WO2017092080A1 - 一种抗菌材料及其制备方法 - Google Patents

一种抗菌材料及其制备方法 Download PDF

Info

Publication number
WO2017092080A1
WO2017092080A1 PCT/CN2015/097969 CN2015097969W WO2017092080A1 WO 2017092080 A1 WO2017092080 A1 WO 2017092080A1 CN 2015097969 W CN2015097969 W CN 2015097969W WO 2017092080 A1 WO2017092080 A1 WO 2017092080A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
silver
mesoporous
polymer
melt
Prior art date
Application number
PCT/CN2015/097969
Other languages
English (en)
French (fr)
Inventor
朱美芳
相恒学
陈伟
夏维
孙宾
周家良
Original Assignee
东华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东华大学 filed Critical 东华大学
Publication of WO2017092080A1 publication Critical patent/WO2017092080A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent

Definitions

  • the invention belongs to the field of preparation of antibacterial agents and antibacterial fibers, in particular to an antibacterial material and a preparation method thereof.
  • antibacterial agents include organic antibacterial agents, organometallic antibacterial agents, compound antibacterial agents, nano metal antibacterial agents, and inorganic powder metal-loaded antibacterial agents.
  • mesoporous or layered non-metallic materials are a hot spot of interest and research application.
  • mesoporous zirconium phosphate is a three-dimensional structure composed of [PO 4 ] tetrahedron and [ZrO 6 ] octahedron by sharing oxygen atoms in the apex angle, which has an effective pore structure and contains a surface. Hydroxyl group.
  • the invention patent CN 102239887 B discloses a preparation method of a nano-scale zirconium phosphate-loaded silver composite inorganic antibacterial agent; the invention patent CN 102763678 B discloses a preparation method of a cubic zirconium phosphate-loaded silver antibacterial powder; the invention patent CN 1240288 C discloses A preparation method for preparing layered zirconium phosphate-supporting silver powder; invention patent CN 100345486 C discloses a nano-layered zirconium phosphate-loaded silver inorganic antibacterial powder and a novel preparation method thereof; the invention patent CN 1281689C discloses a modification Zirconium phosphate-loaded silver powder and a preparation method thereof.
  • the above invention patents all use metal ion replacement method to load silver ions in the zirconium phosphate matrix, and the preparation process is complicated, which limits the increase of metal ion loading content.
  • the invention patent CN 102691129 B discloses an antibacterial polyester fiber, a production method thereof and the use thereof, which are prepared by mixing an antibacterial component with a polyester resin to prepare a masterbatch, and then melt spinning with a polyester resin. The spinning cycle is long.
  • the invention patent CN 101005762 B discloses the use of a zirconium phosphate or a copper-loaded zirconium phosphate or a salt to achieve an antibacterial effect by surface coating.
  • the technical problem to be solved by the present invention is to provide an antibacterial material and a preparation method thereof, which have higher The effective loading of silver ions has a long lasting antibacterial effect.
  • the present invention provides an antibacterial material comprising a polymer matrix in which a silver-loaded non-metal mesoporous material is dispersed.
  • the polymer matrix is at least one of a polyamide, a polyester, a polyolefin, a polylactic acid, a polycarbonate, a polyhydroxy fatty acid ester, and a polyurethane.
  • the polyamide is at least one of polyamide 6, polyamide 56, polyamide 66 and polyamide 1010.
  • the polyester is at least one of polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate. kind.
  • the polyolefin is at least one of polyethylene and polypropylene.
  • the polyhydroxy fatty acid ester is polyhydroxybutyrate, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-4 At least one of -hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate).
  • the non-metal mesoporous material is one of mesoporous zirconium phosphate, mesoporous diatomaceous earth, mesoporous molecular sieve, mesoporous zeolite and mesoporous hydroxyapatite.
  • the silver-loaded non-metallic mesoporous material has a mass content of silver of 3 to 8%.
  • the silver-loaded non-metal mesoporous material has a diameter of 200 to 800 nm.
  • the invention also provides a preparation method of the above antibacterial material, characterized in that it comprises:
  • Step 1 Dispersing the non-metal mesoporous material and the polyfluorenyl compound in a solvent; then adding a silver ion compound, stirring for 12 to 24 hours, removing the solvent by spray drying, and placing the obtained powder at 400 to 1200 Calcination in a °C environment for 1 to 6 hours to obtain a silver-loaded non-metallic mesoporous material;
  • Step 2 The silver-loaded non-metal mesoporous material prepared in step 1 and the raw material including the polymer monomer are subjected to in-situ polymerization, and the polymerization product is directly subjected to melt spinning to prepare an antibacterial material; or, the preparation prepared in step 1 is carried out.
  • the silver non-metal mesoporous material and the raw material including the polymer monomer are subjected to in-situ polymerization to granulate the polymerization product to obtain an antibacterial functional polymer masterbatch, and the antibacterial functional polymer masterbatch is melt-blended or blended with the polymer or Melt-blending granulation and spinning to obtain an antibacterial material; or, the silver-loaded non-metal mesoporous material prepared in the step 1 and the polymer are melt-blended and spun to obtain an antibacterial material; or, the silver-loaded non-metal prepared in the step 1
  • the mesoporous material and the polymer are melt-blended and granulated to obtain an antibacterial functional polymer masterbatch, and the antibacterial functional polymer masterbatch is melt-blended or melt-blended and granulated by the polymer and then spun to obtain an antibacterial material.
  • the polyfluorenyl compound is ethylene glycol dimercaptoacetate, 1,3-dimercaptopropane, quarter One or more of pentaerythritol tetradecyl acetate and pentaerythritol tetrakis-3-mercaptopropionate.
  • the mass ratio of the non-metallic mesoporous material, the polyfluorenyl compound and the silver ion compound is from 100:1 to 20:5-40.
  • the solvent is water, ethanol, acetone, dichloromethane and chloroform.
  • the antibacterial functional polymer masterbatch has a mass content of the silver-loaded non-metal mesoporous material of 5% to 20%.
  • the mass ratio of the antibacterial functional polymer masterbatch to the polymer is from 1 to 40:100.
  • the raw material comprises a monomer substance used in the polymerization of polyester or polylactic acid.
  • the polymerization temperature of the in-situ polymerization is 250 to 280 ° C
  • the polymerization pressure is controlled to 0.25 MPa
  • the polymerization time is 2 to 3 hours.
  • the in-situ polymerization is a lactide ring-opening polymerization
  • the catalyst uses stannous octoate
  • the mass ratio of lactide to the catalyst is 100:1 to 3
  • the polymerization temperature is selected from 150 to 160 °C.
  • the conditions of the melt blending granulation are selected from 160 to 300 ° C depending on the melting point of the polymer.
  • the spinning speed of the melt blending spinning is selected from 500 to 4000 m/min.
  • the specific step of dispersing the non-metal mesoporous material and the polyfluorenyl compound in a solvent is: adding a non-metal mesoporous material and a polyfluorenyl compound to a solvent, and performing ultrasonic dispersion for 0.5 to 2 hours.
  • the polyfluorenyl compound can be effectively dispersed in the pores and the surface of the mesoporous non-metal material, and the mercapto group first bonds with the hydroxyl group on the surface of the mesoporous non-metal material; when silver ions are added, The reacting sulfhydryl group can effectively bond silver ions, so that a large amount of silver ions can well enter the mesopores of the mesoporous non-metal material and bond to the surface of the mesoporous non-metal material to form a high-load silver ion content.
  • Mesoporous non-metallic materials are particularly, a large amount of silver ions can well enter the mesopores of the mesoporous non-metal material and bond to the surface of the mesoporous non-metal material to form a high-load silver ion content.
  • the silver ion-loaded non-metal mesoporous material prepared by the invention has stable performance and no discoloration during polymerization and processing.
  • the antibacterial fiber prepared by the invention has stable and long-lasting properties.
  • An antibacterial material comprising a polyester matrix in which a silver-loaded mesoporous zirconium phosphate nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • mesoporous zirconium phosphate nanopowder (mesoporous size 4-15 nm, particle size 200-800 nm), 3 g of pentaerythritol tetradecyl acetate were added to 100 mL of chloroform, and the ultrasonic dispersion was sealed at room temperature. (ultrasonic frequency: 40 KHz) for 2 hours; then 20 g of silver nitrate was added and stirred at a speed of 500 r/min for 24 hours.
  • the chloroform solvent was removed by spray drying, and then the obtained powder was calcined at 1200 ° C for 3 hours to obtain a silver-loaded mesoporous zirconium phosphate nano powder having a silver content of 8% and a diameter of 200 to 800 nm. body.
  • the antibacterial functional polymer masterbatch and the fiber-grade PET resin slice were granulated by a twin-screw granulator at a mass ratio of 1:10 (screw speed 30-70 rpm, temperature 265) °C), followed by melt spinning to obtain antibacterial fibers.
  • the fiber has an antibacterial rate of >95% against Escherichia coli, an antibacterial rate of >90% against Staphylococcus aureus, an antibacterial rate of >60% against Candida albicans, and 20 times of water washing at 40 ° C for the above three bacteria. Antibacterial properties are maintained above 95%.
  • An antibacterial material comprising a polyester matrix in which a silver-loaded mesoporous zirconium phosphate nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • mesoporous zirconium phosphate nanopowder (mesoporous size 4-15 nm, particle size 200-800 nm), 3 g of pentaerythritol tetradecyl acetate were added to 100 mL of chloroform, and the ultrasonic dispersion was sealed at room temperature. (super Sound frequency: 40 KHz) 2 hours; then 20 g of silver nitrate was added and stirred at 500 r/min for 24 hours.
  • the chloroform solvent was removed by spray drying, and the obtained powder was calcined at 1200 ° C for 3 hours to obtain a silver-loaded mesoporous zirconium phosphate nano powder having a silver content of 8% and a diameter of 300 to 600 nm. body.
  • the fiber has an antibacterial rate of >99% against Escherichia coli, an antibacterial rate of >98% against Staphylococcus aureus, an antibacterial rate of >70% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial properties are maintained above 97%.
  • An antibacterial material comprising a polyester matrix in which a silver-loaded mesoporous zeolite nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • the fiber has an antibacterial rate of >98% against Escherichia coli, an antibacterial rate of >95% against Staphylococcus aureus, an antibacterial rate of >65% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial Can maintain above 97%.
  • polyethylene terephthalate in the step (2) and the step (3) is replaced by polytrimethylene terephthalate (intrinsic viscosity, 0.7 to 0.9 dL). /g), polybutylene terephthalate (intrinsic viscosity, 0.65 to 0.80 dL/g) and polyethylene naphthalate (intrinsic viscosity, 0.7 to 1.0 dL/g).
  • the obtained fiber has an antibacterial rate of >98% against Escherichia coli, an antibacterial rate of >95% against Staphylococcus aureus, an antibacterial rate of >65% against Candida albicans, and 20 times of water washing at 40 ° C for the above three bacteria The antibacterial properties are maintained above 97%.
  • An antibacterial material comprising a polyamide matrix in which a silver-loaded mesoporous hydroxyapatite nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • the fiber has an antibacterial rate of >85% against Escherichia coli, an antibacterial rate of >78% against Staphylococcus aureus, an antibacterial rate of >55% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial properties are maintained above 95%.
  • Example 5 Similar to Example 5, the difference was that the polyamides 6 in the step (2) and the step (3) were replaced with polyamide 56, polyamide 66 and polyamide 1010, respectively.
  • the fiber has an antibacterial rate of >85% against Escherichia coli and an antibacterial rate of >78% against Staphylococcus aureus.
  • the antibacterial rate of Candida albicans is >55%.
  • the fiber was washed 20 times with water at 40 ° C, and its antibacterial property against the above three bacteria was maintained at 97% or more.
  • An antibacterial material comprising a polyolefin matrix in which a silver-loaded mesoporous diatomaceous earth nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • Antibacterial fiber masterbatch and polyethylene were melt-blended at a mass ratio of 1:9 (spinning speed of 300 to 1000 m/min) to prepare an antibacterial fiber.
  • the fiber has an antibacterial rate of >90% against Escherichia coli, an antibacterial rate of >85% against Staphylococcus aureus, an antibacterial rate of >65% against Candida albicans, and 20 times of water washing at 40 ° C for the above three bacteria. Antibacterial properties are maintained above 90%.
  • step (2) was replaced by polypropylene (Basel HP562T, melt flow rate 60 g/10 min).
  • the fiber has an antibacterial rate of >90% against Escherichia coli, an antibacterial rate of >85% against Staphylococcus aureus, an antibacterial rate of >65% against Candida albicans, and 20 times of water washing at 40 ° C for the above three bacteria. Antibacterial properties are maintained above 90%.
  • An antibacterial material comprising a polyurethane matrix in which a silver-loaded mesoporous molecular sieve nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • Antibacterial fiber masterbatch and polyurethane (brand number 54451 NAT 021) were melt-blended at a mass ratio of 3:7 (spinning temperature: 200 ° C) to prepare an antibacterial fiber.
  • the fiber has an antibacterial rate of >98% against Escherichia coli, an antibacterial rate of >95% against Staphylococcus aureus, and an antibacterial rate of >69% against Candida albicans; the fiber is washed 20 times with water at 40 ° C, and the above three bacteria are Antibacterial properties are maintained above 90%.
  • An antibacterial material comprising a polylactic acid matrix in which a silver-loaded mesoporous zirconium phosphate nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • mesoporous zirconium phosphate nanopowder (mesapora size 4-15 nm, particle size 200-800 nm)
  • 10 g of pentaerythritol tetrakis-mercaptopropionate are added to 100 mL of chloroform at room temperature
  • the closed ultrasonic dispersion (ultrasound frequency: 40 KHz) was allowed to stand for 2 hours; then 20 g of silver nitrate was added and stirred at 500 r/min for 24 hours.
  • the chloroform solvent was removed by spray drying, and then the obtained powder was calcined at 1200 ° C for 3 hours to obtain a silver-loaded mesoporous zirconium phosphate nano powder having a diameter of 8% and a diameter of 200-800 nm. body.
  • the antibacterial functional polymer masterbatch and polylactic acid resin purchased from Nantong Jiuding Biological Engineering Co., Ltd. fiber grade section, melt index 20g/10min) were granulated by mass spectrometry 1:4 by twin-screw granulator (granulation) The temperature was 168 ° C), and the antibacterial fiber was obtained by melt spinning.
  • the fiber has an antibacterial rate of >99% against Escherichia coli, an antibacterial rate of >98% against Staphylococcus aureus, an antibacterial rate of >70% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial Can maintain more than 98%.
  • An antibacterial material comprising a polyhydroxyalkanoate matrix in which a silver-loaded mesoporous zeolite nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • the fiber has an antibacterial rate of >93% against Escherichia coli, an antibacterial rate of >90% against Staphylococcus aureus, an antibacterial rate of >60% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial properties are maintained above 80%.
  • the obtained fiber has an antibacterial rate of >93% against Escherichia coli, an antibacterial rate of >90% against Staphylococcus aureus, an antibacterial rate of >60% against Candida albicans, and 20 times of water washing at 40 ° C for the above three bacteria
  • the antibacterial properties are maintained above 80%.
  • An antibacterial material comprising a polycarbonate matrix in which a silver-loaded mesoporous hydroxyapatite nanopowder is dispersed.
  • the preparation method of the above antibacterial material is as follows:
  • the antibacterial functional polyester masterbatch and the polycarbonate matrix (Japanese Teijin, brand B-8110R) were melt-blended at a mass ratio of 4:6 (spinning speed: 500 to 2,500 m/min) to prepare an antibacterial fiber.
  • the fiber has an antibacterial rate of >95% against Escherichia coli, an antibacterial rate of >83% against Staphylococcus aureus, an antibacterial rate of >65% against Candida albicans, and 20 times of water washing at 40 °C for the above three bacteria. Antibacterial properties are maintained above 90%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种抗菌材料及其制备方法,包括聚合物基体,聚合物基体中分散有载银非金属介孔材料。抗菌材料的制备方法包括:制备载银非金属介孔材料;将载银非金属介孔材料和包含聚合物单体在内的原料经过原位聚合和熔体直纺,或将聚合产物经共混纺丝制备含有载银非金属介孔材料的抗菌纤维;或者将载银非金属介孔材料和聚合物材料共混和造粒,经熔融纺丝制备含有载银非金属介孔材料的抗菌纤维,抗菌材料具有持久抗菌效果。

Description

一种抗菌材料及其制备方法 技术领域
本发明属于抗菌剂和抗菌纤维制备领域,特别涉及一种抗菌材料及其制备方法。
背景技术
随着科学技术的进步和生活水平的提高,人们对生活环境的安全防护意识增强。其中,具有抗菌功能的涂料、抑菌的塑料生活用品、抗菌的服装和家用纺织品都得到了广大的关注。尤其在与皮肤接触的安全防护方面,抑菌防臭尤为重要。当前,抗菌剂种类包含有机抗菌剂、有机金属抗菌剂、化合物型抗菌剂、纳米金属抗菌剂及无机粉体载金属抗菌剂等等。
在上述抗菌剂中,介孔或层状非金属材料是人们关注和研究应用的一个热点。以介孔磷酸锆为例,它是一个由[PO4]四面体和[ZrO6]八面体通过共用其顶角上的氧原子而构成的三维空间结构,具有有效的孔洞结构,且表面含有羟基基团。其中发明专利CN 102239887 B公开了一种纳米级磷酸锆载银复合无机抗菌剂的制备方法;发明专利CN 102763678 B公开了一种立方体磷酸锆载银抗菌粉的制备方法;发明专利CN 1240288 C公开了一种制备层状磷酸锆载银粉末的制备方法;发明专利CN 100345486 C公开了一种纳米层状磷酸锆载银无机抗菌粉体及其制备新方法;发明专利CN 1281689C公开了一种改性磷酸锆载银粉末及其制备方法。上述发明专利均采用金属离子置换的方法使磷酸锆基体中负载银离子,制备过程较为繁杂,限制了金属离子负载含量的提高。
在抗菌聚合物纤维的制备领域,发明专利CN 102691129 B公开了一种抗菌涤纶纤维及其生产方法与它的用途,采用抗菌组分与涤纶树脂混合制备母粒,然后再与涤纶树脂熔融纺丝,纺丝周期长。发明专利CN 101005762 B公开了一种利用载银或铜的磷酸锆或盐,采用表面涂覆的方式来达到抗菌的作用。
发明内容
本发明所要解决的技术问题是提供一种抗菌材料及其制备方法,其具有较高 的银离子的有效负载量,抗菌效果持久。
为了解决上述技术问题,本发明提供了一种抗菌材料,其特征在于,包括聚合物基体,所述的聚合物基体中分散有载银非金属介孔材料。
优选地,所述的聚合物基体为聚酰胺、聚酯、聚烯烃、聚乳酸、聚碳酸酯、聚羟基脂肪酸酯和聚氨酯中的至少一种。
更优选地,所述的聚酰胺为聚酰胺6、聚酰胺56、聚酰胺66和聚酰胺1010中的至少一种。
更优选地,所述的聚酯为聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯和聚萘二甲酸乙二醇酯中的至少一种。
更优选地,所述的聚烯烃为聚乙烯和聚丙烯中的至少一种。
更优选地,所述的聚羟基脂肪酸酯为聚羟基丁酸酯、聚(3-羟基丁酸酯-co-3-羟基戊酸酯)、聚(3-羟基丁酸酯-co-4-羟基丁酸酯)和聚(3-羟基丁酸酯-co-3-羟基己酸酯)中的至少一种。
优选地,所述的非金属介孔材料为介孔磷酸锆、介孔硅藻土、介孔分子筛、介孔沸石和介孔羟基磷灰石中的一种。
优选地,所述的载银非金属介孔材料中银的质量含量为3~8%。
优选地,所述的载银非金属介孔材料的直径为200~800nm。
本发明还提供了上述的抗菌材料的制备方法,其特征在于,包括:
步骤1:将非金属介孔材料与多巯基化合物分散于溶剂中;然后加入银离子化合物,搅拌12~24小时,采用喷雾干燥法去除所述的溶剂,将获得的粉体置于400~1200℃环境下煅烧1~6小时,得到载银非金属介孔材料;
步骤2:将步骤1制备的载银非金属介孔材料和包含聚合物单体在内的原料经过原位聚合,将聚合产物经过熔体直纺制备抗菌材料;或者,将步骤1制备的载银非金属介孔材料和包含聚合物单体在内的原料经过原位聚合,将聚合产物造粒,得到抗菌功能聚合物母粒,将抗菌功能聚合物母粒与聚合物熔融共混纺丝或熔融共混造粒再纺丝,得到抗菌材料;或者,将步骤1制备的载银非金属介孔材料和聚合物熔融共混纺丝,得到抗菌材料;或者,将步骤1制备的载银非金属介孔材料和聚合物熔融共混造粒,得到抗菌功能聚合物母粒,将抗菌功能聚合物母粒与聚合物熔融共混纺丝或熔融共混造粒再纺丝,得到抗菌材料。
优选地,所述的多巯基化合物为二巯基乙酸乙二醇酯、1,3-二巯基丙烷、季 戊四醇四巯基乙酸酯和季戊四醇四-3-巯基丙酸酯中的一种或几种。
优选地,所述的非金属介孔材料、多巯基化合物和银离子化合物的质量比为100:1~20:5~40。
优选地,所述的溶剂为水、乙醇、丙酮、二氯甲烷和三氯甲烷。
优选地,所述的抗菌功能聚合物母粒中载银非金属介孔材料的质量含量为5%~20%。
优选地,所述的将抗菌功能聚合物母粒与聚合物熔融共混纺丝时,抗菌功能聚合物母粒与聚合物的质量比为1~40:100。
优选地,所述的原料包含聚酯或聚乳酸聚合时所使用的单体物质。
优选地,当所述的聚合物基体为聚酯时,所述的原位聚合的聚合温度250~280℃,聚合压力控制0.25MPa,聚合时间2~3小时。
优选地,当所述的聚合物基体为聚乳酸时,所述的原位聚合为丙交酯开环聚合,催化剂选用辛酸亚锡,丙交酯与催化剂的质量比例为100:1~3,聚合温度选用150~160℃。
优选地,所述的熔融共混造粒的条件根据聚合物熔点的不同,选用160~300℃。
优选地,所述的熔融共混纺丝的纺丝速度选择500~4000m/min。
优选地,所述的非金属介孔材料与多巯基化合物分散于溶剂中的具体步骤为:将非金属介孔材料与多巯基化合物加入到溶剂中,密闭超声分散0.5~2小时。
与现有技术相比,本发明的有益效果是:
(1)本发明中多巯基化合物可以有效分散到介孔非金属材料的孔洞中和表面上,巯基基团首先与介孔非金属材料表面的羟基发生键合作用;在加入银离子时,未发生反应的巯基基团可以有效的键接银离子,使大量银离子很好的进入介孔非金属材料的介孔中和键接在介孔非金属材料的表面上,形成高载银离子含量介孔非金属材料。
(2)本发明中多巯基化合物完成载银任务后,包括未反应的巯基基团,都可在煅烧处理中被移除。
(3)本发明制备的负载银离子的非金属介孔材料在聚合和加工环节,性能稳定不变色。
(4)本发明制备的抗菌纤维性能稳定持久。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围,实施案例中所涉及的介孔材料均为市售产品。
实施例1
一种抗菌材料,包括聚酯基体,所述的聚酯基体中分散有载银介孔磷酸锆纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g介孔磷酸锆纳米粉体(介孔大小为4~15nm,粒径为200~800nm)、3g季戊四醇四巯基乙酸酯加入到100mL的三氯甲烷中,室温下密闭超声分散(超声频率:40KHz)2小时;然后加入20g的硝酸银,以转速500r/min搅拌24小时。利用喷雾干燥的方式去除三氯甲烷溶剂,然后将获得的粉体置于1200℃环境下煅烧3小时,获得载银质量含量为8%的直径为200~800nm的载银介孔磷酸锆纳米粉体。
(2)将200g载银介孔磷酸锆纳米粉体、540g精对苯二甲酸、260g乙二醇、0.2g乙二醇锑加入聚合釜中,原位聚合(聚合温度为250~280℃,聚合压力控制0.25MPa,聚合时间2小时),将聚合产物280℃造粒,得到抗菌功能聚合物母粒,其中载银介孔磷酸锆纳米粉体的质量含量为20%。
(3)将抗菌功能聚合物母粒与纤维级PET树脂切片(特性粘度,0.675~0.682dL/g)按质量比1:10经双螺杆造粒机造粒(螺杆转速30~70rpm,温度265℃),再经熔融纺丝得到抗菌纤维。
该纤维对大肠杆菌的抗菌率>95%,对金黄色葡萄球菌的抗菌率>90%,对白色念珠菌的抗菌率>60%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在95%以上。
实施例2
一种抗菌材料,包括聚酯基体,所述的聚酯基体中分散有载银介孔磷酸锆纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g介孔磷酸锆纳米粉体(介孔大小为4~15nm,粒径为200~800nm)、3g季戊四醇四巯基乙酸酯加入到100mL的三氯甲烷中,室温下密闭超声分散(超 声频率:40KHz)2小时;然后加入20g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除三氯甲烷溶剂,然后将获得的粉体置于1200℃环境下煅烧3小时,获得载银质量含量为8%的直径为300~600nm的载银介孔磷酸锆纳米粉体。
(2)将60g载银介孔磷酸锆纳米粉体、634.5g精对苯二甲酸、305.5g乙二醇、0.2g乙二醇锑加入聚合釜中,原位聚合(聚合温度为250~280℃,聚合压力控制0.25MPa,聚合时间2小时),将聚合产物经熔体直纺(纺丝温度275~285℃,纺丝速度1000~4000m/min)制备得到抗菌纤维。抗菌纤维中载银介孔磷酸锆纳米粉体的质量含量为6%。
该纤维对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>98%,对白色念珠菌的抗菌率>70%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在97%以上。
实施例3
一种抗菌材料,包括聚酯基体,所述的聚酯基体中分散有载银介孔沸石纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米沸石(孔径大小为5~15nm,粒径为300~700nm)、6g季1,3-二巯基丙烷加入到100mL的二氯甲烷中,室温下密闭超声分散(超声频率:40KHz)0.5小时;然后加入10g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除二氯甲烷溶剂,然后将获得的粉体置于400℃环境下煅烧1小时,获得载银质量含量为4%的直径为250~700nm的载银介孔沸石纳米粉体。
(2)将载银介孔沸石纳米粉体和纤维级聚对苯二甲酸乙二醇酯(特性粘度,0.675~0.682dL/g)按质量比1:4经双螺杆造粒机熔融共混造粒(螺杆转速30~70rpm,温度275℃),获得抗菌功能聚酯母粒;
(3)将抗菌功能聚酯母粒和聚对苯二甲酸乙二醇酯(特性粘度,0.675~0.682dL/g)按质量比1:9熔融共混纺丝(纺丝速度500~2000m/min),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>98%,对金黄色葡萄球菌的抗菌率>95%,对白色念珠菌的抗菌率>65%;纤维经40℃水洗20次,其对上述三种菌的抗菌性 能保持在97%以上。
实施例4
类似于实施例3,区别在于,所述的步骤(2)和步骤(3)中的聚对苯二甲酸乙二醇酯分别替换为聚对苯二甲酸丙二醇酯(特性粘度,0.7~0.9dL/g)、聚对苯二甲酸丁二醇酯(特性粘度,0.65~0.80dL/g)和聚萘二甲酸乙二醇酯(特性粘度,0.7~1.0dL/g)。
所得的纤维对大肠杆菌的抗菌率>98%,对金黄色葡萄球菌的抗菌率>95%,对白色念珠菌的抗菌率>65%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在97%以上。
实施例5
一种抗菌材料,包括聚酰胺基体,所述的聚酰胺基体中分散有载银介孔羟基磷灰石纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米羟基磷灰石(孔径大小为5~15nm,粒径为200~700nm)、1g二巯基乙酸乙二醇酯加入到100mL的乙醇中,室温下密闭超声分散(超声频率:40KHz)1小时;然后加入40g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除乙醇溶剂,然后将获得的粉体置于600℃环境下煅烧3小时,获得载银质量含量为10%的直径为200~700nm的载银介孔羟基磷灰石纳米粉体。
(2)将载银介孔羟基磷灰石纳米粉体和聚酰胺6按质量比5:95经双螺杆造粒机熔融共混造粒(螺杆转速30~70rpm,温度245℃),获得抗菌功能聚酰胺6母粒;
(3)将抗菌功能聚酯母粒和聚酰胺6按质量比1:99熔融共混纺丝(纺丝速度500~3500m/min),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>85%,对金黄色葡萄球菌的抗菌率>78%,对白色念珠菌的抗菌率>55%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在95%以上。
实施例6
类似于实施例5,区别在于,所述的步骤(2)和步骤(3)中的聚酰胺6分别替换为聚酰胺56、聚酰胺66和聚酰胺1010。
该纤维对大肠杆菌的抗菌率>85%,对金黄色葡萄球菌的抗菌率>78%,对 白色念珠菌的抗菌率>55%。;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在97%以上。
实施例7
一种抗菌材料,包括聚烯烃基体,所述的聚烯烃基体中分散有载银介孔硅藻土纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米硅藻土粉体(孔径大小为5~30nm,,粒径为300~800nm)、10g1,3-二巯基丙烷加入到100mL的丙酮中,室温下密闭超声分散(超声频率:40KHz)2小时;然后加入30g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除丙酮溶剂,然后将获得的粉体置于1100℃环境下煅烧6小时,获得载银质量含量为8%的直径为300~700nm的载银介孔硅藻土纳米粉体。
(2)将载银介孔硅藻土纳米粉体和聚乙烯(美国陶氏6834纤维级)按质量比5:95经双螺杆造粒机熔融共混造粒(造粒温度140℃),获得抗菌功能聚酯母粒;
(3)将抗菌功能聚酯母粒和聚乙烯(美国陶氏6834纤维级)按质量比1:9熔融共混纺丝(纺丝速度300~1000m/min),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>90%,对金黄色葡萄球菌的抗菌率>85%,对白色念珠菌的抗菌率>65%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在90%以上。
实施例8
类似于实施例7,区别在于,所述的步骤(2)和步骤(3)中的聚乙烯替换为聚丙烯(巴塞尔HP562T,熔体流动速率60g/10min)。
该纤维对大肠杆菌的抗菌率>90%,对金黄色葡萄球菌的抗菌率>85%,对白色念珠菌的抗菌率>65%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在90%以上。
实施例9
一种抗菌材料,包括聚氨酯基体,所述的聚氨酯基体中分散有载银介孔分子筛纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米分子筛(孔径大小为5~15nm,粒径为200~700nm)、10g二巯 基乙酸乙二醇酯加入到100mL的水中,室温下密闭超声分散(超声频率:40KHz)2小时;然后加入20g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除水,然后将获得的粉体置于1200℃环境下煅烧6小时,获得载银质量含量为8%的直径为200~800nm的载银介孔分子筛纳米粉体。
(2)将载银介孔分子筛纳米粉体和聚氨酯(牌号54351 NAT 021)按质量比1:4经双螺杆造粒机熔融共混造粒(造粒温度190℃),获得抗菌功能聚酯母粒;
(3)将抗菌功能聚酯母粒和聚氨酯(牌号54351 NAT 021)按质量比3:7熔融共混纺丝(纺丝温度200℃),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>98%,对金黄色葡萄球菌的抗菌率>95%,对白色念珠菌的抗菌率>69%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在90%以上。
实施例10
一种抗菌材料,包括聚乳酸基体,所述的聚乳酸基体中分散有载银介孔磷酸锆纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g介孔磷酸锆纳米粉体(介孔大小为4~15nm,粒径为200~800nm)、10g季戊四醇四-3-巯基丙酸酯加入到100mL的三氯甲烷中,室温下密闭超声分散(超声频率:40KHz)2小时;然后加入20g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除三氯甲烷溶剂,然后将获得的粉体置于1200℃环境下煅烧3小时,获得载银质量含量为8%的直径为200-800nm的载银介孔磷酸锆纳米粉体。
(2)将100g载银介孔磷酸锆纳米粉体、900g丙交酯、3g辛酸亚锡加入聚合釜中,原位聚合(聚合温度150℃),将聚合产物造粒(造粒温度175℃),得到抗菌功能聚合物母粒,其中载银介孔磷酸锆纳米粉体的质量含量为10%。
(3)将抗菌功能聚合物母粒与聚乳酸树脂(购自南通九鼎生物工程有限公司纤维级切片,熔融指数20g/10min)按质量比1:4经双螺杆造粒机造粒(造粒温度168℃),再经熔融纺丝得到抗菌纤维。
该纤维对大肠杆菌的抗菌率>99%,对金黄色葡萄球菌的抗菌率>98%,对白色念珠菌的抗菌率>70%;纤维经40℃水洗20次,其对上述三种菌的抗菌性 能保持在98%以上。
实施例11
一种抗菌材料,包括聚羟基脂肪酸酯基体,所述的聚羟基脂肪酸酯基体中分散有载银介孔沸石纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米沸石(孔径大小为5~15nm,粒径为300~700nm)、6g季1,3-二巯基丙烷加入到100mL的二氯甲烷中,室温下密闭超声分散(超声频率:40KHz)0.5小时;然后加入10g的硝酸银,500r/min搅拌12小时。利用喷雾干燥的方式去除二氯甲烷溶剂,然后将获得的粉体置于800℃环境下煅烧6小时,获得载银质量含量为4%的直径为250~700nm的载银介孔沸石纳米粉体。
(2)将载银介孔沸石纳米粉体和聚羟基丁酸酯(数均分子量15000,分子量分布指数1.8)按质量比1:4经双螺杆造粒机熔融共混造粒(造粒温度155℃),获得抗菌功能聚酯母粒;
(3)将抗菌功能聚酯母粒和聚羟基丁酸酯(数均分子量15000,分子量分布指数1.8)按质量比4:6熔融共混纺丝(纺丝速度200~1500m/min),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>93%,对金黄色葡萄球菌的抗菌率>90%,对白色念珠菌的抗菌率>60%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在80%以上。
实施例12
类似于实施例12,区别在于,所述的步骤(2)和步骤(3)中的聚羟基丁酸酯分别替换为聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(数均分子量10000~15000,分子量分布指数1.8~2.5)、聚(3-羟基丁酸酯-co-4-羟基丁酸酯)(数均分子量10000~15000,分子量分布指数1.7~2.4)、聚(3-羟基丁酸酯-co-3-羟基己酸酯)(数均分子量10000~15000,分子量分布指数1.6~2.7)。
所得的纤维对大肠杆菌的抗菌率>93%,对金黄色葡萄球菌的抗菌率>90%,对白色念珠菌的抗菌率>60%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在80%以上。
实施例13
一种抗菌材料,包括聚碳酸酯基体,所述的聚碳酸酯基体中分散有载银介孔羟基磷灰石纳米粉体。上述的抗菌材料的制备方法为:
(1)将100g纳米羟基磷灰石(孔径大小为5~15nm,粒径为200~700nm)、7g二巯基乙酸乙二醇酯加入到100mL的乙醇中,室温下密闭超声分散(超声频率:40KHz)1小时;然后加入40g的硝酸银,500r/min搅拌24小时。利用喷雾干燥的方式去除乙醇溶剂,然后将获得的粉体置于1200℃环境下煅烧3小时,获得载银质量含量为10%的直径为200~800nm的载银介孔羟基磷灰石纳米粉体。
(2)将载银介孔羟基磷灰石纳米粉体和聚碳酸酯基体(日本帝人,牌号B-8110R)按质量比5:95经双螺杆造粒机熔融共混造粒(造粒温度155℃),获得抗菌功能聚酯母粒;
(3)将抗菌功能聚酯母粒和聚碳酸酯基体(日本帝人,牌号B-8110R)按质量比4:6熔融共混纺丝(纺丝速度500~2500m/min),制备抗菌纤维。
该纤维对大肠杆菌的抗菌率>95%,对金黄色葡萄球菌的抗菌率>83%,对白色念珠菌的抗菌率>65%;纤维经40℃水洗20次,其对上述三种菌的抗菌性能保持在90%以上。

Claims (10)

  1. 一种抗菌材料,其特征在于,包括聚合物基体,所述的聚合物基体中分散有载银非金属介孔材料。
  2. 如权利要求1所述的抗菌材料,其特征在于,所述的聚合物基体为聚酰胺、聚酯、聚烯烃、聚乳酸、聚碳酸酯、聚羟基脂肪酸酯和聚氨酯中的至少一种。
  3. 如权利要求1所述的抗菌材料,其特征在于,所述的非金属介孔材料为介孔纳米磷酸锆、介孔纳米硅藻土、介孔纳米分子筛、介孔纳米沸石和介孔纳米羟基磷灰石中的一种。
  4. 如权利要求1所述的抗菌材料,其特征在于,所述的载银非金属介孔材料中银的质量含量为3~8%。
  5. 如权利要求1所述的抗菌材料,其特征在于,所述的载银非金属介孔材料的直径为200~800nm。
  6. 权利要求1-5中任一项所述的抗菌材料的制备方法,其特征在于,包括:
    步骤1:将非金属介孔材料与多巯基化合物分散于溶剂中;然后加入银离子化合物,搅拌12~24小时,采用喷雾干燥法去除所述的溶剂,将获得的粉体置于400~1200℃环境下煅烧1~6小时,得到载银非金属介孔材料;
    步骤2:将步骤1制备的载银非金属介孔材料和包含聚合物单体在内的原料经过原位聚合,将聚合产物经过熔体直纺制备抗菌材料;或者,将步骤1制备的载银非金属介孔材料和包含聚合物单体在内的原料经过原位聚合,将聚合产物造粒,得到抗菌功能聚合物母粒,将抗菌功能聚合物母粒与聚合物熔融共混纺丝或熔融共混造粒再纺丝,得到抗菌材料;或者,将步骤1制备的载银非金属介孔材料和聚合物熔融共混纺丝,得到抗菌材料;或者,将步骤1制备的载银非金属介孔材料和聚合物熔融共混造粒,得到抗菌功能聚合物母粒,将抗菌功能聚合物母粒与聚合物熔融共混纺丝或熔融共混造粒再纺丝,得到抗菌材料。
  7. 如权利要求6所述的抗菌材料的制备方法,其特征在于,所述的多巯基化合物为二巯基乙酸乙二醇酯、1,3-二巯基丙烷、季戊四醇四巯基乙酸酯和季戊四醇四-3-巯基丙酸酯中的一种或几种。
  8. 如权利要求6所述的抗菌材料的制备方法,其特征在于,所述的非金属介孔材料、多巯基化合物和银离子化合物的质量比为100:1~20:5~40。
  9. 如权利要求6所述的抗菌材料的制备方法,其特征在于,所述的抗菌功 能聚合物母粒中载银非金属介孔材料的质量含量为5%~20%。
  10. 如权利要求6所述的抗菌材料的制备方法,其特征在于,所述的将抗菌功能聚合物母粒与聚合物熔融共混纺丝时,抗菌功能聚合物母粒与聚合物的质量比为1~40:100。
PCT/CN2015/097969 2015-12-01 2015-12-18 一种抗菌材料及其制备方法 WO2017092080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510866969.1A CN105350103B (zh) 2015-12-01 2015-12-01 一种抗菌材料及其制备方法
CN201510866969.1 2015-12-01

Publications (1)

Publication Number Publication Date
WO2017092080A1 true WO2017092080A1 (zh) 2017-06-08

Family

ID=55326159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097969 WO2017092080A1 (zh) 2015-12-01 2015-12-18 一种抗菌材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105350103B (zh)
WO (1) WO2017092080A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112063065A (zh) * 2020-08-14 2020-12-11 厦门美科安防科技有限公司 一种聚乙烯蜡基纳米银抗菌材料的制备方法及该材料在聚乙烯类注塑制品的应用
CN112251004A (zh) * 2020-11-14 2021-01-22 百草边大生物科技(青岛)有限公司 一种艾草pet母粒及其在塑料制品中应用
CN112341772A (zh) * 2020-06-22 2021-02-09 浙江翔光生物科技股份有限公司 一种载银膦酸锆协同抗菌聚乳酸基生物降解材料的制备方法
CN112662013A (zh) * 2020-12-23 2021-04-16 贵州凯科特材料有限公司 一种zsm-5分子筛及其介孔化处理方法和应用
CN113195816A (zh) * 2018-12-18 2021-07-30 奥升德功能材料运营有限公司 具有锌含量的抗微生物非织造聚酰胺
CN113337903A (zh) * 2021-06-01 2021-09-03 鹤山市东海塑料色母有限公司 一种抗病毒聚丙烯无纺布及其制备方法
CN113337012A (zh) * 2021-05-28 2021-09-03 北京联飞翔科技股份有限公司 一种复合抗菌剂、含有该复合抗菌剂的抗菌母粒及其制备方法
CN114318866A (zh) * 2022-02-25 2022-04-12 联科华技术有限公司 单原子抗菌抗病毒防霉除醛纺织化纤及其制备方法
CN114350070A (zh) * 2022-03-03 2022-04-15 安徽海铭塑业有限公司 一种载银抗菌母粒及其应用
CN114717836A (zh) * 2022-04-28 2022-07-08 杭州萧山东达纺织有限公司 一种银丝面料及其制备方法
CN115197544A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 医用卫生抗菌防紫外功能填充母粒及其用途
CN115197543A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 防螨远红外发射功能填充母粒及其用途
CN115651376A (zh) * 2022-11-03 2023-01-31 青岛周氏塑料包装有限公司 一种用于可循环使用包装产品的可堆肥抗菌材料及其制备方法
CN115679547A (zh) * 2022-09-08 2023-02-03 河南省安邦卫材有限公司 一种用于制备防护服的抗菌无纺布

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332078B (zh) * 2015-12-01 2018-01-02 东华大学 一种基于载银磷酸锆的抗菌聚酯纤维及其制备方法
CN106489937A (zh) * 2016-08-31 2017-03-15 诸暨市沁悦针织有限公司 一种抗菌剂及用该抗菌剂处理的纤维
CN106435917A (zh) * 2016-12-07 2017-02-22 江南大学 一种具有抗菌、防渗透功能的涤棉复合面料及其制备方法
CN106609400B (zh) * 2017-01-04 2018-04-20 苏州金泉新材料股份有限公司 一种多功能聚乳酸纤维的制备方法
CN107419417A (zh) * 2017-07-26 2017-12-01 上海三问家居服饰有限公司 一种运动面料的制备工艺
CN108659525B (zh) * 2018-06-04 2020-11-20 东华大学 一种基于原位聚合法制备PA6/介孔纳米材料@Ag复合抗菌纤维的方法
CN109620739B (zh) * 2019-01-17 2021-08-31 东华大学 一种介孔材料基牙科抗菌复合树脂及其制备方法
CN110294839A (zh) * 2019-06-29 2019-10-01 江苏鑫福纤维科技有限公司 一种用于纺织品加工的纤维级聚酯切片的方法
CN110577662B (zh) * 2019-09-04 2022-10-21 北京服装学院 一种聚乳酸抗菌材料及其制备方法
CN111329135A (zh) * 2020-02-12 2020-06-26 佛山轻子精密测控技术有限公司 一种复合纳米抗菌纤维的内裤面料及其制备方法
CN112143185B (zh) * 2020-10-20 2022-12-09 上海彩艳实业有限公司 一种抗菌消臭聚酯母粒及其制造方法和聚酯纤维
CN113512290A (zh) * 2021-07-28 2021-10-19 南京禾素时代抗菌材料科技有限公司 一种生物基材料phbv和聚酰胺改性抗菌消臭抗病毒母粒
CN113981560A (zh) * 2021-10-29 2022-01-28 烟台泰和新材料股份有限公司 一种抗菌型间位芳纶及其制备方法
CN116262668B (zh) * 2021-12-15 2024-06-25 泉州市德化县恒峰陶瓷有限公司 一种抗菌高强陶瓷的制备工艺
CN114717118B (zh) * 2022-05-19 2023-07-25 中南大学 一种载银硅藻材料及其制备方法和应用
CN115075007A (zh) * 2022-06-25 2022-09-20 杭州明华纺织有限公司 一种高抗菌涤纶混纺织物及其制备方法
CN115537997A (zh) * 2022-10-25 2022-12-30 江苏蓝丝羽家用纺织品有限公司 一种抗菌聚乳酸弹性纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454107A (zh) * 2010-10-26 2012-05-16 北京崇高纳米科技有限公司 一种具有抗菌防霉功能的聚氨酯合成革材料及其制备方法
CN103783079A (zh) * 2014-01-17 2014-05-14 浙江理工大学 一种载银介孔无机抗菌剂的制备方法
CN105017730A (zh) * 2014-04-22 2015-11-04 上海纽恩特实业有限公司 Pet纳米抗菌复合材料
CN105332085A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌纤维及其制备方法
CN105332086A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌聚乳酸纤维的制备方法
CN105332087A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌聚酯纤维及其制备方法
CN105386147A (zh) * 2015-12-01 2016-03-09 东华大学 一种介孔磷酸锆负载纳米银抗菌聚酰胺纤维及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296238A (en) * 1991-02-26 1994-03-22 Toagosei Chemical Industry Co., Inc. Microbicides
CN1295965C (zh) * 2004-09-24 2007-01-24 复旦大学 一种无机介孔抗菌材料及其制备方法
CN100364408C (zh) * 2006-03-16 2008-01-30 上海师范大学 纳米介孔载银抗菌剂及其制备方法
CN101731271B (zh) * 2009-12-29 2012-05-30 浙江理工大学 一种无机纳米介孔抗菌剂及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102454107A (zh) * 2010-10-26 2012-05-16 北京崇高纳米科技有限公司 一种具有抗菌防霉功能的聚氨酯合成革材料及其制备方法
CN103783079A (zh) * 2014-01-17 2014-05-14 浙江理工大学 一种载银介孔无机抗菌剂的制备方法
CN105017730A (zh) * 2014-04-22 2015-11-04 上海纽恩特实业有限公司 Pet纳米抗菌复合材料
CN105332085A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌纤维及其制备方法
CN105332086A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌聚乳酸纤维的制备方法
CN105332087A (zh) * 2015-12-01 2016-02-17 东华大学 一种介孔磷酸锆负载纳米银抗菌聚酯纤维及其制备方法
CN105386147A (zh) * 2015-12-01 2016-03-09 东华大学 一种介孔磷酸锆负载纳米银抗菌聚酰胺纤维及其制备方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195816A (zh) * 2018-12-18 2021-07-30 奥升德功能材料运营有限公司 具有锌含量的抗微生物非织造聚酰胺
CN112341772A (zh) * 2020-06-22 2021-02-09 浙江翔光生物科技股份有限公司 一种载银膦酸锆协同抗菌聚乳酸基生物降解材料的制备方法
CN112063065A (zh) * 2020-08-14 2020-12-11 厦门美科安防科技有限公司 一种聚乙烯蜡基纳米银抗菌材料的制备方法及该材料在聚乙烯类注塑制品的应用
CN112063065B (zh) * 2020-08-14 2023-10-31 厦门美科安防科技股份有限公司 一种聚乙烯蜡基纳米银抗菌材料的制备方法及该材料在聚乙烯类注塑制品的应用
CN112251004A (zh) * 2020-11-14 2021-01-22 百草边大生物科技(青岛)有限公司 一种艾草pet母粒及其在塑料制品中应用
CN112251004B (zh) * 2020-11-14 2023-03-10 百草边大生物科技(青岛)有限公司 一种艾草pet母粒及其在塑料制品中应用
CN112662013A (zh) * 2020-12-23 2021-04-16 贵州凯科特材料有限公司 一种zsm-5分子筛及其介孔化处理方法和应用
CN112662013B (zh) * 2020-12-23 2022-11-15 贵州凯科特材料有限公司 一种zsm-5分子筛及其介孔化处理方法和应用
CN115197544A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 医用卫生抗菌防紫外功能填充母粒及其用途
CN115197543A (zh) * 2021-04-14 2022-10-18 上海沪正实业有限公司 防螨远红外发射功能填充母粒及其用途
CN115197544B (zh) * 2021-04-14 2024-01-02 上海沪正实业有限公司 医用卫生抗菌防紫外功能填充母粒及其用途
CN113337012A (zh) * 2021-05-28 2021-09-03 北京联飞翔科技股份有限公司 一种复合抗菌剂、含有该复合抗菌剂的抗菌母粒及其制备方法
CN113337903A (zh) * 2021-06-01 2021-09-03 鹤山市东海塑料色母有限公司 一种抗病毒聚丙烯无纺布及其制备方法
CN114318866A (zh) * 2022-02-25 2022-04-12 联科华技术有限公司 单原子抗菌抗病毒防霉除醛纺织化纤及其制备方法
CN114350070A (zh) * 2022-03-03 2022-04-15 安徽海铭塑业有限公司 一种载银抗菌母粒及其应用
CN114350070B (zh) * 2022-03-03 2023-09-12 安徽海铭塑业有限公司 一种载银抗菌母粒及其应用
CN114717836A (zh) * 2022-04-28 2022-07-08 杭州萧山东达纺织有限公司 一种银丝面料及其制备方法
CN114717836B (zh) * 2022-04-28 2024-04-19 杭州萧山东达纺织有限公司 一种银丝面料及其制备方法
CN115679547A (zh) * 2022-09-08 2023-02-03 河南省安邦卫材有限公司 一种用于制备防护服的抗菌无纺布
CN115651376A (zh) * 2022-11-03 2023-01-31 青岛周氏塑料包装有限公司 一种用于可循环使用包装产品的可堆肥抗菌材料及其制备方法
CN115651376B (zh) * 2022-11-03 2023-08-18 青岛周氏塑料包装有限公司 一种用于可循环使用包装产品的可堆肥抗菌材料及其制备方法

Also Published As

Publication number Publication date
CN105350103A (zh) 2016-02-24
CN105350103B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2017092080A1 (zh) 一种抗菌材料及其制备方法
Abdalkarim et al. Electrospun poly (3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings
Ignatova et al. Electrospun Antibacterial Chitosan‐B ased Fibers
WO2017092233A1 (zh) 一种基于载银磷酸锆的抗菌聚酯纤维及其制备方法
Wu et al. Electrospinning of PLA nanofibers: Recent advances and its potential application for food packaging
Norouzi et al. Advances in skin regeneration: application of electrospun scaffolds
Kerwald et al. Cellulose-based electrospun nanofibers: a review
He et al. Fabrication of drug‐loaded electrospun aligned fibrous threads for suture applications
JP5470569B2 (ja) シルク複合ナノファイバー及びその製造方法
Maharjan et al. In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities
Yu et al. Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly (lactic acid) nanofibers for controlling long-term in vitro drug release
CN105040142A (zh) 一种抗菌涤纶纤维及其制备方法
CN104072955B (zh) 一种抗菌聚乳酸复合材料及其制备方法
Fattahi et al. Poly (lactic acid) nanofibres as drug delivery systems: Opportunities and challenges
CN102644162A (zh) 一种基于纳米银单质抗菌剂的抗菌非纺织布的制备方法
CN110344134B (zh) 一种改性涤纶纤维及其生产方法
CN103467766B (zh) 一种表面负载纳米银全生物可降解复合膜的快速制备方法
Felgueiras et al. Biodegradable, spun nanocomposite polymeric fibrous dressings loaded with bioactive biomolecules for an effective wound healing: A review
Liu et al. Biomedical applications of bacterial cellulose based composite hydrogels
Hosseini Ravandi et al. Application of electrospun natural biopolymer nanofibers
Afshar et al. Binary polymer systems for biomedical applications
El Seoud et al. Cellulose, chitin and silk: The cornerstones of green composites
Majumder et al. Electrospinning of antibacterial cellulose acetate/polyethylene glycol fiber with in situ reduced silver particles
Shen et al. The preparation, resources, applications, and future trends of nanofibers in active food packaging: A review
Song et al. Thermally responsive copper alginate/nano ZnO/quaternary ammonium chitosan triple antimicrobial fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909594

Country of ref document: EP

Kind code of ref document: A1