WO2017092412A1 - 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用 - Google Patents

一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用 Download PDF

Info

Publication number
WO2017092412A1
WO2017092412A1 PCT/CN2016/096258 CN2016096258W WO2017092412A1 WO 2017092412 A1 WO2017092412 A1 WO 2017092412A1 CN 2016096258 W CN2016096258 W CN 2016096258W WO 2017092412 A1 WO2017092412 A1 WO 2017092412A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
vinyl phenyl
phenyl silicon
silica hybrid
silica
Prior art date
Application number
PCT/CN2016/096258
Other languages
English (en)
French (fr)
Inventor
景录如
张春琪
吴斌
丁坤
单升升
徐晓风
夏智峰
Original Assignee
苏州太湖电工新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510853562.5A external-priority patent/CN105349034B/zh
Priority claimed from CN201510854357.0A external-priority patent/CN105348534B/zh
Application filed by 苏州太湖电工新材料股份有限公司 filed Critical 苏州太湖电工新材料股份有限公司
Publication of WO2017092412A1 publication Critical patent/WO2017092412A1/zh
Priority to US15/992,176 priority Critical patent/US10662291B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/44Block-or graft-polymers containing polysiloxane sequences containing only polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention particularly relates to a nano-silica hybrid vinyl phenyl silicon intermediate, a preparation method thereof and application in an environmentally friendly insulating varnish.
  • the traditional nanocomposites are prepared by directly doping the nanoparticles into the organic matter, or the surface of the nanoparticles is modified and organically grafted onto the organic matter. These methods will bring about the problem of agglomeration and settlement of the nanoparticles.
  • researchers are working hard to improve the problem of nanodispersion, so the in-situ polymerization method that emerged is a relatively advanced and effective nanocomposite preparation technology, which has been favored by the public; but currently this method is mainly It is applied to the modification of traditional nano-composite organic resins (polyester resin, epoxy resin, acrylic resin), and is rarely used in the preparation of nano-silicone resin.
  • the synthesis method of the vinyl organic/inorganic nano-hybrid material disclosed in the publication No. CN1235170A, published on November 17, 1999, is based on the conventional Sol-Gel method, and uses the Sol-Gel precursor orthosilicate B.
  • the ester is hydrolyzed to a sol under the catalysis of hydrochloric acid, and a vinyl monomer is added to the sol to form a gel.
  • the gel is prepared at a temperature of 30 to 50 ° C, and then polymerized in situ under ⁇ -ray irradiation at a polymerization temperature of 5 to 45 ° C.
  • the irradiation dose is 5 ⁇ 100KGy, the irradiation time is 4-20 hours, and then the sample is heated and dried at 60-80 ° C for 1-2 weeks to obtain the final hybrid material, which needs to be irradiated by ⁇ -ray. .
  • the technical problem to be solved by the present invention is to provide a nano-silica hybrid vinyl phenyl silicon intermediate with uniform dispersion of nanoparticles, non-agglomeration, dimensional stability and long corona resistance, preparation method thereof and environmentally friendly insulating varnish
  • the environmentally friendly insulating varnish has good corona resistance.
  • the present invention adopts the following technical solutions:
  • An object of the present invention is to provide a nano-silica hybrid vinyl phenyl silicon intermediate having the structural formula:
  • X, y, z, m are independently between 0 and 20 and are not 0;
  • t is a number between 0.1 and 2.0;
  • Xt represents the product of x and t
  • yt represents the product of y and t
  • zt represents the product of z and t
  • mt represents the product of m and t
  • R 1 , R 2 and R 3 are a methyl group and one is a vinyl group.
  • x, y, z, m represent parameters of the molecular chain structure size of the organosilanol in the raw material organosilicon alcohol solution, and the absolute value thereof characterizes the average degree of polymerization of the macromolecule, which is the raw material of the polymerization reaction.
  • the ratio of the catalyst, the type and amount of the catalyst, the reaction temperature and the reaction time can be determined by GPC molecular weight measurement combined with elemental analysis.
  • the size of x, y, z, and m in the present invention is determined by the raw material silanol solution, and the size of t is determined by the molecular weight modifier. When the amount of the molecular weight modifier is larger, the value of t is smaller.
  • the nano-silica particles have a mass content of 1% to 10% in the nano-silica hybrid vinyl phenyl silicon; the nano-silica hybrid vinyl
  • the total number of moles of phenyl, methyl and vinyl groups attached to the silicon atom in the phenyl silicon is from 1.5 to 1.6; the phenyl group occupies the phenyl group, the methyl group attached to the silicon atom, and The ratio of the total moles of vinyl groups is from 35% to 45%; the vinyl content of the vinyl groups in the nano-silica hybrid vinyl phenyl silicon is from 0.6% to 4.1%.
  • the nano-silica hybrid vinyl phenyl silicon has a temperature index of 200 ° C to 240 ° C as measured by a secant method, and the nano-silica hybrid vinyl phenyl silicon
  • the corona-resistant time measured under normal conditions, at atmospheric humidity of 30%-85%, and applied power frequency voltage of 2kv is 18-36h, and the nano-silica hybridized ethylene is determined by GPC method.
  • the molecular weight of the phenylsilicone is from 2,000 to 3,000.
  • the samples for measuring the temperature index and the corona-resistant time performance of the nano-silica hybrid vinyl phenyl silicon described above were cured products treated at 180 ° C for 4 h and 220 ° C for 4 h.
  • the nano-silica hybrid vinyl phenyl silicon intermediate is obtained by polymerization of the following formula, and the raw material formula is:
  • organosilicon alcohol solution is one or a combination of several selected from the group consisting of TH-1 # , TH-2 # and TH-3 # .
  • TH-1 # , TH-2 # , TH-3 # in the present invention were purchased from Suzhou Taihu Electric New Material Co., Ltd.
  • the ethyl silicate is ethyl silicate 28.
  • the organic solvent is one or a combination of several selected from the group consisting of N,N-dimethylformamide, toluene, and xylene; and the catalyst is selected from a mass percentage of 5%.
  • the molecular weight modifier described is tetramethyldivinyldisiloxane.
  • a second object of the present invention is to provide a method for preparing the nano-silica hybrid vinyl phenyl silicon, comprising the following steps:
  • Step (1) the organosilicon alcohol solution and ethyl silicate under nitrogen protection and the presence of an organic solvent, stirred at 20 ° C ⁇ 35 ° C for 0.1 ⁇ 1h, and then raised to 60 ⁇ 5 ° C;
  • Step (2) adding a catalyst, a molecular weight regulator and water to the reaction system after the step (1), heating to 60 ° C to 80 ° C to maintain a reflux reaction for 2 to 4 h, and then decomposing the nanometer by vacuum distillation.
  • the specific embodiment of the step (1) is: adding the organosilicon alcohol solution to a reactor with a stirring thermostat, then introducing nitrogen gas to drive off the air in the reactor, and then adding the silicon.
  • the ethyl ester and the organic solvent are stirred at 20 to 35 ° C for 0.1 to 1 hour, and then raised to 60 ⁇ 5 ° C.
  • the specific embodiment of the step (2) is: mixing the catalyst, the molecular weight modifier and the water into a mixture, and then adding the mixed droplets to the step ( 1)
  • the mixture is controlled to be added dropwise within 1 h, and then heated to 60 ° C to 80 ° C under stirring to maintain the reflux reaction for 2 to 4 h, and then at a temperature of 80 ° C.
  • the H 2 O, ethanol and organic solvent generated in the polymerization reaction were distilled off under reduced pressure at a pressure of -0.085 MPa to -0.098 MPa at 120 ° C to obtain a nanosilica hybrid vinyl phenyl silicon which was viscous to a solid state. Things.
  • a third object of the present invention is to provide an application of the nanosilica hybrid vinyl phenyl silicon intermediate in the preparation of a solventless potting compound, an adhesive, an insulating resin or an environmentally friendly insulating varnish.
  • a fourth object of the present invention is to provide a low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish, in parts by weight, including:
  • X, y, z, m are independently between 0 and 20 and are not 0;
  • t is a number between 0.1 and 2.0;
  • Xt represents the product of x and t
  • yt represents the product of y and t
  • zt represents the product of z and t
  • mt represents the product of m and t
  • R 1 , R 2 and R 3 are a methyl group and one is a vinyl group.
  • x, y, z, m represent parameters of the molecular chain structure size of the organosilanol in the raw material organosilicon alcohol solution, and the absolute value thereof characterizes the average degree of polymerization of the macromolecule, which is the raw material of the polymerization reaction.
  • the ratio of the catalyst, the type and amount of the catalyst, the reaction temperature and the reaction time can be determined by GPC molecular weight measurement combined with elemental analysis.
  • the size of x, y, z, and m in the present invention is determined by the raw material silanol solution, and the size of t is determined by the molecular weight modifier. When the amount of the molecular weight modifier is larger, the value of t is smaller.
  • the nano-silica particles have a mass content of 1% to 10% in the nano-silica hybrid vinyl phenyl silicon; the nano-silica hybrid vinyl
  • the total number of moles of phenyl, methyl and vinyl groups attached to the silicon atom in the phenyl silicon is from 1.5 to 1.6; the phenyl group occupies the phenyl group, the methyl group attached to the silicon atom, and The ratio of the total moles of vinyl groups is from 35% to 45%; the vinyl content of the vinyl groups in the nano-silica hybrid vinyl phenyl silicon is from 0.6% to 4.1%.
  • the nano silica hybridized vinyl phenyl silicon is measured by the temperature measured by the secant method.
  • the number is 200 ° C ⁇ 240 ° C
  • the nano-silica hybrid vinyl phenyl silicon intermediate in the normal state the atmospheric humidity is 30% to 85%
  • the application of the power frequency voltage of 2kv The corona-resistant time is 18 to 36 h
  • the molecular weight of the nano-silica hybrid vinyl phenyl silicon is 2,000 to 3,000 as measured by a GPC method.
  • the samples for measuring the temperature index and the corona-resistant time performance of the nano-silica hybrid vinyl phenyl silicon described above were cured products treated at 180 ° C for 4 h and 220 ° C for 4 h.
  • the nano-silica hybrid vinyl phenyl silicon intermediate is obtained by polymerization of the following formula, and the raw material formula is:
  • organosilicon alcohol solution is one or a combination of several selected from the group consisting of TH-1 # , TH-2 # and TH-3 # .
  • TH-1 # , TH-2 # , TH-3 # in the present invention were purchased from Suzhou Taihu Electric New Material Co., Ltd.
  • the method for preparing the nano-silica hybrid vinyl phenyl silicon comprises the following steps:
  • Step (1) the organosilicon alcohol solution and ethyl silicate under nitrogen protection and the presence of an organic solvent, stirred at 20 ° C ⁇ 35 ° C for 0.1 ⁇ 1h, and then raised to 60 ⁇ 5 ° C;
  • Step (2) adding a catalyst, a molecular weight regulator and water to the reaction system after the step (1), heating to 60 ° C to 80 ° C to maintain a reflux reaction for 2 to 4 h, and then decomposing the nanometer by vacuum distillation.
  • the specific embodiment of the step (1) is: adding the organosilicon alcohol solution to a reactor with a stirring thermostat, then introducing nitrogen gas to drive off the air in the reactor, and then adding the The ethyl silicate and the organic solvent are stirred at 20 to 35 ° C for 0.1 to 1 hour, and then raised to 60 ⁇ 5 ° C.
  • the specific embodiment of the step (2) is: mixing the catalyst, the molecular weight modifier and the water into a mixture, and then adding the mixed droplets to the step (1)
  • the mixture is controlled to be added dropwise within 1 h, and then heated to 60 ° C to 80 ° C under stirring to maintain a reflux reaction for 2 to 4 h, and then at a temperature of 80 ° C.
  • the H 2 O, ethanol and organic solvent generated in the polymerization reaction are distilled off under reduced pressure at -120 ° C and the pressure is -0.085 MPa to -0.098 MPa to obtain a nano silica hybrid vinyl phenyl silicon which is viscous to a solid state.
  • the organic solvent is one or a combination of several selected from the group consisting of N,N-dimethylformamide, toluene, and xylene; and the catalyst is selected from a mass percentage of 5%.
  • the molecular weight modifier is tetramethyldivinyldisiloxane, and the ethyl silicate is ethyl silicate 28.
  • the organic resin is a mixture of one or more selected from the group consisting of E51 type epoxy resin, F51 type epoxy resin, and HR199 unsaturated polyester resin;
  • the vinyl initiator is selected from the group consisting of a mixture of one or more of dicumyl oxide, dibenzoyl peroxide, and cumene hydroperoxide;
  • said promoter is titanium acetylacetonate;
  • said storage stabilizer is selected from the group consisting of A mixture of one or more of hydroquinone, hydroquinone monomethyl ether, 2,5-di-tert-butyl hydroquinone.
  • the epoxy value of the E51 type epoxy resin and the F51 type epoxy resin is 0.49 to 0.53; the HR199 unsaturated polyester resin has a number average molecular weight of 400 to 1,000.
  • the low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish further comprises 5 to 20 parts by weight of a reactive diluent; the reactive diluent is selected from the group consisting of tripropylene glycol diacrylate and trimethylolpropane. A mixture of one or more of triacrylate, tris(epoxypropyl)isocyanuric acid triacrylate.
  • the low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish further comprises 0.01 to 8 parts by weight of an epoxy latent curing agent; and the epoxy latent curing agent is selected from the group consisting of zinc 2-ethylhexanoate And a mixture of one or more of methyl acrylate-modified 2-isopropyl imidazole and catechol dimethylethanolamine borate.
  • a fifth object of the present invention is to provide a method for preparing the low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish, comprising the following steps:
  • Step (1) mixing a predetermined amount of nano-silica hybrid vinyl phenyl silicon intermediate and an organic resin to 110 ° C to 130 ° C, and distilling under reduced pressure for 20 to 40 minutes to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 160 ° C ⁇ 180 ° C to maintain the stirring reaction for 2 to 4 hours, cooling down to 70 ° C ⁇ 90 ° C;
  • Step (3) adding a formula amount of a storage stabilizer, a vinyl initiator and a promoter to the system treated by the step (2), selectively adding a reactive diluent and an epoxy latent curing agent, and uniformly mixing Low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish.
  • the present invention has the following advantages compared with the prior art:
  • the nano silica particles in the nano-silica hybrid vinyl phenyl silicon of the invention are uniformly and stably dispersed, and the nano-silica hybrid vinyl phenyl silicon has high temperature resistance, corona resistance and high activity.
  • the advantage is that the nano silica hybridized vinyl phenyl silicon has a temperature index of 200 ° C to 240 ° C measured by the secant method, and the measured corona resistance time is 18 to 36 h (experimental condition: normal state (25) °C), atmospheric humidity 30 ⁇ 85%, applied power frequency voltage: 2kv until breakdown), with vinyl active sites on it with polyester imine, heat resistant polyester, hydrogenated siloxane and modification Epoxy has good compatibility, better corona resistance and excellent mechanical properties than conventional physical doped nanocomposite resin, especially suitable for preparing high temperature and corona resistant solventless insulating varnish, no volatilization in use sexual gases, no pollution to the atmospheric environment.
  • the preparation method of the nano-silica hybrid vinyl phenyl silicon of the invention is simple, the reaction temperature is low, and the viscosity of the product and the content of nano-silica can be controlled by controlling the amount of the catalyst, the molecular weight regulator, and the reaction temperature. Therefore, the product is more widely applicable, and in particular, the environmentally-friendly insulating varnish thus prepared has excellent performance against high temperature and corona resistance, and has low thermal dielectric loss.
  • the invention overcomes the defects that the directly doped nano silica particles are easy to agglomerate and settle by using the nano silica hybrid vinyl phenyl silicon material formed by the in-situ polymerization method, and the insulating paint prepared thereby is not
  • benzene solvent avoids the poisoning of people and environmental pollution caused by the volatilization of benzene thinner. It uses an environmentally friendly solvent and does not require neutralization and washing. It is a green method that is economical and environmentally friendly. Nanoparticles in the obtained product. The particle size is small and uniform, well distributed in the resin, does not agglomerate, does not settle, and the viscosity of the obtained product is controllable, overcoming the contradiction between viscosity and performance.
  • the insulating varnish of the invention has environmental protection, low temperature curing, high temperature resistance grade ( ⁇ 200°C), excellent corona resistance, small dielectric loss, good storage stability, high mechanical strength, excellent comprehensive performance, fast drying speed and viscosity. Low-grade advantages, various insulating varnishes are simple in preparation process and low in raw material cost, suitable for large-scale production.
  • R/Si will be used to indicate the total number of groups (molar number) of a methyl group, a phenyl group, and a vinyl group attached to a silicon atom in silicon; and a silicon atom represented by Ph/R.
  • the ratio of the phenyl group to all (methyl, phenyl, vinyl) groups in the number of groups attached indicates the proportion of vinyl in silicon (mass percentage) .
  • the molecular weight of the vinyl silicon was measured by gel permeation chromatography (GPC method).
  • Example 1 The amount of the raw materials added in Example 1 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • the silanol solution is added to a reactor equipped with a stirring thermostat, and then nitrogen is introduced to drive off the air in the reactor, and then ethyl silicate 28 (TEOS-28) and an organic solvent are added, at 20 After stirring at ° C for 0.5 h, the temperature was raised to 60 ⁇ 5 ° C.
  • TEOS-28 ethyl silicate 28
  • Example 2 The amount of the raw materials added in Example 2 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • Example 3 The amount of raw materials added in Example 3 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • the silanol solution is added to a reactor equipped with a stirring thermostat, and then nitrogen is introduced to drive off the air in the reactor, and then ethyl silicate 28 (TEOS-28) and an organic solvent are added, at 35 After stirring at ° C for 0.5 h, the temperature was raised to 60 ⁇ 5 ° C.
  • TEOS-28 ethyl silicate 28
  • Example 4 The amount of the raw materials added in Example 4 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • Example 5 The amount of the raw materials added in Example 5 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • silanol solution is added to a reactor equipped with a stirring thermostat, and then nitrogen is introduced to drive off the air in the reactor, and then ethyl silicate 28 (TEOS-28) and an organic solvent are added, at 25 Stir at ° C for 1 h and then warm to 60 ⁇ 5 ° C.
  • TEOS-28 ethyl silicate 28
  • Example 6 The amount of the raw materials added in Example 6 is shown in Table 1.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • silanol solution is added to a reactor equipped with a stirring thermostat, and then nitrogen is introduced to drive off the air in the reactor, and then ethyl silicate 28 (TEOS-28) and an organic solvent are added, at 28 Stir at ° C for 1 h and then warm to 60 ⁇ 5 ° C.
  • TEOS-28 ethyl silicate 28
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • the organosilanol solution was placed in a reactor equipped with a stirring thermostat, and then nitrogen gas was introduced to drive off the air in the reactor, and then nano silica and an organic solvent were added, and the mixture was stirred at 40 ° C for 2 hours.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • the organosilanol solution was placed in a reactor equipped with a stirring thermostat, and then nitrogen gas was introduced to drive off the air in the reactor, and then nano silica and an organic solvent were added, and the mixture was stirred at 15 ° C for 2 hours.
  • a nano-silica hybrid vinyl phenyl silicon intermediate prepared by the following steps:
  • the organosilanol solution was placed in a reactor equipped with a stirring thermostat, and then nitrogen gas was introduced to drive off the air in the reactor, and then nano silica and an organic solvent were added, and the mixture was stirred at 30 ° C for 1 hour.
  • Example 7 The amount of the raw material added in Example 7 is shown in Table 2, wherein the nano-silica hybrid vinyl phenyl silicon intermediate in Example 7 was obtained from Example 1.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 170 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Example 8 The amount of the raw material added in Example 8 is shown in Table 2, wherein the nano-silica hybrid vinyl phenyl silicon intermediate in Example 8 was obtained from Example 3.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 160 ° C to maintain the stirring reaction for 4 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Example 9 The amount of the raw material added in Example 9 is shown in Table 2, wherein the nano-silica hybrid vinyl phenyl silicon intermediate in Example 9 was obtained from Example 2.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, Distilled under reduced pressure for 30 min to remove traces of moisture from the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 180 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Example 10 The amount of the raw material added in Example 10 is shown in Table 2, wherein the nano-silica hybrid vinylphenyl silicon intermediate in Example 10 was obtained from Example 4.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 170 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Example 11 The amount of the raw material added in Example 11 is shown in Table 2, wherein the nano-silica hybrid vinyl phenyl silicon intermediate in Example 11 was obtained from Example 6.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 170 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Example 12 The amount of the raw material added in Example 12 is shown in Table 2, wherein the nano-silica hybrid vinyl phenyl silicon intermediate in Example 12 was obtained from Example 5.
  • a preparation method of low viscosity high temperature resistant corona resistant environmentally friendly insulating varnish comprises the following steps:
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 120 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 170 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Comparative Example 4 The amount of the raw material added in Comparative Example 4 is shown in Table 2, wherein the nanosilica hybrid vinylphenyl silicon intermediate in Comparative Example 4 was obtained from Comparative Example 1.
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 140 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 190 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Comparative Example 5 The amount of the raw material added in Comparative Example 5 is shown in Table 2, wherein the nanosilica hybrid vinylphenyl silicon intermediate in Comparative Example 5 was obtained from Comparative Example 2.
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 100 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 190 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • Comparative Example 6 The amount of the raw material added in Comparative Example 6 is shown in Table 2, wherein the nano-silica hybrid vinylphenyl silicon intermediate in Comparative Example 6 was obtained from Comparative Example 3.
  • Step (1) mixing the nano-silica hybrid vinyl phenyl silicon intermediate and the organic resin to 100 ° C, and distilling under reduced pressure for 30 min to remove trace moisture in the system;
  • Step (2) adding tetraisopropyl titanate to the system after the step (1), heating to 150 ° C to maintain the stirring reaction for 3 hours, cooling down to 80 ° C;
  • Step (3) sequentially adding a storage stabilizer, a reactive diluent, a vinyl initiator, an epoxy latent curing agent and a promoter to the system treated by the step (2), and uniformly mixing to obtain a low viscosity high temperature and high temperature resistance Halo environmentally friendly insulating paint. See Table 2 for the main performance.
  • E51 represents an E51 type epoxy resin
  • F51 represents an F51 type epoxy resin
  • HR199 represents an unsaturated polyester resin
  • TPGDA tripropylene glycol diacrylate
  • TMPTA trimethylolpropane triacrylate
  • TGICA tris(epoxypropyl)isocyanuric acid triacrylate.
  • DCP represents dicumyl peroxide
  • BPO represents dibenzoyl peroxide
  • CHPO represents cumene hydroperoxide
  • the accelerator is titanium acetylacetonate.
  • HQ represents hydroquinone
  • MEHQ represents hydroquinone monomethyl ether
  • TBHQ 2,5-di-tert-butyl hydroquinone
  • PI-MA means methyl acrylate modified 2-isopropyl imidazole
  • CDB means catechol dimethylethanolamine boron Acid ester.
  • the storage stability was tested by closed method, 50 ⁇ 1 ° C (in a constant temperature water bath), and 96 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用。所述纳米二氧化硅颗粒分散均匀稳定,纳米二氧化硅杂化乙烯基苯基硅中物具有耐高温、耐电晕和高活性的优点,按照割线法所测的温度指数为200℃~240℃,测得的耐电晕时间为18~36h,其上带有的乙烯基活性点可与聚酯亚胺、耐热聚酯、含氢硅氧烷及改性环氧有良好相容性,特别适合用于制备耐高温耐电晕无溶剂绝缘漆,在使用中没有挥发性气体,对大气环境没有污染。所述纳米二氧化硅杂化乙烯基苯基硅中物的制备方法简单,反应温度低,可通过控制催化剂、分子量调节剂的用量,反应温度来控制产品的粘度和纳米二氧化硅的含量,从而使得产品的应用性更为广泛。

Description

一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用 技术领域
本发明具体涉及一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用。
背景技术
传统的纳米复合材料的制备是采用纳米颗粒直接物理掺杂到有机物中,或是纳米颗粒表面改性有机化后嫁接到有机物上,这些方法都会带来纳米颗粒团聚沉降的问题,近年来国内外研究者们都在致力于改善纳米分散难题,于是应运而生的原位聚合方法是一种比较先进且行之有效的纳米复合材料制备技术,随之得到了大众的青睐;但目前这一方法主要被应用在改性传统的纳米复合有机树脂(聚酯树脂、环氧树脂、丙烯酸树脂)上,而少见应用在制备纳米有机硅树脂上。
公开号为CN1235170A,公开日为1999年11月17日公开的乙烯基有机/无机纳米杂化材料的合成方法,其以传统的Sol-Gel法为基础,采用Sol-Gel前体正硅酸乙酯在盐酸催化下水解成溶胶,在溶胶中加入乙烯基单体形成凝胶,凝胶制备温度在30~50℃,之后在γ-射线辐照下原位聚合,聚合温度在5~45℃,辐照剂量为5~100KGy,辐照时间为4~20小时,然后将样品置于60~80℃下加热干燥1~2周,得最终杂化材料,其需要采用γ-射线进行辐照。
在传统的有机硅树脂类的绝缘漆中所采用的有机硅树脂绝大多数为溶剂型,因而在产品使用过程中由于挥发性气体对环境的污染是不可避免的,且需要高温固化,耗能十分惊人。而现在为数不多的无溶剂有机硅树脂则存在粘度大,活性低,需高温固化等不足,由于树脂粘度过大,需要加入活性稀释剂的质量分数达到30%以上,导致挥发份超过5%,耐热性和机械性能下降,在VPI应用中,需要加热树脂,使用完后需要低温保存,对设备要求高,工艺繁琐。随着国内外电机市场迅速发展,电机制造向着高效节能小型化方向发展,对于绝缘浸渍漆的耐热等级和节能环保提出了更高要求的同时还需要有一定的防电晕能力,以满足行业的需求。在现有的技术中,通常采用直接掺杂纳米颗粒以提高绝缘漆的耐电晕性,但由于颗粒易团聚沉降导致效果大大打折。综合而言,现有技术中有机硅类绝缘漆不符合节能减排,绿色经济的要求。
发明内容
本发明所要解决的技术问题是提供一种纳米颗粒分散均匀,不团聚,尺寸稳定且耐电晕时间长的纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用,该环保绝缘漆耐电晕性能好。
为解决以上技术问题,本发明采取如下技术方案:
本发明的一个目的是提供一种纳米二氧化硅杂化乙烯基苯基硅中物,其结构式为:
Figure PCTCN2016096258-appb-000001
其中:表示纳米二氧化硅颗粒;
Figure PCTCN2016096258-appb-000003
表示
Figure PCTCN2016096258-appb-000004
x、y、z、m独立地为0~20之间的数且均不为0;
t为0.1~2.0之间的数;
xt表示x与t的乘积,yt表示y与t的乘积,zt表示z与t的乘积,mt表示m与t的乘积;
R1、R2、R3中有两个为甲基,一个为乙烯基。
本发明中,x、y、z、m代表了原料有机硅醇溶液中有机硅醇的分子链结构大小的参数,其绝对值表征了大分子的平均聚合度,它是由聚合反应的原料配比、催化剂种类和用量、反应温度及反应时间所决定,可采用GPC分子量测定法结合元素分析法,并通过计算而得出。此外,本领域技术人员应理解,虽然结构式中各结构单元按照一定次序连接在一起,但,这只是为了表述硅中物分子组成的方便,并不表示硅中物中各结构单元就是按照这样的次序连接的,通常意义上,各结构单元是呈无规次序连接的。
本发明中的x、y、z、m的大小由原料有机硅醇溶液决定,t的大小由分子量调节剂决定,当分子量调节剂的用量越大时,t的值越小。
优选地,所述的纳米二氧化硅颗粒在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为1%~10%;所述的纳米二氧化硅杂化乙烯基苯基硅中物中硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数为1.5~1.6;所述的苯基占所述的硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数的比例为35%~45%;所述的乙烯基在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为0.6%~4.1%。
优选地,所述的纳米二氧化硅杂化乙烯基苯基硅中物按照割线法所测的温度指数为200℃~240℃,所述的纳米二氧化硅杂化乙烯基苯基硅中物在常态下、在大气湿度为30%~85%、施加工频电压为2kv的条件下测得的耐电晕时间为18~36h,按照GPC法测定所述的纳米二氧化硅杂化乙烯基苯基硅中物分子量为2000~3000。
以上所述的纳米二氧化硅杂化乙烯基苯基硅中物中温度指数、耐电晕时间性能测定试样均是按照180℃4h、220℃4h处理后的固化物。
优选地,所述的纳米二氧化硅杂化乙烯基苯基硅中物由如下配方经聚合反应制得,按重量份计,其原料配方为:
Figure PCTCN2016096258-appb-000005
Figure PCTCN2016096258-appb-000006
其中,所述的有机硅醇溶液为选自TH-1#、TH-2#、TH-3#中的一种或几种的组合。
本发明中的TH-1#、TH-2#、TH-3#购自苏州太湖电工新材料股份有限公司。
本发明中的TH-1#、TH-2#、TH-3#的固含量为60%,其是由苯基三氯硅烷、二甲基二氯硅烷、二苯基二氯硅烷和乙烯基三氯硅烷中的任意三种按照不同比例进行混合水解产生的产物,其技术参数为R/Si=1.5~1.6,Ph/R=0.35~0.45,乙烯基含量0.6%~4.0%。
优选地,所述的硅酸乙酯为硅酸乙酯28。
进一步优选地,所述的有机溶剂为选自N,N-二甲基甲酰胺、甲苯、二甲苯中的一种或几种的组合;所述的催化剂为选自质量百分含量为5%~15%的三氟乙酸水溶液、质量百分含量为5%~15%的三氟丙酸水溶液、质量百分含量为5%~15%的盐酸水溶液中的一种或几种的组合;所述的分子量调节剂为四甲基二乙烯基二硅氧烷。
本发明的第二个目的是提供一种所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法,包括如下步骤:
步骤(1)、使有机硅醇溶液和硅酸乙酯在氮气保护下和有机溶剂的存在下,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃;
步骤(2)、向经步骤(1)处理后的反应体系中加入催化剂、分子量调节剂和水,升温至60℃~80℃维持回流反应2~4h,然后经减压蒸馏得到所述的纳米二氧化硅杂化乙烯基苯基硅中物。
优选地,步骤(1)的具体实施方式为:将所述的有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入所述的硅酸乙酯和所述的有机溶剂,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃。
优选地,步骤(2)的具体实施方式为:将所述的催化剂、所述的分子量调节剂和所述的水混合均匀制成混合液,然后将所述的混合液滴加到经步骤(1)处理后的反应体系中,并控制所述的混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2~4h,然后在温度为80℃~120℃、压力为-0.085MPa~-0.098MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
本发明的第三个目的是提供一种所述的纳米二氧化硅杂化乙烯基苯基硅中物在制备无溶剂灌封胶、胶黏剂、绝缘树脂或环保绝缘漆中的应用。
本发明的第四个目的是提供一种低粘度耐高温耐电晕环保绝缘漆,以重量份计,包括:
Figure PCTCN2016096258-appb-000007
其中,所述的纳米二氧化硅杂化乙烯基苯基硅中物的结构式为:
Figure PCTCN2016096258-appb-000008
其中:
Figure PCTCN2016096258-appb-000009
表示纳米二氧化硅颗粒;
Figure PCTCN2016096258-appb-000010
表示
Figure PCTCN2016096258-appb-000011
Figure PCTCN2016096258-appb-000012
x、y、z、m独立地为0~20之间的数且均不为0;
t为0.1~2.0之间的数;
xt表示x与t的乘积,yt表示y与t的乘积,zt表示z与t的乘积,mt表示m与t的乘积;
R1、R2、R3中有两个为甲基,一个为乙烯基。
本发明中,x、y、z、m代表了原料有机硅醇溶液中有机硅醇的分子链结构大小的参数,其绝对值表征了大分子的平均聚合度,它是由聚合反应的原料配比、催化剂种类和用量、反应温度及反应时间所决定,可采用GPC分子量测定法结合元素分析法,并通过计算而得出。此外,本领域技术人员应理解,虽然结构式中各结构单元按照一定次序连接在一起,但,这只是为了表述硅中物分子组成的方便,并不表示硅中物中各结构单元就是按照这样的次序连接的,通常意义上,各结构单元是呈无规次序连接的。
本发明中的x、y、z、m的大小由原料有机硅醇溶液决定,t的大小由分子量调节剂决定,当分子量调节剂的用量越大时,t的值越小。
优选地,所述的纳米二氧化硅颗粒在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为1%~10%;所述的纳米二氧化硅杂化乙烯基苯基硅中物中硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数为1.5~1.6;所述的苯基占所述的硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数的比例为35%~45%;所述的乙烯基在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为0.6%~4.1%。
优选地,所述的纳米二氧化硅杂化乙烯基苯基硅中物按照割线法所测的温度指 数为200℃~240℃,所述的纳米二氧化硅杂化乙烯基苯基硅中物在常态下、在大气湿度为30%~85%、施加工频电压为2kv的条件下测得的耐电晕时间为18~36h,按照GPC法测定所述的纳米二氧化硅杂化乙烯基苯基硅中物分子量为2000~3000。
以上所述的纳米二氧化硅杂化乙烯基苯基硅中物中温度指数、耐电晕时间性能测定试样均是按照180℃4h、220℃4h处理后的固化物。
优选地,所述的纳米二氧化硅杂化乙烯基苯基硅中物由如下配方经聚合反应制得,按重量份计,其原料配方为:
Figure PCTCN2016096258-appb-000013
其中,所述的有机硅醇溶液为选自TH-1#、TH-2#、TH-3#中的一种或几种的组合。
本发明中的TH-1#、TH-2#、TH-3#购自苏州太湖电工新材料股份有限公司。
本发明中的TH-1#、TH-2#、TH-3#的固含量为60%,其是由苯基三氯硅烷、二甲基二氯硅烷、二苯基二氯硅烷和乙烯基三氯硅烷中的任意三种按照不同比例进行混合水解产生的产物,其技术参数为R/Si=1.5~1.6,Ph/R=0.35~0.45,乙烯基含量0.6%~4.0%。
进一步优选地,所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法包括如下步骤:
步骤(1)、使有机硅醇溶液和硅酸乙酯在氮气保护下和有机溶剂的存在下,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃;
步骤(2)、向经步骤(1)处理后的反应体系中加入催化剂、分子量调节剂和水,升温至60℃~80℃维持回流反应2~4h,然后经减压蒸馏得到所述的纳米二氧化硅杂化乙烯基苯基硅中物。
进一步优选地,步骤(1)的具体实施方式为:将所述的有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入所述的硅酸乙酯和所述的有机溶剂,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃。
进一步优选地,步骤(2)的具体实施方式为:将所述的催化剂、所述的分子量调节剂和所述的水混合均匀制成混合液,然后将所述的混合液滴加到经步骤(1)处理后的反应体系中,并控制所述的混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2~4h,然后在温度为80℃~120℃、压力为-0.085MPa~-0.098MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
进一步优选地,所述的有机溶剂为选自N,N-二甲基甲酰胺、甲苯、二甲苯中的一种或几种的组合;所述的催化剂为选自质量百分含量为5%~15%的三氟乙酸水溶液、质量百分含量为5%~15%的三氟丙酸水溶液、质量百分含量为5%~15%的盐酸水溶液中的一种或几种的组合;所述的分子量调节剂为四甲基二乙烯基二硅氧烷,所述的硅酸乙酯为硅酸乙酯28。
优选地,所述的有机树脂为选自E51型环氧树脂、F51型环氧树脂、HR199不饱和聚酯树脂中的一种或几种的混合物;所述的乙烯基引发剂为选自过氧化二异丙苯、过氧化二苯甲酰、异丙苯过氧化氢中的一种或几种的混合物;所述的促进剂为乙酰丙酮氧钛;所述的储存稳定剂为选自对苯二酚、氢醌单甲醚、2,5-二叔丁基对苯二酚中的一种或几种的混合物。
进一步优选地,所述的E51型环氧树脂和所述的F51型环氧树脂中的环氧值为 0.49~0.53;所述的HR199不饱和聚酯树脂的数均分子量为400~1000。
优选地,所述的低粘度耐高温耐电晕环保绝缘漆还包括5~20重量份的活性稀释剂;所述的活性稀释剂为选自二缩三丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三(环氧丙基)异氰尿酸三丙烯酸酯中的一种或几种的混合物。
优选地,所述的低粘度耐高温耐电晕环保绝缘漆还包括0.01~8重量份的环氧潜伏性固化剂;所述的环氧潜伏性固化剂为选自2-乙基己酸锌、丙烯酸甲酯改性2-异丙基咪唑、邻苯二酚二甲基乙醇胺硼酸酯中的一种或几种的混合物。
本发明的第五个目的是提供一种所述的低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将配方量的纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至110℃~130℃,减压蒸馏20~40min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至160℃~180℃维持搅拌反应2~4小时,降温冷却至70℃~90℃;
步骤(3)、向经步骤(2)处理后的体系中加入配方量的储存稳定剂、乙烯基引发剂和促进剂,选择性的加入活性稀释剂和环氧潜伏性固化剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。
由于以上技术方案的实施,本发明与现有技术相比具有如下优点:
本发明的纳米二氧化硅杂化乙烯基苯基硅中物中纳米二氧化硅颗粒分散均匀稳定,纳米二氧化硅杂化乙烯基苯基硅中物具有耐高温、耐电晕和高活性的优点,纳米二氧化硅杂化乙烯基苯基硅中物按照割线法所测的温度指数为200℃~240℃,测得的耐电晕时间为18~36h(实验条件:常态下(25℃),大气湿度30~85%,施加工频电压:2kv直至击穿),其上带有的乙烯基活性点可与聚酯亚胺、耐热聚酯、含氢硅氧烷及改性环氧有良好相容性,比常规物理掺杂纳米复合树脂具有更好的耐电晕性和优良的机械性能,特别适合用于制备耐高温耐电晕无溶剂绝缘漆,在使用中没有挥发性气体,对大气环境没有污染。
本发明的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法简单,反应温度低,可通过控制催化剂、分子量调节剂的用量,反应温度来控制产品的粘度和纳米二氧化硅的含量,从而使得产品的应用性更为广泛,特别是由此制备的环保绝缘漆具有耐高温和耐电晕的优异性能,且具有低的热态介质损耗。
本发明通过采用原位聚合法生成的纳米二氧化硅杂化乙烯基苯基硅中物,克服了直接掺杂纳米二氧化硅颗粒易与团聚、沉降的缺点,且由此制备的绝缘漆不添加苯类溶剂,避免了苯类稀释剂的挥发造成的人员毒害和对环境的污染,使用环保溶剂,不需要中和水洗,是一种既经济实用又环保的绿色方法,所得产品中纳米颗粒粒度小而均,良好地分布在树脂中,不团聚,不沉降,所得产物粘度可控,克服了粘度和性能之间的矛盾。本发明的绝缘漆具有环保、低温固化、耐温等级高(≥200℃),耐电晕性优、介电损耗小、贮存稳定性好、机械强度高、综合性能优异,干燥速度快以及粘度低等优势,各种绝缘漆的制备工艺简单,原料成本低廉,适合规模化生产。
具体实施方式
为描述简便,以下实施例中,将用R/Si表示硅中物中硅原子上所连接的甲基、苯基、乙烯基的总基团数(摩尔数量);用Ph/R表示硅原子上所连接的基团数中苯基占所有(甲基、苯基、乙烯基)基团的比例(摩尔比);Vi质量分数%表示乙烯基在硅中物中所占比例(质量百分比)。此外,对乙烯基硅中物的分子量测定采用凝胶渗透色谱法(GPC法)测定。绝缘漆的性能测试方法参照GB/T15022-1994电气绝缘无溶剂可聚合树脂复合物定义和一般要求、GB/T15023-1994电气绝缘无溶剂可聚合树脂复合物试验方法及GB/T11027-1999有溶剂绝缘漆规范、单项材料规范、对热固化浸渍漆的要求标准实施。
下面结合具体的实施例对本发明做进一步详细的说明,但本发明不限于以下实施例。下面各实施例中的所有原料均为商购获得,以下配方份数未经说明,均指重量份。
实施例1
实施例1中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在20℃下搅拌0.5h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应3h,然后在温度为80℃、压力为-0.085MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
实施例2:
实施例2中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在30℃下搅拌0.5h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2h,然后在温度为100℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
实施例3:
实施例3中原料的添加量参见表1
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在35℃下搅拌0.5h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2h,然后在温度为100℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
实施例4:
实施例4中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱 除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在35℃下搅拌0.5h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应4h,然后在温度为100℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
实施例5:
实施例5中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在25℃下搅拌1h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应4h,然后在温度为120℃、压力为-0.098MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
实施例6:
实施例6中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入硅酸乙酯28(TEOS-28)和有机溶剂,在28℃下搅拌1h,然后升温至60±5℃。
(2)、将催化剂、分子量调节剂和去离子水混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2h,然后在温度为110℃、压力为-0.090MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
对比例1
对比例1中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入纳米二氧化硅和有机溶剂,在40℃下搅拌2h。
(2)、将催化剂、分子量调节剂混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至90℃维持回流反应5h,然后在温度为70℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
对比例2
对比例2中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入纳米二氧化硅和有机溶剂,在15℃下搅拌2h。
(2)、将催化剂、分子量调节剂混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃℃维持回流反应2h,然后在温度为130℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
对比例3
对比例3中原料的添加量参见表1。
一种纳米二氧化硅杂化乙烯基苯基硅中物,其通过如下步骤制备得到:
(1)、将有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入纳米二氧化硅和有机溶剂,在30℃下搅拌1h。
(2)、将催化剂、分子量调节剂混合均匀制成混合液,然后将混合液滴加到经步骤(1)处理后的反应体系中,并控制混合液在1h内滴加完毕,然后在搅拌的条件下升温至50℃维持回流反应2h,然后在温度为130℃、压力为-0.095MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
纳米二氧化硅杂化乙烯基苯基硅中物的主要性能及其结构参数参见表1。
表1
Figure PCTCN2016096258-appb-000014
Figure PCTCN2016096258-appb-000015
实施例7
实施例7中原料的添加量参见表2,其中,实施例7中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例1制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至170℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
实施例8
实施例8中原料的添加量参见表2,其中,实施例8中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例3制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至160℃维持搅拌反应4小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
实施例9
实施例9中原料的添加量参见表2,其中,实施例9中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例2制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃, 减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至180℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
实施例10
实施例10中原料的添加量参见表2,其中,实施例10中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例4制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至170℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
实施例11
实施例11中原料的添加量参见表2,其中,实施例11中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例6制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至170℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
实施例12
实施例12中原料的添加量参见表2,其中,实施例12中的纳米二氧化硅杂化乙烯基苯基硅中物由实施例5制得。
一种低粘度耐高温耐电晕环保绝缘漆的制备方法,包括如下步骤:
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至120℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至170℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
对比例4
对比例4中原料的添加量参见表2,其中,对比例4中的纳米二氧化硅杂化乙烯基苯基硅中物由对比例1制得。
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至140℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至190℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
对比例5
对比例5中原料的添加量参见表2,其中,对比例5中的纳米二氧化硅杂化乙烯基苯基硅中物由对比例2制得。
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至100℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至190℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
对比例6
对比例6中原料的添加量参见表2,其中,对比例6中的纳米二氧化硅杂化乙烯基苯基硅中物由对比例3制得。
步骤(1)、将纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至100℃,减压蒸馏30min以除去体系中的微量水分;
步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至150℃维持搅拌反应3小时,降温冷却至80℃;
步骤(3)、向经步骤(2)处理后的体系中依次加入储存稳定剂、活性稀释剂、乙烯基引发剂、环氧潜伏固化剂和促进剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。其主要性能参见表2。
表2
Figure PCTCN2016096258-appb-000016
Figure PCTCN2016096258-appb-000017
表2中E51表示E51型环氧树脂、F51表示F51型环氧树脂、HR199表示不饱和聚酯树脂。
TPGDA表示二缩三丙二醇二丙烯酸酯、TMPTA表示三羟甲基丙烷三丙烯酸酯、TGICA表示三(环氧丙基)异氰尿酸三丙烯酸酯。
DCP表示过氧化二异丙苯、BPO表示过氧化二苯甲酰、CHPO表示异丙苯过氧化氢。
促进剂为乙酰丙酮氧钛。
HQ表示对苯二酚、MEHQ表示氢醌单甲醚、TBHQ表示2,5-二叔丁基对苯二酚。
PI-MA表示丙烯酸甲酯改性2-异丙基咪唑、CDB表示邻苯二酚二甲基乙醇胺硼 酸酯。
贮存稳定性采用闭口法,50±1℃(恒温水浴中),96h进行测试。
以上对本发明做了详尽的描述,其目的在于让熟悉此领域技术的人士能够了解本发明的内容并加以实施,并不能以此限制本发明的保护范围,凡根据本发明的精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围内。

Claims (20)

  1. 一种纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:其结构式为:
    Figure PCTCN2016096258-appb-100001
    其中:
    Figure PCTCN2016096258-appb-100002
    表示纳米二氧化硅颗粒;
    Figure PCTCN2016096258-appb-100003
    ”表示
    Figure PCTCN2016096258-appb-100004
    x、y、z、m独立地为0~20之间的数且均不为0;
    t为0.1~2.0之间的数;
    xt表示x与t的乘积,yt表示y与t的乘积,zt表示z与t的乘积,mt表示m与t的乘积;
    R1、R2、R3中有两个为甲基,一个为乙烯基。
  2. 根据权利要求1所述的纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:所述的纳米二氧化硅颗粒在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为1%~10%;所述的纳米二氧化硅杂化乙烯基苯基硅中物中硅原子上所连接的苯基、甲基 以及乙烯基的总摩尔数为1.5~1.6;所述的苯基占所述的硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数的比例为35%~45%;所述的乙烯基在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为0.6%~4.1%。
  3. 根据权利要求1所述的纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:所述的纳米二氧化硅杂化乙烯基苯基硅中物按照割线法所测的温度指数为200℃~240℃,所述的纳米二氧化硅杂化乙烯基苯基硅中物在常态下、在大气湿度为30%~85%、施加工频电压为2kv的条件下测得的耐电晕时间为18~36h,按照GPC法测定所述的纳米二氧化硅杂化乙烯基苯基硅中物分子量为2000~3000。
  4. 根据权利要求1所述的纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:所述的纳米二氧化硅杂化乙烯基苯基硅中物由如下配方经聚合反应制得,按重量份计,其原料配方为:
    Figure PCTCN2016096258-appb-100005
    其中,所述的有机硅醇溶液为选自TH-1#、TH-2#、TH-3#中的一种或几种的组合。
  5. 根据权利要求4所述的纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:所述的硅酸乙酯为硅酸乙酯28。
  6. 根据权利要求4所述的纳米二氧化硅杂化乙烯基苯基硅中物,其特征在于:所述的有机溶剂为选自N,N-二甲基甲酰胺、甲苯、二甲苯中的一种或几种的组合;所述的催化剂为选自质量百分含量为5%~15%的三氟乙酸水溶液、质量百分含量为5%~15%的三氟丙酸水溶液、质量百分含量为5%~15%的盐酸水溶液中的一种或几种的组合;所述的分子量调节剂为四甲基二乙烯基二硅氧烷。
  7. 一种如权利要求1至6中任一项所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法,其特征在于:包括如下步骤:
    步骤(1)、使有机硅醇溶液和硅酸乙酯在氮气保护下和有机溶剂的存在下,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃;
    步骤(2)、向经步骤(1)处理后的反应体系中加入催化剂、分子量调节剂和水,升温至60℃~80℃维持回流反应2~4h,然后经减压蒸馏得到所述的纳米二氧化硅杂化乙烯基苯基硅中物。
  8. 根据权利要求7所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法,其特 征在于:步骤(1)的具体实施方式为:将所述的有机硅醇溶液加入带有搅拌恒温装置的反应器中,然后通入氮气以驱除反应器中的空气,然后加入所述的硅酸乙酯和所述的有机溶剂,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃。
  9. 根据权利要求4所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法,其特征在于:步骤(2)的具体实施方式为:将所述的催化剂、所述的分子量调节剂和所述的水混合均匀制成混合液,然后将所述的混合液滴加到经步骤(1)处理后的反应体系中,并控制所述的混合液在1h内滴加完毕,然后在搅拌的条件下升温至60℃~80℃维持回流反应2~4h,然后在温度为80℃~120℃、压力为-0.085MPa~-0.098MPa下减压蒸馏除去聚合反应中产生的H2O、乙醇以及有机溶剂,得粘稠至固体状的纳米二氧化硅杂化乙烯基苯基硅中物。
  10. 权利要求1至3中任一项所述的纳米二氧化硅杂化乙烯基苯基硅中物在制备无溶剂灌封胶、胶黏剂、绝缘树脂或环保绝缘漆中的应用。
  11. 一种低粘度耐高温耐电晕环保绝缘漆,其特征在于:以重量份计,包括:
    Figure PCTCN2016096258-appb-100006
    其中,所述的纳米二氧化硅杂化乙烯基苯基硅中物的结构式为:
    Figure PCTCN2016096258-appb-100007
    其中:
    Figure PCTCN2016096258-appb-100008
    表示纳米二氧化硅颗粒;
    Figure PCTCN2016096258-appb-100009
    ”表示
    Figure PCTCN2016096258-appb-100010
    x、y、z、m独立地为0~20之间的数且均不为0;
    t为0.1~2.0之间的数;
    xt表示x与t的乘积,yt表示y与t的乘积,zt表示z与t的乘积,mt表示m与t的乘积;
    R1、R2、R3中有两个为甲基,一个为乙烯基。
  12. 根据权利要求11所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的纳米二氧化硅颗粒在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为1%~10%;所述的纳米二氧化硅杂化乙烯基苯基硅中物中硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数为1.5~1.6;所述的苯基占所述的硅原子上所连接的苯基、甲基以及乙烯基的总摩尔数的比例为35%~45%;所述的乙烯基在所述的纳米二氧化硅杂化乙烯基苯基硅中物中的质量含量为0.6%~4.1%。
  13. 根据权利要求11所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的纳米二氧化硅杂化乙烯基苯基硅中物按照割线法所测的温度指数为200℃~240℃,所述的纳米二氧化硅杂化乙烯基苯基硅中物在常态下、在大气湿度为30%~85%、施加工频电压为2kv的条件下测得的耐电晕时间为18~36h,按照GPC法测定所述的纳米二氧化硅杂化乙烯基苯基硅中物分子量为2000~3000。
  14. 根据权利要求11所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的纳米二氧化硅杂化乙烯基苯基硅中物由如下配方经聚合反应制得,按重量份计,其原料配方为:
    Figure PCTCN2016096258-appb-100011
    Figure PCTCN2016096258-appb-100012
    其中,所述的有机硅醇溶液为选自TH-1#、TH-2#、TH-3#中的一种或几种的组合。
  15. 根据权利要求14所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的纳米二氧化硅杂化乙烯基苯基硅中物的制备方法包括如下步骤:
    步骤(1)、使有机硅醇溶液和硅酸乙酯在氮气保护下和有机溶剂的存在下,在20℃~35℃下搅拌0.1~1h,然后升温至60±5℃;
    步骤(2)、向经步骤(1)处理后的反应体系中加入催化剂、分子量调节剂和水,升温至60℃~80℃维持回流反应2~4h,然后经减压蒸馏得到所述的纳米二氧化硅杂化乙烯基苯基硅中物。
  16. 根据权利要求14所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的有机溶剂为选自N,N-二甲基甲酰胺、甲苯、二甲苯中的一种或几种的组合;所述的催化剂为选自质量百分含量为5%~15%的三氟乙酸水溶液、质量百分含量为5%~15%的三氟丙酸水溶液、质量百分含量为5%~15%的盐酸水溶液中的一种或几种的组合;所述的分子量调节剂为四甲基二乙烯基二硅氧烷,所述的硅酸乙酯为硅酸乙酯28。
  17. 根据权利要求11所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的有机树脂为选自E51型环氧树脂、F51型环氧树脂、HR199不饱和聚酯树脂中的一种或几种的混合物;所述的乙烯基引发剂为选自过氧化二异丙苯、过氧化二苯甲酰、异丙苯过氧化氢中的一种或几种的混合物;所述的促进剂为乙酰丙酮氧钛;所述的储存稳定剂为选自对苯二酚、氢醌单甲醚、2,5-二叔丁基对苯二酚中的一种或几种的混合物。
  18. 根据权利要求11所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的低粘度耐高温耐电晕环保绝缘漆还包括5~20重量份的活性稀释剂;所述的活性稀释剂为选自二缩三丙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三(环氧丙基)异氰尿酸三丙烯酸酯中的一种或几种的混合物。
  19. 根据权利要求11至18中任一项所述的低粘度耐高温耐电晕环保绝缘漆,其特征在于:所述的低粘度耐高温耐电晕环保绝缘漆还包括0.01~8重量份的环氧潜伏性固化剂;所述的环氧潜伏性固化剂为选自2-乙基己酸锌、丙烯酸甲酯改性2-异丙基咪唑、邻苯二酚二甲基乙醇胺硼酸酯中的一种或几种的混合物。
  20. 一种如权利要求11至19中任一项所述的低粘度耐高温耐电晕环保绝缘漆的制备方法,其特征在于:包括如下步骤:
    步骤(1)、将配方量的纳米二氧化硅杂化乙烯基苯基硅中物和有机树脂混合加热至110℃~130℃,减压蒸馏20~40min以除去体系中的微量水分;
    步骤(2)、向经步骤(1)处理后的体系中加入钛酸四异丙基酯,升温至160℃~180℃维持搅拌反应2~4小时,降温冷却至70℃~90℃;
    步骤(3)、向经步骤(2)处理后的体系中加入配方量的储存稳定剂、乙烯基引发剂和促进剂,选择性的加入活性稀释剂和环氧潜伏性固化剂,混合均匀即得低粘度耐高温耐电晕环保绝缘漆。
PCT/CN2016/096258 2015-11-30 2016-08-22 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用 WO2017092412A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/992,176 US10662291B2 (en) 2015-11-30 2018-05-30 Nano-silica hybrid vinyl phenyl silicon intermediate, preparation method thereof and use thereof in environmentally-friendly insulating varnish

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510854357.0 2015-11-30
CN201510853562.5A CN105349034B (zh) 2015-11-30 2015-11-30 一种低粘度耐高温耐电晕环保绝缘漆及其制备方法
CN201510854357.0A CN105348534B (zh) 2015-11-30 2015-11-30 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及应用
CN201510853562.5 2015-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/992,176 Continuation US10662291B2 (en) 2015-11-30 2018-05-30 Nano-silica hybrid vinyl phenyl silicon intermediate, preparation method thereof and use thereof in environmentally-friendly insulating varnish

Publications (1)

Publication Number Publication Date
WO2017092412A1 true WO2017092412A1 (zh) 2017-06-08

Family

ID=58796179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096258 WO2017092412A1 (zh) 2015-11-30 2016-08-22 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用

Country Status (2)

Country Link
US (1) US10662291B2 (zh)
WO (1) WO2017092412A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796595B (zh) * 2019-02-27 2020-06-19 华南理工大学 一种高折射率含酚羟基有机硅增粘剂及其制备方法
CN116178744B (zh) * 2023-03-09 2023-09-15 广州豫顺新材料有限公司 一种应用于环氧树脂的功能化二氧化硅增韧剂的制备工艺
CN116427206B (zh) * 2023-06-13 2023-10-13 山东奥赛新材料有限公司 改性纳米二氧化硅、制备方法及在硅溶胶混合乳液的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448927A (en) * 1983-03-14 1984-05-15 Dow Corning Corporation Method of polymerizing oligomers of polydiorganosiloxane in the presence of filler
US4923755A (en) * 1989-03-28 1990-05-08 Dow Corning Corporation Organosilicone resin coating compositions
EP0994158A1 (en) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane composition for forming fired film
CN101457022A (zh) * 2007-12-12 2009-06-17 深圳大学 一种高折射率纳米改性有机硅封装材料的制作方法
CN102888001A (zh) * 2012-10-25 2013-01-23 浙江润禾有机硅新材料有限公司 乙烯基苯基硅树脂
CN102898651A (zh) * 2012-10-25 2013-01-30 浙江润禾有机硅新材料有限公司 用于led封装的乙烯基苯基硅树脂的制备方法
CN105349034A (zh) * 2015-11-30 2016-02-24 苏州太湖电工新材料股份有限公司 一种低粘度耐高温耐电晕环保绝缘漆及其制备方法
CN105348534A (zh) * 2015-11-30 2016-02-24 苏州太湖电工新材料股份有限公司 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642692A (en) * 1970-04-09 1972-02-15 Dow Corning Room temperature vulcanizable silicone rubber with improved cleanability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4448927A (en) * 1983-03-14 1984-05-15 Dow Corning Corporation Method of polymerizing oligomers of polydiorganosiloxane in the presence of filler
US4923755A (en) * 1989-03-28 1990-05-08 Dow Corning Corporation Organosilicone resin coating compositions
EP0994158A1 (en) * 1998-10-14 2000-04-19 Shin-Etsu Chemical Co., Ltd. Organopolysiloxane composition for forming fired film
CN101457022A (zh) * 2007-12-12 2009-06-17 深圳大学 一种高折射率纳米改性有机硅封装材料的制作方法
CN102888001A (zh) * 2012-10-25 2013-01-23 浙江润禾有机硅新材料有限公司 乙烯基苯基硅树脂
CN102898651A (zh) * 2012-10-25 2013-01-30 浙江润禾有机硅新材料有限公司 用于led封装的乙烯基苯基硅树脂的制备方法
CN105349034A (zh) * 2015-11-30 2016-02-24 苏州太湖电工新材料股份有限公司 一种低粘度耐高温耐电晕环保绝缘漆及其制备方法
CN105348534A (zh) * 2015-11-30 2016-02-24 苏州太湖电工新材料股份有限公司 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及应用

Also Published As

Publication number Publication date
US20180273686A1 (en) 2018-09-27
US10662291B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
CN102382309B (zh) 一种纳米SiO2杂化聚酯改性有机硅树脂及其合成方法
CN104974530B (zh) 一种高性能耐漏电起痕硅橡胶及其制备方法
CN111154453B (zh) 一种耐热单组份加成型有机硅胶黏剂及其制备方法
CN103554503B (zh) 一种纳米TiO2/硅树脂杂化透明复合材料的制备方法
WO2017092412A1 (zh) 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及在环保绝缘漆中的应用
CN113136140B (zh) 一种有机硅防火隔热涂层及其制备方法
Park et al. Effects of vinylsilane-modified nanosilica particles on electrical and mechanical properties of silicone rubber nanocomposites
CN108912688A (zh) 一种新能源汽车电池灌封材料及其制备方法
CN104497573A (zh) 硅橡胶组合物
WO2009100757A1 (en) Surface modified electrical insulation system
WO2021000551A1 (zh) 一种接枝改性氧化铝及其制备方法、环氧复合材料及其应用
CN102942839A (zh) 一种纳米填料改性无溶剂绝缘漆及制备方法
CN111100425A (zh) 一种高介电光敏树脂基复合材料及其制备方法和应用
KR100977411B1 (ko) 전선 피복용 폴리아미드이미드 실리카 하이브리드 재료의제조방법 및 그 재료 그리고 그 재료를 피복시킨 전선
CN106084792B (zh) 一种柔性介电硅树脂复合材料及其制备方法
CN111040622B (zh) 一种超耐压阻燃导热有机硅绝缘涂料
CN105348534B (zh) 一种纳米二氧化硅杂化乙烯基苯基硅中物、其制备方法及应用
CN116574355A (zh) 一种绝缘阻燃铜芯电缆及其制备方法
CN115960465A (zh) 一种高分子绝缘材料及其制备方法与应用
CN114790334A (zh) 液体硅橡胶及其制备方法
Park et al. Effects of alkyl/vinyl‐modified nanosilicas on negative or positive high voltage direct current breakdown strength and tensile properties in silicone rubber nanocomposites
CN105349034B (zh) 一种低粘度耐高温耐电晕环保绝缘漆及其制备方法
CN110684461A (zh) 一种层状无机纳米材料改性耐电晕聚酯亚胺漆包线漆及其制备方法
KR102409297B1 (ko) 고전압 직류(hvdc) 절연용 실리콘 고무/나노실리카 복합체 제조방법
CN115160791B (zh) 一种硅橡胶/核壳填料复合材料、介电弹性体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869723

Country of ref document: EP

Kind code of ref document: A1