WO2017090854A1 - 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법 - Google Patents

원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법 Download PDF

Info

Publication number
WO2017090854A1
WO2017090854A1 PCT/KR2016/006128 KR2016006128W WO2017090854A1 WO 2017090854 A1 WO2017090854 A1 WO 2017090854A1 KR 2016006128 W KR2016006128 W KR 2016006128W WO 2017090854 A1 WO2017090854 A1 WO 2017090854A1
Authority
WO
WIPO (PCT)
Prior art keywords
ald
organometallic precursor
precursor compound
atomic layer
layer deposition
Prior art date
Application number
PCT/KR2016/006128
Other languages
English (en)
French (fr)
Inventor
박정우
임민혁
박종률
염보라
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2017090854A1 publication Critical patent/WO2017090854A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02535Group 14 semiconducting materials including tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Definitions

  • ALD organometallic precursor compound for atomic layer deposition and ALD deposition using the same
  • the present invention relates to an organometallic precursor compound, and more particularly, to an organometallic precursor compound capable of thin film deposition through atomic layer deposition (ALD) and an ALD deposition method using the same.
  • ALD atomic layer deposition
  • Atomic layer deposition is expected to solve the problems caused by device miniaturization, such as high leakage currents, except for the deposition of single high dielectric materials, atomic layer deposition deposits thin films with atomic-level compositional changes. It also has the additional advantages it can make.
  • the principle of the atomic layer deposition method is to supply each reaction product separated by an inert gas (Ar, N 2, etc.) onto a wafer to deposit one atomic layer, and to repeat the deposition to a desired thickness.
  • Banungmul should be used as a single element or compound, and such aungmul should be highly volatile, stable in matter, and high in reaction.
  • chloride compounds that can deposit thin films using the atomic layer deposition process.
  • Chlorinated compounds are gas at room temperature or have a high vapor pressure, so they are easy to supply into the chamber and can be used at a relatively low cost as a high purity material.
  • chlorine by-products (HC1 or NH 4 C1, etc.) generated through the deposition process are not completely removed, but may re-adsorb into the thin film during the thin film process, thereby acting as a contaminating factor that degrades the electrical or physical properties of the thin film.
  • Examples include tetrachlorosilane (SiCl 4 ), dichlorosi lane (DCS), hexachlorodisi lane (HCDS (Si 2 Cl 6 ), tetrachlorogemanium (GeCl 4 ), ⁇ It may include, but is not limited to, tetrachlorotin (SnCl 4 ), etc.
  • the catalyst may be used during the deposition process or 300 ° C. C or more to improve the properties by forming a thin film by Ko Un process, but the disadvantage becomes the process is complex, there has been desired a new process technology for solving this problem. for this reason chloride "containing no chlorine (C1), rather than compound Precursors may be more preferred for thin film deposition.
  • alkoxy compounds and alkyl compounds may be used.
  • examples include tetraethoxylsilane; Si (0Et) 4 ], tri (tert-butoxy) silanol [tri (tert-.butoxyDsilanol; ( t BuCOsSiOH], octadecylsiloxane [Octadecylsi loxane] tris (isopropyl) ethylmethylaminozernium
  • reaction properties of alcohol and alkyl groups and reaction gas are low, so that amino compounds which are more reactive to the substrate and reaction gas than those compounds are atomic layer deposition methods. It may be more preferable as a precursor of.
  • Amino compounds have excellent reaction properties on substrates and reaction gases compared to other precursors (chlorinated compounds, alkoxy compounds, alkyl compounds, etc.) to form a uniform thin film and to easily remove side products generated by reaction.
  • the general properties of the precursor is a liquid at room temperature and has a good vapor pressure has the advantage that the operation is easy.
  • amino compounds include butylamino silane (BAS), bis (tert-butylamino) silane (BTBAS), dimethyl aminos ilane (DMAS), diethyl Diethyl aminos ilane (DEAS), bis (diethyl aminosi lane; BDEAS), dipropyl aminosi lane (DPAS), or diisopropyl aminosilane (di isopropyl aminosi lane (DIPAS), tetrakis (dimethylamino) germanium; Ge (NMe 2 ) 4 ], bis ( ⁇ -butylamino) germanium [bis (n-butylamino) germanium; (n-BuN) 2 Ge], tetrakis (ethylmethylamino) tin; Sn (NMeEt) 4 ], etc., but is not limited thereto.
  • BAS butylamino silane
  • BBAS bis (tert-butylamino) silane
  • DMAS
  • Examples of using such precursors include methoxy-sily-iso-cyanate; C3 ⁇ 40Si (NC0) 3 ], tetra-isocyanate-silane; Si (NC0) 4 ].
  • the Si0 2 thin film can be formed even at room temperature (25 ° C), but as the process temperature increases, the film growth rate tends to decrease.
  • bis (dimethylamino) silane bis (dimethyl aminosi lane); BDMAS], tris (dimethylamino) silane [tris (dimethylamino) silane; TDMAS], tetrakis (dimethylamino) tin; Sn (NMe 2 ) 4
  • BDMAS tris (dimethylamino) silane
  • TDMAS tetrakis (dimethylamino) tin
  • Sn (NMe 2 ) 4 In the temperature range of 200 ° C to 300 ° C, a thin film having excellent electrical characteristics is formed, but the desorption effect is increased rather than the adsorption of the thin film according to the change of the process temperature, or conversely, the adsorption effect is increased rather than the desorption, and thus the desired thickness at a constant deposition rate is achieved.
  • the amino compound may have a wide range of structural modifications, and storage safety, chemical reaction properties, and operability may be more preferable than an alkoxy compound or a chloride compound from a practical point of view.
  • n-heterocyclic germylene disclosed in Synthesis and character izat ion of three new thermal ly stable n-heterocycl ic germylenes is an asymmetric sphere ⁇ organic. Although it is a metal, it has a disadvantage of being solid at room temperature and not applicable to a high deposition temperature.
  • Si ALD patent [Silicon precursors for low temperature ALD of silicon-based Thin-Films (US Patent Publication No.
  • the materials have a low volatility, a precursor which is a solid at room temperature, and has a disadvantage in that a thin film is formed in a low silver section at an atomic layer deposition process temperature of 50 ° C. to 200 ° C.
  • ALP Group IV divalent organometallic precursor compound which has good volatility and is liquid at room temperature, it is structurally stable to develop an amino precursor that can form a thin film over a wide temperature range. Necessity is emerging. Also high yield and high purity precursor There is a need for a production technology capable of synthesizing a compound.
  • the present application are possible novel organometallic precursor compound and the organometallic precursor compound applied to the atomic layer deposition (ALD) to provide a method for producing "the deposited film.
  • ALD atomic layer deposition
  • the present invention provides an organometallic compound with controlled oxidation number of Group 14 metals (Si, Ge, Sn) and improves reaction properties with substrates. Its purpose is to obtain a thin film growth rate to ensure uniform coating, step coverage, and excellent electrical properties. Also, most of the known divalent metal precursors are solid phase, low volatility and low processability. Since the present invention provides an organometallic compound that can be used as a precursor of an atomic layer deposition method by preparing a liquid precursor having excellent volatility.
  • ALD atomic layer deposition
  • M is any one selected from Si, Ge, and Sn
  • R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms, or isomers thereof.
  • ALD atomic layer deposition
  • ALD atomic layer deposition
  • a non-planar or asymmetric divalent organometallic precursor compound including one metal selected from Si, Ge, and Sn can be produced.
  • the divalent organometallic precursor as described above has superior reaction properties with other known precursors, which enables the formation of a thin film by atomic layer deposition in a wide temperature range. It is possible to reduce the amount of precursor used and to shorten the process time since it is possible to form an excellent film with low impurity content.
  • the organometallic precursor compound is a divalent metal ion.
  • the symmetrical or planar compounds are solid phases, or by introducing an asymmetric ligand to induce a non-planar or asymmetric structure, thus making it possible to prepare a liquid precursor at room temperature.
  • the liquid material has a property that the volatility is improved because the intermolecular force is weak compared to the solid material. This increase in volatility enables uniform thin film formation, which also enables deposition with excellent thin film properties and step coverage.
  • a high dielectric constant thin film and a metal gate may be manufactured through the organometallic precursor compound.
  • FIG. 1 is a thermogravimetric analysis (TGA) graph comparing the properties of organometallic precursor compounds.
  • 2 is a graph showing thin film deposition of Si0 2 at different temperatures of Experimental Example 3.
  • FIG. 1 is a thermogravimetric analysis (TGA) graph comparing the properties of organometallic precursor compounds.
  • FIG. 3 is an X-ray photoelectron spectroscopy (XPS) graph showing the content of components in a Si0 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 4 is a graph showing the film deposition rate of Ge0 2 at different temperatures of Experimental Example 3.
  • FIG. 5 is an X-ray photoelectron spectroscopy (j (PS)) graph showing the content of components in a Ge0 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3.
  • j (PS) X-ray photoelectron spectroscopy
  • FIG. 6 is a graph showing an X-ray fluorescence spectroscopy (X-ray diffractometer; XRD) for confirming the crystal structure in a Ge0 2 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3.
  • XRD X-ray fluorescence spectroscopy
  • FIG. 7 is a graph showing a thin film deposition rate of Sn ⁇ .44 according to different temperatures of Experimental Example 3.
  • FIG. 7 is a graph showing a thin film deposition rate of Sn ⁇ .44 according to different temperatures of Experimental Example 3.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 9 is an X-ray diffraction (X-ray diffractometer; XRD) graph for confirming the crystal structure in the SnC .44 thin film deposited by atomic layer deposition (ALD) according to Experimental Example 3.
  • XRD X-ray diffraction
  • the term "combination of these" included in the expression of the mark of the form of the word means one or more mixtures or combinations selected from the group consisting of the components described in the mark of the form of the mark of the components, It means to include one or more selected from the group consisting of.
  • Me means a methyl group
  • Et means an ethyl group
  • t Bu means a tert- butyl group.
  • ALD atomic layer deposition
  • M is any one selected from Si, Ge, and Sn R is hydrogen, a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 5 carbon atoms or isomers thereof.
  • R in Formula 1 is a methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n It may include one selected from the group consisting of -pentyl group, iso-pentyl group, neo-pentyl group, sec-pentyl group, tert-pentyl group and isomers thereof, but may not be limited thereto.
  • the organometallic precursor compound is t Bu_Si, Me_Ge, Et- Ge, ⁇ u.Ge, "Bu.Sn and more than one type of compound selected from the group consisting of a combination thereof can, however, It is not limited thereto (where Me means methyl group Et means ethyl group and t Bu means tert-butyl group).
  • Me Ge t Bu_Si, Me_Ge, Et- Ge, ⁇ u.Ge, "Bu.Sn and more than one type of compound selected from the group consisting of a combination thereof can, however, It is not limited thereto (where Me means methyl group Et means ethyl group and t Bu means tert-butyl group).
  • the organometallic precursor compound of Formula 1 may be a non-planar or asymmetric structure.
  • the present invention does not exclude the precursor compound having a symmetrical structure from the scope of the invention.
  • the intermolecular force acts, resulting in steric hindrance that disturbs or destabilizes the original structure.
  • it may be difficult to uniformly deposit the precursor compound on the thin film.
  • the organometallic precursor compound which is a deposition material
  • the precursor compound can be more densely and uniformly deposited upon deposition on the thin film, and the purity and dispersity of the thin film can be improved. It is possible to improve.
  • the organometallic precursor compound of Formula 1 may be liquid or volatile at room temperature.
  • ALD atomic layer deposition
  • the reaction product must be highly volatile, stable in material, and highly reactive.
  • Atomic Layer Deposition is a method of separating and supplying the reactant raw materials separately, so that a thin layer of monolayer or less is grown by the surface reaction during one cycle (cyc le) deposition. Ligands are then removed via other reaction raw materials and chemical reactions supplied.
  • the precursor compound which is a semi-atom, is heated for atomic layer deposition, it is much more advantageous in terms of reaction rate and process than in the solid phase.
  • the organometallic precursor compounds herein can be liquid or volatile at room temperature.
  • ALD atomic layer deposition
  • ALD atomic layer deposition
  • the deposition temperature of the substrate is 50 ° C
  • Atomic layer deposition using the organometallic precursor compound of the present application has the advantage of obtaining a good thin film at high temperature as well as low temperature.
  • substrate heating is generally required because the adsorption of precursor molecules and thermal activation of the surface reaction of the substrate is essential for atomic layer deposition.
  • the temperature of the substrate for example, 50 ° C to 400 ° C, 100 ° C to 400 ° C, 150 ° C to 400 ° C, 200 ° C to 400 ° C, 250 ° C to 400 ° C, 300 ° C to 400 ° C, 350 ° C to 400 ° C, 50 ° C to 350 ° C, 50 ° C to 300 ° C, 50 ° C to 250 ° C, 50 ° C to 200 ° C, 50 ° It may be C to 150 ° C or 50 ° C to 100 ° C, but is not limited thereto.
  • the injection time of the organometallic precursor compound may be within 1 second to 20 seconds, but is not limited thereto.
  • the atomic layer deposition (ALD) organometallic precursor compound may be one selected from the group consisting of Si, Ge, Sn and combinations thereof, but is not limited thereto.
  • the metal of the ALD organometallic precursor compound prepared by the present application is a divalent ion.
  • the reaction gas includes ammonia (N3 ⁇ 4), hydrogen peroxide (3 ⁇ 40 2 ), water vapor (3 ⁇ 40), oxygen (0 2 ), or ozone (0 3 ), the injection time of the reaction gas May be 1 second to 30 seconds, but is not limited thereto.
  • the transparent orange liquid was purified under reduced pressure to give a colorless liquid, ⁇ -tert-butyl-2-methylpropane-1, 2-diamine [, ⁇ -di- ary i-but.y 1-2-me t hy 1 pr opane-1, 2-di am i ne] 129.4 g (yield: 80%).
  • Boiling Point 40 ° C @ 0.2 torr (bath standard)
  • Og (0.26 mol) was dissolved in 1.5 L of toluene, and 109 mL (0.779 mol) of triethylamine [TEA] was added to the solution.
  • TEA triethylamine
  • To the solution was added a solution diluted with silicon (IV) chloride [Silicon (IV) chloride, SiCl to 500 mL of Toluene at low temperature, and then refluxed for 20 hours using a reflux condenser. After the completion of reaction, the solution obtained by filtration with a filter was removed from the solvent under reduced pressure to give a dark orange liquid.
  • Boiling Point 70 ° C @ 0.2 torr (bath standard)
  • Boiling Point 30 ° C @ 0.2 torr (bath standard)
  • 1,3,2-diazagermolidine 7.30 g (0.024 mol) dissolved in purified THF 100 mL was slowly added at low temperature, followed by stirring at room temperature for 3 hours. After completion of reaction, the solution obtained by filtration with a filter with Celite [Celite] was removed under reduced pressure to obtain a black solid.
  • Example 2 In a similar manner as in Example 1, a colorless liquid -tert-butyl- -ethyl-2-metalpropane-1,2-diamine [ ⁇ —eri-butyl— -ethyl-S-methylpropane-l ⁇ -diamine] was prepared. It was.
  • Boiling Point 32 ° C @ 0.2 torr (bath standard)
  • Lithium Lithium, Li was added 0.17 g (0.024 mol) of purified THF 100 mL, and then the prepared 2,2-dichloro-1,3-bis (1,1-dimethylethyl) -4,4-dimethyl -1,3,2-diazazomoldine [2,2-dichloro-l, 3-bis (l, l-dimethylethyD-4,4-dimethyl-l, 3,2-diazagermolidine] 4.07 g (0.012 mol) The solution dissolved in purified THF 100 mL was slowly added at low temperature and stirred for 3 hours at room temperature.
  • Boiling Point 75 ° C @ 0.2 torr (bath. Standard)
  • the instrument used for viscosity measurement was Brookfiled viscometer DV-II + Pro with spindle using SC4-18 for spindle and SC4-13R for chamber. Samples and volumes were used at 200 ° C at 25 ° C using 6ml ⁇ 8mL. It measured 20 minutes-30 minutes by RPM. By measuring the viscosity three times in the same way to determine the average viscosity value.
  • the viscosity measurement value can be confirmed through Table 2 below.
  • thermogravimetric analysis was alumina crucible with 50 yL capacity using the TGA / DSC 1 STAR 6 System from Mettler Toledo. The amount of all samples was 8mg ⁇ llmg Measurements were carried out from 30 ° C to 500 ° C. Specific conditions and measured values for thermogravimetric analysis can be confirmed through Table 3 below.
  • organometallic precursor compounds prepared by the above-described embodiment was conducted for the film formation evaluation through an atomic layer deposition (ALD).
  • ALD atomic layer deposition
  • ozone (0 3 ) was used, and inert gas argon was used for purging purposes. Injecting the precursor, argon, ozone and argon was one cycle and deposition was performed on a Si (100) wafer.
  • the Si (100) wafer used was sonicated for 5 minutes in the order of acetone, methanol, di water, dried by N 2 blowing, and then treated with HF (10%) for 30 seconds and distilled water ( Distilled) was used for 1 minute to remove the remaining HFUOD and then N 2 blowing (pre-treatment).
  • a film formation ellipsometer (Ellipsometer) were using the measured thickness, foil i film within a silicon (Si), germanium (Ge), tin content of impurities such as (Sn) content and the carbon is XPS (X-ray photoelectron Spectroscopy analysis was performed and the crystal structure was analyzed by XRD (X-ray dif fractometer). The deposition conditions in the specific film formation evaluation are shown in Table 4 below.
  • t Bu_Si, Et_Ge and t BiLSn showed low values of 3.86, 3.57 and 14.9 cP at 25 ° C, respectively.
  • Table 3 is a thermogravimetric analysis (TG analysis) value of the t Bu_Si, Me_Ge, Et_Ge, t Bu_Ge and t Bu_Sn organometallic compounds measured by Experimental Example 2, and the value is also obtained from the thermogravimetric analysis graph of FIG. You can check it.
  • the metal of the organometallic precursor compounds prepared by the above embodiment is characterized in that all divalent ions.
  • the ion radius of Ge, a Group IV atom is 67 pm when the tetravalent ion is 87 pm, 87 pm when the divalent ion is present, Sn is 83 pm when the tetravalent ion is present, and 118 pm when the bivalent ion is present.
  • the molecular weight of Bu_Si is 226.34 g / mol
  • T 1/2 ( ° C) is 173.1 ° C
  • T End ( ° C) is
  • Residual weight relative to the total weight at 300 ° C was 4.59%.
  • the molecular weight of Et_Ge was 244.10 g / mol, T 1/2 ( ° C) was 159.1 ° C, T End ( ° C) was: 179.6 ° C, and the residual amount was 3.35% at 300 ° C.
  • the molecular weight of t Bu_Ge was 272.13 g / mol, T 1/2 ( ° C) was 178.5 ° C, T Pnfl ( ° C) was 195.3 ° C, and the residual amount relative to the total weight at 300 ° C was 1.16%.
  • the molecular weight was 318.11 g / mol
  • T 1/2 ( ° C.) was 181.4 ° C.
  • T End (r) was 197.1 ° C.
  • the residual amount was 0.0% relative to the total weight at 300 ° C.
  • the t Bu_Si, Me_Ge, Et_Ge, l Bu_Ge and t Bu_Sn organometallic compounds were all found to have a very low residual weight at 200 ° C or higher.
  • the physical properties of the thin film according to the process temperature showed ALD window area in the wide temperature range of 160 ° C-280 ° C as shown in FIG. 2, and showed a constant film growth rate of 0.36 A / cycle at the process temperature of 260 ° C. It was found to have an ALD precursor.
  • composition ratio of the thin film is in the XPS (X-ray photoelectron spectroscopy) results in Figure 3 attached: the atomi c rat io of ⁇ Si 0 X> 1: was found to 1.73, it was confirmed that the thin film is formed SiOi.73 .
  • the canister temperature containing Example 4 (Et_Ge) was maintained at 40 ° C by the Germanium precursor experiment of Table 4 .
  • the precursor injection time was fixed at 2 seconds, the precursor purging time at 10 seconds, the ozone injection time at 4 seconds, and the ozone purging time at 10 seconds.
  • the characteristics of the thin film according to the process temperature showed a window section at 200 ° C to 280 ° C as shown in FIG. 4, and it can be seen that it is an ALD precursor having a constant thin film growth rate of 0.53 A / cyc le on average at the process temperature of 28 CTC. there was.
  • composition ratio of the thin film was found to be 1: 1.79 atomi c rat io of ⁇ Ge:> in the attached X-ray photoelectron spectroscopy (XPS) result of FIG. 5. It could be confirmed that the 79 thin film was formed. In addition, the X-ray diffractometer (XRD) results of FIG. 6 confirmed that the amorphous (amorphous) crystal structure.
  • Example 6 In the thin film deposition experiment of Example 6 ( t Bu_Sn), the precursor canister temperature, precursor injection time, purging time, and ozone injection time were performed under the same conditions as the Germanium precursor. As shown in FIG. 7, the ALD window region was shown at a temperature range of 250 ° C. to 320 ° C. as shown in FIG. 7, and it was an ALD precursor having an average film growth rate of 1.40 A / cyc le at a process temperature of 28 CTC. there was. The composition ratio of the thin film was found to be 1: 1.23 atomi c rat io of ⁇ Sn:> in the XPS (X-ray photoelectron spectroscopy) result of FIG. 8, and it was confirmed that the SnOL thin film was formed. In addition, the X-ray diffractometer (XRD) results of FIG. 9 confirmed that the crystal structure was in an amorphous state.
  • XPS X-ray photoelectron spectroscopy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 유기금속 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법 (Atomic Layer Deposition; ALD)을 통하여 박막 증착이 가능한 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법에 관한 것이다.

Description

【명세서】
【발명의 명칭】
원자층 증착용 (ALD) 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법
【기술분야】
본 발명은 유기금속 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법 (Atomi c Layer Depos i t ion; ALD)을 통하여 박막 증착이 가능한 유기금속 전구체 화합물 및 이를 이용한 ALD 증착법에 관한 것이다.
【배경기술】 나노 스케일 집적소자와 제작을 위해 금속, 반도체, 산화물 등을 이용한 다양한 박막의 적용이 연구되어 오고 있다. 이들 다양한 박막의 형성 공정에 있어, 계속되는 소자의 극미세화와 더불어 새로운 형태의 소자가 지속적으로 제안됨에 따라 나노 스케일의 복잡한 형태의 구조에서 원자충 수준으로 두께가 조절되는 박막 증착 공정의 필요성과 단차 도포성 (step coverage)의 중요성이 함께 증가되고 있다. 특히, 반도체 소자에 사용되는 박막은 원자 단위로 제어가능하고, 단차 피복성이 우수한 특성을 가져야하며, 계면에서 확산과 산화가 일어나지 않게 하기' 위해서 증착 온도가 낮아야 한다. 이에 적용가능한 기술이 원자층 증착법 (Atomi c Layer Depos i t ion; ALD)이다. 나노 수준의 두께 조절이 가능한 고등방성의 박막 증착 방법의 개발이 매우 증요한 요인이 됨에 따라, 원자층 증착법은 나노 크기의 소자의 많은 웅용에 가장 가능성이 있는 증착 기술로 주목받고 있다. 원자층 증착법은 고누설 전류와 같은 소자 미세화에 의해 야기된 문:제들을 해결할 수 있을 것으로 기대되며, 단일 고유전 물질의 증착을 제외하고, 원자층 증착법은 원자 수준의 조성 변화를 가진 박막을 증착할 수 있는 추가적인 이점을 또한 가진다. 원자층 증착법의 원리는 불활성 기체 (Ar , N2 등)에 의해서 분리되어진 각각의 반웅물을 웨이퍼 위에 공급하여 하나의 원자층을 증착하고, 원하는 두께로 증착하기 위해서 이를 반복하는 것이다. 박막이 증착되는 기판 위에 하나의 반웅물이 화학 흡착된 후, 제 2 또는 제 3의 기체가 들어와 기판 위에서 다시 화학 흡착이 일어나면서 박막이 형성되는 반웅이다. 반웅물은 단원소 또는 화합물이 사용되어지며, 이러한 반웅물은 휘발성이 높고, 물질이 안정해야 하며, 반웅성이 높아야 한다.
이러한 원자층 증착 공정을 이용하여 박막을 증착할 수 있는 전구체로는 염화 (chloride) 화합물들이 있다. 염화 화합물들은 상온에서 기체이거나 높은 증기압을 갖고 있어서 챔버 내로 공급하는 것이 쉽고 고순도 물질로 비교적 저렴하게 사용할 수 있는 장점이 있다. 그러나 증착 공정을 통하여 생성되는 염화 부산물 (HC1 또는 NH4C1 등)들이 완벽하게 제거되지 않고 박막 공정 중 박막에 재흡착되면서 박막의 전기적 혹은 물리적 특성을 저하시키는 오염 요인으로 작용할 수가 있다. 이런 예들로는 테트라클로로실란 (tetrachlorosilane; SiCl4), 디클로로실란 (dichlorosi lane; DCS) , 핵사클로로디실란 (hexachlorodisi lane; HCDS(Si2Cl6), 테트라클로로저머늄 (tetrachlorogemanium; GeCl4), 쩨트라클로로틴 (tetrchlorotin; SnCl4) 등이 포함될 수 있으나, 이에 제한되는 것은 아니다. 상기 chloride 전구체들의 증착 공정에서 생성되는 염화 부산물을 제거하고 반웅성을 향상시키고자 증착 공정 중에 촉매를 사용하거나 300 °C 이상 고은 공정으로 박막을 형성함으로써 물성을 향상시킬 수 있으나 공정이 복잡해지는 단점이 '있어 이를 개선하기 위한 새로운 공정 기술 개발이 요구되고 있다. 이런 이유로 염화' 화합물보다는 염소 (C1)를 포함하지 않는 전구체가 박막 증착에 더 바람직할 수 있다.
다른 종류의 전구체로는 알콕시 (alkoxy) 화합물 및 알킬 (alkyl) 화합물이 사용될 수 있다. 이 예로는 테트라에톡시실란 [tetraethoxylsilane; Si(0Et)4], 트리 (tert-부톡시 )실란올 [tri(tert-. butoxyDsilanol; (tBuCOsSiOH] , 옥타데실실록산 [Octadecylsi loxane] 트리스 (아이소프로필)에틸메틸아미노저머늄
[tris(isopropyl )ethylmethylaminogermanium; 'PrsGeCNMeEt)] , 테트라에록시저머늄 [tetraethoxylgermanium; Ge(0Et )4] , 테트라메틸틴 [tetramehtyltin; Sn(Me)4], 테트라에틸틴 [tetraethylt in; Sn(Et)4] , 비스아세틸아세토네이트틴 [bisacetylacetonatetin; Sn(acac)2] 등이 포함될 수 있으나, 이에 제한되는 것은 아니다. 이런 전구체는 기판과 반웅성이 매우 낮아 일반적인 증착 온도 (200°C ~ 300 °C)에서는 박막이 형성되자 않는다. 이런 문제를 해결하고자 전구체 공급량을 늘리고 높은 공정 온도 (400°C 이상) 및 촉매 (N¾, trimethylaluminum, tr iethylamine 등), 플라즈마 둥을 사용하여 박막의 성장 속도를 향상시키려는 공정 개발이 이루어지고 있다. 그러나 이런 개선에도 불구하고 여전히 불균일한 도포성과 박막 내 불순물 (탄소)이 잔존하는 문제점이 발생하여 이를 해결하기 위한 연구 .개발이 계속되고 있는 상황이다. 이는 알코올 및 알킬기를 갖는화합물과 반웅가스 (NO, 02, ¾0, 03, N¾ 등)의 반웅성이 낮기 때문으로, 상기 화합물들보다는 기판 및 반웅가스에 반응성이 좋은 아미노 화합물이 원자층 증착법의 전구체로 더 바람직 할 수 있다.
아미노 화합물은 다른 전구체 (염화 화합물ᅳ 알콕시 화합물, 알킬 화합물 등)에 비해 기판과 반웅가스에 반웅성이 우수하여 균일한 박막 형성이 가능하며 반웅으로 생성된 부산물 제거도 용이하다. 또한, 전구체가 가지는 일반적인 성질로 상온에서 액체이며 좋은 증기압을 가지고 있어 작업이 용아하다는 장점이 있다. 이런 아미노 화합물의 예로는 부틸아미노 실란 (butylamino si lane; BAS), 비스 (tert—부틸아미노)실란 (Bis(tert-butylamino)silane; BTBAS) , 디메틸아미노실란 (dimethyl aminos ilane; DMAS), 디에틸 아미노ᅳ실란 (diethyl aminos ilane; DEAS) , 비스 (디에틸 아미노실란) (bis(diethyl aminosi lane); BDEAS) , 디프로필 아미노실란 (dipropyl aminosi lane; DPAS), 또는 디아이소프로필 아미노실란 (di isopropyl aminosi lane; DIPAS) , 테트라키스 (디메틸아미노)저머늄 [tetrakis(dimethylamino)germanium; Ge(NMe2)4] , 비스 (η-부틸아미노)저머늄 [bis(n-butylamino)germanium; (n- BuN)2Ge] , 테트라키스 (에틸메틸아미노)틴 [tetrakis(ethylmethylamino)tin; Sn(NMeEt)4]등 이 포함될 수 있으나, 이에 제한되는 것은 '아니다. 이런 전구체를 사용한 예로 메특시-실리-아이소 -시아네이트 [methoxy-sily-iso- cyanate; C¾0Si (NC0)3] , 테트라 -아이소시아네이트 -실란 [tetra-isocyanate- si lane; Si(NC0)4]이 있다. 이 경우 상온 (25°C)에서도 Si02 박막을 형성 할 수 있으나 공정 온도가 증가 할수록 박막 성장 속도가 감소되는 경향을 지닌다. 또한 비스 (디메틸아미노)실란 [bis(dimethyl aminosi lane); BDMAS] , 트리스 (디메틸아미노)실란 [tris(dimethylamino)silane; TDMAS] , 테트라키스 (디메틸아미노)틴 [tetrakis(dimethylamino)tin; Sn(NMe2)4]은 200 °C ~ 300°C의 온도 구간에서 전기적으로 우수한 특성을 갖는 박막을 형성하나 공정 온도의 변화에 따라 박막의 흡착보다는 탈착 효과가 증가하거나 반대로 탈착보다는 흡착 효과가 증가하여 일정한 증착 속도로 원하는 두께를 조절하는 원자층 증착법의 전구체로 사용하기에는 다소 부적합한 물성을 지닌다. 이에 반해 아미노 화합물은 구조적인 변경 범위가 넓고, 보관 안전성, 화학 반웅성 및 조작성 등이 실용적인 관점에서 알콕시 화합물 또는 염화 화합물보다 더 바람직할 수 있다.
한편, IV족 2가 전구체 화합물 관련 연구로서 문헌 [Synthesis of N- Heterocycl ic Stannylene (Sn( ID) and Germylene (Ge(II)) and a Sn( 11 ) Amidinate and Their Application as Precursors for Atomic Layer Deposition (Chem. Master. 2014, 26, 3065-3073)]에 n— heterocycl ic stannylene (Sn(II)) , Germylene (Ge(II)) , Sn( 11 ) amidinate의 제조 방법이 개시된 바 있으나, 상기 물질들의 원자층 증착 적용 여부는 확인된 바 없다.
또한, 문헌 [Synthesis and character izat ion of three new thermal ly stable n-heterocycl ic germylenes (Journal of Organometal lie Chemistry, 694(2009) , 2122-2125)]에 개시된 n-heterocyclic germylene은 비대칭형 구 ^의 유기금속이지만, 상온에서 고체상이며 고온의 증착 온도에 적용 가능하지 않다는 단점을 가지고 있다. 또한 Si 2가 전구체 화합물을 이용한 Si( ALD 특허 [Silicon precursors for low temperature ALD of silicon-based Thin-Films (미국공개특허공보 제 2015/0147824호)]에 n— heterocyclic Silylene (Si(II))과 Sn 2가 전구체 화합물을 이용한 Sn0x 논문 [Low Temperature Atomic Layer Deposition of Tin Oxide (Chem. Master. 2010, 22, 4964-4973)]의 n-heterocyclic Stannylene (Sn(II))에 제조 방법과 증착이 개시된 바 있으나 상기 물질들은 휘발성이 낮고 상온에서 고체인 전구체이며 원자층 증착 공정 온도가 50 °C ~ 200°C의 낮은 은도 구간에서맙 박막이 형성되는 단점을 가지고 있다.
따라서 좋은 휘발성을 가지며 상온에서 액상인 원자층 증착용 (ALD) IV족 2가 유기금속 전구체 화합물의 새로운 구조 설계를 통해, 구조적으로 안정하여 폭넓은 온도 구간에서 박막을 형성 할 수 있는 아미노 전구체 개발의 필요성이 대두되고 있다. 또한 높은 수율 및 고순도의 전구체 화합물을 합성할 수 있는 제조기술이 요구되고 있다.
【발명의 상세한 설명】
【기술적 과제】 이에, 본원은 원자층 증착법 (ALD)에 적용가능한 신규 유기금속 전구체 화합물 및 상기 유기금속 전구체 화합물이 '증착된 박막의 제조 방법을 제공하고자 한다.
본원은 14 족 (group) 금속 (Si , Ge , Sn)의 산화수를 조절한 유기금속 화합물을 제조하여 기판과의 반웅성을 향상시킴으로써 원자층 증착법을 이용한 박막 증착에 있어서, 저온뿐만 아니라 고온에서도 일정한 박막 성장 속도를 얻어 균일한 도포성과 단차 피복성, 우수한 전기적 물성을 확보하는데 그 목적이 있으며, 또한 기존에 알려진 대부분의 2 가 금속 전구체는 고체상 (sol id phase)이며 휘발성이 낮고 공정 용이성이 낮은 단점을 가지고 있으므로, 이를 휘발성이 우수한 액체상 전구체를 제조함으로써 원자층 증착법의 전구체로 활용할 수 있는 유기금속 화합물을 제공하는데 목적이 있다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 ^ 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. 【기술적 해결방법】 본원의 일 측면은, 하기 화학식 1 로서 표시되는 원자층 증착용 (ALD) 유기금속 전구체 화합물을 제공한다:
Figure imgf000007_0001
상기 화학식 1에서,
M은 Si , Ge 및 Sn 중에서 선택된 어느 하나이고, R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형 , 포화 또는 불포화된 알킬기 ,또는 이들의 이성질체이다.
본원의 다른 측면은, 상기 화학식 1로서 표시되는 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막을 제공한다.
본원의 또 다른 측면은, 기판 상에 상기 원자층 증착용 (ALD) 유기금속 전구체 화합물을 물리 /화학흡착하고, 비활성 기체로 미흡착된 상기 유기금속 전구체 화합물을 "퍼징한 후에 반웅가스를 주입하는 단계를 포함하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법을 제공한다.
【유리한 효과] 본원에 의하면, Si 및 Ge , Sn 중에서 선택되는 1 종의 금속을 포함하는 비평면 또는 비대칭형의 2 가 유기금속 전구체 화합물의 제조가 가능하다. 위와 같은 2 가 유기금속 전구체는 기판과의 반웅성이 기존에 알려진 다른 전구체에 비해 우수하여 넓은 온도 구간에서 원자층 증착법을 통한 박막 형성이 가능하며, 전구체의 짧은 투입 시간으로도 일정한 박막 성장 속도를 가지며 불순물 함량이 낮은 우수한 성막 형성이 가능하기에 전구체의 사용량 절감과 공정 시간 단축이 가능하다.
또한, 상기 유기금속 전구체 화합물은 2 가 금속 이온이다. 알려진 2 가 유기금속 전구체 화합물의 경우, 대칭적이거나 평면구조의 화합물로 대부분 고체상 (sol id phase)이나, 비대칭 리간드를 도입함으로써 비평면 또는 비대칭 구조를 유도함으로써 상온에서 액상인 전구체 제조가 가능하다. 이는 분자량 변화 없이 기존 화합물의 탄소 위치를 변경시키는 것으로 가능하며, 액상의 물질은 고체상 물질에 비해 분자간 힘이 약하기 때문에 휘발성이 개선되는 물성을 가지게 된다. 이런 휘발성 향상으로 인해 균일한 박막 형성이 가능하며 이로 인해 우수한 박막 특성 및 단차 피복성을 갖는 증착 또한 가능하게 된다. 상기 유기금속 전구체 화합물을 통해 고유전율 박막 및금속 게이트를 제조할 수 있다.
【도면의 간단한 설명】 도 1 은 유기금속 전구체 화합물들의 특성을 비교한 열중량분석 (themogravimetr i c analysi s ; TGA) 그래프이다. 도 2 는 실험예 3 의 상이한 온도에 따른 Si02 의 박막 증착 을 나타내는 그래프이다.
도 3 은 실험예 3 에 따라 원자층 증착법 (ALD)으로 증착된 Si02 박막 내 성분 함량을 나타내는 X 선 광전자 분광법 (X-ray Photoelectron Spectroscopy ; XPS) 그래프이다.
도 4 는 실험예 3 의 상이한 온도에 따른 Ge02 의 박막 증착율을 나타내는 그래프이다.
도 5 는 실험예 3 에 따라 원자층 증착법 (ALD)으로 증착된 Ge02 박막 내 성분 함량을 나타내는 X 선 광전자 분광법 (X-ray Photoelectron Spectroscopy; j(PS) 그래프이다.
도 6 은 실험예 3 에 따라 원자층 증착법 (ALD)으로 증착된 Ge02 박막 내 결정구조를 확인하기 위한 X 선 희절분석법 (X-ray Di f fractometer; XRD) 그래프이다.
도 7 은 실험예 3 의 상이한 온도에 따른 Sn^ .44 의 박막 증착율을 나타내는 그래프이다.
도 8은 실험예 3에 따라 원자층 증착법 (ALD)으로 증착된 SnCh.44 박막 내 성분 함량을 나타내는 X 선 광전자 분광법 (X-ray Photoelectron Spectroscopy; XPS) 그래프이다
도 9는실험예 3에 따라 원자층 증착법 (ALD)으로 증착된 SnC .44 박막 내 결정구조를 확인하기 위한 X 선 회절분석법 (X-ray Di f fractometer; XRD) 그래프이다.
【발명의 실시를 위한 최선의 형태】 이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. 본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에'' 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함' '한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. .
본 명세서에서 사용되는 정도의 용어 "약"은 언급된 의미에 고유한 제조 및 물잘 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위 해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본원 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계 "는 "〜를 위한 단계 "를 의미하지 않는다 .
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소를로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, Me 는 메틸기, Et 는 에틸기 및 tBu 는 tert- 부틸기를 의미한다. - 본원의 일 측면은 하기 화학식 1 로서 표시되는 원자층 증착용 (ALD) 유기금속 전구체 화합물을 제공한다:
Figure imgf000010_0001
상기 화학식 1에서,
M은 Si , Ge 및 Sn 중에서 선택된 어느 하나이고 R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.
본원의 일 구현예에 있어서, .상기 화학식 1 의 R 은 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso—부틸기, sec—부틸기, tert- 부틸기, n-펜틸기, iso-펜틸기, neo-펜틸기, sec-펜틸기, tert-펜틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1 종을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 유기금속 전구체 화합물은 tBu_Si, Me_Ge, Et— Ge, ^u.Ge, 'Bu.Sn 및 이들의 조합들로 이루어진 군에서 선택되는 1종 이상일 수'있으나, 이에 제한되는 것은 아니다 (여기서 , Me는 메틸기 Et 는 에틸기 및 tBu는 tert-부틸기를 의미함). 상기 , Me Ge,
Et_Ge, tBu_Ge, 및 tBu_Sn의 구조식은 하기와 같다.
[표 1]
Figure imgf000011_0001
본원의 일 구현예에 있어서, 상기 화학식 1 의 유기금속 전구체 화합물은 비평면 또는 비대칭 구조일 수 있다. 단, 본 발명이 대칭 구조의 전구체 화합물을 발명의 범주에서 제외하는 것은 아니다. 입자간 거리가 가까워질수록 분자간의 힘이 작용하게 되어 원래의 구조가 방해되거나 불안정하게 되는 입체장애가 발생하게 되는데, 이로인해 전구체 화합물을 박막에 균일하게 증착하는 것이 어려을 수 있다. 증착 물질인 유기금속 전구체 화합물이 박막에 일정한 간격과 두께로 증착되지 못할 경우, 예를 들어, 반도체 물질로 도입시 누설전류의 문제 등이 발생하게 된다. 비평면 또는 비대칭 구조의 전구체 화합물을 이용한다면, 박막에 증착시 전구체 화합물을 보다 촘촘하고 균일하게 증착하는 것이 가능하고 박막의 순도 및 분산도를 향상시킬 수 있으며, 복합체에 적용시에도 적용된 복합체의 효율을 향상시키는 것이 가능하다.
본원의 일 구현예에 있어서, 상기 화학식 1의 유기금속 전구체 화합물은 상온에서 액상 또는 휘발성일 수 있다. 원자층 증착 (ALD)에 있어서, 반웅물은 휘발성이 높고, 물질이 안정해야 하며 , 반웅성이 높아야 한다. 원자층 증착법 (ALD)은 반웅 원료를 각각 분리하여 공급하는 방식으로 한 사이클 (cyc le) 증착 시에 표면 반웅에 의해 단층 (monol ayer ) 이하의 박막이 성장되게 되며, 기판 위에 흡착된 반웅 원료의 리간드는 이후에 공급되는 다른 반웅 원료와 화학 반웅을 통해 제거된다. 원자층 증착을 위해 반웅물인 전구체 화합물을 가열할 시에 액상일 경우 고체상보다 반응속도 및 공정에 있어 훨씬 유리하다. 본원의 유기금속 전구체 화합물은 상온에서 액상 또는 휘발성일 수 있다.
본원의 다른 측면은, 상기 화학식 1로서 표시되는 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막을 제공한다.
본원의 또 다른 측면은, 기판 상에 상기 화학식 1 의 원자층 증착용 (ALD) 유기금속 전구체 화합물을 물리 /화학흡착하고, 비활성 기체로 미흡착된 상기 유기금속 전구체 화합물을 퍼징한 후에 반웅가스를 주입하는 단계를 포함하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법을 제공한다.
본원의 일 구현예에 있어서, 상기 기판의 증착 온도는 50°C 지
400°C일 수 있으나, 이에 제한되는 것은 아니다. 원자층 증착의 다른 중요한 특성은 낮은 성장 온도에서 양질의 박막을 얻을 수 있다는 것이다. 흡착된 전구체 분자들은 반웅종과 완전하게 반웅하기 때문에, 함유되는 불순물 수준은 낮은 성장 온도에서도 화학기상 증착법에 비해 낮다 . 본원의 유기금속 전구체 화합물을 이용한 원자층 증착은 저온뿐만 아니라 고온에서도 양질의 박막을 얻을 수 있다는 장점이 있다. 원자층 증착법에서 전구체 분자 흡착과 기판의 표면 반웅에 대한 열적인 활성화는 원자층 증착에서는 필수적이기 때문에, 일반적으로 기판 가열이 요구된다. 상기 기판의 온도는, 예를 들어, 50 °C 내지 400 °C , 100 °C 내지 400°C , 150 °C 내지 400 °C , 200 °C 내지 400 °C , 250 °C 내지 400 °C, 300 °C 내지 400 °C , 350 °C 내지 400°C , 50 °C 내지 350°C , 50 °C 내지 300 °C, 50 °C 내지 250 °C , 50 °C 내지 200 °C , 50 °C 내지 150°C 또는 50 °C 내지 100°C일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 유기금속 전구체 화합물의 주입 시간은 1초 내자 20초일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 원자층 증착용 (ALD) 유기금속 전구체 화합물은 Si , Ge , Sn 및 이들의 조합들로 이루아진 군에서 선택된 1 종일 수 있으나, 이에 제한되는 것은 아니다. 본원에 의해 제조된 원자층 증착용 (ALD) 유기금속 전구체 화합물의 금속은 2 가 이온이다. 종래의 유기금속 전구체 화합물의 경우, 대칭적이거나 평면구조의 화합물로 대부분 고체상 ( so l i d phase)이나, 비대칭 리간드를 도입함으로써 비평면 또는 비대칭 구조의 유도가 가능하다. 이는 분자량의 변화 없이 종래의 화합물에서 리간드 백본 (back bone) 탄소의 위치를 변경시키는 것, 즉 본원의 경우 아민기의 탄소 위치를 변경시키는 것으로 가능하며, 액상의 물질은 고체상 물질에 비해 분자간 힘이 약하기 때문에 휘발성 또한 향상되는 결과가 초래된다.
본원의 일 구현예에 있어서, 상기 반웅가스는 암모니아 (N¾) , 과산화수소 (¾02), 수증기 (¾0), 산소 (02), 또는 오존 (03)을 포함하며, 상기 반웅가스의 주입 시간은 1 초 내지 30 초일 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다. 본 실시예에서 이용된 모든 시약들은 일반적으로 시판되는 것을 사용한 것이며, 구체적인 기재가 없는 경우는 특별한 정제 없이 사용한 것이다.
[실시예 1] [ , -di- eri-butyl-2-methylpropane-l , 2-di amine]의 제조
tert-부틸아민 [tBuN¾] 210.2 ml (2.00 mol )을 메틸렌클로라이드 [Methyl ene chlor ide , MC] 1.5L 에 용해시켰다. 상기 용액에 2- 브로모아이소부티릴 브로마이드 [2-Bromoi sobutyryl bromide] 200g (0.86 mol )을 MC 500ml 로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 2 시간 정도 교반하였다. 반응 종료 후 상기 교반된 용액에 물을 넣고 MC 로 추출한 후, 감압 하에서 용매 및 남은 tBuNH2을 제거하여 백색 고체의 2- 브로모 -N— tert—부틸 -2-메틸프로판아마이드
Figure imgf000014_0001
methylpropanamide] 187.6g (0.84 mol ) (수율 : 97. 1%)을 얻었다.
상기 고체를 MC 2.0L 로 용해시킨 후 tBuN¾ 221.8ml (2. 11 mol )를 첨가하였다. 상기 용액에 소듐하이드록사이드 [NaOH] 67.56g ( 1.69 mol )을 첨가한 후, 환류 콘덴서를 이용하여 20 시간 동안 환류 반웅시켰다. 반응 종료 후 용액에 물을 넣고 MC 로 추출한 후, 감압 하에서 용매 및 남은 ¾ιιΝΗ2 을 제거하여 백색 고체의 2-(tert-부틸아미노) N-tert-부틸 -2- 메틸프로판아마이드 [ 2- ( t er t -bu t y 1 am i no ) -Λ^ ί er ί-but y 1 -2- methylpropanamide] 173.7g (0.81mol ) (수율 : 96.0 ))을 얻었다.
리튬알루미늄하이드라이드 [LiAlH4] 153.8g (4.05mol )을 저온에서 테트라하이드로퓨란 [Tetrahydrofurane , THF] 2.0L 로 현탁시킨 후, 상기 합성된 고체를 THF 500mL 로 용해시킨 용액을 저온에서 천천히 첨가하였다. 이후 상기 현탁액을 환류 콘덴서를 이용하여 3 일 동안 환류 반웅시켰다. 반웅 종료 후 저온에서 물을 넣고 MC 로 추출하여 감압 하에서 용매를 제거하여 투명한 주황색 액체를 얻었다. 상기 투명한 주황색 액체를 감압 정제하여 무색의 액체인 , ᅳ디 -tert-부틸 -2-메틸프로판 -1, 2-디아민 [ , ^-d i - ί er i-but.y 1 -2-me t hy 1 pr opane- 1 , 2-d i am i ne ] 129.4g (수율 : 80%)을 수득하였다. 끓는점 : 40°C @ 0.2 torr (bath 기준)
1H-NMR(C6D6) : δ 1.049 ((C¾)3CNHC(CH3)2CH2NHC(CH3)3 s, 9H), δ 1.179 ((C¾)3CNHC((¾)2CH2NHC(CH3)3 s, 6H), δ 1.183 ((CH3)3CNHC(CH3)2CH2NHC((¾)3 s, 9H), δ 2.341 ((C¾)3CNHC(CH3)2C¾NHC(CH3)3 s, 2H)
[실시예 2] [ 1 , 3-bi s ( 1 , 1-dimethy 1 eth l )-4, 4-dimethy 1 -1 , 3-di aza-2- s i 1 acyc 1 opent -2-y 1 i dene , lBu_Si ]≤1 제조
상기 실시예 1 에 의해 제조된 디 -tert-부틸 -2-메틸프로판- 1,2-디아민
Figure imgf000015_0001
2-diamine] 52. Og (0.26mol)을 를루엔 [Toluene] 1.5L 에 용해시키고, 이 용액에 트라이에틸아민 [Triethylamine, TEA] 109mL (0.779mol)를 첨가하였다. 상기 용액에 실리콘 (IV) 클로라이드 [Silicon(IV) chloride, SiCl 를 Toluene 500mL 로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 20 시간 동안 환류 반웅시켰다. 반웅 종료 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 쩨거하여 진한 주황색 액체를 얻었다. 상기 진한 주황색 액체를 감압 정제하여 꾸색의 액체인 2, 2-디클로로 -1, 3- 비스 (1,1-디메틸에틸) -4,4」디메틸ᅳ1,3,2-디아자실를리딘 [2,2-dichloro- l,3-bis(l,l-dimethylethyl)-4,4-dimethyl-l,3,2-diazasilolidine] 71.0g (수율 : 92.0%)을 얻었다.
포타슘 [Potassium, K] 10.0g (0.26mol)과 소듐 [Sodium, Na] 2.94g (0.13mol)에 정제된 THF 150mL 를 첨가한 후, 환류 콘덴서를 이용하여 약 12 시간 동안 환류하여 소듐포타슘 합금 [NaK2 Alloy]을 제조하였다. 상기 제조된 2,2-디클로로 -1,3—비스 (1,1_디메틸에틸) -4,4-디메틸 -1,3,2- 디아자실롤리딘 [ 1, 3-d i - ί er ί-bu t y 1 -2, 2-d i ch 1 or 0-4, 4-d i me t hy卜 1 , 3, 2- diazasilolidine] 58. Og (0.19mol)을 정제된 THF 300mL 에 용해시켰다. 상기 용액에 NaK2 Alloy. 를 40°C에서 2 시간 동안 천천히 첨가한 후 24 시간 정도 교반하였다. 반웅 종료 후 상기 교반된 용액을 셀라이트 [Celite]가 있는 필터로 여과시키고, 감압 하에서 용매를 제거하여 주황색의 액체를 얻었다. 상기 액체를 감압 정제하여 황색 액체인 1,3- 비스 ( 1, 1-디메틸에틸) -4 , 4-디메틸 -1 , 3-디아자 -2-실라사이크로펜트 -2- 일리딘 [l,3-bis(l,l-dimethylethyl)-4,4-dimethyl-l,3-diaza-2- si lacy clopent-2-yli dene] 29.6g (수율 : 6그 0 >)을 수득하였다.
끓는점 : 70 °C @ 0.2 torr (bath 기준)
29Si_NMR(C6D6) : 5130.01
1H-NMR(C6D6) : δ 1.263 ( [ ( CH3 ) 3CNC ( CH3 ) 2CH2NC ( CH3 ) 3 ] -S i , s, 9H), δ 1.274 ([(C¾)3CNC(CH3)2CH2NC(CH3)3]-Si, s, 6H), δ 1.438 ([(CH3)3CNC(CH3)2CH2NC(C¾)3]-Si, s, 9H), δ 2.969 ( [ ( CH3 ) 3CNC ( CH3 ) 2CH2NC ( CH3 ) 3 ] -S i , s, 2H) [실시예 3] [3- ier ί-buty 1 -1-methy 1 -4 , -dimethy 1 -1 , 3-di aza-2- ger macyc 1 opent -2-y 1 i dene , Me— Ge]의 제≥
실시예 1 과 유사한 방법으로 무색와 액체인 -tert-부틸 메틸- 2-메틸프로판 -1 , 2-디아민 t er ί-but y 1 -^-me t hy 1 -2-me t hy 1 p r opane- 1 , 2- diamine]을 제조하였다.
끓는점 : 30 °C @ 0.2 torr (bath 기준)
1H-NMR(C6D6) : δ 1.137 ( ( CH3 ) 3CNHC ( CH3 ) 2CH2NHCH3 , s, 15H),
δ 2.271 ((CH3)3CNHC(CH3)2Qi2NHCH3, s, 2H), δ 2.318 ((CH3)3CNHC(CH3)2CH2NH( 3, s, 3H) 상기 액체 -tert-부틸-씨메틸 -2-메틸프로판 -1,2-디아민 6.81g (0.043mol)을 핵산 [Hexane] 30mL 에 용해시키고, 트라이에틸아민 [Tri ethyl amine, TEA] 17mL (0.12mol)를 첨가하였다. 상기 흔합용액에 저머늄 (IV> 클로라이드 [Germanium(IV) chloride, GeCl4] 10.14g (0.047mol)을 Hexane lOmL 로 희석시킨 용액을 저은에서 첨가한 후, 환류 콘덴서를 이용하여 15 시간 동안 환류 반웅시켰다. 반웅 종료 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 황색 액체를 얻었다. 상기 액체를 감압 정제하여 무색의 액체인 3 6 -부틸-2,2-디클로로-1- 메틸 -4, 4-디메틸ᅳ 1, 3, 2-디아자저몰리딘 eri-buty 1-2 , 2-dichloro-l- methyl-4,4-dimethyl-l,3,2-diazagermolidine] 7.30g (수율 : 56.6%)을 얻었다.
리튬 [Lithium, Li] 0.35g (0.05mol)에 정제된 THF 30mL 를 첨가한 후, 위에서 제조된 3-tert-부틸 -2,2-디클로로 -1-메틸 -4,4-디메틸 -1,3,2- 디아자저몰리딘 [ 3- ί er -but y 1 -2, 2-d i ch 1 or 0- 1-me t hy 1 -4, 4-d i me t hy 1 -
1,3,2-diazagermolidine] 7.30g (0.024mol)를 정제된 THF lOmL 로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3 시간 교반하였다. 반웅 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 흑색의 고체를 얻었다. 상기 고체를 감압 승화하여 백색의 고체인 3-tert-부틸 -1-메틸— 4-4—디메틸ᅳ 1,3—디아자 -2- 저마사이클로펜트 -2-일리딘 [3- ieri-butyl-l-methyl-4, 4-dimethyl-l, 3- di aza-2-germacyc lopent-2-y 1 i dene] 2.52g (수율 : 45.2%)을 수득하였다. 승화점 : 30°C @ 0.3 torr (bath 기준)
1H-NMR(C6D6) : δ 1.322 ( [(C¾)3CNHC(( )2CH2NHCH3]— Ge, s, 6H), δ 1.395 ( [ ( CH3 ) 3CNHC ( CH3 ) 2CH2NHCH3 ] -Ge , s, 9H), δ 2.877 ( [ ( CH3 ) 3GNHC ( CH3 ) 2CH2NHCH3 ] -Ge , s, 3H), δ 3.016 ( [ ( CH3 ) 3CNHC ( CH3 ) 2CH2NHCH3 ] -Ge , s, 2H)
[실시예 4] [3- ieri-buty 1-1-ethy 1 -4 , 4-dimethyl-l , 3-di aza-2- germacyclopent-2-yl idene, Et_Ge]의 제조
실시예 1 과 유사한 방법으로 무색의 액체인 -tert-부틸 - -에틸- 2-메탈프로판 -1,2-디아민 [^— eri-butyl— -ethyl-S-methylpropane-l^- diamine]을 제조하였다.
끓는점 : 32°C @ 0.2 torr (bath 기준)
1H-NMR(C6D6) : δ 1.033 ((C¾)3CNHC(CH3)2CH2NH ((¾( ) , t, 3H), δ 1.149 ( ( CH3 ) 3CNHC ( CH3 ) 2CH2NH ( CH2CH3 ) , s, 9H), δ 1.158 ((CH3)3CNHC(( 3)2CH2NH(CH2CH3) , s, 6H), δ 2.350 ((C¾)3CNHC(CH3)2C¾NH(CH2CH3) , S, 2H), δ 2.561 ((C¾)3CNHC(CH3)2CH2NH((¾CH3) , Q, 2H) 상기 액체 — tert-부틸 - -에틸— 2ᅳ메틸프로판 -1,2-디 ^ ^민 128.6g
(0.747mol)을 핵산 [Hexane] 1.5L 에 용해시키고, 이 용액에 트라이에틸아민 [Tri ethyl amine, TEA] 260mL (1.87mol)를 첨가하였다. 상기 흔합용액에 거머늄 (IV) 클로라이드 [Germanium (IV) chloride, GeCl4 176.14g (0.822mol)을 Hexane 200mL 로 회석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 15 시간 동안 환류 반웅시켰다. 반웅 종료 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 진한 주황색 액체를 얻었다. '상기 진한 주황색 액체를 감압 정제하여 무색의 액체인 3- tert-부틸 -2, 2-디클로로 -1-에틸 -4, 4-디메틸 -1,3, 2-디아자저몰리딘 [3- f eri-butyl -2, 2-dichl or ο-1-ethy 1-4, 4-dimethyl-l ,3, 2-diazagermol i dine] 185. OOg (수율 : 78.9%)을 얻었다.
리륨 [Lithium, Li] 8.38g (1.20mol)에 정제된 THF 800mL 를 첨가한 후, 상기 제조된 3-tert-부틸 -2,2-디클로로 -1-에틸 -4,4-디메틸 -1,3,2- 디아자저몰리딘 [3- ieri-butyl-2 , 2-dichloro-l-ethyl-4 , 4-dimethyl-l ,3,2- diazagermolidine] 185. Og (0.589mol )을 정제된 THF 200mL 로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3 시간 교반하였다. 반웅 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 어두운 황색의 액체를 얻었다. 상기 액체를 감압 정제하여 황색의 액체인 3-161^-부틸-1-에틸-4-4-디메틸-1,3-디아자-2- 저마사이클로펜트ᅳ 2—일리딘 [3-ieri-butyl— l—ethyl—4, 4-dimethyl-l, 3- d i aza-2-germacyc 1 opent -2-y 1 i dene ] 114.4g (수율 : 74.4%)을 얻었다. 끓는점 : 45 °C @ 0.2 torr (bath 기준)
1H-證 (C6D6) : δ 1.197 ([(C¾)3CNC(CH3)2CH2N(CH2C )]ᅳ Ge, t, 3H), δ 1.330 ([(CH3)3CNC(C )2CH2N(CH2CH3)]— Ge, s, 6H), δ 1.412 ([(( 3)3CNC(CH3)2CH2N(CH2CH3)]-Ge, s, 9H), δ 3.075 ([(CH3)3CNC(CH3)2C N(C¾CH3)]-Ge, s, 2H), δ 3.215 ([(CH3)3CNC(CH3)2CH2N(C¾CH3)]-Ge, q, 2H)
[실시예 5] [1, 3-bis(l,l-dimethylethyl )-4, 4-dimethyl-l, 3-diaza-2- germacyc 1 opent -2-y 1 i dene , t i— Ge]'의 제조
상기 실시예 1 로 제조된 , -디 -tert-부틸ᅳ 2ᅳ메틸프로판 -1,2- 디아민 [ ,A^di-ieri-butyl-2-methylpropane-l,2-dianiine] 6.17g ( 0.03 lmo 1 )을 핵산 [Hexane ] 250mL 에 용해시키고, 상기 용액에 트라이에틸아민 [Triethylamine, TEA] 12mL (0.086mol)를 첨가하였다. 상기 흔합용액에 저머늄 (IV) 클로라이드 [German ium( IV) chloride, GeCl4] 7.26g (0.034mol)을 Hexane lOOmL 로 희석시킨 용액을 저온에서 첨가한 후, 환류 콘덴서를 이용하여 20 시간 동안 환류 반웅시켰다. 반웅 종료 후 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 진한 주황색 액체를 얻었다. 상기 진한 주황색 액체를 감압 정제하여 무색의 액체인
2, 2-디클로로 -1 , 3-비스 ( 1, 1-디메틸에틸 )-4, 4-디메틸 -1, 3, 2-디아자저몰리딘 [2,2-dichloro-l,3-bis(l,l-dimethylethyl)-4,4-dimethyl-l,3,2- diazagermolidine] 7.06g (수율 : 67.OT)을 얻었다.
리륨 [Lithium, Li] 0.17g (0.024mol)에 정제된 THF lOOmL 를 첨가한 후, 상기 제조된 2, 2-디클로로 -1,3-비스 (1,1-디메틸에틸) -4,4- 디메틸 -1,3,2-디아자저몰리딘 [2,2-dichloro-l,3-bis(l,l-dimethylethyD- 4,4-dimethyl-l,3,2-diazagermolidine] 4.07g (0.012mol )를 정제된 THF lOOmL 로 용해시킨 용액을 저온에서 천천히 첨가한 후 실온에서 3 시간 교반하였다. 반웅 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 어두운 황색의 액체를 얻었다. 상기 어두운 황색 액체를 감압 정제하여 황색 액체인 1, 3-비스 (1,1- 디메틸에틸) -4-4-디메틸 -1,3-디아자 -2-저마사이클로펜트 -2—일리딘 [1,3- bis(l, 1ᅳ dimethyl ethyl )_4, 4-dimethyl-l, 3ᅳ di aza-2-germacyc 1 opent-2- ylidene] 2.44g (수율 : 75.8%)을 얻었다.
. 1H-NMR C6D6) : δ 1.272 ( [ ( CH3 ) 3CNC ( CH3 ) 2CH2NC ( CH3 ) 3 ] -Ge , s, 9H), δ 1.327 ([(C¾)3CNC(ffl3)2CH2NC(CH3)3]-Ge, s, 6H) , δ 1.438 ([(C¾)3CNC(CH3)2CH2NC(CH3)3]-Ge, s, 9H) , δ 3.130 ( [ ( CH3 ) 3CNC ( CH3 ) 2CH2NC ( CH3 ) 3 ] -Ge , s, 2H)
[실시예 6] [ 1 , 3-b i s ( 1 , 1-d i met hy 1 e t hy 1 ) -4 , 4-d i me t hy 1 - 1 , 3-d i aza-2- s t annacyc 1 opent -2-y 1 i dene , lBu_Sn] 의 제조
상기 실시예 1 로 제조된 -디 -tert-부틸 -2-메틸프로판ᅳ 1,2- 디아민 [ N1 , !^-d i - ί er ί-bu t y 1 -2-me t hy 1 pr opane- 1 , 2-d i am i ne ] 45.7g (0.22mol)를 정제된 THF lOOmL 로 용해시킨 용액을 저온에서 노말부틸리륨 [nButhyl-Lithi讓, nBuLi] 182.5mL (0.45mol)을 천천히 참가한 후 실온에서 6 시간 교반하였다. 정제된 THF 150mL 로 현탁시킨 틴 (II) 클로라이드 [Tin(II) chloride, SnCl2] 43.2g (0.22mol)에 위 용액을 극저온 (_78°C)에서 천천히 첨가한 후, 실온에서 15 시간 교반하였다. 반웅 종료 후 셀라이트 [Celite]가 있는 필터로 여과하여 얻은 용액을 감압 하에서 용매를 제거하여 흑색의 액체를 얻었다. 상기 흑색 액체를 감압 정제하여 검붉은색의 액체인 1,3-비스 (1,1-디메틸에틸) -4-4-디메틸 -1,3- 디아자 -2-스태나사이클로펜트 -2-일리딘 [ 1, 3-bis(l, 1-dimethylethyl ) - 4 , 4-d i met hy 1 - 1 , 3~d i aza-2-s t annacyc 1 opent -2-y 1 i dene ] 37. Og (수율 : 51.2%)을 얻었다.
끓는점 : 75°C @ 0.2 torr (bath.기준)
1H-NMR(C6D6) : δ 1.259 ( [ ( CH3 ) 3CNC ( CH3 ) 2CH2NC ( CH3 ) 3 ] -Sn , s, 9H), δ 1.408 ([(CH3)3CNC(C )2CH2NC(CH3)3]-Sn, s, 15H), δ 3.387 ([(CH3)3CNC(C¾)2CH2NC(CH3)3]-Sn , s, 2H)
[실험예 1] 유기금속 전구체 화합물들의 점도 측정
상기 실시예에 의해 제조된 tBu_Si, Et_Ge 및 ^iLSn 유기금속 전구체 화합물들의 점도 측정을 실시하였다.
점도 측정 시 사용된 기기는 Brookfiled 사의 점도계 DV-II+ Pro 로 스핀들 (spindle)은 SC4-18, 챔버 (chamber)는 SC4-13R 을 사용하였으며, 시료와 양은 6ml ~ 8mL 를 사용하여 25°C에서 200 RPM 으로 20 분 ~ 30 분 측정하였다. 같은 방법으로 3회 점도를 측정하여 평균 점도값을 확인하였다.
[ 1, 3-bi s ( 1, 1-dimethylethyl )-4 , 4-dimethyl-l, 3-diaza-2- silacycl opent -2-yli dene, 'Bi Si]의 점도 측정 값: 3.86 cP (25°C)
[1, 3-bis(l, 1-dimethylethyl )-4, 4-dimethyl-l, 3-diaza-2- germacyc 1 opent -2-y 1 i dene, ιι— Ge]의 점도 측정 값: 3.57 cP (25 °C)
[ 1, 3-bi s(l, 1-dimethylethyl )-4, 4-dimethyl-l, 3-di aza-2- st annacyc 1 opent -2-y 1 i dene, 'Bu.Sn] 의 점도 측정 값 : 14.9 cP (25°C)
상기 점도 측정 값은 하기 표 2를 통해 확인 가능하다.
[실험예 2] 유기금속 전구체 화합물들의 열중량분석 (TG analysis) 상기 실시예에 의해 제조된 tBu_Si, Me_Ge, Et_Ge, fBu_Ge 및 ιι_ ι 유기금속 전구체 화합물들의 열중량분석 (TG analysis)을 실시하였다.
열중량분석 (TGA) 분석 시 사용 된 기기는 Mettler Toledo 사의 TGA/DSC 1 STAR6 System 으로 50 yL 용량의 알루미나 도가니 (alumina crucible)를 사용하였다. 모든 시료의 양은 8mg ~ llmg 을 사용하였고 30°C에서 500°C까지 측정을 실시하였다. 열중량분석에 대한 구체적인 조건 및 측정값은 하기 표 3을 통해 확인 가능하다.
[실험예 3] 유기금속 전구체 화합물의 원자층 증착 공정을 통한 성막 평가
상기 실시예에 의해 제조된 lBu_Si, Me_Ge, Et_Ge, 'Bu.Ge 및 'Bu_Sn 유기금속 전구체 화합물들을 원자층 증착 (ALD) 통한 성막 평가를 진행하였다. 반웅가스로는 오존 (03)을 사용하였고 불활성 기체인 아르곤은 퍼징 목적으로 사용하였다. 전구체, 아르곤, 오존 그리고 아르곤을 주입하는 것을 한 싸이클로 하였으며 증착은 Si(100) 웨이퍼 상에서 수행하였다.
사용된 Si (100) 웨이퍼는 아세톤, 메탄올, 증류수 (Di water) 순으로 5 분간 초음파처리 (sonication) 한 뒤 N2 블로잉 (blowing) 하여 건조시킨 후 30 초 HF(10 %) 처리를 하고 증류수 (Di water)에 1 분간 담궈서 잔류하는 HFUOD를 제거한 후 N2 블로잉 (blowing)하는 전 처리를 진행하여 사용하였다.
증착한 성막은 엘립소미터 (Ellipsometer)을 사용하여 두께를 측정하였고, 박막 내 실리콘 (Si), 게르마늄 (Ge), 주석 (Sn) 함유량 및 탄소 등의 불순물 함유량은 XPS(X-ray photoelectron spectroscopy) 분석을 통해 측정하였으며 결정구조는 XRD(X-ray dif fractometer)로 분석하였다. 구체적인 성막 평가 시 증착 조건은 하기 표 4와 같다.
[표 2]
Figure imgf000021_0001
상기 표 2 를 통해 , 상기 실시예에 의해 측정된 tBu_Si, Me_Ge, Et_Ge fBu_Ge 및 tBu_Sn 유기금속 전구체 화합물들의 상은에서의 상태 및 끓는점을 확인할 수 있다. fBu_Si, Et_Ge, tBu_Ge 및 ¾ιι_¾은 상온에서 액상이었으며, 매우 낮은 기압 (각각, 0.2 torr, 0.2 torr, 0.3 torr, 0.2 torr)에서 끓는점은 45°C 내지 80°C (각각, 80°C, 45 °C, 70°C, 75°C)로 낮은 것으로 나타났다. 또한 실험예 1, 2 및 3 을 통해 점도를 확인할 수 있다. tBu_Si, Et_Ge 및 tBiLSn 은 25°C에서 각각 3.86, 3.57, 14.9 cP 의 낮은 값으로 나타났다. 이를 통해, 본원에 의해 제조된 유기금속 전구체 화합물들이 휘발성이 큰 물질임을 알 수 있다.
[표 3]
Figure imgf000022_0001
상기 표 3 은 상기 실험예 2 에 의해 측정된 tBu_Si, Me_Ge , Et_Ge, tBu_Ge 및 tBu_Sn 유기금속 화합물들의 열중량분석 (TG analysis) 값이며, 도 1의 열중량분석 그래프를 통해서도 그 값을 확인할 수 있다. 상기 실시예에 의해 제조된 유기금속 전구체 화합물들의 금속은 모두 2 가 이온임을 특징으로 한다. IV족 원자인 Ge 의 이온 반지름은 4 가 이온일 때 67 pm, 2가 이온일 때 87 pm이고, Sn은 4가 이온일 때 83 pm, 2가 이온일 때 118 pm 이다. {Bu_Si 의 분자량은 226.34 g/mol, T1/2(°C)은 173.1°C, TEnd(°C)는
189.2°C였으며, 300°C에서 전체 중량 대비 잔류량은 1.14%였다. Me_Ge 의 분자량은 230.08 g/mol, T1/2(°C)은 149.2°C, TEnd(°C)는 167.9°C였으며,
300°C에서 전체 중량 대비 잔류량은 4.59%였다. Et_Ge 꾀 분자량은 244.10 g/mol , T1/2(°C)은 159.1°C, TEnd(°C)는: 179.6°C였으며, 300°C에서 전체 중량 대비 잔류량은 3.35%였다. tBu_Ge 의 분자량은 272.13 g/mol, T1/2(°C)은 178.5°C, TPnfl(°C)는 195.3°C였으며, 300°C에서 전체 중량 대비 잔류량은 1.16%였다. 또한,
Figure imgf000023_0001
의 분자량은 318.11 g/mol , T1/2(°C)은 181.4°C, TEnd(r)는 197.1°C였으며, 300°C에서 전체 중량 대비 잔류량은 0.0%였다. 상기 tBu_Si, Me_Ge, Et_Ge, lBu_Ge 및 tBu_Sn 유기금속 화합물들 모두 200 °C 이상에서는 잔류 중량이 매우 적은 것으로 확인되었다.
[표 4]
Figure imgf000023_0002
표 4 의 Silicon 전구체 실험 조건으로 실시예 2(tBu_Si)가 담긴 캐니스터 은도를 40°C로 유지하고 전구체 주입 시간을 4 초, 전구체 퍼징 시간을 10초, 오존 주입 시간을 2초, 오존 퍼징 시간을 10초로 고정시켰다. 공정 온도에 따른 박막의 물성은 첨부된 도 2 에서와 같이 160 °C - 280°C의 넓은 온도 구간에서 ALD 원도우 영역을 보였으며, 공정 온도 260°C에서 0.36 A/cycle 의 일정한 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 3 의 XPS(X-ray photoelectron spectroscopy) 결과에서 <Si : 0X>의 atomi c rat i o 가 1 : 1.73 로 나타났으며, SiOi.73박막이 형성되었음을 확인할 수 있었다.
표 4의 Germanium 전구체 실험으로 실시예 4(Et_Ge)가 담긴 캐니스터 온도를 40°C로 유지하고, .전구체 주입 시간을 2 초, 전구체 퍼징 시간을 10초, 오존 주입 시간을 4초, 오존 퍼징 시간을 10초로 고정시켰다. 공정 온도에 따른 박막의 특성은 첨부된 도 4 에서와 같이 200°C 내지 280°C에서 윈도우 구간을 보였으며 공정 온도 28CTC에서 평균 0.53 A/cyc le 의 일정한 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 5 의 XPS( X-ray photoelectron spectroscopy) 결과에서 <Ge : >의 atomi c rat io 가 1 : 1.79로 나타났으며, 쒜.79박막이 형성되었음을 확인할 수 있었다. 또한 도 6 의 XRD(X-ray di f f ractometer ) 결과를 통해 비정질 (amorphous ) 상태의 결정구조임을 확인하였다.
실시예 6(tBu_Sn)의 박막 증착 실험는 전구체 캐니스터 온도, 전구체 주입시간, 퍼징 시간, 오존 주입시간들을 Germanium 전구체와 동일한 조건으로 진행 하였다. 온도별 증착 특성에 있어서는 도 7 에 나타낸 바와 같이 250°C ~ 320 °C 온도 구간에서 ALD 윈도우 영역을 보였으며 28CTC의 공정 온도에서 평균 1.40 A/cyc le의 박막 성장 속도를 갖는 ALD 전구체임을 알 수 있었다. 박막의 조성 비율은 첨부한 도 8의 XPS(X-ray photoelectron spectroscopy) 결과에서 <Sn : >의 atomi c rat io 가 1 : 1.23 로 나타났으며, SnOL 박막이 형성되었음을 확인할 수 있었다. 또한 도 9 의 XRD(X-ray di f f ractometer ) 결과를 통해 비정질 ( amorphous ) 상태의 결정구조임을 확인하였다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본원의 범위는 상기 상세한 설명보다는 후술하는 청구의 범위에 의하여 나타내어지며, 청구의 범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다

Claims

【청구범위】
【청구항 1】
하기 화학식 1 로서 표시되는 원자층 증착용 (ALD) 유기금속 전구체 화합물:
Figure imgf000026_0001
상기 화학식 1에서,
M은 Si , Ge 및 Sn중에서 선택된 어느 하나이고,
R은 수소, 치환 또는 비치환된 탄소수 1 내지 5의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.
【청구항 2】
제 1 항에 있어서,
상기 화학식 1 의 R 은 메틸기, 에틸기, n-프로필기, i so-프로필기, n-부틸기,ᅳ i so-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, i so_펜틸기, neo-펜틸기, sec-펜틸기, tert-펜틸기, 및 이들의 이성질체로 이루어진 군에서 선택되는 1 종인 것을 특징으로 하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
【청구항 3】
제 1 항에 있어서,
상기 화학식 1 의 M 은 Si 이고, R 은 ¾ι 인, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
(여기서, ¾11는 tert-부틸기를 의미함)
【청구항 4】
제 1항에 있어서,
상기 화학식 1 의 M 은 Ge 이고, R 은 Me 인, 원자층 증착용 (ALD) 유기금속 전구체 화합물,
(여기서, Me는 메틸기를 의미함)
【청구항 5]
저] 1 항에 있어서,
상기 화학식 1 의 M 은 Ge 이고, !? 은 ^ 인, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
(여기서, Et는 에틸기를 의미함)
【청구항 6]
제 1 항에 있어서,
상기 화학식 1 의 M 은 Ge 이고, R 은 tBu 인, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
(여기서, 는 t ert-부틸기를 의미함)
【청구항 7】
게 1 항에 있어서,
상기 화학식 1 의 M 은 Sn .이고, R 은 tBu 인, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
(여기서, tBu는 tert-부틸기를 의미함)
[청구항 8】 .
게 1 항에 있어서,
상기 화학식 1 의 유기금속 전구체 화합물은 상온에서 액상 또는 휘발성인 것을 특징으로 하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물.
【청구항 9】
제. 1 항 내지 제 8 항 중 어느 한 항의 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막.
【청구항 10】
기판 상에 제 1 항 내지 제 8 항 중 어느 한 항의 원자층 증착용 (ALD) 유기금속 전구체 화합물을 물리 /화학흡착하고 비활성 기체로 미흡착된 상기 유기금속 전구체 화합물을 퍼징한 후에 반웅가스를 주입하는 단계를 포함하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법 . 【청구항 11】
저 1 10 항에 있어서 상기 기판의 증착 은도는 50°C 내지 400°C인 것을 특징으로 하는, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법 . 【청구항 12】
제 10 항에 있어서,
상기 유기금속 전구체 화합물의 주입 시간은 1초 내지 20초인 것인, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막와 제조 방법. 【청구항 13]
제 10 항에 있어서,
상기 반응가스는 암모니아 (N¾) , 과산화수소 (¾ ) , 수증기 (¾0), 산소 (02), 또는 오존 (03)을 포함하며, 상기 반웅가스의 주입 시간은 1 초 내지 30 초인 것인, 원자층 증착용 (ALD) 유기금속 전구체 화합물이 증착된 박막의 제조 방법
PCT/KR2016/006128 2015-11-23 2016-06-09 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법 WO2017090854A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150164082A KR101787204B1 (ko) 2015-11-23 2015-11-23 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법
KR10-2015-0164082 2015-11-23

Publications (1)

Publication Number Publication Date
WO2017090854A1 true WO2017090854A1 (ko) 2017-06-01

Family

ID=58763369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006128 WO2017090854A1 (ko) 2015-11-23 2016-06-09 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법

Country Status (3)

Country Link
KR (1) KR101787204B1 (ko)
TW (1) TWI652277B (ko)
WO (1) WO2017090854A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110128373A (zh) * 2019-06-12 2019-08-16 汉能移动能源控股集团有限公司 哌嗪基锡配合物及其制备方法、薄膜、太阳能电池
CN113195784A (zh) * 2018-12-17 2021-07-30 株式会社Adeka 原子层沉积法用薄膜形成原料、薄膜的制造方法以及醇盐化合物
CN116145107A (zh) * 2023-01-03 2023-05-23 南京工程学院 用于原子层沉积金属硫化物的反应残余物循环再利用方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103346B1 (ko) * 2017-11-15 2020-04-22 에스케이트리켐 주식회사 박막 증착용 전구체 용액 및 이를 이용한 박막 형성 방법.
KR102087858B1 (ko) 2018-04-18 2020-03-12 주식회사 한솔케미칼 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
CN112805813A (zh) * 2018-11-22 2021-05-14 三井化学株式会社 半导体元件中间体及半导体元件中间体的制造方法
KR102157137B1 (ko) * 2018-11-30 2020-09-17 주식회사 한솔케미칼 실리콘 전구체 및 이를 이용한 실리콘 함유 박막의 제조방법
JPWO2021075397A1 (ko) * 2019-10-17 2021-04-22
KR20210093011A (ko) 2020-01-17 2021-07-27 주식회사 한솔케미칼 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
KR102383410B1 (ko) 2020-07-23 2022-04-05 연세대학교 산학협력단 금속 산화물 박막의 전기적 특성 향상 방법
KR20220049970A (ko) * 2020-10-15 2022-04-22 한화솔루션 주식회사 Ald 공정에 의한 복합막이 증착된 금속 촉매의 제조방법 및 그에 따른 금속 촉매

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090024810A (ko) * 2006-06-23 2009-03-09 프랙스에어 테크놀로지, 인코포레이티드 규소 함유 필름의 침착을 위한 전구체 및 방법
KR20120072986A (ko) * 2010-12-24 2012-07-04 주식회사 한솔케미칼 금속 산화물 또는 금속-규소 산화물 박막 증착용 유기 금속 전구체 및 이를 이용한 박막 증착 방법
KR20140067786A (ko) * 2012-11-27 2014-06-05 주식회사 유피케미칼 실리콘 전구체 화합물, 및 상기 전구체 화합물을 이용한 실리콘-함유 박막의 증착 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636845B2 (en) 2008-06-25 2014-01-28 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Metal heterocyclic compounds for deposition of thin films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090024810A (ko) * 2006-06-23 2009-03-09 프랙스에어 테크놀로지, 인코포레이티드 규소 함유 필름의 침착을 위한 전구체 및 방법
KR20120072986A (ko) * 2010-12-24 2012-07-04 주식회사 한솔케미칼 금속 산화물 또는 금속-규소 산화물 박막 증착용 유기 금속 전구체 및 이를 이용한 박막 증착 방법
KR20140067786A (ko) * 2012-11-27 2014-06-05 주식회사 유피케미칼 실리콘 전구체 화합물, 및 상기 전구체 화합물을 이용한 실리콘-함유 박막의 증착 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ADAM C. TOMASIK: "Synthesis and characterization of three new thermally stable N-heterocyclic germylenes", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 694, no. 13, 25 December 2008 (2008-12-25), pages 2122 - 2125, XP026101786, DOI: 10.1016/j.jorganchem.2008.12.042 *
ADAM C. TOMASIK: "Synthesis and Reactivity of Three New N-Heterocyclic Silylenes", ORGANOMETALLICS, vol. 28, no. 1, 25 November 2008 (2008-11-25), pages 378 - 381, XP055598578, ISSN: 0276-7333, DOI: 10.1021/om8006147 *
ZSOLT BENEDEK: "Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs?", R.S.C. ADV., vol. 5, 10 December 2014 (2014-12-10), pages 5077 - 5086, XP055393302, DOI: doi:10.1039/C4RA14417A *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195784A (zh) * 2018-12-17 2021-07-30 株式会社Adeka 原子层沉积法用薄膜形成原料、薄膜的制造方法以及醇盐化合物
CN110128373A (zh) * 2019-06-12 2019-08-16 汉能移动能源控股集团有限公司 哌嗪基锡配合物及其制备方法、薄膜、太阳能电池
CN110128373B (zh) * 2019-06-12 2023-03-24 鸿翌科技有限公司 哌嗪基锡配合物及其制备方法、薄膜、太阳能电池
CN116145107A (zh) * 2023-01-03 2023-05-23 南京工程学院 用于原子层沉积金属硫化物的反应残余物循环再利用方法及装置

Also Published As

Publication number Publication date
TWI652277B (zh) 2019-03-01
KR101787204B1 (ko) 2017-10-18
KR20170059742A (ko) 2017-05-31
TW201718606A (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017090854A1 (ko) 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법
KR102067473B1 (ko) 유기아미노디실란 전구체 및 이를 포함하는 막을 증착시키는 방법
JP6466897B2 (ja) 炭素ドープケイ素含有膜を堆積するための組成物及び方法
KR101749705B1 (ko) 유기아미노실란 전구체 및 이를 포함하는 필름을 증착시키는 방법
EP2875166B1 (en) Organosilane precursors for ald/cvd silicon-containing film applications
JP2020507199A (ja) 薄膜堆積のための短鎖無機トリシリルアミン系ポリシラザン
US9240319B2 (en) Chalcogenide-containing precursors, methods of making, and methods of using the same for thin film deposition
TW201509799A (zh) 用於ald/cvd含矽薄膜應用之六配位含矽前驅物
CN105377860B (zh) 新氨基‑甲硅烷基胺化合物、制备其的方法和使用其的含硅薄膜
KR101149811B1 (ko) 실리콘 전구체 화합물을 이용한 박막 증착 방법
TWI636989B (zh) 過渡金屬化合物、其製備方法及用於沉積含有該過渡金屬化合物之含過渡金屬之薄膜的組成物
CN110461953B (zh) 甲硅烷基胺化合物、含其的用于沉积含硅薄膜的组合物及使用组合物制造含硅薄膜的方法
KR20100099322A (ko) 니켈 함유 막 형성 재료 및 그 제조 방법
KR20190064513A (ko) 지르코늄 아미노알콕사이드계 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
JP2002161069A (ja) 有機銅化合物及び該化合物を含む混合液並びにそれを用いて作製された銅薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868755

Country of ref document: EP

Kind code of ref document: A1