WO2017092235A1 - 一种铜系抗菌纤维的制备方法 - Google Patents

一种铜系抗菌纤维的制备方法 Download PDF

Info

Publication number
WO2017092235A1
WO2017092235A1 PCT/CN2016/081474 CN2016081474W WO2017092235A1 WO 2017092235 A1 WO2017092235 A1 WO 2017092235A1 CN 2016081474 W CN2016081474 W CN 2016081474W WO 2017092235 A1 WO2017092235 A1 WO 2017092235A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
zirconium phosphate
mesoporous zirconium
copper oxide
mesoporous
Prior art date
Application number
PCT/CN2016/081474
Other languages
English (en)
French (fr)
Inventor
朱美芳
周家良
陈伟
杨俊杰
孙宾
周哲
Original Assignee
东华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东华大学 filed Critical 东华大学
Publication of WO2017092235A1 publication Critical patent/WO2017092235A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters

Definitions

  • the invention belongs to the field of preparation of antibacterial polyester fibers, and particularly relates to a preparation method of low-addition and high-efficiency copper-based antibacterial fibers.
  • the ecological environment such as extreme environment and environmental pollution in today's society is seriously deteriorating, and the special living micro-environment such as confined space leads to the urgent demand for functional protective textiles.
  • the fibers for preparing textiles do not have antibacterial ability, and under certain conditions, the bacteria are provided with an environment for survival and reproduction, which threatens human health.
  • the main method for solving the fiber antibacterial problem is to prepare a modified fiber having an antibacterial effect by using a nanoparticle having an antibacterial effect and a polymer matrix to be compositely modified.
  • the fiber will gradually release the antibacterial component during use to achieve the purpose of antibacterial.
  • antibacterial fiber is widely used and has a large demand.
  • the main method for realizing the antibacterial function of fibers is through surface modification technology and blend modification technology.
  • the former is to make the antibacterial component adhere to the surface of the fiber or the fabric by forming a chemical bond with the surface of the fiber or the fabric by the antibacterial component, thereby achieving an antibacterial effect.
  • Patent CN101942759A is a silver nitrate which is added to an adsorption solution of a fiber in a solution containing silver nitrate, and an antibacterial fiber or fabric having a surface-attached silver obtained by reduction of the adsorbed fiber. This method does not form a uniform and stable antibacterial coating, and the antibacterial time is limited, and the antibacterial effect cannot be achieved. The whole process is too complicated and it is easy to pollute the environment.
  • the antibacterial component is directly or modified and added to the polymer, and the antibacterial masterbatch is prepared by screw extrusion, and the antibacterial fiber is prepared by melt spinning.
  • the patent CN101440533 is an antibacterial component by using nano bamboo charcoal and nano silver as an antibacterial component, and is prepared by using one of polyester or polypropylene or nylon as a carrier, and preparing antibacterial fiber by screw extrusion.
  • this method has a large addition amount and an uneven distribution of the antibacterial components, and it is difficult to achieve continuous production.
  • the object of the present invention is to provide a preparation method of copper antibacterial fiber with high whiteness and long antibacterial function. law.
  • the present invention provides a method for preparing a copper-based antimicrobial fiber, characterized in that the specific steps include:
  • the first step adding a divalent copper compound to an ethanol base solution to form a Cu(OH) 2 gel, filtering and washing to neutrality, adding mesoporous zirconium phosphate, and utilizing the adsorption of mesoporous zirconium phosphate pores to Cu(OH) 2 gel adsorbed into the mesoporous channel to obtain a copper oxide@mesoporous zirconium phosphate gel precursor;
  • Step 2 The above copper oxide@mesoporous zirconium phosphate gel precursor, terephthalic acid (PTA), glycol, stabilizer and catalyst are added to the polyester reactor in proportion, and the polymerization is carried out by in-situ polymerization.
  • the divalent copper compound is at least one of copper chloride, copper sulfate, and copper nitrate.
  • the mass ratio of the copper oxide@mesoporous zirconium phosphate gel precursor mesoporous zirconium phosphate to Cu(OH) 2 is from 90 to 99.5:0.5 to 10.
  • the glycol in the second step is at least one of ethylene glycol, propylene glycol, butylene glycol and isosorbide.
  • the copper oxide@mesoporous zirconium phosphate gel precursor in the second step has a mass fraction of 0.1% to 10%, a stabilizer mass fraction of 50 ppm, a catalyst mass fraction of 300 ppm, and a benzoic acid.
  • the molar ratio of formic acid to glycol is 1:1-1.5, and the sum of mass fractions of copper oxide@mesoporous zirconium phosphate gel precursor, stabilizer, catalyst, terephthalic acid and glycol is 100%.
  • the mesoporous zirconium phosphate nano-copper oxide/polyester-based composite antibacterial masterbatch comprises a polyester matrix and mesoporous zirconium phosphate supported nano-copper oxide dispersed in the polyester matrix.
  • the polyester matrix is one of polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate.
  • the mesoporous zirconium phosphate supported nano-sized copper oxide dispersed in the polymer matrix has a size of from 100 to 700 nm.
  • the polymer is polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polycaprolactam, polyhexamethylene adipate, poly eleven One of lactam, polylaurolactam, polydecamethylene adipamide, polydodecanedicarboxylic acid hexamethylene diamine, polysebacic dihydrazide diamine, and poly(m-xylylene adipamide).
  • the in-situ polymerization reaction process is: reacting at 180-240 ° C, 300 KPa, N 2 atmosphere for 2-5 h, and reacting at 260-285 ° C, below 150 Pa for 2-6 h.
  • the copper-based antimicrobial fiber forms a fabric having a whiteness value of ⁇ 60.
  • the mass ratio of the mesoporous zirconium phosphate nano-copper oxide/polyester-based composite antibacterial masterbatch to the polymer is from 3 to 97:3 to 97.
  • the copper oxide in the mesoporous zirconium phosphate nano-oxide/polyester-based composite antibacterial masterbatch is converted from copper hydroxide and has a transition temperature of 180 to 270 °C.
  • the divalent copper ion is changed into a copper hydroxide gel, and the copper hydroxide is loaded into the zirconium phosphate mesoporous channel by the adsorption of mesoporous channels, thereby realizing the copper hydroxide in the mesopores.
  • the invention adopts an antibacterial functional medium assembly and a functional polyester in-situ polymerization method, and the mesoporous zirconium phosphate supported copper hydroxide directly forms nano copper oxide in the polymerization process, and is simultaneously loaded in the mesoporous channel, which has a slow
  • the effect of release, the use of antibacterial masterbatch and other polymers blending granulation can make the antibacterial component well dispersed in the matrix, and at the same time can effectively reduce the production cost;
  • the antibacterial fiber obtained by the invention can effectively improve the color problem of the copper antibacterial agent product, and the performance is stable;
  • the method of the invention has simple operation, high efficiency, low cost, long-lasting utility and broad application prospect.
  • the antibacterial fiber prepared by the invention can effectively enhance the functional fiber, and can be effectively applied to the interior of the mask, the home textile, the clothing, the large aircraft, the high-iron, the astronaut costume, the military combat costume, etc., through the industrialization of the antibacterial fiber of the invention. Can effectively fill the gap in domestic antibacterial fiber preparation technology.
  • the mesoporous zirconium phosphate nanopowder in each of the embodiments of the present invention is a commercially available product having a particle diameter of 100 to 700 nm and a pore diameter of 10 to 60 nm. .
  • a preparation method of copper-based antibacterial fiber the specific steps are as follows:
  • the first step 1.35g of copper chloride is added to 100ml of 10% sodium hydroxide ethanol solution to form a blue-green Cu(OH) 2 gel.
  • the filter is washed with absolute ethanol to neutral, and mesopores are added.
  • 19.5g of zirconium phosphate the Cu(OH) 2 gel was adsorbed into the mesoporous channel by the adsorption of mesoporous zirconium phosphate pores to obtain a copper oxide@mesoporous zirconium phosphate gel precursor, the copper oxide@mesoporous zirconium phosphate gel mesoporous precursor zirconium phosphate and Cu (OH) 2 mass ratio of 99.5: 0.5;
  • the mesoporous zirconium phosphate nano copper oxide/polyester based composite antibacterial masterbatch comprises a PET polyester matrix and mesoporous zirconium phosphate supported nano copper oxide dispersed in a polyester matrix, Cu(OH) 2 @ mesoporous zirconium phosphate
  • the mass ratio to the polyester matrix is 5:95, and the mesoporous zirconium phosphate-supported nano-sized copper oxide dispersed in the polyester matrix has a size of 100 to 300 nm.
  • the fabric has a whiteness value of ⁇ 75.
  • the fiber has an antibacterial rate of >95% against Escherichia coli, an antibacterial rate of >90% against Staphylococcus aureus, and an antibacterial rate of >60% against Candida albicans.
  • the number of washable fabrics is >100 times.
  • a preparation method of copper-based antibacterial fiber the specific steps are as follows:
  • the first step adding 3.2g of copper sulfate to 100ml of 8% sodium hydroxide in ethanol to form a blue-green Cu(OH) 2 gel, filtering and washing with absolute ethanol to neutral, adding mesopores Zirconium phosphate 39g, adsorption of Cu(OH) 2 gel into mesoporous channels by adsorption of mesoporous zirconium phosphate pores, to obtain copper oxide@mesoporous zirconium phosphate gel precursor, said copper oxide@mesophosphoric acid
  • the zirconium gel precursor intermediate pore zirconium phosphate and Cu(OH) 2 mass ratio is 99.5:0.5;
  • Step 2 Take the above copper oxide@mesoporous zirconium phosphate gel precursor (mass fraction 8%), purified terephthalic acid (PTA), butanediol (the molar ratio of PTA to butanediol is 1:1.3) ), stabilizer trimethyl phosphate (mass fraction of 50ppm) and catalyst ethylene glycol oxime (mass fraction of 300ppm), the sum of the mass fractions of the above raw materials is 100%, and is added to the polyester reactor in proportion.
  • PTA terephthalic acid
  • butanediol the molar ratio of PTA to butanediol is 1:1.3
  • stabilizer trimethyl phosphate mass fraction of 50ppm
  • catalyst ethylene glycol oxime mass fraction of 300ppm
  • the mesoporous zirconium phosphate nano copper oxide/polyester based composite antibacterial masterbatch comprises a PBT polyester matrix and mesoporous zirconium phosphate supported nano copper oxide dispersed in a polyester matrix, Cu(OH) 2 @ mesoporous zirconium phosphate
  • the mass ratio to the polyester matrix is 8:92
  • the size of the mesoporous zirconium phosphate-supported nano-sized copper oxide dispersed in the polyester matrix is 300-700 nm.
  • the fabric has a whiteness value of ⁇ 70.
  • the fiber has an antibacterial rate of >99% against Escherichia coli, an antibacterial rate of >95% against Staphylococcus aureus, and an antibacterial rate of >75% against Candida albicans.
  • the number of washable fabrics is >100 times.
  • a preparation method of copper-based antibacterial fiber the specific steps are as follows:
  • First step 1.88g of copper nitrate was added to 100ml of 15% ammonia solution in ammonia to form a blue-green Cu(OH) 2 gel.
  • the filter was washed with absolute ethanol to neutral, and mesoporous zirconium phosphate was added. 18.62g, adsorption of Cu(OH) 2 gel into the mesoporous channel by adsorption of mesoporous zirconium phosphate pores to obtain a copper oxide@mesoporous zirconium phosphate gel precursor, said copper oxide@mesoporous zirconium phosphate
  • the mass ratio of zirconium phosphate and Cu(OH) 2 in the gel precursor intermediate pore is 95:5;
  • the second step the above copper oxide @ mesoporous zirconium phosphate gel precursor (mass fraction of 1%), purified terephthalic acid (PTA), propylene glycol (the molar ratio of PTA to propylene glycol is 1:1.2), stabilizer Dimethyl phosphate (mass fraction: 50 ppm) and catalyst ethylene glycol oxime (mass fraction: 300 ppm), the sum of the mass fractions of the above raw materials is 100%, and are sequentially added to the polyester reactor for in-situ polymerization (reaction)
  • the process is 220 ° C, 300 kpa reaction 3 h; 280 ° C, 130 pa reaction 2 h)
  • the antibacterial masterbatch and polymer PET (viscosity 0.68dl/
  • the mesoporous zirconium phosphate nano copper oxide/polyester based composite antibacterial masterbatch comprises a PTT polyester matrix and a mesoporous zirconium phosphate supported nano copper oxide dispersed in a polyester matrix, Cu(OH) 2 @ mesoporous zirconium phosphate
  • the mass ratio to the polyester matrix is 1:99
  • the mesoporous zirconium phosphate-supported nano-copper oxide dispersed in the polyester matrix has a size of 100-300 nm.
  • the fabric has a whiteness value of ⁇ 75.
  • the fiber has an antibacterial rate of >95% against Escherichia coli, an antibacterial rate of >95% against Staphylococcus aureus, and an antibacterial rate of >70% against Candida albicans.
  • the number of washable fabrics is >80 times.
  • a preparation method of copper-based antibacterial fiber the specific steps are as follows:
  • the first step adding 3.2g of copper sulfate to 100ml of 5% sodium hydroxide ethanol solution to form a blue-green Cu(OH) 2 gel, filtering and washing with absolute ethanol to neutral, adding mesoporous phosphate Zirconium 37.24g, adsorption of Cu(OH) 2 gel into the mesoporous channel by adsorption of mesoporous zirconium phosphate pores, to obtain copper oxide@mesoporous zirconium phosphate gel precursor, said copper oxide@mesophosphoric acid
  • the zirconium gel precursor intermediate pore zirconium phosphate and Cu(OH) 2 mass ratio is 95:5;
  • the second step the above copper oxide @ mesoporous zirconium phosphate gel precursor (mass fraction of 5%), purified terephthalic acid (PTA), ethylene glycol (the molar mass ratio of PTA to ethylene glycol is 1: 1.4), stabilizer trimethyl phosphate (mass fraction of 50ppm) and catalyst ethylene glycol oxime (mass fraction of 300ppm), the sum of the mass fractions of the above raw materials is 100%, sequentially added to the polyester reactor In-situ polymerization (reaction process: 230 ° C, 300 kPa reaction for 3 h; 275 ° C, 100 Pa reaction for 2 h), preparation of mesoporous zirconium phosphate nano-copper oxide/polyester-based composite antibacterial masterbatch by polymerization heat, nano-oxidation of mesoporous zirconium phosphate Copper/polyester-based composite antibacterial masterbatch and polymer nylon 6 (viscosity 0.60 dl/g
  • the mesoporous zirconium phosphate nano copper oxide/polyester based composite antibacterial masterbatch comprises a PET polyester matrix and mesoporous zirconium phosphate supported nano copper oxide dispersed in a polyester matrix, Cu(OH) 2 @ mesoporous zirconium phosphate
  • the mass ratio to the polyester matrix is 5:95, and the size of the mesoporous zirconium phosphate-supported nano-sized copper oxide dispersed in the polyester matrix is 300-700 nm.
  • the fabric has a whiteness value of ⁇ 65.
  • the fiber has an antibacterial rate of >99% against Escherichia coli, an antibacterial rate of >98% against Staphylococcus aureus, and an antibacterial rate of >80% against Candida albicans.
  • the number of washable fabrics is >100 times.
  • a preparation method of copper-based antibacterial fiber the specific steps are as follows:
  • Step 1 Add 8g of copper sulfate to 500ml of 5% ammonia in ethanol to form a blue-green Cu(OH) 2 gel, filter and wash with absolute ethanol to neutral, add mesoporous zirconium phosphate 93.1g Cu(OH) 2 gel is adsorbed into the mesoporous channel by adsorption of mesoporous zirconium phosphate pores to obtain a copper oxide@mesoporous zirconium phosphate gel precursor, the copper oxide@mesoporous zirconium phosphate gel The precursor intervening pore zirconium phosphate and Cu(OH) 2 mass ratio is 95:5;
  • Step 2 Take the above copper oxide @ mesoporous zirconium phosphate gel precursor (mass fraction 5%), fine benzene Dicarboxylic acid (PTA), ethylene glycol (molar ratio of PTA to ethylene glycol: 1:1.3, stabilizer dimethyl phosphate (mass fraction: 30 ppm) and catalyst ethylene glycol oxime (mass fraction: 150 ppm), each of the above
  • the sum of the mass fractions of the raw materials is 100%, and is sequentially added to the polyester reactor by in-situ polymerization (the reaction process is 235 ° C, 300 kpa reaction 2.5 h; 280 ° C, 100 pa reaction 2 h) to prepare mesoporous phosphoric acid by polymerization heat Zirconium nano-copper oxide/polyester-based composite antibacterial masterbatch, mass ratio of mesoporous zirconium phosphate nano-copper oxide/polyester-based composite antibacterial masterbatch and polymer nylon 66 (visco
  • the fabric has a whiteness value of ⁇ 75.
  • the fiber has an antibacterial rate of >92% against Escherichia coli and an antibacterial rate of >89% against Staphylococcus aureus. The rate is >68%.
  • the number of washable fabrics is >80 times.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明提供了一种铜系抗菌纤维的制备方法,其特征在于,具体步骤包括:第一步:将二价铜化合物加入到乙醇碱溶液中形成Cu(OH)2凝胶,过滤洗涤至中性,加入介孔磷酸锆,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体;第二步:将上述氧化铜@介孔磷酸锆凝胶前驱体、对苯二甲酸(PTA)、二元醇、稳定剂和催化剂按比例加入到聚酯反应器中采用原位聚合利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物按一定质量比在180~280℃下共混造粒,干燥,熔融纺丝获得铜系抗菌纤维。本发明的方法操作简单、高效,成本低,效用持久,应用前景广阔。

Description

一种铜系抗菌纤维的制备方法 技术领域
本发明属于抗菌聚酯纤维制备领域,特别涉及一种低添加、高功效的铜系抗菌纤维的制备方法。
背景技术
当今社会极端环境、环境污染等生态大环境严重恶化,密闭空间等特殊生存微环境导致人们对功能防护纺织品的迫切需求。目前制备纺织品的纤维本身不具有抗菌能力,在一定条件下回给细菌提供生存和繁殖的环境,威胁人类健康。解决纤维抗菌问题的主要方法是利用具有抗菌作用的纳米粒子与聚合物基体进行复合改性,制备具有抗菌作用的改性纤维。该纤维在使用过程中会逐步释放抗菌成分,达到抗菌的目的。目前抗菌纤维应用广泛,需求量大,但是目前技术不能有效解决功能组分添加量多、分散难、高温加工不稳定、连续化生产制成率低等难题,致使抗菌纤维不能有效的形成规模化生产,难以满足目前市场的广泛需求。
目前,实现纤维具有抗菌功能的主要方法是通过表面改性技术和共混改性技术。前者是通过抗菌组分与纤维或织物表面形成化学键的作用使抗菌组分附着在纤维或织物的表面,从而达到抗菌作用。专利CN101942759A是将纤维加入到含有硝酸银的溶液中吸附溶液中的硝酸银,在通过对吸附后的纤维进行还原得到表面附着银的抗菌纤维或织物。该方法不能形成均一稳定的抗菌涂层,且抗菌时间有限,不能达到持久抗菌。整个过程过于复杂极易对环境产生污染。后者则是将抗菌组分直接或改性后加入到聚合物中,通过螺杆挤出制备抗菌母粒,在经过熔融纺丝技术制备抗菌纤维。专利CN101440533是将纳米竹炭和纳米银为抗菌组分,以涤纶或丙纶或锦纶中的一种为载体切片,通过螺杆挤出制备抗菌纤维。但是该方法,添加量较大、抗菌组分分布不均匀,不易实现连续化生产。
发明内容
本发明的目的是提供一种白度高、抗菌功能持久的铜系抗菌纤维的制备方 法。
为了达到上述目的,本发明提供了一种铜系抗菌纤维的制备方法,其特征在于,具体步骤包括:
第一步:将二价铜化合物加入到乙醇碱溶液中形成Cu(OH)2凝胶,过滤洗涤至中性,加入介孔磷酸锆,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体;
第二步:将上述氧化铜@介孔磷酸锆凝胶前驱体、对苯二甲酸(PTA)、二元醇、稳定剂和催化剂按比例加入到聚酯反应器中采用原位聚合利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物按一定质量比在180~280℃下共混造粒,干燥,熔融纺丝获得铜系抗菌纤维。
优选地,所述的二价铜化合物为氯化铜、硫酸铜和硝酸铜中的至少一种。
优选地,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为90~99.5:0.5~10。
优选地,所述的第二步中的二元醇为乙二醇、丙二醇、丁二醇和异山梨醇中的至少一种。
优选地,所述的第二步中的氧化铜@介孔磷酸锆凝胶前驱体的质量分数为0.1%~10%,稳定剂的质量分数为50ppm,催化剂的质量分数为300ppm,对苯二甲酸和二元醇的摩尔比为1:1-1.5,氧化铜@介孔磷酸锆凝胶前驱体、稳定剂、催化剂、对苯二甲酸和二元醇的质量分数之和为100%。
优选地,所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜。
更优选地,所述的聚酯基体为为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯和聚对苯二甲酸丙二酯中的一种。
更优选地,所述的分散在聚合物基体中的介孔磷酸锆负载纳米氧化铜的尺寸在100~700nm。
优选地,所述的聚合物为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、聚己内酰胺、聚己二酸己二胺、聚十一内酰胺、聚十二内酰胺、聚癸二酰己二胺、聚十二烷二甲酰己二胺、聚癸二酰癸二胺和聚己二酰间苯二甲胺中的一种。
优选地,所述的原位聚合的反应过程为:在180~240℃,300KPa,N2气氛下反应2~5h,在260~285℃,低于150pa的条件下反应2~6h。
优选地,所述的铜系抗菌纤维形成的织物白度值≥60。
优选地,所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物的质量比为3~97:3~97。
优选地,所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒中的氧化铜由氢氧化铜转变而来,其转变温度为180~270℃。
与现有技术相比,本发明的有益效果是:
(1)本发明中将二价铜离子变为氢氧化铜凝胶,利用介孔孔道的吸附作用,将氢氧化铜负载到磷酸锆介孔孔道中,从而实现氢氧化铜在介孔中的高负载;
(2)本发明采用抗菌功能介质组装、功能聚酯原位聚合相结合的方法,介孔磷酸锆负载氢氧化铜在聚合过程中直接生成纳米氧化铜,同时负载在介孔孔道中,具有缓释的效果,利用抗菌母粒与其他聚合物共混造粒可以使抗菌组分良好的分散在基体中,同时可以有效的降低生产成本;
(3)本发明得到的抗菌纤维可有效改善铜系抗菌剂产品的颜色问题,性能稳定;
(4)本发明的方法操作简单、高效,成本低,效用持久,应用前景广阔。本发明制备的抗菌纤维可有效的增强功能性纤维,可有效应用在口罩,家用纺织品、服装、大飞机、高铁等内饰,航天员服饰,军用作战服饰等,通过本发明抗菌纤维的产业化可以有效填补国内的抗菌纤维制备技术空白。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明各实施例中的介孔磷酸锆纳米粉体为市售产品,粒径为100-700nm,孔径为10-60nm。。
实施例1
一种铜系抗菌纤维的制备方法,具体步骤为:
第一步:将1.35g氯化铜加入到100ml质量分数为10%的氢氧化钠乙醇溶液中形成蓝绿色的Cu(OH)2凝胶,过滤用无水乙醇洗涤至中性,加入介孔磷酸锆19.5g,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为99.5:0.5;
第二步:取上述氧化铜@介孔磷酸锆凝胶前驱体(质量分数为5%)、精对苯二甲酸(PTA)、乙二醇(PTA与乙二醇的摩尔比为1:1.2)、稳定剂磷酸二甲酯(质量分数为50ppm)和催化剂(乙二醇锑)(质量分数为300ppm),上述各原料质量分数之和为100%,按比例依次加入到聚酯反应器中采用原位聚合(反应过程为230℃,300kpa反应2h;275℃,150pa反应2h)利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物PET(黏度0.66dl/g,Mw=1.8×104)按质量比50:50在250~280℃下共混造粒,干燥,控制含水率在50~100ppm(质量含量)时,经熔融纺丝法(纺丝温度为270~285℃)纺制成铜系抗菌纤维。所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括PET聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜,Cu(OH)2@介孔磷酸锆与聚酯基体质量比为5:95,所述的分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜的尺寸在100~300nm。纤维形成的织物白度值≥75。该纤维对大肠杆菌的抗菌率>95%,对金黄色葡萄球菌的抗菌率>90%,对白色念珠菌的抗菌率>60%。织物耐洗次数>100次。
实施例2
一种铜系抗菌纤维的制备方法,具体步骤为:
第一步:将3.2g硫酸铜加入到100ml质量分数为8%的氢氧化钠的乙醇溶液中形成蓝绿色的Cu(OH)2凝胶,过滤用无水乙醇洗涤至中性,加入介孔磷酸锆39g,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为99.5:0.5;
第二步:取上述氧化铜@介孔磷酸锆凝胶前驱体(质量分数为8%)、精对苯二甲酸(PTA)、丁二醇(PTA与丁二醇的摩尔比为1:1.3)、稳定剂磷酸三甲酯(质量分数为50ppm)和催化剂乙二醇锑(质量分数为300ppm),上述各原料质量分数之和为100%,按比例依次加入到聚酯反应器中采用原位聚合(反应条件为 225℃,300kpa反应2h;280℃,100Pa反应1.5h)利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物PET(黏度0.64dl/g,Mw=2.0×104)按质量比10:90在230~260℃下共混造粒,干燥,控制含水率在50~100ppm(质量含量)时,经熔融纺丝法(纺丝温度为275~290℃)纺制成铜系抗菌纤维。所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括PBT聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜,Cu(OH)2@介孔磷酸锆与聚酯基体质量比为8:92,所述的分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜的尺寸在300-700nm。纤维形成的织物白度值≥70。该纤维对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>95%,对白色念珠菌的抗菌率>75%。织物耐水洗次数>100次。
实施例3
一种铜系抗菌纤维的制备方法,具体步骤为:
第一步:将1.88g硝酸铜加入到100ml质量分数为15%的氨水的乙醇溶液中形成蓝绿色的Cu(OH)2凝胶,过滤用无水乙醇洗涤至中性,加入介孔磷酸锆18.62g,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为95:5;
第二步:将上述氧化铜@介孔磷酸锆凝胶前驱体(质量分数为1%)、精对苯二甲酸(PTA)、丙二醇(PTA与丙二醇的摩尔比为1:1.2)、稳定剂磷酸二甲酯(质量分数为50ppm)和催化剂乙二醇锑(质量分数为300ppm),上述各原料质量分数之和为100%,按比例依次加入到聚酯反应器中采用原位聚合(反应过程为220℃,300kpa反应3h;280℃,130pa反应2h)利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物PET(黏度0.68dl/g,Mw=1.9×104)按质量比50:50在240~280℃下共混造粒,干燥,控制含水率在50~100ppm(质量含量)时,经熔融纺丝法(纺丝温度为(260~280℃))纺制成铜系抗菌纤维。所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括PTT聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜,Cu(OH)2@介孔磷酸锆与聚酯基体质量比为1:99,所述的分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜的尺寸在100-300nm。纤维形成的织物白度值≥75。该纤维对大肠杆菌的抗菌率>95%,对金黄色葡萄球菌的抗菌 率>95%,对白色念珠菌的抗菌率>70%。织物耐洗次数>80次。
实施例4
一种铜系抗菌纤维的制备方法,具体步骤为:
第一步:将3.2g硫酸铜加入到100ml质量分数为5%的氢氧化钠乙醇溶液中形成蓝绿色的Cu(OH)2凝胶,过滤用无水乙醇洗涤至中性,加入介孔磷酸锆37.24g,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为95:5;
第二步:将上述氧化铜@介孔磷酸锆凝胶前驱体(质量分数为5%)、精对苯二甲酸(PTA)、乙二醇(PTA与乙二醇的摩尔质量比为1:1.4)、稳定剂磷酸三甲酯(质量分数为50ppm)和催化剂乙二醇锑(质量分数为300ppm),,上述各原料质量分数之和为100%,按比例依次加入到聚酯反应器中采用原位聚合(反应过程为230℃,300kpa反应3h;275℃,100Pa反应2h)利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物尼龙6(黏度0.60dl/g,Mw=1.9×104)按质量比30:70在220~260℃下共混造粒,干燥,控制含水率在50~100ppm(质量含量)时,经熔融纺丝法(纺丝温度为240~260℃)纺制成铜系抗菌纤维。所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括PET聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜,Cu(OH)2@介孔磷酸锆与聚酯基体质量比为5:95,所述的分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜的尺寸在300-700nm。纤维形成的织物白度值≥65。该纤维对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>98%,对白色念珠菌的抗菌率>80%。织物耐洗次数>100次。
实施例5
一种铜系抗菌纤维的制备方法,具体步骤为:
第一步:将8g硫酸铜加入到500ml质量分数为5%的氨水乙醇溶液中形成蓝绿色的Cu(OH)2凝胶,过滤用无水乙醇洗涤至中性,加入介孔磷酸锆93.1g,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为95:5;
第二步:取上述氧化铜@介孔磷酸锆凝胶前驱体(质量分数为5%)、精对苯 二甲酸(PTA)、乙二醇(PTA与乙二醇的摩尔比为1:1.3、稳定剂磷酸二甲酯(质量分数为30ppm)和催化剂乙二醇锑(质量分数为150ppm),上述各原料质量分数之和为100%,按比例依次加入到聚酯反应器中采用原位聚合(反应过程为235℃,300kpa反应2.5h;280℃,100pa反应2h)利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物尼龙66(黏度0.61dl/g,Mw=1.8×104)按质量比50:50在210~270℃下共混造粒,干燥,控制含水率在50~100ppm(质量含量)时,经熔融纺丝法(纺丝温度为260~275℃)纺制成铜系抗菌纤维。所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括PET聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜,Cu(OH)2@介孔磷酸锆与聚酯基体质量比为0.5:99.5,所述的分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜的尺寸在100-300nm。纤维形成的织物白度值≥75。该纤维对大肠杆菌的抗菌率>92%,对金黄色葡萄球菌的抗菌率>89%,对白色念珠菌的抗菌率>68%。织物耐洗次数>80次。

Claims (10)

  1. 一种铜系抗菌纤维的制备方法,其特征在于,具体步骤包括:
    第一步:将二价铜化合物加入到乙醇碱溶液中形成Cu(OH)2凝胶,过滤洗涤至中性,加入介孔磷酸锆,利用介孔磷酸锆孔道的吸附作用将Cu(OH)2凝胶吸附到介孔孔道中,得到氧化铜@介孔磷酸锆凝胶前驱体;
    第二步:将上述氧化铜@介孔磷酸锆凝胶前驱体、对苯二甲酸(PTA)、二元醇、稳定剂和催化剂按比例加入到聚酯反应器中采用原位聚合利用聚合反应热制备介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒,将介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物按一定质量比在180~280℃下共混造粒,干燥,熔融纺丝获得铜系抗菌纤维。
  2. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的二价铜化合物为氯化铜、硫酸铜和硝酸铜中的至少一种。
  3. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的氧化铜@介孔磷酸锆凝胶前驱体中介孔磷酸锆和Cu(OH)2的质量比为90~99.5:0.5~10。
  4. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的第二步中的二元醇为乙二醇、丙二醇、丁二醇和异山梨醇中的至少一种。
  5. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的第二步中的氧化铜@介孔磷酸锆凝胶前驱体的质量分数为0.1%~10%,稳定剂的质量分数为50ppm,催化剂的质量分数为300ppm,对苯二甲酸和二元醇的摩尔比为1:1-1.5,氧化铜@介孔磷酸锆凝胶前驱体、稳定剂、催化剂、对苯二甲酸和二元醇的质量分数之和为100%。
  6. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒包括聚酯基体以及分散在聚酯基体中的介孔磷酸锆负载纳米氧化铜。
  7. 如权利要求6所述的铜系抗菌纤维的制备方法,其特征在于,所述的分散在聚合物基体中的介孔磷酸锆负载纳米氧化铜的尺寸在100~700nm。
  8. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的聚合物为聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚对苯二甲酸丙二酯、聚己 内酰胺、聚己二酸己二胺、聚十一内酰胺、聚十二内酰胺、聚癸二酰己二胺、聚十二烷二甲酰己二胺、聚癸二酰癸二胺和聚己二酰间苯二甲胺中的一种。
  9. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的原位聚合的反应过程为:在180~240℃,300KPa,N2气氛下反应2~5h,在260~285℃,低于150pa的条件下反应2~6h。
  10. 如权利要求1所述的铜系抗菌纤维的制备方法,其特征在于,所述的介孔磷酸锆纳米氧化铜/聚酯基复合抗菌母粒和聚合物的质量比为3~97:3~97。
PCT/CN2016/081474 2015-12-01 2016-05-09 一种铜系抗菌纤维的制备方法 WO2017092235A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510867023.7A CN105332088B (zh) 2015-12-01 2015-12-01 一种铜系抗菌纤维的制备方法
CN201510867023.7 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017092235A1 true WO2017092235A1 (zh) 2017-06-08

Family

ID=55282839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081474 WO2017092235A1 (zh) 2015-12-01 2016-05-09 一种铜系抗菌纤维的制备方法

Country Status (2)

Country Link
CN (1) CN105332088B (zh)
WO (1) WO2017092235A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376265A (zh) * 2020-11-12 2021-02-19 上海普榭尔科技有限公司 一种制备纺织品用抗微生物处理剂的方法
CN114214753A (zh) * 2021-12-15 2022-03-22 上海卧特玫丝纺织科技有限公司 一种抗菌十二孔聚酯功能纤维及其制备方法
CN115679547A (zh) * 2022-09-08 2023-02-03 河南省安邦卫材有限公司 一种用于制备防护服的抗菌无纺布
CN116180268A (zh) * 2023-04-24 2023-05-30 山东天纤新材料有限公司 一种双氯芬酸钠改性涤纶大生物纤维及其制备方法
CN116427051A (zh) * 2023-05-05 2023-07-14 东华大学 氧化石墨烯负载氧化亚铜抗菌纤维及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332088B (zh) * 2015-12-01 2017-10-20 东华大学 一种铜系抗菌纤维的制备方法
CN105586657A (zh) * 2016-03-02 2016-05-18 张家港市安顺科技发展有限公司 一种抗菌锦纶短纤维的生产方法
CN106311180A (zh) * 2016-09-24 2017-01-11 北京益净环保设备科技有限公司 用于吸附吡咯的功能板及其制备方法
CN106423107A (zh) * 2016-09-24 2017-02-22 北京益净环保设备科技有限公司 用于吸附吡咯的颗粒吸附剂及其制备方法
CN108251911B (zh) * 2018-02-08 2019-03-05 浙江银瑜新材料股份有限公司 一种抗菌阻燃pet纤维及其制备方法
CN111041595A (zh) * 2019-11-25 2020-04-21 安徽东锦资源再生科技有限公司 一种铜离子抗菌再生聚酯纤维的加工方法
CN114588317A (zh) * 2022-03-09 2022-06-07 诺一迈尔(苏州)生命科技有限公司 一种柔性无机纳米纤维复合支架及其制备方法
CN114989577B (zh) * 2022-06-02 2024-03-12 浙江理工大学 一种抗菌抗病毒功能母粒的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190197A (ja) * 2002-12-13 2004-07-08 Teijin Fibers Ltd 制菌性繊維及び制菌性繊維製品
CN101543228A (zh) * 2009-04-30 2009-09-30 广东迪美生物技术有限公司 铜-稀土复合抗菌剂及其制备方法和应用
CN101768291A (zh) * 2008-12-29 2010-07-07 力与美实业股份有限公司 具抗菌消臭功能的多孔性聚合母粒及纤维的制造方法
CN105332088A (zh) * 2015-12-01 2016-02-17 东华大学 一种铜系抗菌纤维的制备方法
CN105350111A (zh) * 2015-12-01 2016-02-24 东华大学 一种介孔磷酸锆负载纳米氧化铜抗菌聚酯纤维的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296238A (en) * 1991-02-26 1994-03-22 Toagosei Chemical Industry Co., Inc. Microbicides
CN103484972A (zh) * 2013-09-11 2014-01-01 昆山市万丰制衣有限责任公司 一种纳米抗菌防臭pet纤维及其制备方法
CN105040142A (zh) * 2015-08-17 2015-11-11 俞尧芳 一种抗菌涤纶纤维及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190197A (ja) * 2002-12-13 2004-07-08 Teijin Fibers Ltd 制菌性繊維及び制菌性繊維製品
CN101768291A (zh) * 2008-12-29 2010-07-07 力与美实业股份有限公司 具抗菌消臭功能的多孔性聚合母粒及纤维的制造方法
CN101543228A (zh) * 2009-04-30 2009-09-30 广东迪美生物技术有限公司 铜-稀土复合抗菌剂及其制备方法和应用
CN105332088A (zh) * 2015-12-01 2016-02-17 东华大学 一种铜系抗菌纤维的制备方法
CN105350111A (zh) * 2015-12-01 2016-02-24 东华大学 一种介孔磷酸锆负载纳米氧化铜抗菌聚酯纤维的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU , JING ET AL.: "Preparation of nano-CuO", CHEMICAL INTERMEDIATES, 15 September 2010 (2010-09-15), ISSN: 1672-8114 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112376265A (zh) * 2020-11-12 2021-02-19 上海普榭尔科技有限公司 一种制备纺织品用抗微生物处理剂的方法
CN114214753A (zh) * 2021-12-15 2022-03-22 上海卧特玫丝纺织科技有限公司 一种抗菌十二孔聚酯功能纤维及其制备方法
CN115679547A (zh) * 2022-09-08 2023-02-03 河南省安邦卫材有限公司 一种用于制备防护服的抗菌无纺布
CN116180268A (zh) * 2023-04-24 2023-05-30 山东天纤新材料有限公司 一种双氯芬酸钠改性涤纶大生物纤维及其制备方法
CN116180268B (zh) * 2023-04-24 2023-07-25 山东天纤新材料有限公司 一种双氯芬酸钠改性涤纶大生物纤维及其制备方法
CN116427051A (zh) * 2023-05-05 2023-07-14 东华大学 氧化石墨烯负载氧化亚铜抗菌纤维及其制备方法和应用

Also Published As

Publication number Publication date
CN105332088A (zh) 2016-02-17
CN105332088B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2017092235A1 (zh) 一种铜系抗菌纤维的制备方法
WO2017092236A1 (zh) 原位聚合法制备基于氧化铜/氧化亚铜的抗菌材料的方法
CN113106635B (zh) 一种静电纺丝纳米纤维无纺布及其制备方法和应用
CN105386147B (zh) 一种介孔磷酸锆负载纳米银抗菌聚酰胺纤维及其制备方法
CN103709643A (zh) 涤纶抗菌母粒及其制备方法
CN102877153B (zh) 一种负离子凉爽面料及其制备方法
CN105332085B (zh) 一种介孔磷酸锆负载纳米银抗菌纤维及其制备方法
CN105200550B (zh) 一种低熔点抗菌异形涤纶单丝及其加工方法
CN105332083B (zh) 一种介孔磷酸锆负载纳米氧化铜抗菌聚酰胺纤维的制备方法
CN105350111B (zh) 一种介孔磷酸锆负载纳米氧化铜抗菌聚酯纤维的制备方法
CN109433024B (zh) 含有金属有机骨架纳米纤维的膜材料或气凝胶材料及其制备方法与应用
KR101466281B1 (ko) 도전성 구리 미립자를 포함하는 합성섬유의 제조방법
CN108950851B (zh) 一种纱架式经编间隔网布的生产方法
CN105332084B (zh) 一种介孔磷酸锆负载氧化铜抗菌聚乳酸纤维的制备方法
WO2017092234A1 (zh) 介孔磷酸锆负载纳米银抗菌聚酯纤维及其制备方法
CN103498331A (zh) 纳米TiO2/ZnO掺杂复合水溶胶及其制备方法及对织物的整理方法
CN113718423B (zh) 一种多孔掺杂稀土抑菌熔喷材料及制备方法
CN114539773A (zh) 一种长效抗菌耐高温原液着色母粒及其制备方法和应用
CN113981619A (zh) 一种纳米抗菌无纺布滤材及其制备方法
CN110512434B (zh) 一种持续凉感面料及其制作方法
CN105350104B (zh) 一种介孔磷酸锆负载氧化铜抗菌聚乙烯醇纤维的制备方法
CN104149248A (zh) 一种含聚醚tpu的复合材料及其制备方法
CN106381541B (zh) 一种浒苔碳纳米材料再生纤维素共混纤维的制备方法
CN109705544A (zh) 高流动性抗菌母粒、制备方法及聚酯纤维、制备方法
CN109825914A (zh) 一种抗静电、负离子保健面料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869549

Country of ref document: EP

Kind code of ref document: A1