.
  • the blade may further extend out of the straight plate at the tapered end of the curved section.
  • the (guide tube, blade) curved curve adopts a modified involute, and the curve equation is:
  • is the angle of expansion
  • r is the radius of the base circle
  • k is the correction factor
  • the mist eliminator of the invention is installed in a gas processing device, and the gas entering the demisting device passes through the primary swirling blade group to form a rotating flow state centered on the central axis of the guiding tube, and the mist trapped in the flue gas is guided by the flow.
  • the wall of the tube enters the sandwich cavity of the flow guiding tube and the liquid collecting tube through the water permeable structure on the wall of the guiding tube, and is discharged from the cavity to separate the gas-liquid passage of the defogging process, thereby reducing the secondary of the gas to the droplet Entrainment significantly improves defogging efficiency.
  • the curved curve of the vane gradient causes the droplets or dust to be trapped by the vane surface under the action of the continuously changing inertial force, and the removal rate high.
  • the structure of the defogger of the invention is novel and easy to manufacture and manufacture.
  • the design of the defogging unit is also convenient for production, transportation, disassembly and maintenance.
  • the defogging unit can be assembled into a group of defoggers of different diameters and different layers. The resistance can be adjusted by the setting of the level and the mode of use is flexible.
  • FIG. 1 is a schematic top plan view of a first embodiment of a defogger
  • Figure 2 is a bottom perspective view of the demister of Figure 1;
  • Figure 3 is a bottom view of the demister of Figure 1;
  • FIG. 4 is a schematic structural view of a second embodiment of a defogger
  • Figure 5 is a schematic view showing the structure of the liquid collecting cylinder of the second embodiment of the defogger
  • Figure 6 is a partial cross-sectional view of the defogging unit
  • Figure 7 is a schematic structural view of a recess on the liquid collecting cylinder
  • Figure 8 is a partial cross-sectional view of the demisting unit 2;
  • Figure 9 is a partial cross-sectional view of the defogging unit 3;
  • Figure 10 is a schematic structural view of the first embodiment of the draft tube
  • Figure 11 is a schematic structural view of a second embodiment of a draft tube
  • Figure 12 is a schematic structural view of the third embodiment of the draft tube
  • Figure 13 is a perspective structural view of an embodiment of a clamping member
  • Figure 14 is a side view showing the structure of the holder of Figure 13;
  • Figure 15 is a top plan view of the clamping member of Figure 13;
  • Figure 16 is a schematic structural view of an embodiment of a swirling plate
  • Figure 17 is a schematic structural view of the first embodiment of the blade
  • Figure 18 is a schematic view showing the structure of the second embodiment of the blade.
  • Figure 19 is a schematic structural view of a secondary blade group
  • Figure 20 is a schematic view showing the structure of the third embodiment of the defogger
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a novel mist eliminator includes a plurality of defogging units 1 spliced into a honeycomb shape, and the defogging unit 1 includes a liquid collecting cylinder 11 , a guiding tube 12 and a swirling unit.
  • the flow blade group 13 is provided on the periphery of the flow guide cylinder 12, and at least one flow guide cylinder 12 is disposed in one liquid collection cylinder 11.
  • the primary swirling vane set 13 is mounted within the draft tube 12 at its inlet end.
  • the side wall of the draft tube 12 is provided with a water permeable structure, and a gap is left between the outer wall surface of the draft tube 12 and the inner wall surface of the liquid collecting cylinder 11, forming a water-intercalated cavity 14, the bottom of the interlayer cavity 14 and The external drainage mechanism is connected.
  • the cylinder of the liquid collecting cylinder 11 preferably adopts a regular hexagon shape, which is convenient for seamless splicing of adjacent demisting units.
  • a butterfly-shaped bottom plate is disposed below the sandwich cavity 14, and the lowest portion of the bottom plate is disposed at a corner of the liquid collecting cylinder 11.
  • the cylindrical wall of the liquid collecting cylinder 11 is provided with a chamfered short cut surface 111 to form a concave portion.
  • the concave portion is located below the bottom of the bottom plate of the interlayer cavity 14 and is permeable to water.
  • the hole 112 is in communication with the interlayer cavity 14, so that the liquid in the interlayer cavity 14 can flow out of the recess 11 from the recess to facilitate the discharge.
  • the guide tube 12 can be arranged in a cylindrical shape or a regular hexagon.
  • the adjacent defogging unit collecting cylinders 11 are connected by a clamping member 3, as shown in Figs. 13, 14, 15, the clamping member 3 is provided with a triangular base 32 and three claws fixed above the base. 31 and a drain pipe 33 connected below the base.
  • the clamping member 3 is stuck at a position where three adjacent demisting units are butted, and a corresponding bayonet is provided on the chamfered short cutting surface 111 of the liquid collecting cylinder.
  • the three liquid collecting cylinders 11 are spliced into a triangular prism cavity at the abutting portion, and the base 32 of the clamping member 3 blocks the triangular prism cavity from the bottom to make the secondary layer cavity
  • the effluent flowing out of the chamber 14 is collected into the drain pipe 33 of the clamp member 2 through the recess, directly discharged through the drain pipe 33 or the drain pipe 33 and the cross-hook of the demister
  • the support pipe 2 is connected and discharged through the cross-arm pipe 2 to the outside of the purification system.
  • the primary swirling vane group 13 includes a plurality of vanes and a supporting member of the stationary vane, the supporting member including an outer frame 131 and a center piece 134, the vanes being annularly arranged in the frame 131, and the adjacent vanes are formed obliquely Flow path.
  • the blades in the blade group include long blades 132 and a plurality of short blades 133 of different lengths, the inner ends of which are fixed on the center member 134, the outer ends are connected to the frame 131, and the short blades are inserted in the two long blades 132. Between the outer ends thereof is fixed on the frame 131, and the inner end is not in contact with the center member 134.
  • the arrangement of the blades at the center member is prevented from being too dense, resulting in a large resistance, resulting in gas pressure loss.
  • the support ring 17 may be added above and below the blades so that the middle portion of each blade is connected to the support ring 17.
  • the blade comprises a curved panel, and the curved panel has a gradual curved curve, and the curvature is set to increase with the airflow direction, as shown in FIG. 18, and according to actual use requirements, a straight plate and a curved panel may also be used. In this way, a straight plate is extended at the gradually flexing end of the curved surface section of the blade, which can reduce the resistance compared with the simple use of the curved panel, as shown in FIG.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the honeycomb structure of the liquid collecting cylinder 11 can be further simplified, and the liquid collecting cylinder 11 can be configured as shown in FIG. 4 and FIG. 5, and a plurality of guides can be arranged in each liquid collecting cylinder 11.
  • the flow tube 12, the wall of the liquid collecting cylinder 11 is formed by sequentially connecting a plurality of equal-width wall plates, the adjacent wall plates are at an angle of 120°, and the concave portions are disposed at the corners of the liquid collecting cylinder 11 so that each The draft tubes 12 are at least opposite one side of the collector wall.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • a plurality of secondary swirling vane groups may be added in the rear section of the primary swirling vane group 13 in the draft tube 15, in order to avoid the blade
  • the increase in the number of layers causes the pressure loss of the demister to increase, and the center piece 151 of the secondary swirling blade group 15 is set as a hollow cylinder, but compared to the position of the blade inlet of the secondary swirling blade group,
  • the center member 151 has a length on the side of the airflow.
  • the interlayer cavity also separates the individual cavity units, each cavity unit collects the droplets separated by the corresponding each group of swirling vane groups, the drain port of the upper chamber unit and the lower chamber unit Connect or connect to an external drain.
  • a primary swirling vane group 13 is disposed on one side of the intake port of the draft tube, and a rear-stage swirling vane group 15 is disposed at a rear portion thereof, and the cavity units corresponding to the two vane groups are not connected to each other. , drain separately.
  • the shape design of the draft tube 12 includes, but is not limited to, the following forms: 1) a straight cylinder, 2) a cone cylinder, and 3) a combination of a straight cylinder and a cone cylinder.
  • the cone has a decreasing diameter in the direction of the air flow.
  • the formation of the water permeable structure on the draft tube 12 can be performed in any of the following ways:
  • the whole tubular body of the draft tube 12 is composed of a plurality of baffles, and a gap is formed between each baffle to form a water permeable structure, and the baffle is a straight plate or a curved plate, as shown in FIG. 10;
  • the draft tube 12 is divided into upper and lower sections.
  • the lower cylinder is a straight cylinder or a conical cylinder
  • the upper cylinder is composed of a plurality of baffles, and each of the baffles is left.
  • the gap forms the water permeable structure
  • the lower barrel can be selectively grooved to be a water permeable structure
  • the baffle is preferably a curved panel, especially a curved panel with a curvature change.
  • the cone is decreasing in diameter from bottom to top (in the direction of air flow);
  • the wall of the draft tube 12 consists of a permeable mesh, membrane or filter cloth and a support member of a fixed mesh, membrane or filter cloth.
  • the baffle 12 forms a baffle plate of the water permeable structure and a curved panel on the blade, and the cross section is curved and curved.
  • the modified involute is used, and the specific curve equation is:
  • is the angle of expansion
  • r is the radius of the base circle
  • k is the correction factor
  • the mist carried in the gas entering the demister passes through the swirling vane group, it is trapped by the vane to form a liquid film which facilitates subsequent mist trapping, thereby removing most of the mist and liquid.
  • a part of the droplets are formed to peel off from the blade, and a part of the film is carried by the airflow into the cavity of the draft tube.
  • the gas flowing through the surface swirling demister plate forms a rotating flow state, and the remaining droplets and part of the liquid film are guided to the wall of the cylinder, and then enter the guiding tube and the collecting cylinder through the permeable structure on the wall of the guiding tube.
  • the interlayer cavity is discharged.
  • the defogger of the invention combines the different processing methods such as the gradient bending surface separation and the inertial separation to treat the gas multiple times, and simultaneously discharges the removed droplets through the liquid collecting cylinder, and the grading defogging efficiency is directed to the droplet of 10 nm.
  • the demisting efficiency is also above 90%, while the resistance is only a few hundred Pa (at a gas flow rate of 5 m/s).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Cyclones (AREA)

Abstract

一种除雾器,包括一个以上的除雾单元(1),除雾单元(1)包括导流筒(12)、安装在导流筒(12)进气口的旋流叶片组(13)和设置在导流筒(12)外的集液筒(11),一个集液筒(11)内设有至少一个导流筒(12),导流筒(12)的侧壁设有透水结构,导流筒(12)外壁面与集液筒(11)内壁面之间留有间隙,形成夹层容腔(14)。除雾器安装在气体处理设备中用于气液分离,进入除雾器的气体经过旋流叶片组(13)后形成旋转流态,气体中夹带的雾滴被甩向导流筒(12)壁,通过导流筒(12)壁上的透水结构进入导流筒(12)与集液筒(11)的夹层容腔(14)中,从夹层容腔(14)中排出,将除雾过程的气液通道分开,可显著提高除雾效率。

Description

[根据细则37.2由ISA制定的发明名称] 除雾器 技术领域
本发明涉及工业领域使用的一种气液分离装置,具体为一种适用于工业应用的新型除雾器。
背景技术
气液分离是工业领域中常见的一项工艺流程,在湿法脱硫过程中,较小的浆液粒径有助于气液反应的快速进行,然而,脱硫后的烟气会因此饱含浆液雾滴,小粒径的雾滴易被气流携带排出,造成风机、热交换器及烟道的玷污和严重腐蚀,因此净化烟气在离开吸收塔之前需要经过除雾。现有的大部分除雾器对20微米的雾滴去除效率可达70%以上,但对粒径为10微米的雾滴去除效率仅为30%左右,脱硫塔出口颗粒物超标的主要原因是雾滴带出的颗粒物造成的,有效的解决方法就是减少雾滴或者减少雾滴颗粒物的排放,即提高净化后烟气的气液分离效率。
发明内容
为了解决现有净化设备对于小粒径雾滴去除效率较低,排气口雾滴和颗粒物浓度较难达标的问题,本发明提供了一种除雾效率高的新型除雾器。
本发明公开的技术方案为:
一种新型除雾器,包括一个以上的除雾单元,其特征在于,所述除雾单元包括导流筒、安装在导流筒内进气口的初级旋流叶片组和设置在导流筒外的集液筒,一个集液筒内设有至少一个导流筒,所述导流筒的侧壁设有透水结构,导流筒外壁面与集液筒内壁面之间留有间隙,形成夹层容腔。
在上述方案的基础上,进一步的改进或优选的技术方案还包括:
所述夹层容腔的下方设有底板,对应底板最低处的位置,集液筒筒壁设有凹部,所述凹部位于底板最低处的下方,且与夹层容腔连通,使夹层容腔内的积液可从凹部流出集液筒外排。
为了使导流筒内收集的雾滴能够更高效地排入夹层容腔,所述夹层容腔可与外部设备连接,形成相对于导流筒内气压的负压,同时,当除雾器用于气体中洁净雾滴的分离时,还可在夹层容腔中加入吸水材料。
除雾器用于分离粒径极小的雾滴时,如几十至几百纳米的雾滴,可在所述导流筒内初级旋流叶片组的后段增加若干次级叶片组,为了避免叶片组层数增加导致除雾器压力损失增大,次级旋流叶片组的中心件设为中空的筒体,但相较于次级旋流叶片组叶片进气口的位置,所述中心件在迎气流一侧要长出一段。相对应的,所述夹层容腔也分隔出单独的容腔单元,每个容腔单元收集由对应的每层旋流叶片组分离的液滴,上方容腔单元的排水口与下方容腔单元连通,或与外部排水机构连接。相邻除雾单元的集液筒之间通过夹持件连接,所述夹持件设有基座、固定在基座上方的卡爪和连接在基座下方的排水管,固定相邻除雾单元时,所述夹持件卡夹在集液筒设置所述凹部的位置,使凹部与排水管连通。
所述集液筒的筒壁由若干块壁板顺次连接构成,相邻壁板的夹角为120°,所述凹部设置在集液筒的拐角处。
所述导流筒的透水结构可采用以下形式中的任一种:
a)导流筒在筒壁上环向开设由多个槽形成所述透水结构;
b)所述导流筒整体或局部筒体由多块挡板合围构成,各挡板之间留有间隙形成透水结构,所述挡板为直板或曲面板;
c)所述导流筒的筒壁设有透水的网、膜或滤布。
作为优选,所述曲面板的横截面设为曲率递增的弧形曲线。
所述旋流板包括叶片组和固定叶片的支撑构件,所述叶片组内的叶片呈环形排布,相邻叶片之间形成斜向的流道,所述叶片包括一段曲面板,所述曲面板的横截面为渐变的弧形曲线,其曲率随气流走向递增。
所述叶片在曲面段的渐缩端可进一步延伸出直板。
作为优选,所述(导流筒、叶片)弧形曲线采用修正后的渐开线,其曲线方程为:
Figure PCTCN2016108700-appb-000001
上式中,φ为展角,r为基圆半径,k为修正系数。
有益效果:
本发明除雾器安装在气体处理设备中使用,进入除雾装置的气体经过初级旋流叶片组后形成以导流筒中轴线为中心的旋转流态,烟气中夹带的雾滴被甩向导流筒壁,通过导流筒壁上的透水结构进入导流筒与集液筒的夹层容腔中,从容腔中排出,将除雾过程的气液通道分开,可减少气体对雾滴的二次夹带,显著提高除雾效率。在进一步结合优选的除雾叶片后,使气体在通过旋流叶片组的过程中,叶片渐变的弧形曲线促使液滴或粉尘在持续变化的惯性力作用下,被叶片曲面捕集,去除率高。本发明除雾器结构设计新颖,易于加工制造。除雾单元的设计也便于生产、运输、拆装和维修,除雾单元可以拼装组合成不同直径、不同层数的除雾器组,阻力可通层级的设置调整,使用方式灵活。
附图说明
图1为除雾器实施例一的俯视立体结构示意图;
图2为图1除雾器的仰视立体结构示意图;
图3为图1除雾器的仰视结构示意图;
图4为除雾器实施例二的结构示意图;
图5为除雾器实施例二集液筒的结构示意图;
图6为除雾单元的局部剖面结构示意图一;
图7为集液筒上凹部的结构示意图;
图8为除雾单元的局部剖面结构示意图二;
图9为除雾单元的局部剖面结构示意图三;
图10为导流筒实施例一的结构示意图;
图11为导流筒实施例二的结构示意图;
图12为导流筒实施例三的结构示意图;
图13为夹持件一实施例的立体结构示意图;
图14为图13夹持件的侧视结构示意图;
图15为图13夹持件的俯视结构示意图;
图16为旋流板一实施例的结构示意图;
图17为叶片实施例一的结构示意图;
图18为叶片实施例二的结构示意图;
图19为次级叶片组的结构示意图;
图20为除雾器实施例三的结构示意图
具体实施方式
为了进一步阐明本发明的技术方案和设计原理,下面结合附图与具体实施例对本发明做进一步的介绍。
实施例一:
如图1、图2、图3、图6一种新型除雾器,包括多个拼接成蜂窝状的除雾单元1,所述除雾单元1包括集液筒11、导流筒12和旋流叶片组13,集液筒11设置在导流筒12的外围,一个集液筒11内设有至少一个导流筒12。初级旋流叶片组13安装在导流筒12内,位于其进气口端。所述导流筒12的侧壁设有透水结构,导流筒12外壁面与集液筒11内壁面之间留有间隙,形成过水的夹层容腔14,所述夹层容腔14底部与外部排水机构连通。
所述集液筒11筒体优选采用正六边形,便于实现相邻除雾单元的无缝拼接。所述夹层容腔14的下方设有蝶形底板,底板的最低处设置在集液筒11的拐角处。对应底板最低处的位置,集液筒11筒壁设有一倒角短切面111,形成一凹部,如图1、图7所示,所述凹部位于夹层容腔14底板最低处的下方,通过透水孔112且与夹层容腔14连通,使夹层容腔14内的积液可从凹部流出集液筒11,便于外排。所述导流筒12可设置为圆柱形或正六边形。
相邻除雾单元集液筒11通过夹持件3连接,如图13、14、15所示,所述夹持件3设有三角形的基座32、固定在基座上方的三个卡爪31和连接在基座下方的排水管33。固定相邻除雾单元时,所述夹持件3卡在三个相邻除雾单元对接的位置,集液筒的倒角短切面111上设有对应的卡口。三个相邻除雾单元对接后,三个集液筒11在对接处的凹部拼接成一三棱柱腔,夹持件3的基座32从底部堵住所述三棱柱腔,使从夹层容腔14流出的积液通过凹部被收集到夹持件2的排水管33中,通过排水管33直接排下或使排水管33与架住除雾器的横 担管道2连接,通过横担管道2排出净化系统外。
所述初级旋流叶片组13包括多片叶片和固定叶片的支撑构件,所述支撑构件包括外部框架131和中心件134,叶片环形排布在框架131内,相邻叶片之间形成斜向的流道。所述叶片组内的叶片包括长叶片132和若干长短不一的短叶片133,所述长叶片的内端固定在中心件134上,外端与框架131连接;短叶片插在两长叶片132之间,其外端固定在框架131上,内端与中心件134不接触,通过上述布置避免叶片在中心件处排列过于密集,产生较大阻力,造成气体压力损失。为了增强短叶片的固定强度,可在叶片上下增加支撑环17,使各叶片的中部与支撑环17连接。
上述叶片包括一段曲面板,所述曲面板的横截面为渐变的弧形曲线,其曲率设为随气流走向递增,如图18所示,根据实际使用需求,也可采用直板与曲面板结合的方式,在叶片曲面段的渐屈端延伸出一段直板,与单纯采用曲面板相比可降低阻力,如图17所示。
实施例二:
在实施例一的基础上,可进一步简化集液筒11的蜂窝结构,将集液筒11设为如图4、图5所示的结构形式,每个集液筒11内可配置多个导流筒12,集液筒11的筒壁由若干块等宽壁板顺次连接构成,相邻壁板的夹角为120°,将所述凹部设置在集液筒11的拐角处,使每个导流筒12至少与一面集液筒壁板相对。
实施例三:
除雾器用于分离粒径极小的雾滴时,如几十至几百纳米的雾滴,可在所述导流筒内初级旋流叶片组13的后段增加若干次级旋流叶片组15,为了避免叶片 组层数增加导致除雾器压力损失增大,次级旋流叶片组15的中心件151设为中空的筒体,但相较于次级旋流叶片组叶片进气口的位置,所述中心件151在迎气流一侧要长出一段。相对应的,所述夹层容腔也分隔出单独的容腔单元,每个容腔单元收集由对应的每层旋流叶片组分离的液滴,上方容腔单元的排水口与下方容腔单元连通,或与外部排水机构连接。
如图19、20所示,导流筒进气口一侧设有初级旋流叶片组13,其后段和设有一层次级旋流叶片组15,对应两叶片组的容腔单元互不连通,分别排水。
本发明中:
所述导流筒12的形状设计包括但不限于以下几种形式:1)直筒,2)锥形筒,3)直筒与锥形筒的组合。所述锥形筒为顺气流方向直径递减。
所述导流筒12上透水结构的形成可采用以下方式中的任一种:
a)在导流筒12的筒壁上沿环向开设多个倾斜槽,形成所述透水结构,如图12所示;
b)所述导流筒12整体筒体由多块挡板合围构成,各挡板之间留有间隙形成透水结构,所述挡板为直板或曲面板,如图10所示;
或者,将所述导流筒12分为上、下段,如图11所示,下段筒体为直筒、或锥形筒,上段筒体由多块挡板合围构成,各挡板之间留有间隙形成所述透水结构,下段筒体上可选择性开槽做透水结构,所述挡板优选采用曲面板,尤其是曲率变化的曲面板。所述锥筒为自下向上(顺气流方向)直径递减;
c)所述导流筒12的筒壁由透水的网、膜或滤布和固定网、膜或滤布的支撑构件组成。
导流筒12上形成透水结构的挡板和叶片上的曲面板,其横截面弧形曲线形 状优选采用经过修正的渐开线,其具体的曲线方程为:
Figure PCTCN2016108700-appb-000002
上式中,φ为展角,r为基圆半径,k为修正系数。
上述实施例中,进入除雾器的气体中携带的雾滴经过旋流叶片组时,被叶片捕集,形成有助于后续雾滴捕集的液膜,从而可去除大部分雾滴,液膜到一定厚度后一部分形成液滴从叶片上剥落,一部分被气流带入到导流筒腔体内。通过曲面旋流除雾板的气体形成了旋转流态,剩余的雾滴及部分液膜被甩向导流筒筒壁后,通过导流筒壁上的透水结构进入导流筒与集液筒之间的夹层容腔中被排出。
本发明除雾器由于结合了渐屈曲面分离、惯性分离等不同处理方式对气体进行多次处理,同时将已经除下的雾滴通过集液筒排出,分级除雾效率针对10纳米的雾滴除雾效率也达到90%以上,而阻力只有数百帕(气流速度5m/s时)。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,本发明要求保护范围由所附的权利要求书、说明书及其等效物界定。

Claims (12)

  1. 一种新型除雾器,包括一个以上的除雾单元,其特征在于,所述除雾单元包括导流筒(12)、安装在导流筒(12)进气口的初级旋流叶片组(13)和设置在导流筒(12)外的集液筒(11),一个集液筒(11)内设有至少一个导流筒(12),所述导流筒(12)的侧壁设有透水结构,导流筒(12)外壁面与集液筒(11)内壁面之间留有间隙,形成夹层容腔。
  2. 根据权利要求1所述的一种新型除雾器,其特征在于,所述夹层容腔的下方设有底板,对应底板最低处的位置,集液筒(11)筒壁设有凹部,所述凹部位于底板最低处的下方,且与夹层容腔连通,使夹层容腔内的积液可从凹部流出集液筒(11)。
  3. 根据权利要求2所述的一种新型除雾器,其特征在于,所述夹层容腔相对导流筒(12)内部为负压。
  4. 根据权利要求2所述的一种新型除雾器,其特征在于,所述夹层容腔内设有吸水材料。
  5. 根据权利要求1所述的一种新型除雾器,其特征在于,导流筒(12)内在进气口初级旋流叶片组(13)的后段还设有一层以上的次级旋流叶片组(15),所述次级旋流叶片组(15)的中心件(151)设为中空的筒体,且相较于次级旋流叶片组(15)叶片进气口的位置,所述中心件(151)在迎气流一侧要长出一段;所述夹层容腔对应每层旋流叶片组分隔出单独的容腔单元,上方容腔单元的排水口与下方容腔单元连通,或与外部排水机构连接。
  6. 根据权利要求2所述的一种新型除雾器,其特征在于,相邻除雾单元集液筒(11)之间通过夹持件(3)连接,所述夹持件(3)设有基座(32)、固定在基座上方的卡爪(31)和连接在基座下方的排水管(33),固定相邻除雾单元时, 所述夹持件(3)卡夹在集液筒(11)设置所述凹部的位置,使凹部与排水管(33)连通。
  7. 根据权利要求6所述的一种新型除雾器,其特征在于,所述集液筒(11)的筒壁由若干块壁板顺次连接构成,相邻壁板的夹角为120°,所述凹部设置在集液筒(11)的拐角处。
  8. 根据权利要求1所述的一种新型除雾器,其特征在于,所述导流筒(12)的透水结构为以下形式中的任一种:
    a)导流筒(12)在筒壁上环向开设由多个槽形成所述透水结构;
    b)所述导流筒(12)整体或局部筒体由多块挡板合围构成,各挡板之间留有间隙形成透水结构,所述挡板为直板或曲面板;
    c)所述导流筒(12)的筒壁设有透水的网、膜或滤布。
  9. 根据权利要求8所述的一种新型除雾器,其特征在于,所述曲面板的横截面为曲率递增的弧形曲线。
  10. 根据权利要求1所述的一种新型除雾器,其特征在于,所述旋流叶片组包括呈环形排布的多个叶片和固定叶片的支撑构件,相邻叶片之间形成斜向的流道,所述叶片包括一段曲面板,所述曲面板的横截面为渐变的弧形曲线,其曲率随气流走向递增。
  11. 根据权利要求10所述的一种新型除雾器,其特征在于,所述叶片在曲面段的渐屈端延伸出一段直板。
  12. 根据权利要求9-11中任一项所述的一种新型除雾器,其特征在于,所述弧形曲线的为经过修正的渐开线,其曲线方程为:
    Figure PCTCN2016108700-appb-100001
    上式中,φ为展角,r为基圆半径,k为修正系数。
PCT/CN2016/108700 2015-12-08 2016-12-06 除雾器 WO2017097185A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2018116891A RU2686830C1 (ru) 2015-12-08 2016-12-06 Туманоуловитель
US16/060,906 US10857496B2 (en) 2015-12-08 2016-12-06 Demister
EP16872376.5A EP3388133B1 (en) 2015-12-08 2016-12-06 Demister

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510897113.0A CN105289117B (zh) 2015-12-08 2015-12-08 除雾器
CN201510897113.0 2015-12-08

Publications (1)

Publication Number Publication Date
WO2017097185A1 true WO2017097185A1 (zh) 2017-06-15

Family

ID=55187349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108700 WO2017097185A1 (zh) 2015-12-08 2016-12-06 除雾器

Country Status (5)

Country Link
US (1) US10857496B2 (zh)
EP (1) EP3388133B1 (zh)
CN (1) CN105289117B (zh)
RU (1) RU2686830C1 (zh)
WO (1) WO2017097185A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108355404A (zh) * 2018-04-13 2018-08-03 苏州中新动力科技股份有限公司 一种耐高温腐蚀动力除雾装置
CN108854401A (zh) * 2018-07-26 2018-11-23 武汉科技大学 一种防堵塞高效流化除雾器
TWI665002B (zh) * 2017-09-27 2019-07-11 大陸商北京中能諾泰節能環保技術有限責任公司 除塵除霧裝置及吸收塔
CN112717616A (zh) * 2020-12-30 2021-04-30 斯蒙赫尔(上海)环保科技有限公司 一种除雾叶片及除雾器
CN115738496A (zh) * 2022-11-29 2023-03-07 安徽龙华化工股份有限公司 一种五氧化二磷生产用尾气处理回收磷酸系统
CN117018762A (zh) * 2022-06-26 2023-11-10 王文兵 一种微管束除雾方法与装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105289117B (zh) * 2015-12-08 2017-11-10 江苏揽山环境科技股份有限公司 除雾器
CN106422740A (zh) * 2016-11-11 2017-02-22 中国大唐集团科学技术研究院有限公司 带分流环的离心式烟气深度净化装置及脱硫塔
FR3063913B1 (fr) * 2017-03-20 2019-04-19 Dcns Systeme de purification de fluide, generateur de vapeur et installation de production d'energie electrique
WO2019221884A1 (en) * 2018-05-18 2019-11-21 Donaldson Company, Inc. Precleaner arrangement for use in air filtration and methods
US11351492B2 (en) 2019-02-20 2022-06-07 B/E Aerospace, Inc. Inline vortex demister
GB2597168B (en) * 2019-04-26 2023-06-28 Energy Water Solutions Llc Compact containerized system and method for spray evaporation of water
JP2021037701A (ja) * 2019-09-03 2021-03-11 キヤノン株式会社 インクジェット記録装置
US11154873B2 (en) * 2019-09-19 2021-10-26 X'pole Precision Tools Inc. Multi-cyclonic dust filter device
US11253874B2 (en) * 2019-09-19 2022-02-22 X'pole Precision Tools Inc. Cyclonic dust filter device
CN111729508B (zh) * 2020-06-23 2022-09-09 苍龙集团有限公司 一种混合式诱导流喷淋除臭装置
CN111744358B (zh) * 2020-06-23 2022-09-09 苍龙集团有限公司 一种智能化一体扰流喷淋除臭设备
CN115382355B (zh) * 2022-09-22 2023-11-28 阳光氢能科技有限公司 一种气体洗涤装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110562A (en) * 1981-12-02 1983-06-22 Shell Int Research Apparatus for treating mixtures of liquid and gas
US4629481A (en) * 1985-01-18 1986-12-16 Westinghouse Electric Corp. Low pressure drop modular centrifugal moisture separator
JPS62213819A (ja) * 1986-03-13 1987-09-19 Yoshito Nishioka ミスト除去装置
CN2485028Y (zh) * 2001-06-08 2002-04-10 刘海玉 与湿法脱硫工艺配套的脱水除尘器
US20100072121A1 (en) * 2006-09-26 2010-03-25 Dresser-Rand Company Improved static fluid separator device
CN104903004A (zh) * 2013-01-02 2015-09-09 科氏-格利奇有限合伙公司 旋风分离器、旋风除雾器和使用方法
CN104906909A (zh) * 2015-06-19 2015-09-16 航天环境工程有限公司 一种高效气动管束相变除尘除雾并联装置及应用
CN105289117A (zh) * 2015-12-08 2016-02-03 江苏揽山环境科技股份有限公司 新型除雾器
CN205360840U (zh) * 2015-12-08 2016-07-06 江苏揽山环境科技股份有限公司 新型除雾器

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1735298A (en) * 1927-02-09 1929-11-12 American Blower Corp Apparatus for collecting dust particles
US1809375A (en) * 1928-03-16 1931-06-09 Francis F Chase Vaporizer
US2201301A (en) * 1937-03-30 1940-05-21 Western Precipitation Corp Centrifugal separating device
US2662610A (en) * 1950-08-04 1953-12-15 Oswald X Heinrich Apparatus for centrifugal separation of suspended particles
FR1414781A (fr) * 1964-02-06 1965-10-22 Prec Mecanique Labinal Perfectionnements apportés aux filtres pour fluides gazeux
US3443368A (en) * 1966-07-26 1969-05-13 Shell Oil Co Tubular centrifugal separators
US3421296A (en) * 1966-11-15 1969-01-14 United Aircraft Corp Engine inlet air particle separator
US3543485A (en) * 1968-09-23 1970-12-01 Universal Oil Prod Co Centrifugal particle separator
US3517821A (en) * 1968-11-29 1970-06-30 Donaldson Co Inc Deflecting element for centrifugal separators
US3915679A (en) * 1973-04-16 1975-10-28 Pall Corp Vortex air cleaner array
US3825212A (en) * 1973-07-10 1974-07-23 Boeing Co Aircraft heating and ventilating system
US4050913A (en) * 1974-06-28 1977-09-27 Pall Corporation Vortex air cleaner assembly with acoustic attenuator
US4008059A (en) * 1975-05-06 1977-02-15 The United States Of America As Represented By The Secretary Of The Army Centrifugal separator
US4162906A (en) * 1977-05-05 1979-07-31 Donaldson Company, Inc. Side outlet tube
US4420314A (en) * 1977-06-02 1983-12-13 Barron Industries, Inc. Gas-solids separator
US4311494A (en) * 1977-09-26 1982-01-19 Facet Enterprises, Inc. Axial flow gas cleaning device
US4242115A (en) * 1979-02-05 1980-12-30 Donaldson Company, Inc. Air cleaner assembly
DE2918765A1 (de) * 1979-05-10 1980-11-13 Kloeckner Humboldt Deutz Ag Fliehkraftstaubabscheidersystem mit mehreren stufen
AU606774B2 (en) * 1987-11-24 1991-02-14 Conoco Specialty Products Inc. Cyclone separator
US5149341A (en) * 1991-08-23 1992-09-22 Taylor John A Paper coater skip prevention and deaeration apparatus and method
ZA931264B (en) * 1992-02-27 1993-09-17 Atomic Energy South Africa Filtration.
US5320652A (en) * 1993-07-12 1994-06-14 Combustion Engineering, Inc. Steam separating apparatus
JP2001208301A (ja) * 2000-01-28 2001-08-03 Hitachi Ltd 気水分離器及び沸騰水型原子炉
CN2488595Y (zh) * 2001-06-22 2002-05-01 中美合资北京威肯环境工程有限公司 改进型旋流板除雾器
DE10142701A1 (de) * 2001-08-31 2003-04-03 Mann & Hummel Filter Vielzellenzyklon und Verfahren zu dessen Herstellung
NO315188B1 (no) * 2001-11-07 2003-07-28 Consept As Dråpefangersyklon
RU2226421C1 (ru) * 2002-12-31 2004-04-10 Институт химии Дальневосточного отделения РАН Устройство для очистки воздуха и газов от влаги, масла и механических примесей
JP5285212B2 (ja) * 2006-03-02 2013-09-11 三菱重工業株式会社 気水分離器
NO326078B1 (no) * 2006-07-07 2008-09-15 Shell Int Research Fluidseparasjonskar
EP1930059B1 (de) * 2006-11-13 2013-05-15 Sulzer Chemtech AG Tropfenabscheider
US7879123B2 (en) * 2007-09-27 2011-02-01 Pall Corporation Inertial separator
US10286407B2 (en) * 2007-11-29 2019-05-14 General Electric Company Inertial separator
US7896937B2 (en) * 2008-02-18 2011-03-01 Alstom Technology Ltd Hybrid separator
JP5112152B2 (ja) * 2008-04-14 2013-01-09 株式会社神戸製鋼所 潤滑液分離装置
CN101502734A (zh) * 2009-02-13 2009-08-12 无锡市雪江环境工程设备有限公司 喷淋除尘用喷淋塔结构
JP5550318B2 (ja) * 2009-12-10 2014-07-16 三菱重工業株式会社 多段気水分離装置、および気水分離器
AU2012351536B2 (en) * 2011-12-16 2015-10-08 Shell Internationale Research Maatschappij B.V. Separation device comprising a swirler
US8747504B2 (en) * 2011-12-16 2014-06-10 Uop Llc Gas-solids separation units and methods for the manufacture thereof
DE102011122322A1 (de) * 2011-12-23 2013-06-27 Mann + Hummel Gmbh Fliehkraftabscheider und Filteranordnung
CN202599038U (zh) * 2012-05-30 2012-12-12 成都合成生物科技有限公司 导流水筒内壁用翅片助流分离水的超高速离心脱水机
US9234484B2 (en) * 2014-02-26 2016-01-12 Ford Global Technologies, Llc Snorkel intake dirt inertial separator for internal combustion engine
US8945283B1 (en) * 2014-03-28 2015-02-03 Uop Llc Apparatuses and methods for gas-solid separations using cyclones
GB2524743A (en) * 2014-03-31 2015-10-07 Nano Porous Solutions Ltd Apparatus for contaminant reduction in a stream of compressed gas
CN105107277B (zh) * 2015-09-16 2016-09-21 佛山赛因迪环保科技有限公司 一种用于脱硫塔的除雾器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2110562A (en) * 1981-12-02 1983-06-22 Shell Int Research Apparatus for treating mixtures of liquid and gas
US4629481A (en) * 1985-01-18 1986-12-16 Westinghouse Electric Corp. Low pressure drop modular centrifugal moisture separator
JPS62213819A (ja) * 1986-03-13 1987-09-19 Yoshito Nishioka ミスト除去装置
CN2485028Y (zh) * 2001-06-08 2002-04-10 刘海玉 与湿法脱硫工艺配套的脱水除尘器
US20100072121A1 (en) * 2006-09-26 2010-03-25 Dresser-Rand Company Improved static fluid separator device
CN104903004A (zh) * 2013-01-02 2015-09-09 科氏-格利奇有限合伙公司 旋风分离器、旋风除雾器和使用方法
CN104906909A (zh) * 2015-06-19 2015-09-16 航天环境工程有限公司 一种高效气动管束相变除尘除雾并联装置及应用
CN105289117A (zh) * 2015-12-08 2016-02-03 江苏揽山环境科技股份有限公司 新型除雾器
CN205360840U (zh) * 2015-12-08 2016-07-06 江苏揽山环境科技股份有限公司 新型除雾器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3388133A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665002B (zh) * 2017-09-27 2019-07-11 大陸商北京中能諾泰節能環保技術有限責任公司 除塵除霧裝置及吸收塔
CN108355404A (zh) * 2018-04-13 2018-08-03 苏州中新动力科技股份有限公司 一种耐高温腐蚀动力除雾装置
CN108355404B (zh) * 2018-04-13 2023-12-26 苏州中新动力科技股份有限公司 一种耐高温腐蚀动力除雾装置
CN108854401A (zh) * 2018-07-26 2018-11-23 武汉科技大学 一种防堵塞高效流化除雾器
CN108854401B (zh) * 2018-07-26 2024-02-02 迈威尔流体技术(上海)有限公司 一种防堵塞高效流化除雾器
CN112717616A (zh) * 2020-12-30 2021-04-30 斯蒙赫尔(上海)环保科技有限公司 一种除雾叶片及除雾器
CN117018762A (zh) * 2022-06-26 2023-11-10 王文兵 一种微管束除雾方法与装置
CN117018762B (zh) * 2022-06-26 2024-03-15 王文兵 一种微管束除雾方法与装置
CN115738496A (zh) * 2022-11-29 2023-03-07 安徽龙华化工股份有限公司 一种五氧化二磷生产用尾气处理回收磷酸系统

Also Published As

Publication number Publication date
RU2686830C1 (ru) 2019-04-30
EP3388133A1 (en) 2018-10-17
CN105289117B (zh) 2017-11-10
US10857496B2 (en) 2020-12-08
US20180353888A1 (en) 2018-12-13
EP3388133B1 (en) 2022-10-12
EP3388133A4 (en) 2019-08-21
CN105289117A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
WO2017097185A1 (zh) 除雾器
CN104984597B (zh) 一种气动旋流并联组合除雾装置及应用
WO2009070058A2 (fr) Séparateur centrifuge servant à séparer des particules de liquide d'un flux gazeux
CN111375267B (zh) 一种气液固多效分离器
CN205360840U (zh) 新型除雾器
CN102921259B (zh) 一种自循环旋液复合式气体过滤器及其过滤方法
CN105999977A (zh) 气液分离装置
CN205936766U (zh) 一种汽车尾气净化装置
RU185045U1 (ru) Каплеуловитель
CN2511378Y (zh) 气体净化器
CN212309095U (zh) 一种饱和烟气旋流除雾塔
CN204973336U (zh) 一种双叶气动旋流并联组合除雾装置
CN209138166U (zh) 一种可拆式旋流分离器
CN202921124U (zh) 一种自循环旋液复合式气体过滤器
CN207928870U (zh) 一种气固液净化装置
CN107774080B (zh) 一种用于传质交换的气液分离装置
KR101715509B1 (ko) 스크러버
CN212548846U (zh) 一种烟尘净化设备
CN111643973A (zh) Ld型湿法脱硫专用除尘除水单元
CN217961756U (zh) 一种旋转过滤装置
CN218945344U (zh) 一种精密管道两级气体源动力除尘器
CN219002463U (zh) 气液分离器
CN219149656U (zh) 一种二级天然气气液分离装置
CN215842291U (zh) 一种高精度气液分离器
RU129415U1 (ru) Система очистки и фильтрации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872376

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016872376

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016872376

Country of ref document: EP

Effective date: 20180709