WO2017090586A1 - デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機 - Google Patents

デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機 Download PDF

Info

Publication number
WO2017090586A1
WO2017090586A1 PCT/JP2016/084549 JP2016084549W WO2017090586A1 WO 2017090586 A1 WO2017090586 A1 WO 2017090586A1 JP 2016084549 W JP2016084549 W JP 2016084549W WO 2017090586 A1 WO2017090586 A1 WO 2017090586A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
gear
engagement
input shaft
speed
Prior art date
Application number
PCT/JP2016/084549
Other languages
English (en)
French (fr)
Inventor
智啓 下沢
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201680069252.7A priority Critical patent/CN108291631B/zh
Priority to EP16868533.7A priority patent/EP3382237B1/en
Priority to US15/779,503 priority patent/US10683932B2/en
Publication of WO2017090586A1 publication Critical patent/WO2017090586A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/091Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • F16H2059/462Detecting synchronisation, i.e. speed difference is approaching zero
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6807Status of gear-change operation, e.g. clutch fully engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • F16H2061/062Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means for controlling filling of clutches or brake servos, e.g. fill time, fill level or pressure during filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/46Inputs being a function of speed dependent on a comparison between speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/08Timing control

Definitions

  • a clutch device including two clutches is provided between a drive source and a speed change mechanism, and a drive force transmission path from the drive source to the vehicle drive system can be switched to a system via any one of the clutches.
  • the present invention relates to a control device for a clutch transmission and a dual clutch transmission.
  • connection and disconnection of each clutch of such a dual clutch device is controlled by adjusting the amount of hydraulic oil supplied to each clutch and the hydraulic pressure.
  • an object of the present disclosure is to provide a technique capable of performing a speed change at the time of a speed change accompanied with a clutch change and a gear change to be engaged.
  • a control device for a dual clutch transmission includes a clutch device including a first clutch and a second clutch provided between a drive source and a transmission mechanism.
  • a control device for a dual clutch transmission capable of switching a driving force transmission path from a power source to a vehicle driving system between a system via a first clutch and a system via a second clutch, wherein the first clutch and the second clutch The clutch can be switched between an engaged state and a disconnected state according to the supplied hydraulic pressure, and is connected to the vehicle drive system, switching the clutch to be in an engaged state between the first clutch and the second clutch.
  • Engagement that is a clutch that is a target to be engaged in the first clutch and the second clutch at the time of upshifting with a change in gear coupled to the output shaft and before the upshifting
  • the rotational speed of the input shaft connected to the clutch is higher than the rotational speed of the drive source, or it involves switching of the clutch to be engaged and changing the gear coupled to the output shaft connected to the vehicle drive system
  • the gear out of the gear before the change is After the completion, at least a part of the time until the rotational speed of the input shaft matches the rotational speed of the drive source, the state immediately before the engagement side clutch is shifted to the engagement state with respect to the engagement side clutch.
  • the hydraulic oil filling means may supply hydraulic oil having a pressure equal to or higher than the standby pressure to the engagement side clutch immediately after the gear-out of the gear before the change is completed.
  • the hydraulic oil filling means may be configured to perform at least a period of time after the gear-out of the gear before the change is completed until the rotational speed of the input shaft matches the rotational speed of the drive source. During some time, hydraulic fluid having a pressure higher than the standby pressure may be supplied to the engagement-side clutch.
  • the dual clutch transmission is adapted to perform a shift-up involving switching of a clutch to be engaged and changing a gear coupled to an output shaft connected to a vehicle drive system.
  • the rotation speed of the input shaft connected to the engagement-side clutch is higher than the rotation speed of the drive source in the state before the shift-up, and the switching of the clutch to be engaged and the vehicle drive
  • the rotational speed of the input shaft connected to the clutch on the engagement side is lower than the rotational speed of the drive source in the state before the shift down. You may be comprised so that it may become.
  • the dual clutch transmission includes a first input shaft connected to the first clutch, a second input shaft connected to the second clutch, and a first input shaft. And a first splitter gear pair for coupling the first input shaft and the sub shaft, and a second splitter for coupling the second input shaft and the sub shaft.
  • the gear pair may have a different gear ratio.
  • a dual clutch transmission is provided between a drive source and a transmission mechanism, and includes a clutch device including a first clutch and a second clutch, and the drive source to the vehicle drive system.
  • a dual clutch type transmission having a control device capable of switching a driving force transmission path between a system via the first clutch and a system via the second clutch, wherein the first clutch and the second clutch are: The engaged state and the disconnected state can be switched according to the supplied hydraulic pressure, and the control device switches the clutch to be engaged between the first clutch and the second clutch, and drives the vehicle.
  • the engagement state of the first clutch and the second clutch at the time of upshifting with a change of the gear coupled to the output shaft connected to the system and before the upshifting When the rotational speed of the input shaft connected to the engagement-side clutch that is the target clutch is higher than the rotational speed of the drive source, or switching the clutch to be engaged and connecting to the vehicle drive system The speed of the input shaft connected to the engagement-side clutch is lower than the speed of the drive source at the time of the downshift accompanied by the change of the gear coupled to the output shaft.
  • the engagement side The clutch is supplied with hydraulic oil having a pressure equal to or higher than a predetermined standby pressure necessary for maintaining the engagement-side clutch in a state immediately before shifting to the engagement state.
  • Hydraulic oil filling means for supplying hydraulic oil of the standby pressure to the engagement side clutch until the completion of yarning; and after completion of gear-in of the change destination gear, the standby pressure to the engagement side clutch
  • Fastening execution means for supplying a higher pressure to bring the fastening clutch into a fastening state.
  • the hydraulic oil filling means may supply hydraulic oil having a pressure equal to or higher than the standby pressure to the engagement-side clutch immediately after the gear-out of the gear before the change is completed.
  • the hydraulic oil filling means includes at least a part of the time from when the gear-out before the change is completed until the rotational speed of the input shaft matches the rotational speed of the drive source. In time, hydraulic fluid having a pressure higher than the standby pressure may be supplied to the engagement-side clutch.
  • the rotational speed of the input shaft connected to the engaging clutch is configured to be higher than the rotational speed of the drive source, and the clutch is switched to the engaged state and coupled to the output shaft connected to the vehicle drive system.
  • the rotational speed of the input shaft connected to the engagement side clutch may be configured to be lower than the rotational speed of the drive source in the state before the downshift.
  • the first input shaft connected to the first clutch, the second input shaft connected to the second clutch, and the first input shaft and the second input shaft are always coupled.
  • the first splitter gear pair that couples the first input shaft and the sub shaft, and the second splitter gear pair that joins the second input shaft and the sub shaft have different gear ratios. It may be.
  • FIG. 1 is a schematic configuration diagram illustrating a dual clutch transmission including a dual clutch device according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a shift control process according to an embodiment of the present disclosure.
  • FIG. 3 (a) is a diagram showing changes in the rotational speed of the input shaft and the engine speed at the time of upshifting, (b) is a diagram showing changes in the shift stroke, and (c) is It is a figure which shows the change of the electric current for control to the linear solenoid valve which adjusts the hydraulic fluid to a clutch, (d) is a figure which shows the change of the rotation speed of an input shaft and an engine speed at the time of downshift.
  • FIG. 1 is a schematic configuration diagram illustrating a dual clutch transmission including a dual clutch device according to an embodiment of the present disclosure.
  • the dual clutch transmission 1 is connected to an output shaft 11 of an engine 10 which is an example of a drive source.
  • the dual clutch transmission 1 includes a dual clutch device 20 having a first clutch 21 and a second clutch 22, a transmission mechanism 30, a transmission control device 80 as an example of a control device, an engine speed sensor 91, A first input shaft rotational speed sensor 92, a second input shaft rotational speed sensor 93, a vehicle speed sensor 94 (also referred to as an output rotational speed sensor), and an accelerator opening sensor 95 are provided.
  • the first clutch 21 is, for example, a wet multi-plate clutch, and includes a clutch hub 23 that rotates integrally with the output shaft 11 of the engine 10, and a first clutch drum 24 that rotates integrally with the first input shaft 31 of the transmission mechanism 30.
  • the state in which torque is transmitted via the first clutch plate 25 while the clutch hub 23 and the first clutch drum 24 rotate at different rotational speeds is referred to as a half-clutch state of the first clutch 21. Called.
  • the half-clutch state is an aspect of the engaged state.
  • the pressure of the hydraulic oil necessary for maintaining the first piston 26 at a position immediately before the plurality of first clutch plates 25 are in contact is referred to as standby pressure.
  • the standby pressure corresponds to a pressure that balances the reaction force of a return spring (not shown) that urges the first piston 26 to the input side. Hydraulic fluid is supplied to the first space 21A in order to discharge frictional heat and the like generated in the first clutch plate 25.
  • the second clutch 22 is, for example, a wet multi-plate clutch, and includes a clutch hub 23, a second clutch drum 27 that rotates integrally with the second input shaft 32 of the transmission mechanism 30, and a plurality of second clutch plates 28.
  • a second space 22A around the plurality of second clutch plates 28, a second piston 29 press-contacting the second clutch plates 28, and a second hydraulic chamber 29A are provided.
  • the second clutch 22 when the second piston 29 is stroked to the output side (right direction in FIG. 1) by the hydraulic pressure supplied to the second hydraulic chamber 29 ⁇ / b> A, the second clutch plate 28 is pressed to transmit torque. Connected state (fastened state). On the other hand, when the operating hydraulic pressure is released, the second piston 29 is stroked to the input side (left direction in FIG. 1) by a biasing force of a spring (not shown), and the second clutch 22 is in a disconnected state in which torque transmission is interrupted. Become. In the following description, the state in which the torque is transmitted via the second clutch plate 28 while the clutch hub 23 and the second clutch drum 27 rotate at different rotational speeds is referred to as the half-clutch state of the second clutch 22. Called.
  • the half-clutch state is an aspect of the engaged state.
  • the pressure of the hydraulic oil necessary for maintaining the second piston 29 at a position immediately before the plurality of second clutch plates 28 come into contact is referred to as standby pressure.
  • the standby pressure corresponds to a pressure balanced with a reaction force of a return spring (not shown) that urges the second piston 29 to the input side.
  • the standby pressure in the first clutch 21 and the standby pressure in the second clutch 22 depend on the respective configurations, and may be the same pressure. Hydraulic fluid is supplied to the second space 22A in order to discharge frictional heat and the like generated in the second clutch plate 28.
  • the transmission mechanism 30 includes a sub-transmission unit 40 disposed on the input side and a main transmission unit 50 disposed on the output side.
  • the transmission mechanism 30 includes a first input shaft 31 and a second input shaft 32 provided in the sub-transmission unit 40, an output shaft 33 provided in the main transmission unit 50, and parallel to these shafts 31 to 33.
  • the counter shaft 34 is provided.
  • the first input shaft 31 is inserted into a hollow shaft that penetrates the second input shaft 32 in the axial direction so as to be relatively rotatable.
  • a propeller shaft (vehicle drive system) connected to a vehicle drive wheel (not shown) via a differential device or the like is connected to the output end of the output shaft 33.
  • the auxiliary transmission unit 40 is provided with a first splitter gear pair 41 and a second splitter gear pair 42.
  • the first splitter gear pair 41 includes a first input main gear 43 fixed to the first input shaft 31, and a first input sub gear 44 fixed to the sub shaft 34 and constantly meshing with the first input main gear 43. It has.
  • the second splitter gear pair 42 includes a second input main gear 45 fixed to the second input shaft 32, and a second input sub gear 46 fixed to the sub shaft 34 and constantly meshing with the second input main gear 45. It has. Therefore, the sub shaft 34, the first input shaft 31, and the second input shaft 32 are always coupled.
  • the gear ratio of the first splitter gear pair 41 is smaller than that of the second splitter gear pair 42, that is, the first splitter gear pair 41 side is a high-speed gear stage. Therefore, in the auxiliary transmission unit 40, when the driving force is transmitted via the first splitter gear pair 41 (when the first clutch 21 is engaged), the auxiliary transmission unit 40 can be set to the high speed side, and the second splitter gear. When the driving force is transmitted via the pair 42 (when the second clutch 22 is engaged), the speed can be reduced.
  • the case through the first splitter gear pair 41 is referred to as an H (high speed side) stage
  • the case through the second splitter gear pair 42 is referred to as an L (low speed side) stage.
  • the main transmission unit 50 is provided with a first output gear pair 51, a second output gear pair 61, a third output gear pair 71, a first sync mechanism 55, and a second sync mechanism 56.
  • the first output gear pair 51 includes a third-speed sub-gear 52 fixed to the sub-shaft 34 and a third-speed main gear 53 that is rotatably provided on the output shaft 33 and always meshes with the third-speed sub-gear 52.
  • the second output gear pair 61 includes a second-speed sub-gear 62 fixed to the sub-shaft 34 and a second-speed main gear 63 that is provided on the output shaft 33 so as to be relatively rotatable and always meshes with the second-speed sub-gear 62. I have.
  • the third output gear pair 71 includes a first-speed sub-gear 72 fixed to the sub-shaft 34, and a first-speed main gear 73 that is rotatably provided on the output shaft 33 and always meshes with the first-speed sub-gear 72. I have.
  • the first sync mechanism 55 and the second sync mechanism 56 are known structures, and each includes a sleeve, a dog clutch, etc. (not shown).
  • the first sync mechanism 55 can bring the output shaft 33 and the third-speed main gear 53 into an engaged state (gear-in).
  • the output shaft 33 and the third-speed main gear 53 are engaged, if the sub-transmission unit 40 is in the H stage, the output shaft 33 rotates at a speed corresponding to the third H-speed (3H speed) and the sub-transmission unit. If 40 is the L stage, the output shaft 33 rotates at a speed corresponding to the 3rd speed (3L speed) of the L stage.
  • the second synchronization mechanism 56 can bring the output shaft 33 and the second speed main gear 63 into an engaged state, and can bring the output shaft 33 and the first speed main gear 73 into an engaged state.
  • the output shaft 33 and the second-speed main gear 63 are engaged, if the sub-transmission unit 40 is in the H stage, the output shaft 33 rotates at a speed equivalent to the H-stage second speed (2H speed). If 40 is the L stage, the output shaft 33 rotates at the second speed of the L stage (2L speed). Further, when the output shaft 33 and the first-speed main gear 73 are engaged, if the sub-transmission unit 40 is in the H stage, the output shaft 33 rotates at a speed corresponding to the first speed (1H speed) in the H stage. If the transmission unit 40 is in the L stage, the output shaft 33 rotates at the first speed of the L stage (1L speed).
  • the auxiliary transmission unit 40 and the main transmission unit 50 can be switched to 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed.
  • the speed is 1L speed, 1H speed, 2L speed, 2H speed, 3L speed, and 3H speed in order from the low speed stage.
  • the operations of the first sync mechanism 55 and the second sync mechanism 56 are controlled by a shift control unit 83, which will be described later, depending on the accelerator opening detected by the accelerator opening sensor 95, the speed detected by the speed sensor 94, and the like.
  • the output shaft 33 and the output main gear (53, 63, 73) are selectively switched to the engaged state (gear-in) or the non-engaged state (neutral state).
  • the number of output gear pairs (51, 61, 71) and the synchro mechanisms (55, 56), the arrangement pattern, and the like are not limited to the illustrated examples, and may be changed as appropriate without departing from the spirit of the present disclosure. Is possible.
  • the speed change mechanism 30 at the time of shifting between 1L speed and 1H speed, between 2L speed and 2H speed, between 3L speed and 3H speed (shift up and shift down), the speed is changed only by switching the clutch.
  • shifting between 1H speed and 2L speed and between 2H speed and 3L speed shift up and shift down
  • the rotational speed of the second input shaft 32 connected to the engagement-side clutch (second clutch 22) is higher than the rotational speed of the engine 10 in the state before the upshift due to the configuration of the speed change mechanism 30. ing. Therefore, in the speed change mechanism 30, during the shift up involving clutch switching and gear change, the rotational speed of the second input shaft 32 connected to the engagement side clutch (second clutch 22) is higher than the rotational speed of the engine 10. It is guaranteed to be.
  • the speed change mechanism 30 of the present embodiment at the time of shift down accompanied by clutch switching and gear change (shift down from 2L speed to adjacent 1H speed, shift down from 3L speed to adjacent 2H speed, etc.) Due to the configuration of the transmission mechanism 30, the rotational speed of the first input shaft 31 connected to the engagement-side clutch (first clutch 21) is lower than the rotational speed of the engine 10 in the state before the downshift. Therefore, in the speed change mechanism 30, the speed of the first input shaft 31 connected to the engagement-side clutch (first clutch 21) is lower than the speed of the engine 10 at the time of downshifting involving clutch switching and gear change. It is guaranteed to be.
  • the engine speed sensor 91 detects the speed of the engine 10 and outputs it to the shift control device 80.
  • the first input shaft rotational speed sensor 92 detects the rotational speed of the first input shaft 31 and outputs it to the transmission control device 80.
  • the second input shaft rotational speed sensor 93 detects the rotational speed of the second input shaft 32 and outputs it to the transmission control device 80.
  • the vehicle speed sensor 94 detects the number of rotations of the output shaft 33 and outputs it to the transmission control device 80. The vehicle speed can be specified from the rotational speed of the output shaft 33.
  • the accelerator opening sensor 95 detects the accelerator opening and outputs it to the shift control device 80.
  • the shift control device 80 includes a control unit 81, a shift shifter 84, a first clutch hydraulic oil adjustment unit 85, and a second clutch hydraulic oil adjustment unit 86.
  • the control unit 81 performs various controls of the engine 10, the first clutch hydraulic oil adjustment unit 85, the second clutch hydraulic oil adjustment unit 86, the shift shifter 84, and the like, and includes a known CPU, ROM, RAM, input port, and output. It is configured with ports and the like. In order to perform these various controls, sensor values of various sensors (91 to 95) are input to the control unit 81.
  • control unit 81 includes a hydraulic control unit 82 and a shift control unit 83 as an example of hydraulic oil filling means and fastening execution means as a part of functional elements.
  • these functional elements are described as being included in the control unit 81 that is an integral piece of hardware. However, any one of these functional elements may be provided in separate hardware.
  • the hydraulic control unit 82 outputs a control signal (control current) to the first clutch hydraulic oil adjustment unit 85 and the second clutch hydraulic oil adjustment unit 86 in accordance with an instruction from the transmission control unit 83.
  • the shift control unit 83 determines whether or not a shift is necessary based on information such as the accelerator opening from the accelerator opening sensor 95 and the vehicle speed from the vehicle speed sensor 94, and is necessary if a shift is necessary.
  • the shift (shift destination) is specified. Further, the shift control unit 83 determines whether the required shift is a shift only for clutch switching or a shift accompanied by a gear change (gear shift) for switching the clutch.
  • the shift control unit 83 instructs the hydraulic control unit 82 to switch the clutch to be engaged in the case of shifting only by clutch switching.
  • the shift control unit 83 instructs the shift shifter 84 to change the gear (gear out from the current (shift source) gear and gear in to the change destination gear). To do. Further, after the gear-out is completed, the shift control unit 83 is configured to change the speed of the input shaft connected to the engagement-side clutch at the time of shifting up, or when the speed is shifted down.
  • the pressure of the hydraulic oil supplied to the engagement side clutch is the standby pressure.
  • the hydraulic control unit 82 is instructed to supply hydraulic oil so that the pressure becomes higher than that.
  • the piston of the engagement side clutch can be appropriately moved to the engagement side against the frictional force with the periphery of the piston.
  • the speed change mechanism 30 when shifting down or shifting up with a gear change, when the speed of the input shaft connected to the engagement-side clutch at the time of shifting up is higher than the speed of the engine 10, or Since the rotation speed of the input shaft connected to the engagement side clutch is lower than the rotation speed of the engine 10 at the time of downshifting, it corresponds to any of the cases where the gear change is performed. In 83, there is no need to directly compare the sensor value between the rotational speed of the input shaft connected to the engagement side clutch and the rotational speed of the engine 10.
  • the shift control unit 83 issues an instruction to supply hydraulic oil to the hydraulic control unit 82 so that the pressure of the hydraulic oil supplied to the engagement side clutch is higher than the standby pressure, the first input shaft
  • the rotation speed of the input shaft connected to the engagement-side clutch by the rotation speed sensor 92 or the second input shaft rotation speed sensor 93 matches the rotation speed of the engine 10 by the engine rotation speed sensor 91
  • the engagement-side clutch The hydraulic control unit 82 is instructed to supply the hydraulic oil so that the pressure of the hydraulic oil to be supplied becomes the standby pressure.
  • the transmission control unit 83 instructs the hydraulic control unit 82 to supply hydraulic oil having a pressure higher than the standby pressure so that the engagement side clutch is completely engaged.
  • the shift shifter 84 operates the first sync mechanism 55 and the second sync mechanism 56 in accordance with instructions from the shift control unit 83 to release the engagement state between the output shaft 33 and the output main gears (53, 63, 73). (Gear out) or engage (gear in) the output shaft 33 and the output main gear (53, 63, 73).
  • the first clutch hydraulic oil adjustment unit 85 includes, for example, a linear solenoid valve, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the hydraulic control unit 82. Thus, the amount and pressure of the hydraulic oil supplied to the first hydraulic chamber 26A are adjusted.
  • the second clutch hydraulic oil adjusting unit 86 has a linear solenoid valve, for example, and adjusts hydraulic oil from a hydraulic supply source (not shown) according to a control signal (control current) supplied from the hydraulic control unit 82. Then, the amount and pressure of hydraulic fluid supplied to the second hydraulic chamber 29A are adjusted.
  • FIG. 2 is a flowchart of a shift control process according to an embodiment of the present disclosure.
  • the shift control process is executed when the shift control unit 83 determines that a shift is necessary.
  • the shift control unit 83 determines whether or not the shift is accompanied by a gear change (S11). As a result, when the speed change is not accompanied by a gear change (S11: NO), the speed change control unit 83 causes the hydraulic control unit 82 to change the first clutch hydraulic oil adjustment unit 85 or the second clutch hydraulic oil adjustment unit 86. One is controlled, the clutch that is currently engaged and disengaged (the disengagement side clutch) is disengaged (step S21), and the other of the first clutch operating oil adjusting unit 85 or the second clutch operating oil adjusting unit 86 And the engagement side clutch is engaged (step S22), and the process is terminated.
  • S11 gear change
  • the shift control unit 83 causes the hydraulic control unit 82 to switch either the first clutch hydraulic oil adjustment unit 85 or the second clutch hydraulic oil adjustment unit 86.
  • the disengagement side clutch is disengaged (step S12), and the shift shifter 84 is controlled to start the gear-out of the current gear (transmission source gear) engaged with the output shaft 33 (S13).
  • step S14 determines whether or not the gear-out of the shift source gear has been completed (S14). If the gear-out has not been completed (S14: NO), step S14 is executed again.
  • the shift control unit 83 controls the shift shifter 84 to start gear-in of the shift destination gear (S15).
  • the shift control unit 83 controls one of the first clutch hydraulic oil adjustment unit 85 and the second clutch hydraulic oil adjustment unit 86 by the hydraulic pressure control unit 82 to supply a higher pressure than the standby pressure to the engagement side clutch. In this manner, the supply of hydraulic oil is started (S16). Thereby, the hydraulic oil is filled in the hydraulic chamber of the engagement side clutch.
  • the shift control unit 83 determines whether or not the rotation speed of the input shaft connected to the engagement-side clutch matches the rotation speed of the engine 10 by the engine rotation speed sensor 91 (S17). As a result, when the rotational speed of the input shaft does not match the rotational speed of the engine 10 (S17: NO), the shift control unit 83 executes step S17 again.
  • the shift control unit 83 controls the hydraulic control unit 82 so that the pressure of the hydraulic oil supplied to the engagement side clutch maintains the standby pressure (S18).
  • the shift control unit 83 determines whether or not the gear-in of the shift destination gear is completed (S19). If the gear-in is not completed (S19: NO), the shift control unit 83 performs step S19. Run again.
  • the shift control unit 83 controls one of the first clutch hydraulic oil adjustment unit 85 or the second clutch hydraulic oil adjustment unit 86 by the hydraulic pressure control unit 82. Then, hydraulic oil having a pressure higher than the standby pressure is supplied to the engagement-side clutch, and the engagement-side clutch is brought into a complete engagement state (S20).
  • the engagement side clutch since the engagement side clutch is already filled with the operation oil and maintained at the standby pressure, when the supply of the operation oil having a pressure higher than the standby pressure is started, the engagement side clutch Will be completely fastened early.
  • FIG. 3A is a diagram showing changes in the rotational speed of the input shaft and the engine rotational speed at the time of upshifting
  • FIG. 3B is a diagram showing changes in the shift stroke
  • FIG. It is a figure which shows the change of the electric current for control to the linear solenoid valve which adjusts the hydraulic fluid of
  • (d) is a figure which shows the change of the rotation speed of an input shaft and an engine speed at the time of downshift.
  • the first clutch 21 that is the disengagement side clutch is in a completely engaged state, so that the engine speed and the rotation of the first input shaft 31 connected to the first clutch 21 are increased.
  • the number (release side rotational speed) is the same rotational speed.
  • the rotation speed (engagement rotation speed) of the second input shaft 32 connected to the second clutch 22 that is the engagement-side clutch is predetermined between the first clutch 21 and the second clutch 22 via the auxiliary shaft 34 and the like. Therefore, the rotation speed is higher than the release-side rotation speed.
  • the conversion source gear (second speed main gear 63) is in a gear-in state. Further, the control current output from the hydraulic pressure control unit 82 to the second clutch hydraulic oil adjustment unit 86 has a minimum value as shown in FIG. Since the control current is the lowest value, hydraulic oil is not supplied to the second hydraulic chamber 29A of the second clutch 22.
  • the shift control unit 83 determines that a shift-up from 2H speed to 3L speed accompanied by a gear change is necessary, the shift control unit 83 causes the first clutch 21 to be shifted by the hydraulic control unit 82. Is controlled to be in a disconnected state.
  • the shift control unit 83 causes the shift shifter 84 to start moving a sleeve (not shown) of the second sync mechanism 56 to start the gear-out of the second-speed main gear 63.
  • the stroke (shift stroke) of the sleeve (not shown) of the second sync mechanism 56 moves from the gear-in position shown in time T2 toward the neutral position, and the gear-out is completed.
  • the neutral position is reached (time T3).
  • the shift control unit 84 controls the shift shifter 84 to start the movement of a sleeve (not shown) of the first sync mechanism 55, so The gear-in of the gear 53) is started.
  • the first sync mechanism 55 starts the synchronization of the output shaft 33 (the sleeve of the first sync mechanism 55) and the third-speed main gear 53.
  • the rotational speed of the second input shaft 22 gradually decreases so as to synchronize with the rotational speed of the output shaft 33. It will be.
  • the engine speed maintains the substantially constant speed in a no-load state.
  • the transmission control unit 83 controls the second clutch hydraulic oil adjustment unit 86 by the hydraulic control unit 82 to supply a pressure higher than the standby pressure to the second clutch 22.
  • the control current is output.
  • the hydraulic oil is filled in the second hydraulic chamber 29 ⁇ / b> A of the second clutch 22.
  • the second output shaft 32 acts in a direction in which the rotation speed of the second output shaft 32 decreases, that is, in a direction that assists synchronization by the first sync mechanism 55. It will work in favor of synchronization.
  • the shift control unit 83 controls the second clutch hydraulic oil adjusting unit 86 to change the second clutch 22 to the second clutch 22 when the engagement side rotation speed and the engine rotation speed coincide with each other (time point T4).
  • a control current is output so that the standby pressure is supplied.
  • the second hydraulic chamber 29A of the second clutch 22 is adjusted to be a standby pressure.
  • the first sync mechanism 55 When the synchronization between the output shaft 33 (the sleeve of the first sync mechanism 55) and the third-speed main gear 53 is completed (time point T5), the first sync mechanism 55 has three sleeves as shown in FIG. The speed main gear 53 moves to a position where it is coupled with the dog gear, and the gear-in is completed (time point T6).
  • the transmission control unit 83 gradually increases the pressure of the hydraulic oil supplied to the second clutch 22 by the hydraulic control unit 82 to a predetermined maximum pressure (time T7). Thereafter, this state is maintained until an instruction to disengage the second clutch 22 is given.
  • the second clutch 22 When the gear-in is completed at time T6 and the pressure of the hydraulic oil supplied to the second clutch 22 is gradually increased, the second clutch 22 first enters a half-clutch state, and slippage in the half-clutch state gradually decreases. I will do it. For this reason, after time T6, as shown in FIG. 3A, the difference between the engagement side rotational speed and the engine speed gradually decreases, and at time T7, the engagement side rotational speed and the engine speed are reduced. The second clutch 22 is completely engaged when the rotational speed matches.
  • the supply of hydraulic oil to the second hydraulic chamber 29A of the second clutch 22 is started after the time T6 when the gear-in of the shift destination gear is completed. Yes. For this reason, it takes a long time for the second hydraulic chamber 29A to be filled with hydraulic oil and for the second hydraulic chamber 29A to reach the standby pressure. For this reason, it takes a long time until the second clutch 22 is completely engaged through the half-clutch state, and the fully engaged state in which the engagement side rotational speed and the engine rotational speed coincide with each other is as follows. As shown in FIG. 3A, the time T8 is later than the time T7 that can be realized in the present embodiment. As described above, in this embodiment, the shift can be completed earlier than in the comparative example.
  • the second clutch 22 that is the disengagement side clutch is in the engaged state, so that it is connected to the engine speed and the second clutch 22 as shown in FIG.
  • the rotation speed of the second input shaft 32 (release-side rotation speed) is the same rotation speed.
  • the rotation speed (engagement-side rotation speed) of the first input shaft 31 connected to the first clutch 21 that is the engagement-side clutch is predetermined between the first clutch 21 and the second clutch 22 via the auxiliary shaft 34 and the like. Therefore, the rotation speed is lower than the release-side rotation speed.
  • the conversion source gear (third speed main gear 53) is in a gear-in state. Further, the control current output from the hydraulic pressure control unit 82 to the first clutch hydraulic oil adjustment unit 85 has a minimum value as shown in FIG. Since the control current is the lowest value, hydraulic oil is not supplied to the first hydraulic chamber 26A of the first clutch 21.
  • the shift control unit 83 determines that a downshift from 3L speed to 2H speed involving a gear change is necessary, the shift control unit 83 causes the second clutch 22 to be shifted by the hydraulic control unit 82. Is controlled to be in a disconnected state.
  • the shift control unit 83 causes the shift shifter 84 to start movement of a sleeve (not shown) of the first sync mechanism 55 to start gear-out of the third-speed main gear 53.
  • the stroke (shift stroke) of the sleeve (not shown) of the first sync mechanism 55 moves from the gear-in position shown in time T2 toward the neutral position, and the gear-out is completed.
  • the neutral position is reached (time T3).
  • the gear shift control unit 83 has completed the gear-out, so the gear shifter 84 is controlled to start the movement of a sleeve (not shown) of the second sync mechanism 56, and the gear to be shifted (second speed main gear).
  • the gear-in of the gear 63) is started.
  • the second sync mechanism 56 starts the synchronization of the output shaft 33 (the sleeve of the second sync mechanism 56) and the second-speed main gear 63.
  • the rotation speed (fastening side rotation speed) of the 1st input shaft 21 rises so that it may synchronize with the rotation speed of the output shaft 33 gradually. It will be.
  • the engine speed is maintaining the substantially constant speed in a no-load state.
  • the shift control unit 83 controls the first clutch hydraulic oil adjustment unit 85 by the hydraulic control unit 82 to supply a pressure higher than the standby pressure to the first clutch 21.
  • the control current is output.
  • the hydraulic oil is filled in the first hydraulic chamber 26A of the first clutch 21.
  • the shift control unit 83 controls the first clutch hydraulic oil adjustment unit 85 by the hydraulic control unit 82 when the engagement side rotational speed and the engine rotational speed coincide (time point T4).
  • the control current is output so that the standby pressure is supplied to the first clutch 21.
  • the first hydraulic chamber 26A of the first clutch 21 is adjusted to a standby pressure.
  • the transmission control unit 83 gradually increases the pressure of the hydraulic oil supplied to the first clutch 21 by the hydraulic control unit 82 to a predetermined maximum pressure (time T7). Thereafter, this state is maintained until an instruction to disengage the first clutch 21 is given.
  • the first clutch 21 When the gear-in is completed at time T6 and the pressure of the hydraulic oil supplied to the first clutch 21 is gradually increased, the first clutch 21 first enters a half-clutch state, and slippage in the half-clutch state gradually decreases. I will do it. Therefore, after time T6, as shown in FIG. 3 (d), the difference between the engagement side rotational speed and the engine speed gradually decreases, and at time T7, the engagement side rotational speed and the engine speed are reduced. The first clutch 21 is completely engaged when the rotational speed matches.
  • the supply of hydraulic oil to the first hydraulic chamber 26A of the first clutch 21 is started after the time T6 when the gear-in of the shift destination gear is completed. Yes. For this reason, it takes a long time for the first hydraulic chamber 26A to be filled with the hydraulic oil and for the first hydraulic chamber 26A to reach the standby pressure. For this reason, it takes a long time until the first clutch 21 is completely engaged through the half-clutch state, and the fully engaged state in which the engagement side rotational speed and the engine rotational speed coincide with each other is as follows. As shown in FIG. 3D, the time T8 is later than the time T7 that can be realized in the present embodiment. As described above, in this embodiment, the shift can be completed earlier than in the comparative example.
  • the input shaft connected to the engagement-side clutch is in the state before the shift-up at the time of the shift-up involving the clutch switching and the gear change.
  • the rotational speed of the input shaft connected to the engaging clutch is the engine rotational speed. Hydraulic fluid supplied to the clutch on the engagement side after the gear-out of the pre-change gear is completed and until the rotational speed of the input shaft matches the engine rotational speed. Since the pressure of the pressure is higher than the standby pressure, the speed change can be performed quickly.
  • the pressure of the hydraulic oil supplied to the engagement-side clutch is maintained until the rotation speed of the input shaft connected to the engagement-side clutch matches the rotation speed of the engine 10.
  • the present disclosure is not limited to this, but the present disclosure is not limited to this.
  • the rotational speed of the input shaft connected to the engagement-side clutch and the rotational speed of the engine 10 are
  • the pressure of the hydraulic oil supplied to the clutch may be a standby pressure until they match, and after the gear-out is completed, the rotation speed of the input shaft connected to the engagement side clutch and the rotation of the engine 10
  • the pressure of the hydraulic fluid supplied to the engagement side clutch may be higher than the standby pressure during at least a part of the time until the number matches.
  • the dual clutch type transmission shifts up at the time of shift up involving switching of the clutch to be engaged and changing to a gear coupled to the output shaft connected to the vehicle drive system.
  • the rotation speed of the input shaft connected to the engagement side clutch is configured to be higher than the rotation speed of the drive source, and the clutch is switched to the engagement state and connected to the vehicle drive system.
  • the rotational speed of the input shaft connected to the engagement side clutch is lower than the rotational speed of the drive source before the downshifting.
  • the present disclosure is not limited to this, and the dual clutch transmission can have any configuration.
  • the speed of the input shaft connected to the clutch on the engagement side is the engine at the time of the shift up accompanied by the change of the gear coupled to the output shaft connected to the vehicle drive system and before the shift up.
  • the shift control unit 83 determines whether or not it corresponds to at least one of the cases where the rotational speed of the input shaft connected to the engagement side clutch is lower than the rotational speed of the engine, depending on the content of the shift and / or the sensor value. You may make it determine.
  • the dual clutch transmission 1 having the auxiliary transmission unit 40 is used.
  • the present disclosure is not limited to this, and the present invention is also applied to a dual clutch transmission that does not have the auxiliary transmission unit 40. be able to.
  • the control device for the dual clutch transmission according to the present disclosure is useful in that a speed change can be performed quickly at the time of a speed change accompanied by a clutch change and a gear change to be engaged.

Abstract

作動油制御装置80において、クラッチ(21又は22)切替とギヤ変更とを伴うシフトアップ時であって、締結側クラッチに接続された入力軸(31又は32)の回転数がエンジン10の回転数よりも高い場合、又は、クラッチ切替とギヤ変更とを伴うシフトダウン時であって、入力軸の回転数がエンジン10の回転数よりも低い場合において、ギヤアウトが完了した後から、エンジン10の回転数と一致するまでの間の少なくとも一部の時間において、締結側クラッチに所定の待機圧以上の圧力の作動油を供給させ、その後、ギヤインが完了するまで、待機圧の作動油を供給させ、ギヤインが完了した後に、待機圧よりも高い圧力を供給させて締結側クラッチを締結状態とする変速制御部83を有するように構成する。

Description

デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機
 本開示は、駆動源と変速機構との間に2つのクラッチを含むクラッチ装置が設けられ、駆動源から車両駆動系への駆動力伝達経路を、いずれかのクラッチを介する系統に切替可能なデュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機に関する。
 従来、エンジン等の駆動源からの動力伝達を作動油の油圧により断接可能なクラッチを2つ備え、駆動源から変速機への駆動力伝達経路をいずれかのクラッチを介する系統に切替可能なデュアルクラッチ装置が知られている。
 このようなデュアルクラッチ装置の各クラッチの接断は、それぞれのクラッチに供給する作動油の量や油圧を調整することにより制御している。
 作動油により制御されるクラッチに関する技術としては、上記した駆動源の駆動力の接断を行うクラッチとは異なるが、変速歯車機構における動力を伝達するギヤの組み合わせを切り替えるためのクラッチに対して、シフトダウン時にクラッチに待機油圧となるように作動油を充填する技術が知られている(例えば、特許文献1)。
日本国特開2006-57716号公報
 例えば、変速時にクラッチを切替る場合には、新たに締結する側のクラッチ(締結側クラッチ)の油圧室からは作動油が抜けているので、油圧室に作動油を充填するために、作動油を比較的大流量で供給することとなるが、油圧室に作動油を充填するまでに時間を要し、締結側クラッチを締結するまでに長時間を要する。
 また、ギヤの変更を伴う変速時においては、ギヤ変更中に締結側クラッチの油圧室に作動油を供給してしまうと、締結側クラッチが締結されてしまって、ギヤ変更動作を妨げてしまう虞があった。
 そこで、本開示は、締結状態とするクラッチの切替とギヤ変更とを伴う変速時に、迅速に変速を行うことのできる技術を提供することを目的とする。
 上述の目的を達成するため、本開示の一観点に係るデュアルクラッチ式変速機の制御装置は、駆動源と変速機構との間に第1クラッチ及び第2クラッチを含むクラッチ装置が設けられ、駆動源から車両駆動系への駆動力伝達経路を、第1クラッチを介する系統と前記第2クラッチを介する系統とに切替可能なデュアルクラッチ式変速機の制御装置であって、第1クラッチ及び第2クラッチは、供給される油圧に応じて締結状態と切断状態とを切替可能であり、第1クラッチと第2クラッチとの間での締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時であって、シフトアップ前の状態において、第1クラッチと第2クラッチの内の締結状態とする対象となるクラッチである締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも高い場合、又は、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時であって、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも低い場合の少なくとも一方の場合において、変更前のギヤのギヤアウトが完了した後から、入力軸の回転数が駆動源の回転数と一致するまでの間の少なくとも一部の時間において、締結側クラッチに対して、締結側クラッチを締結状態に移行する直前の状態に維持するために必要な所定の待機圧以上の圧力の作動油を供給させ、その後、変更先のギヤのギヤインが完了するまで、締結側クラッチに対して待機圧の作動油を供給させる作動油充填手段と、変更先のギヤのギヤインが完了した後に、締結側クラッチに対して待機圧よりも高い圧力を供給させて締結側クラッチを締結状態とする締結実行手段と、を有する。
 上記デュアルクラッチ式変速機の制御装置において、作動油充填手段は、変更前のギヤのギヤアウトが完了した直後から、締結側クラッチに対して、待機圧以上の作動油を供給させるようにしてもよい。
 また、上記デュアルクラッチ式変速機の制御装置において、作動油充填手段は、変更前のギヤのギヤアウトが完了した後から、入力軸の回転数が駆動源の回転数と一致するまでの間の少なくとも一部の時間において、締結側クラッチに対して、待機圧よりも高い圧力の作動油を供給させるようにしてもよい。
 また、上記デュアルクラッチ式変速機の制御装置において、デュアルクラッチ式変速機は、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時においては、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも高くなるように構成されるとともに、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時においては、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも低くなるように構成されていてもよい。
 また、上記デュアルクラッチ式変速機の制御装置において、デュアルクラッチ式変速機は、第1クラッチに接続される第1入力軸と、第2クラッチに接続される第2入力軸と、第1入力軸及び第2入力軸に常時結合されている副軸とを有し、第1入力軸と副軸とを結合する第1スプリッタギヤ対と、第2入力軸と副軸とを結合する第2スプリッタギヤ対とは、異なるギヤ比となっていてもよい。
 また、本開示の一観点に係るデュアルクラッチ式変速機は、駆動源と変速機構との間に設けられ、第1クラッチ及び第2クラッチを含むクラッチ装置と、前記駆動源から車両駆動系への駆動力伝達経路を、前記第1クラッチを介する系統と前記第2クラッチを介する系統とに切替え可能な制御装置を有するデュアルクラッチ式変速機であって、前記第1クラッチ及び前記第2クラッチは、供給される油圧に応じて締結状態と切断状態とを切替可能であり、前記制御装置は、前記第1クラッチと前記第2クラッチとの間での締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時であって、シフトアップ前の状態において、前記第1クラッチと前記第2クラッチの内の前記締結状態とする対象となるクラッチである締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも高い場合、又は、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時であって、シフトダウン前の状態において、前記締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも低い場合の少なくとも一方の場合において、変更前のギヤのギヤアウトが完了した後から、前記入力軸の回転数が前記駆動源の回転数と一致するまでの間の少なくとも一部の時間において、前記締結側クラッチに対して、前記締結側クラッチを締結状態に移行する直前の状態に維持するために必要な所定の待機圧以上の圧力の作動油を供給させ、その後、変更先のギヤのギヤインが完了するまで、前記締結側クラッチに対して前記待機圧の作動油を供給させる作動油充填手段と、前記変更先のギヤのギヤインが完了した後に、前記締結側クラッチに対して前記待機圧よりも高い圧力を供給させて前記締結側クラッチを締結状態とする締結実行手段と、を有する。
 上記デュアルクラッチ式変速機において、作動油充填手段は、変更前のギヤのギヤアウトが完了した直後から、締結側クラッチに対して、待機圧以上の作動油を供給させるようにしてもよい。
 また、上記デュアルクラッチ式変速機において、作動油充填手段は、変更前のギヤのギヤアウトが完了した後から、入力軸の回転数が駆動源の回転数と一致するまでの間の少なくとも一部の時間において、締結側クラッチに対して、待機圧よりも高い圧力の作動油を供給させるようにしてもよい。
 また、上記デュアルクラッチ式変速機において、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時においては、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも高くなるように構成されるとともに、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時においては、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも低くなるように構成されていてもよい。
 また、上記デュアルクラッチ式変速機において、第1クラッチに接続される第1入力軸と、第2クラッチに接続される第2入力軸と、第1入力軸及び第2入力軸に常時結合されている副軸とをさらに有し、第1入力軸と副軸とを結合する第1スプリッタギヤ対と、第2入力軸と副軸とを結合する第2スプリッタギヤ対とは、異なるギヤ比となっていてもよい。
 本開示によれば、締結状態とするクラッチの切替とギヤ変更とを伴う変速時に、迅速に変速を行うことができる。
図1は、本開示の一実施形態に係るデュアルクラッチ装置を備えるデュアルクラッチ式変速機を示す模式的な構成図である。 図2は、本開示の一実施形態に係る変速制御処理のフローチャートである。 図3において、(a)は、シフトアップ時における入力軸の回転数及びエンジン回転数の変化を示す図であり、(b)は、シフトストロークの変化を示す図であり、(c)は、クラッチへの作動油を調整するリニアソレノイドバルブへの制御用電流の変化を示す図であり、(d)は、シフトダウン時における入力軸の回転数及びエンジン回転数の変化を示す図である。
 以下、添付図面に基づいて、本開示の一実施形態に係るデュアルクラッチ式変速機の制御装置の一例である変速制御装置を説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。
 図1は、本開示の一実施形態に係るデュアルクラッチ装置を備えるデュアルクラッチ式変速機を示す模式的な構成図である。
 デュアルクラッチ式変速機1は、駆動源の一例であるエンジン10の出力軸11に接続されている。
 デュアルクラッチ式変速機1は、第1クラッチ21及び第2クラッチ22を有するデュアルクラッチ装置20と、変速機構30と、制御装置の一例としての変速制御装置80と、エンジン回転数センサ91と、第1入力軸回転数センサ92、第2入力軸回転数センサ93と、車速センサ94(出力回転数センサともいう)と、アクセル開度センサ95とを備えている。
 第1クラッチ21は、例えば、湿式多板クラッチであって、エンジン10の出力軸11と一体回転するクラッチハブ23と、変速機構30の第1入力軸31と一体回転する第1クラッチドラム24と、複数枚の第1クラッチプレート25と、複数枚の第1クラッチプレート25の周囲の第1空間21Aと、第1クラッチプレート25を圧接する第1ピストン26と、第1油圧室26Aとを備えている。
 第1クラッチ21は、第1油圧室26Aに供給される作動油の圧力(作動油圧)によって第1ピストン26が出力側(図1の右方向)にストローク移動すると、第1クラッチプレート25が圧接されて、トルクを伝達する接続状態(締結状態)となる。一方、第1油圧室26Aの作動油圧が解放されると、第1ピストン26が図示しないスプリングの付勢力によって入力側(図1の左方向)にストローク移動されて、第1クラッチ21は動力伝達を遮断する切断状態となる。なお、以下の説明では、クラッチハブ23と第1クラッチドラム24とが異なる回転数で回転しつつ、第1クラッチプレート25を介してトルクが伝達される状態を第1クラッチ21の半クラッチ状態と称する。半クラッチ状態は、締結状態の一態様である。ここで、第1ピストン26を、複数の第1クラッチプレート25が接する直前の状態とする位置に維持するために必要な作動油の圧力を待機圧という。なお、待機圧は、第1ピストン26を入力側に付勢する図示しないリターンスプリングの反力と釣り合う圧力に相当する。第1空間21Aには、第1クラッチプレート25に発生する摩擦熱等を排出するために作動油が供給される。
 第2クラッチ22は、例えば、湿式多板クラッチであって、クラッチハブ23と、変速機構30の第2入力軸32と一体回転する第2クラッチドラム27と、複数枚の第2クラッチプレート28と、複数枚の第2クラッチプレート28の周囲の第2空間22Aと、第2クラッチプレート28を圧接する第2ピストン29と、第2油圧室29Aとを備えている。
 第2クラッチ22は、第2油圧室29Aに供給される作動油圧によって第2ピストン29が出力側(図1の右方向)にストローク移動すると、第2クラッチプレート28が圧接されて、トルクを伝達する接続状態(締結状態)となる。一方、作動油圧が解放されると、第2ピストン29が図示しないスプリングの付勢力によって入力側(図1の左方向)にストローク移動されて、第2クラッチ22はトルク伝達を遮断する切断状態となる。なお、以下の説明では、クラッチハブ23と第2クラッチドラム27とが異なる回転数で回転しつつ、第2クラッチプレート28を介してトルクが伝達される状態を第2クラッチ22の半クラッチ状態と称する。半クラッチ状態は、締結状態の一態様である。ここで、第2ピストン29を、複数の第2クラッチプレート28が接する直前の状態とする位置に維持するために必要な作動油の圧力を待機圧という。なお、待機圧は、第2ピストン29を入力側に付勢する図示しないリターンスプリングの反力と釣り合う圧力に相当する。なお、第1クラッチ21における待機圧と、第2クラッチ22における待機圧とは、それぞれの構成に依存するものであり、同じ圧力となるようにしてもよい。第2空間22Aには、第2クラッチプレート28に発生する摩擦熱等を排出するために作動油が供給される。
 変速機構30は、入力側に配置された副変速部40と、出力側に配置された主変速部50とを備えている。また、変速機構30は、副変速部40に設けられた第1入力軸31及び第2入力軸32と、主変速部50に設けられた出力軸33と、これらの軸31~33と平行に配置された副軸34とを備えている。第1入力軸31は、第2入力軸32を軸方向に貫通する中空軸内に相対回転自在に挿入されている。出力軸33の出力端には、何れも図示しない車両駆動輪に差動装置等を介して連結されたプロペラシャフト(車両駆動系)が接続されている。
 副変速部40には、第1スプリッタギヤ対41と、第2スプリッタギヤ対42とが設けられている。第1スプリッタギヤ対41は、第1入力軸31に固定された第1入力主ギヤ43と、副軸34に固定されて第1入力主ギヤ43と常時歯噛する第1入力副ギヤ44とを備えている。第2スプリッタギヤ対42は、第2入力軸32に固定された第2入力主ギヤ45と、副軸34に固定されて第2入力主ギヤ45と常時歯噛する第2入力副ギヤ46とを備えている。したがって、副軸34と、第1入力軸31及び第2入力軸32とは、常時結合された状態となっている。本実施形態では、第1スプリッタギヤ対41のギヤ比が第2スプリッタギヤ対42よりも小さくなっている、すなわち、第1スプリッタギヤ対41側が高速側の変速段となっている。このため、副変速部40においては、第1スプリッタギヤ対41を介して駆動力を伝達する場合(第1クラッチ21を締結した場合)には、高速側とすることができ、第2スプリッタギヤ対42を介して駆動力を伝達する場合(第2クラッチ22を締結した場合)には、低速側とすることができる。ここで、第1スプリッタギヤ対41を介した場合をH(高速側)段と称し、第2スプリッタギヤ対42を介した場合をL(低速側)段と称する。
 主変速部50には、第1出力ギヤ対51と、第2出力ギヤ対61と、第3出力ギヤ対71と、第1シンクロ機構55と、第2シンクロ機構56とが設けられている。第1出力ギヤ対51は、副軸34に固定された3速副ギヤ52と、出力軸33に相対回転自在に設けられると共に3速副ギヤ52と常時歯噛する3速主ギヤ53とを備えている。第2出力ギヤ対61は、副軸34に固定された2速副ギヤ62と、出力軸33に相対回転自在に設けられると共に2速副ギヤ62と常時歯噛する2速主ギヤ63とを備えている。第3出力ギヤ対71は、副軸34に固定された1速副ギヤ72と、出力軸33に相対回転自在に設けられると共に1速副ギヤ72と常時歯噛する1速主ギヤ73とを備えている。
 第1シンクロ機構55、第2シンクロ機構56は、公知の構造であって、何れも図示しないスリーブ、ドグクラッチ等を備えて構成されている。第1シンクロ機構55は、出力軸33と3速主ギヤ53とを係合状態(ギヤイン)にすることができる。出力軸33と3速主ギヤ53とを係合状態にすると、副変速部40がH段であれば、出力軸33は、H段の3速(3H速)相当で回転し、副変速部40がL段であれば、出力軸33は、L段の3速(3L速)相当で回転する。
 第2シンクロ機構56は、出力軸33と2速主ギヤ63とを係合状態にすることができ、また、出力軸33と1速主ギヤ73とを係合状態にすることができる。出力軸33と2速主ギヤ63とを係合状態にすると、副変速部40がH段であれば、出力軸33は、H段の2速(2H速)相当で回転し、副変速部40がL段であれば、出力軸33は、L段の2速(2L速)相当で回転する。また、出力軸33と1速主ギヤ73とを係合状態にすると、副変速部40がH段であれば、出力軸33は、H段の1速(1H速)相当で回転し、副変速部40がL段であれば、出力軸33は、L段の1速(1L速)相当で回転する。
 変速機構30では、副変速部40と、主変速部50とにより、1L速、1H速、2L速、2H速、3L速、3H速に切替ることができる。変速機構30では、低速段から順に、1L速、1H速、2L速、2H速、3L速、3H速となっている。第1シンクロ機構55及び第2シンクロ機構56の作動は、後述する変速制御部83によって制御されており、アクセル開度センサ95により検出されるアクセル開度、速度センサ94により検出される速度等に応じて、出力軸33と出力主ギヤ(53,63,73)とを選択的に係合状態(ギヤイン)又は非係合状態(ニュートラル状態)に切替るようになっている。なお、出力ギヤ対(51,61,71)やシンクロ機構(55,56)の個数、配列パターン等は図示例に限定されものではなく、本開示の趣旨を逸脱しない範囲で適宜変更することが可能である。
 変速機構30では、1L速と1H速との間、2L速と2H速との間、3L速と3H速との間の変速時(シフトアップ及びシフトダウン)には、クラッチの切替だけで変速を行うことができ、1H速と2L速との間、2H速と3L速との間の変速時(シフトアップ及びシフトダウン)には、クラッチ切替及びギヤ変更を行う必要がある。
 また、変速機構30では、クラッチ切替及びギヤ変更を伴うシフトアップ時(1H速から隣(変速比の並びでの隣)の2L速へのシフトアップ、2H速から隣の3L速へのシフトアップ等)においては、変速機構30の構成により、シフトアップ前の状態において、締結側クラッチ(第2クラッチ22)に接続された第2入力軸32の回転数がエンジン10の回転数よりも高くなっている。したがって、変速機構30においては、クラッチ切替とギヤ変更とを伴うシフトアップ時には、締結側クラッチ(第2クラッチ22)に接続された第2入力軸32の回転数がエンジン10の回転数よりも高くなることが保証されている。また、本実施形態の変速機構30では、クラッチ切替及びギヤ変更を伴うシフトダウン時(2L速から隣の1H速へのシフトダウン、3L速から隣の2H速へのシフトダウン等)においては、変速機構30の構成により、シフトダウン前の状態において、締結側クラッチ(第1クラッチ21)に接続された第1入力軸31の回転数がエンジン10の回転数よりも低くなっている。したがって、変速機構30においては、クラッチ切替とギヤ変更とを伴うシフトダウン時には、締結側クラッチ(第1クラッチ21)に接続された第1入力軸31の回転数がエンジン10の回転数よりも低くなることが保証されている。
 エンジン回転数センサ91は、エンジン10の回転数を検出し、変速制御装置80に出力する。第1入力軸回転数センサ92は、第1入力軸31の回転数を検出し、変速制御装置80に出力する。第2入力軸回転数センサ93は、第2入力軸32の回転数を検出し、変速制御装置80に出力する。車速センサ94は、出力軸33の回転数を検出し、変速制御装置80に出力する。出力軸33の回転数からは、車速を特定することができる。アクセル開度センサ95は、アクセル開度を検出し、変速制御装置80に出力する。
 変速制御装置80は、コントロールユニット81と、変速シフタ84と、第1クラッチ作動油調整部85と、第2クラッチ作動油調整部86とを有する。
 コントロールユニット81は、エンジン10、第1クラッチ作動油調整部85、第2クラッチ作動油調整部86、変速シフタ84等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うために、コントロールユニット81には、各種センサ類(91~95)のセンサ値が入力される。
 また、コントロールユニット81は、油圧制御部82と、作動油充填手段及び締結実行手段の一例としての変速制御部83とを一部の機能要素として有する。これら機能要素は、本実施形態では一体のハードウェアであるコントロールユニット81に含まれるものとして説明するが、これらの何れか一部を別体のハードウェアに設けることもできる。
 油圧制御部82は、変速制御部83の指示に従って、第1クラッチ作動油調整部85及び第2クラッチ作動油調整部86に対して制御用信号(制御用電流)を出力する。
 変速制御部83は、アクセル開度センサ95からアクセル開度や、車速センサ94からの車速等の情報に基づいて、変速が必要であるか否かを判定し、変速が必要であれば必要な変速(変速先)を特定する。また、変速制御部83は、必要な変速が、クラッチ切替のみの変速であるか、又はクラッチの切替にギヤ変更(ギヤシフト)を伴う変速であるかを判定する。
 変速制御部83は、クラッチ切替のみの変速の場合には、油圧制御部82に締結状態とするクラッチを切り替えるように指示する。
 また、変速制御部83は、ギヤ変更(ギヤシフト)を伴う変速の場合には、変速シフタ84に、ギヤ変更(現在(変速元)のギヤからのギヤアウト及び変更先のギヤへのギヤイン)を指示する。更に、変速制御部83は、ギヤアウトが完了した後には、シフトアップ時において締結側クラッチに接続された入力軸の回転数がエンジン10の回転数よりも高くなっている場合、又は、シフトダウン時において締結側クラッチに接続された入力軸の回転数がエンジン10の回転数よりも低くなっている場合の何れかに該当する場合には、締結側クラッチに供給する作動油の圧力が、待機圧よりも高い圧力となるように、油圧制御部82に作動油を供給させる指示を出す。ここで、待機圧よりも高い圧力を締結側クラッチに供給するので、締結側クラッチのピストンを、ピストン周囲との摩擦力に抗して、締結する側に適切に移動させることができる。
 なお、変速機構30では、ギヤ変更を伴うシフトダウン又はシフトアップ時には、シフトアップ時において締結側クラッチに接続された入力軸の回転数がエンジン10の回転数よりも高くなっている場合、又は、シフトダウン時において締結側クラッチに接続された入力軸の回転数がエンジン10の回転数よりも低くなっている場合の何れかに該当しているので、ギヤ変更を伴う変速においては、変速制御部83は、締結側クラッチに接続された入力軸の回転数と、エンジン10の回転数とのセンサ値を直接比較等する必要がない。
 変速制御部83は、締結側クラッチに供給する作動油の圧力が、待機圧よりも高い圧力となるように、油圧制御部82に作動油を供給させる指示を出した後には、第1入力軸回転数センサ92又は第2入力軸回転数センサ93による締結側クラッチに接続された入力軸の回転数と、エンジン回転数センサ91によるエンジン10の回転数とが一致した場合には、締結側クラッチに供給する作動油の圧力が待機圧となるように、油圧制御部82に作動油を供給させる指示を出す。
 その後、変速制御部83は、ギヤインが完了した場合には、締結側クラッチが完全に締結状態となるように、油圧制御部82に待機圧より高い圧力の作動油を供給させる指示を出す。
 変速シフタ84は、変速制御部83の指示に従って、第1シンクロ機構55及び第2シンクロ機構56を作動させて、出力軸33と出力主ギヤ(53,63,73)との係合状態を解放(ギヤアウト)したり、出力軸33と出力主ギヤ(53,63,73)とを係合(ギヤイン)したりする。
 第1クラッチ作動油調整部85は、例えば、リニアソレノイドバルブを有し、油圧制御部82から供給される制御用信号(制御用電流)に従って、図示しない油圧供給源からの作動油を調整することにより、第1油圧室26Aに供給する作動油の量及び圧力を調整する。
 第2クラッチ作動油調整部86、例えば、リニアソレノイドバルブを有し、油圧制御部82から供給される制御用信号(制御用電流)に従って、図示しない油圧供給源からの作動油を調整することにより、第2油圧室29Aに供給する作動油の量及び圧力を調整する。
 次に、変速制御装置80による変速制御処理について説明する。
 図2は、本開示の一実施形態に係る変速制御処理のフローチャートである。
 変速制御処理は、変速制御部83が、変速が必要であると判定した場合に実行される。
 変速制御部83は、ギヤ変更を伴う変速であるか否かを判定する(S11)。この結果、ギヤ変更を伴わない変速である場合(S11:NO)には、変速制御部83は、油圧制御部82により、第1クラッチ作動油調整部85又は第2クラッチ作動油調整部86の一方を制御して、現在締結状態にあり、解放される側のクラッチ(解放側クラッチ)を断にし(ステップS21)、第1クラッチ作動油調整部85又は第2クラッチ作動油調整部86の他方を制御して、締結側クラッチを接にし(ステップS22)、処理を終了する。
 一方、ギヤ変更を伴う変速である場合(S11:YES)には、変速制御部83は、油圧制御部82により、第1クラッチ作動油調整部85又は第2クラッチ作動油調整部86の一方を制御して、解放側クラッチを断にし(ステップS12)、変速シフタ84を制御して、出力軸33に係合している現在のギヤ(変速元ギヤ)のギヤアウトを開始させる(S13)。
 次いで、変速制御部83は、変速元ギヤのギヤアウトが完了したか否かを判定し(S14)、ギヤアウトが完了していない場合(S14:NO)には、ステップS14を再び実行する。
 一方、ギヤアウトが完了している場合(S14:YES)には、変速制御部83は、変速シフタ84を制御して、変速先ギヤのギヤインを開始させる(S15)。
 次いで、変速制御部83は、油圧制御部82により、第1クラッチ作動油調整部85又は第2クラッチ作動油調整部86の一方を制御して、締結側クラッチに待機圧よりも高い圧力が供給されるようにして作動油の供給を開始する(S16)。これにより、締結側クラッチの油圧室に作動油が充填されていくこととなる。
 次いで、変速制御部83は、締結側クラッチに接続された入力軸の回転数と、エンジン回転数センサ91によるエンジン10の回転数とが一致したか否かを判定する(S17)。この結果、入力軸の回転数と、エンジン10の回転数とが一致していない場合(S17:NO)には、変速制御部83は、ステップS17を再び実行する。
 一方、入力軸の回転数と、エンジン10の回転数とが一致した場合(S17:YES)には、これ以降は、ギヤインが完了するまでに締結側クラッチが半クラッチ状態となると、エンジン10の駆動力がシンクロ機構の同期動作を邪魔する方向、すなわち、同期対象となる出力軸33と変速先のギヤとの回転数差を拡大する方向に作用することとなるので、このような状況とならないようにするために、変速制御部83は、油圧制御部82により、締結側クラッチに供給する作動油の圧力が待機圧を維持するように制御する(S18)。
 次いで、変速制御部83は、変速先ギヤのギヤインが完了したか否かを判定し(S19)、ギヤインが完了していない場合(S19:NO)には、変速制御部83は、ステップS19を再び実行する。
 一方、ギヤインが完了した場合(S19:YES)には、変速制御部83は、油圧制御部82により、第1クラッチ作動油調整部85又は第2クラッチ作動油調整部86の一方を制御して、待機圧よりも高い圧力の作動油を締結側クラッチに供給して、締結側クラッチを完全な締結状態とする(S20)。ここで、ギヤインが完了した状態においては、締結側クラッチは、既に作動油が充填されて待機圧に維持されているので、待機圧よりも高い圧力の作動油の供給を開始すると、締結側クラッチは、早期に完全な締結状態となる。
 次に、本実施形態に係るデュアルクラッチ式変速機1の変速時における各種状態の変化について説明する。
 図3(a)は、シフトアップ時における入力軸の回転数及びエンジン回転数の変化を示す図であり、(b)は、シフトストロークの変化を示す図であり、(c)は、クラッチへの作動油を調整するリニアソレノイドバルブへの制御用電流の変化を示す図であり、(d)は、シフトダウン時における入力軸の回転数及びエンジン回転数の変化を示す図である。
 ギヤの変更を伴うシフトアップの場合として、例えば、2H速から3L速に変速する場合を例に図3(a)、図3(b)、図3(c)を用いて説明する。
 シフトアップを開始する前の時点T0においては、解放側クラッチである第1クラッチ21は完全な締結状態であるので、エンジン回転数と、第1クラッチ21に接続された第1入力軸31の回転数(解放側回転数)とは同じ回転数である。一方、締結側クラッチである第2クラッチ22に接続された第2入力軸32の回転数(締結側回転数)は、第1クラッチ21と第2クラッチ22とが副軸34等を介して所定のギヤ比をもって結合されているので、解放側回転数よりも高い回転数となっている。
 時点T0においては、図3(b)に示すように変換元のギヤ(2速主ギヤ63)は、ギヤイン状態となっている。また、油圧制御部82が第2クラッチ作動油調整部86に出力する制御用電流は、図3(c)に示すように最低値となっている。制御用電流が最低値であるので、第2クラッチ22の第2油圧室29Aには、作動油が供給されていない状態となっている。
 次いで、時点T1において、変速制御部83が、ギヤの変更を伴う2H速から3L速へのシフトアップが必要であると判定すると、変速制御部83は、油圧制御部82により、第1クラッチ21を断状態とするように制御する。
 次いで、時点T2において、変速制御部83は、変速シフタ84により、第2シンクロ機構56の図示しないスリーブの移動を開始させて、2速主ギヤ63のギヤアウトを開始させる。
 これにより、図3(b)に示すように、第2シンクロ機構56の図示しないスリーブのストローク(シフトストローク)は、時点T2に示すギヤインの位置からニュートラル位置方向に移動し、ギヤアウトが完了してニュートラル位置となる(時点T3)。
 時点T3においては、変速制御部83は、ギヤアウトが完了しているので、変速シフタ84を制御して、第1シンクロ機構55の図示しないスリーブの移動を開始させて、変速先ギヤ(3速主ギヤ53)のギヤインを開始させる。
 時点T3にギヤインが開始されると、第1シンクロ機構55により出力軸33(第1シンクロ機構55のスリーブ)と、3速主ギヤ53との同期が開始される。これにより、時点T3以降において、図3(a)に示すように、第2入力軸22の回転数(締結側回転数)が徐々に出力軸33の回転数と同期するように低下していくことになる。なお、エンジン回転数は、図3(a)に示すように、無負荷の状態でほぼ一定の回転数を維持している。
 また、変速制御部83は、時点T3にギヤインが開始されると、油圧制御部82により、第2クラッチ作動油調整部86を制御して、第2クラッチ22に待機圧よりも高い圧力が供給されるように、制御用電流を出力させる。これにより、第2クラッチ22の第2油圧室29Aに作動油が充填されていくこととなる。この時点において、第2クラッチ22が半クラッチ状態になった場合には、第2出力軸32の回転数が減少する方向、すなわち、第1シンクロ機構55による同期を補助する方向に作用するので、同期に有利に働くこととなる。
 変速制御部83は、図3(a)に示すように、締結側回転数とエンジン回転数が一致すると(時点T4)、第2クラッチ作動油調整部86を制御して、第2クラッチ22に待機圧が供給されるように、制御用電流を出力させる。これにより、第2クラッチ22の第2油圧室29Aは、待機圧となるように調整される。
 出力軸33(第1シンクロ機構55のスリーブ)と、3速主ギヤ53との同期が完了すると(時点T5)、第1シンクロ機構55は、図3(b)に示すように、スリーブを3速主ギヤ53のドグギヤと結合される位置まで移動してギヤインが完了する(時点T6)。
 3速主ギヤ53のギヤインが完了すると、変速制御部83は、油圧制御部82により、第2クラッチ22に供給する作動油の圧力を徐々に高くしていき、所定の最大圧力とし(時点T7)、それ以降は、第2クラッチ22を断にする指示があるまではこの状態を維持する。
 時点T6においてギヤインが完了して、第2クラッチ22に供給する作動油の圧力が徐々に高くされると、第2クラッチ22は、まず、半クラッチ状態となり、半クラッチ状態での滑りが徐々に減少していく。このため、時点T6以降においては、図3(a)に示すように、締結側回転数と、エンジン回転数との差が徐々に減少していき、時点T7において、締結側回転数と、エンジン回転数とが一致して、第2クラッチ22が完全に締結状態となる。
 ここで、本実施形態に係る変速制御装置80の作用効果を明確にするために、比較例と比較する。
 比較例においては、図3(c)の破線に示すように、変速先ギヤのギヤインが完了した時点T6以降において、第2クラッチ22の第2油圧室29Aへの作動油の供給を開始している。このため、第2油圧室29Aに作動油が充填され、第2油圧室29Aが待機圧になるまでに長時間を要していた。このため、第2クラッチ22を、半クラッチ状態を経て完全に締結状態とするまでに長時間を要してしまい、締結側回転数とエンジン回転数とが一致する完全締結状態になるのは、図3(a)に示すように、本実施形態で実現できる時点T7よりも遅い時点T8となってしまっていた。以上から、本実施形態では、比較例に比して、早期に変速を完了することができる。
 次に、ギヤ変更を伴うシフトダウンの場合として、例えば、3L速から2H速に変速する場合を例に図3(b)、図3(c)、図3(d)を用いて説明する。なお、上記説明したシフトアップの場合とシフトダウンの場合とで、便宜的に、図3(b)及び図3(c)を共用して説明するが、図中の時点T0~T8の時間は、シフトアップの場合とシフトダウンの場合とでは、必ずしも同じ時間ではない。
 シフトダウンを開始する前の時点T0においては、解放側クラッチである第2クラッチ22は締結状態であるので、図3(d)に示すように、エンジン回転数と、第2クラッチ22に接続された第2入力軸32の回転数(解放側回転数)とは同じ回転数である。一方、締結側クラッチである第1クラッチ21に接続された第1入力軸31の回転数(締結側回転数)は、第1クラッチ21と第2クラッチ22とが副軸34等を介して所定のギヤ比をもって結合されているので、解放側回転数よりも低い回転数となっている。
 時点T0においては、図3(b)に示すように変換元のギヤ(3速主ギヤ53)は、ギヤイン状態となっている。また、油圧制御部82が第1クラッチ作動油調整部85に出力する制御用電流は、図3(c)に示すように最低値となっている。制御用電流が最低値であるので、第1クラッチ21の第1油圧室26Aには、作動油が供給されていない状態となっている。
 次いで、時点T2において、変速制御部83が、ギヤの変更を伴う3L速から2H速へのシフトダウンが必要であると判定すると、変速制御部83は、油圧制御部82により、第2クラッチ22を断状態とするように制御する。
 次いで、時点T2において、変速制御部83は、変速シフタ84により、第1シンクロ機構55の図示しないスリーブの移動を開始させて、3速主ギヤ53のギヤアウトを開始させる。
 これにより、図3(b)に示すように、第1シンクロ機構55の図示しないスリーブのストローク(シフトストローク)は、時点T2に示すギヤインの位置からニュートラル位置方向に移動し、ギヤアウトが完了してニュートラル位置となる(時点T3)。
 時点T3においては、変速制御部83は、ギヤアウトが完了しているので、変速シフタ84を制御して、第2シンクロ機構56の図示しないスリーブの移動を開始させて、変速先ギヤ(2速主ギヤ63)のギヤインを開始させる。
 時点T3にギヤインが開始されると、第2シンクロ機構56により出力軸33(第2シンクロ機構56のスリーブ)と、2速主ギヤ63との同期が開始される。これにより、時点T3以降において、図3(d)に示すように、第1入力軸21の回転数(締結側回転数)が徐々に出力軸33の回転数と同期するように上昇していくことになる。なお、エンジン回転数は、図3(d)に示すように、無負荷の状態でほぼ一定の回転数を維持している。
 また、変速制御部83は、時点T3にギヤインが開始されると、油圧制御部82により、第1クラッチ作動油調整部85を制御して、第1クラッチ21に待機圧よりも高い圧力が供給されるように、制御用電流を出力させる。これにより、第1クラッチ21の第1油圧室26Aに作動油が充填されていくこととなる。この時点において、第1クラッチ21が半クラッチ状態になった場合には、第1出力軸31の回転数が増加する方向、すなわち、第2シンクロ機構56による同期を補助する方向に作用するので、同期に有利に働くこととなる。
 変速制御部83は、図3(d)に示すように、締結側回転数とエンジン回転数が一致すると(時点T4)、油圧制御部82により、第1クラッチ作動油調整部85を制御して、第1クラッチ21に待機圧が供給されるように、制御用電流を出力させる。これにより、第1クラッチ21の第1油圧室26Aは、待機圧となるように調整される。
 出力軸33(第2シンクロ機構56のスリーブ)と、2速主ギヤ63との同期が完了すると(時点T5)、第2シンクロ機構56は、図3(b)に示すように、スリーブを2速主ギヤ63のドグギヤと結合される位置まで移動して2速主ギヤ63のギヤインが完了する(時点T6)。
 2速主ギヤ63のギヤインが完了すると、変速制御部83は、油圧制御部82により、第1クラッチ21に供給する作動油の圧力を徐々に高くしていき、所定の最大圧力とし(時点T7)、それ以降は、第1クラッチ21を断にする指示があるまではこの状態を維持する。
 時点T6においてギヤインが完了して、第1クラッチ21に供給する作動油の圧力が徐々に高くされると、第1クラッチ21は、まず、半クラッチ状態となり、半クラッチ状態での滑りが徐々に減少していく。このため、時点T6以降においては、図3(d)に示すように、締結側回転数と、エンジン回転数との差が徐々に減少していき、時点T7において、締結側回転数と、エンジン回転数とが一致して、第1クラッチ21が完全に締結状態となる。
 ここで、本実施形態に係る変速制御装置80の作用効果を明確にするために、比較例と比較する。
 比較例においては、図3(c)の破線に示すように、変速先ギヤのギヤインが完了した時点T6以降において、第1クラッチ21の第1油圧室26Aへの作動油の供給を開始している。このため、第1油圧室26Aに作動油が充填され、第1油圧室26Aが待機圧になるまでに長時間を要していた。このため、第1クラッチ21を、半クラッチ状態を経て完全に締結状態とするまでに長時間を要してしまい、締結側回転数とエンジン回転数とが一致する完全締結状態になるのは、図3(d)に示すように、本実施形態で実現できる時点T7よりも遅い時点T8となってしまっていた。以上から、本実施形態では、比較例に比して、早期に変速を完了することができる。
 以上説明したように、本実施形態に係る変速制御装置80によると、クラッチ切替とギヤ変更とを伴うシフトアップ時であって、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数がエンジン回転数よりも高い場合、又は、クラッチ切替とギヤ変更とを伴うシフトダウン時であって、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数がエンジン回転数よりも低い場合のいずれかに該当する場合において、変更前ギヤのギヤアウトが完了した後から、入力軸の回転数がエンジン回転数と一致するまでの間において、締結側クラッチに供給する作動油の圧力が待機圧よりも高い圧力となるようにしているので、変速を迅速に行うことができる。
 なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。
 例えば、上記実施形態では、ギヤアウトが完了した後から、締結側クラッチに接続された入力軸の回転数と、エンジン10の回転数とが一致するまで、締結側クラッチに供給する作動油の圧力が待機圧よりも高い圧力となるようにしていたが、本開示はこれに限られず、ギヤアウトが完了した後から、締結側クラッチに接続された入力軸の回転数と、エンジン10の回転数とが一致するまで、クラッチに供給する作動油の圧力が待機圧となるようにしてもよく、また、ギヤアウトが完了した後から、締結側クラッチに接続された入力軸の回転数と、エンジン10の回転数とが一致するまでの間の少なくとも一部の時間において、締結側クラッチに供給する作動油の圧力が待機圧よりも高い圧力となるようにしてもよい。
 また、上記実施形態では、デュアルクラッチ式変速機は、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤへの変更とを伴うシフトアップ時においては、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも高くなるように構成されるとともに、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤへの変更とを伴うシフトダウン時においては、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が駆動源の回転数よりも低くなるように構成されていたが、本開示はこれに限られず、デュアルクラッチ式変速機は、任意の構成とすることができる。この場合には、車両駆動系に接続された出力軸に結合するギヤの変更を伴うシフトアップ時であって、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数がエンジンの回転数よりも高い場合、又は、締結状態とするクラッチの切替と、車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時であって、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数がエンジンの回転数よりも低い場合の少なくとも一方の場合に該当するか否かを、変速の内容及び/又はセンサ値等により変速制御部83が判定するようにしてもよい。
 また、上記実施形態では、副変速部40を有するデュアルクラッチ式変速機1としていたが、本開示はこれに限られず、副変速部40を有さないデュアルクラッチ式変速機に対しても適用することができる。
 本出願は、2015年11月27日付で出願された日本国特許出願(特願2015-231819)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示のデュアルクラッチ式変速機の制御装置は、締結状態とするクラッチの切替とギヤ変更とを伴う変速時に、迅速に変速を行うことができるという点において有用である。
 1 デュアルクラッチ式変速機
 10 エンジン
 11 出力軸
 20 デュアルクラッチ装置
 21 第1クラッチ
 22 第2クラッチ
 26,29 ピストン
 26A 第1油圧室
 29A 第2油圧室
 30 変速機構
 31 第1入力軸
 32 第2入力軸
 33 出力軸
 34 副軸
 40 副変速部
 41 第1スプリッタギヤ対
 42 第2スプリッタギヤ対
 50 主変速部
 51 第1出力ギヤ対
 52 3速副ギヤ
 53 3速主ギヤ
 55 第1シンクロ機構
 56 第2シンクロ機構
 61 第2出力ギヤ対
 62 2速副ギヤ
 63 2速主ギヤ
 71 第3出力ギヤ対
 72 1速副ギヤ
 73 1速主ギヤ
 80 変速制御装置
 81 コントロールユニット
 82 油圧制御部
 83 変速制御部
 84 変速シフタ
 85 第1クラッチ作動油調整部
 86 第2クラッチ作動油調整部

Claims (10)

  1.  駆動源と変速機構との間に第1クラッチ及び第2クラッチを含むクラッチ装置が設けられ、前記駆動源から車両駆動系への駆動力伝達経路を、前記第1クラッチを介する系統と前記第2クラッチを介する系統とに切替え可能なデュアルクラッチ式変速機の制御装置であって、
     前記第1クラッチ及び前記第2クラッチは、供給される油圧に応じて締結状態と切断状態とを切替可能であり、
     前記第1クラッチと前記第2クラッチとの間での締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時であって、シフトアップ前の状態において、前記第1クラッチと前記第2クラッチの内の前記締結状態とする対象となるクラッチである締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも高い場合、又は、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時であって、シフトダウン前の状態において、前記締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも低い場合の少なくとも一方の場合において、変更前のギヤのギヤアウトが完了した後から、前記入力軸の回転数が前記駆動源の回転数と一致するまでの間の少なくとも一部の時間において、前記締結側クラッチに対して、前記締結側クラッチを締結状態に移行する直前の状態に維持するために必要な所定の待機圧以上の圧力の作動油を供給させ、その後、変更先のギヤのギヤインが完了するまで、前記締結側クラッチに対して前記待機圧の作動油を供給させる作動油充填手段と、
     前記変更先のギヤのギヤインが完了した後に、前記締結側クラッチに対して前記待機圧よりも高い圧力を供給させて前記締結側クラッチを締結状態とする締結実行手段と、を有するデュアルクラッチ式変速機の制御装置。
  2.  前記作動油充填手段は、変更前のギヤのギヤアウトが完了した直後から、前記締結側クラッチに対して、前記待機圧以上の作動油を供給させる請求項1に記載のデュアルクラッチ式変速機の制御装置。
  3.  前記作動油充填手段は、変更前のギヤのギヤアウトが完了した後から、前記入力軸の回転数が前記駆動源の回転数と一致するまでの間の少なくとも一部の時間において、前記締結側クラッチに対して、前記待機圧よりも高い圧力の作動油を供給させる請求項1又は請求項2に記載のデュアルクラッチ式変速機の制御装置。
  4.  前記デュアルクラッチ式変速機は、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時においては、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも高くなるように構成されるとともに、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時においては、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも低くなるように構成されている請求項1から請求項3の何れか一項に記載のデュアルクラッチ式変速機の制御装置。
  5.  前記デュアルクラッチ式変速機は、前記第1クラッチに接続される第1入力軸と、前記第2クラッチに接続される第2入力軸と、前記第1入力軸及び第2入力軸に常時結合されている副軸とを有し、前記第1入力軸と前記副軸とを結合する第1スプリッタギヤ対と、前記第2入力軸と前記副軸とを結合する第2スプリッタギヤ対とは、異なるギヤ比となっている請求項4に記載のデュアルクラッチ式変速機の制御装置。
  6.  駆動源と変速機構との間に設けられ、第1クラッチ及び第2クラッチを含むクラッチ装置と、
     前記駆動源から車両駆動系への駆動力伝達経路を、前記第1クラッチを介する系統と前記第2クラッチを介する系統とに切替え可能な制御装置を有するデュアルクラッチ式変速機であって、
     前記第1クラッチ及び前記第2クラッチは、供給される油圧に応じて締結状態と切断状態とを切替可能であり、
     前記制御装置は、
      前記第1クラッチと前記第2クラッチとの間での締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時であって、シフトアップ前の状態において、前記第1クラッチと前記第2クラッチの内の前記締結状態とする対象となるクラッチである締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも高い場合、又は、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時であって、シフトダウン前の状態において、前記締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも低い場合の少なくとも一方の場合において、変更前のギヤのギヤアウトが完了した後から、前記入力軸の回転数が前記駆動源の回転数と一致するまでの間の少なくとも一部の時間において、前記締結側クラッチに対して、前記締結側クラッチを締結状態に移行する直前の状態に維持するために必要な所定の待機圧以上の圧力の作動油を供給させ、その後、変更先のギヤのギヤインが完了するまで、前記締結側クラッチに対して前記待機圧の作動油を供給させる作動油充填手段と、
      前記変更先のギヤのギヤインが完了した後に、前記締結側クラッチに対して前記待機圧よりも高い圧力を供給させて前記締結側クラッチを締結状態とする締結実行手段と、
     を有するデュアルクラッチ式変速機。
  7.  前記作動油充填手段は、変更前のギヤのギヤアウトが完了した直後から、前記締結側クラッチに対して、前記待機圧以上の作動油を供給させる請求項6に記載のデュアルクラッチ式変速機。
  8.  前記作動油充填手段は、変更前のギヤのギヤアウトが完了した後から、前記入力軸の回転数が前記駆動源の回転数と一致するまでの間の少なくとも一部の時間において、前記締結側クラッチに対して、前記待機圧よりも高い圧力の作動油を供給させる請求項6又は請求項7に記載のデュアルクラッチ式変速機。
  9.  前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトアップ時においては、シフトアップ前の状態において、締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも高くなるように構成されるとともに、前記締結状態とするクラッチの切替と、前記車両駆動系に接続された出力軸に結合するギヤの変更とを伴うシフトダウン時においては、シフトダウン前の状態において、締結側クラッチに接続された入力軸の回転数が前記駆動源の回転数よりも低くなるように構成されている請求項6から請求項8の何れか一項に記載のデュアルクラッチ式変速機。
  10.  前記第1クラッチに接続される第1入力軸と、前記第2クラッチに接続される第2入力軸と、前記第1入力軸及び第2入力軸に常時結合されている副軸とをさらに有し、
     前記第1入力軸と前記副軸とを結合する第1スプリッタギヤ対と、前記第2入力軸と前記副軸とを結合する第2スプリッタギヤ対とは、異なるギヤ比となっている請求項9に記載のデュアルクラッチ式変速機。
PCT/JP2016/084549 2015-11-27 2016-11-22 デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機 WO2017090586A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680069252.7A CN108291631B (zh) 2015-11-27 2016-11-22 双离合器式变速器的控制装置和双离合器式变速器
EP16868533.7A EP3382237B1 (en) 2015-11-27 2016-11-22 Control apparatus for dual-clutch type transmission, and dual-clutch type transmission
US15/779,503 US10683932B2 (en) 2015-11-27 2016-11-22 Control device for dual-clutch transmission and dual-clutch transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231819 2015-11-27
JP2015231819A JP6743374B2 (ja) 2015-11-27 2015-11-27 デュアルクラッチ式変速機の制御装置

Publications (1)

Publication Number Publication Date
WO2017090586A1 true WO2017090586A1 (ja) 2017-06-01

Family

ID=58764120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084549 WO2017090586A1 (ja) 2015-11-27 2016-11-22 デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機

Country Status (5)

Country Link
US (1) US10683932B2 (ja)
EP (1) EP3382237B1 (ja)
JP (1) JP6743374B2 (ja)
CN (1) CN108291631B (ja)
WO (1) WO2017090586A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291588B (zh) * 2015-11-26 2020-05-22 五十铃自动车株式会社 工作油控制装置
CN109973641B (zh) * 2018-05-31 2020-07-28 长城汽车股份有限公司 一种换挡控制方法和装置
JP7131417B2 (ja) * 2019-02-01 2022-09-06 トヨタ自動車株式会社 車両の制御装置
KR20210031579A (ko) * 2019-09-11 2021-03-22 현대자동차주식회사 하이브리드 파워트레인

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185583A (ja) * 1992-10-21 1994-07-05 Komatsu Ltd 変速機およびその制御方法
JP2004197791A (ja) * 2002-12-17 2004-07-15 Fuji Heavy Ind Ltd 変速制御方法および自動変速装置
JP2014156919A (ja) * 2013-02-18 2014-08-28 Iseki & Co Ltd 車両

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214405B2 (ja) 2004-08-19 2009-01-28 株式会社デンソー 自動変速機の制御装置
JP4939049B2 (ja) 2005-12-28 2012-05-23 本田技研工業株式会社 ツインクラッチ式歯車変速機における変速制御方法
JP4257350B2 (ja) * 2006-07-31 2009-04-22 ジヤトコ株式会社 自動変速機の制御装置及び方法
JP5136129B2 (ja) 2008-03-12 2013-02-06 いすゞ自動車株式会社 車両用デュアルクラッチ式変速機
US8328686B2 (en) 2008-09-29 2012-12-11 Honda Motor Co., Ltd. Shift controller
JP2010121699A (ja) * 2008-11-19 2010-06-03 Mitsubishi Fuso Truck & Bus Corp 変速装置用油圧回路装置
WO2012086225A1 (ja) * 2010-12-24 2012-06-28 ヤマハ発動機株式会社 車両の制御装置、及びそれを備える自動二輪車
DE102012015150A1 (de) * 2012-07-31 2014-02-06 Daimler Ag Kraftfahrzeuggetriebevorrichtung
KR101551009B1 (ko) * 2013-12-18 2015-09-07 현대자동차주식회사 Dct 차량의 변속 제어 방법
KR101567646B1 (ko) * 2013-12-18 2015-11-09 현대자동차주식회사 차량의 dct 제어방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185583A (ja) * 1992-10-21 1994-07-05 Komatsu Ltd 変速機およびその制御方法
JP2004197791A (ja) * 2002-12-17 2004-07-15 Fuji Heavy Ind Ltd 変速制御方法および自動変速装置
JP2014156919A (ja) * 2013-02-18 2014-08-28 Iseki & Co Ltd 車両

Also Published As

Publication number Publication date
JP2017096475A (ja) 2017-06-01
JP6743374B2 (ja) 2020-08-19
CN108291631B (zh) 2020-03-06
EP3382237B1 (en) 2021-07-21
US20180363776A1 (en) 2018-12-20
EP3382237A1 (en) 2018-10-03
US10683932B2 (en) 2020-06-16
CN108291631A (zh) 2018-07-17
EP3382237A4 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
US20110306464A1 (en) Power-Off Downshift Engagement Dampening
WO2017090586A1 (ja) デュアルクラッチ式変速機の制御装置、及びデュアルクラッチ式変速機
JP3994906B2 (ja) 多段式自動変速機の変速制御装置
JP5899682B2 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
WO2017209229A1 (ja) デュアルクラッチ式変速機の制御装置
KR20150071122A (ko) 차량의 dct 제어방법
WO2013005674A1 (ja) デュアルクラッチ式変速機の制御方法とデュアルクラッチ式変速機とそれを搭載した車両
JP2013083330A (ja) 自動変速機
JP6834217B2 (ja) 変速機の制御装置
JP2018066413A (ja) 変速機の制御装置
JP6865921B2 (ja) 変速機の制御装置
JP6613850B2 (ja) デュアルクラッチ式変速機の制御装置
WO2017141937A1 (ja) デュアルクラッチ式変速機の制御装置
JP6733388B2 (ja) 変速機の制御装置
WO2017141930A1 (ja) デュアルクラッチ式変速機の制御装置
JP6724626B2 (ja) 変速機の制御装置
KR101955344B1 (ko) 습식 더블클러치 변속기의 싱크로 체결 방법 및 그 장치
JP2017219087A (ja) デュアルクラッチ式変速機の制御装置
KR101896370B1 (ko) 습식 더블클러치 변속기의 제어 방법
KR100427667B1 (ko) 이중 클러치 방식 수동 변속기
JP2019031998A (ja) 変速制御装置
JP2005337149A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868533

Country of ref document: EP