WO2017090492A1 - 減衰力調整式緩衝器 - Google Patents

減衰力調整式緩衝器 Download PDF

Info

Publication number
WO2017090492A1
WO2017090492A1 PCT/JP2016/083910 JP2016083910W WO2017090492A1 WO 2017090492 A1 WO2017090492 A1 WO 2017090492A1 JP 2016083910 W JP2016083910 W JP 2016083910W WO 2017090492 A1 WO2017090492 A1 WO 2017090492A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
cylinder
chamber
damping force
pilot
Prior art date
Application number
PCT/JP2016/083910
Other languages
English (en)
French (fr)
Inventor
治 湯野
康浩 青木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2017552373A priority Critical patent/JP6537628B2/ja
Priority to US15/779,373 priority patent/US10634207B2/en
Priority to DE112016005415.7T priority patent/DE112016005415T5/de
Publication of WO2017090492A1 publication Critical patent/WO2017090492A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3485Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of supporting elements intended to guide or limit the movement of the annular discs
    • F16F9/3487Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of supporting elements intended to guide or limit the movement of the annular discs with spacers or spacing rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/461Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall characterised by actuation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/464Control of valve bias or pre-stress, e.g. electromagnetically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5126Piston, or piston-like valve elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/36Special sealings, including sealings or guides for piston-rods
    • F16F9/368Sealings in pistons

Definitions

  • the present invention relates to a damping force adjusting type shock absorber that generates a damping force by controlling a flow of a working fluid generated by movement of a piston rod.
  • a semi-active suspension mounted on a vehicle is known to which a damping force adjusting shock absorber (see, for example, “Patent Document 1”) in which a damping valve mechanism is incorporated in a piston is known.
  • a damping force adjusting type shock absorber in which a damping valve mechanism is incorporated in a piston is known.
  • the cylinder upper chamber and the cylinder lower chamber are always communicated with each other through a passage for discharging the air that has entered the hydraulic circuit.
  • the adjustment range of the damping force is limited.
  • An object of the present invention is to provide a damping force adjusting type shock absorber capable of achieving both air bleeding and damping force responsiveness at low cost.
  • a damping force adjusting shock absorber includes a cylinder in which a working fluid is sealed, a piston that is slidably fitted in the cylinder, and divides the inside of the cylinder into two chambers, One end is connected to the piston, and the other end extends to the outside of the cylinder, and the flow of the working fluid between the two chambers in the cylinder, which is provided in the cylinder and is generated by the movement of the piston rod.
  • a damping force adjusting type shock absorber that controls and generates a damping force, wherein the damping valve mechanism is a damping force generating valve that is biased in the valve closing direction by the pressure of the pilot chamber.
  • a control valve for discharging the pressure in the pilot chamber to a downstream chamber of the two chambers in the cylinder includes a shaft portion provided with a communication passage extending in an axial direction therein.
  • a solenoid for driving the movable body in the axial direction Around the shaft A movable body, a solenoid for driving the movable body in the axial direction, a valve body provided at one end of the shaft section, and a valve seat on which the valve body is seated.
  • One end of the passage communicates with the pilot chamber, and the other end communicates with an upstream chamber of the two chambers in the cylinder via an orifice. The other end may communicate directly with an upstream chamber of the two chambers in the cylinder via an orifice.
  • a damping force adjusting shock absorber includes a cylinder in which a working fluid is sealed, a piston that is slidably fitted in the cylinder, and divides the inside of the cylinder into two chambers, One end is connected to the piston, and the other end extends to the outside of the cylinder, and the flow of the working fluid between the two chambers in the cylinder, which is provided in the cylinder and is generated by the movement of the piston rod.
  • a damping force adjusting type shock absorber that controls and generates a damping force, wherein the damping valve mechanism is a damping force generating valve that is biased in the valve closing direction by the pressure of the pilot chamber.
  • a control valve that discharges the pressure in the pilot chamber to a downstream chamber of the two chambers in the cylinder, and includes a passage that communicates between the two chambers in the cylinder. 2 chambers in the cylinder An orifice communicating with the upstream chamber, a back pressure chamber communicating with the passage via the orifice, and a flow of the working fluid from the upstream chamber to the downstream chamber via the orifice are controlled. And the control valve.
  • damping force adjustment type shock absorber According to the damping force adjustment type shock absorber according to the embodiment of the present invention, it is possible to achieve both air bleeding and damping force response at low cost.
  • the damping force adjustment type shock absorber 1 has a multi-cylinder structure in which an outer cylinder 3 is provided on the outer side of a cylinder 2, and between the cylinder 2 and the outer cylinder 3.
  • the reservoir 4 is formed.
  • a piston valve 5 (piston) is slidably fitted in the cylinder 2, and the piston valve 5 divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B. .
  • the piston valve 5 is provided at the lower end of a substantially cylindrical piston case 21.
  • a valve seat member 22 on which a later-described main valve 35 is seated is provided at the lower end of the piston case 21.
  • the valve seat member 22 includes a cylindrical shaft portion 23, a flange portion 24 formed at the lower end of the shaft portion 23, and a screw portion 25 formed on the outer peripheral surface of the shaft portion 23. Further, the valve seat member 22 is fixed to the piston case 21 by screwing the screw portion 25 into the screw portion 26 formed in the first shaft hole 42 of the piston case 21.
  • the inner flange portion 5 ⁇ / b> A of the piston valve 5 is sandwiched between the lower end portion end surface of the piston case 21 and the flange portion 24 of the valve seat member 22, and the piston valve 5 is fixed to the lower end portion of the piston case 21.
  • a base valve 10 for separating the cylinder lower chamber 2 ⁇ / b> B and the reservoir 4 is provided at the lower end of the cylinder 2.
  • the base valve 10 is provided with passages 11 and 12 for communicating the cylinder lower chamber 2 ⁇ / b> B and the reservoir 4.
  • the passage 11 is provided with a check valve 13 that allows only fluid to flow from the reservoir 4 side to the cylinder lower chamber 2B side.
  • the passage 12 is provided with a disk valve 14 which opens when the pressure of the oil liquid on the cylinder lower chamber 2B side reaches a predetermined pressure and relieves this pressure to the reservoir 4 side. Note that as the working fluid, an oil liquid is sealed in the cylinder 2, and an oil liquid and a gas are sealed in the reservoir 4.
  • reference numeral 15 denotes a bottom cap joined to the lower end of the outer cylinder 3
  • reference numeral 16 denotes an attachment eye joined to the bottom cap 15.
  • the upper end of the piston case 21 is closed by a substantially cylindrical coil cap 27.
  • the coil cap 27 has a screw portion 28 formed on the outer peripheral surface of the upper end portion, and the screw portion 28 is screwed into a screw portion 29 formed at the upper end of the second shaft hole 43 of the piston case 21, thereby 21 is fixed.
  • the coil cap 27 has an annular seal groove 30 formed along the outer peripheral surface of the lower end portion, and the O-ring 18 attached to the seal groove 30 seals between the piston shaft 21 and the second shaft hole 43. Is done.
  • One end of the piston rod 6 is connected to the center of the upper end portion of the coil cap 27, and the other end side of the piston rod 6 passes through the cylinder upper chamber 2 ⁇ / b> A and is attached to the upper end portions of the cylinder 2 and the outer cylinder 3.
  • the inserted rod guide 8 and oil seal 9 are inserted to extend outside the cylinder 2.
  • a damping valve mechanism 31 is provided for generating a damping force by controlling the flow of
  • the damping valve mechanism 31 includes a damping force generating valve 32 that is urged in the valve closing direction (downward in FIG. 2) by the pressure of a pilot chamber 33, which will be described later, and the oil liquid in the pilot chamber 33 during the extension stroke of the piston rod 6.
  • a control valve 34 that discharges (releases) (pressure) to the cylinder lower chamber 2B (a chamber on the downstream side).
  • the downstream chamber of the present invention means a chamber on the other side that is discharged from the one chamber when the damping valve mechanism 31 opens in opposition to the pressure of the pilot chamber 33.
  • the damping force generation valve 32 has a main valve 35 accommodated in the lower part of the piston case 21.
  • the main valve 35 is formed in a substantially bottomed cylindrical shape, and a holding plate 36 having a shaft hole is attached to the upper end opening.
  • a flange portion 37 (outer flange) is formed at the lower end of the main valve 35.
  • an annular seat portion 39 is formed on the lower end surface 38 of the main valve 35 so as to be coaxial with the piston rod 6 and to be attached to and detached from the valve seat 40 of the valve seat member 22.
  • a step is provided between the annular surface 38A (surface 38A on the flange portion 37 side) outside the seat portion 39 and the surface 38B inside the seat portion 39 on the lower end surface 38 of the main valve 35.
  • the surface 38B on the inner side of the seat portion 39 is provided at a position higher than the annular surface 38A, thereby securing the area of the inner peripheral surface 39A (pressure receiving surface) of the seat portion 39.
  • an annular chamber 80 is formed between the lower end portion of the piston case 21, the valve seat member 22 and the main valve 35.
  • the A plurality of passages 81 that communicate the annular chamber 80 and the cylinder upper chamber 2 ⁇ / b> A are provided at the lower end of the piston case 21.
  • the main valve 35 has an outer peripheral surface 41 slidably fitted in the third shaft hole 44 of the piston case 21, and an outer peripheral surface 37 ⁇ / b> A of the flange portion 37 is slidable in the first shaft hole 42 of the piston case 21. Fitted. Thereby, an annular back pressure chamber 46 is formed between the main valve 35 and the first shaft hole 42.
  • a valve seat 49 on which an annular seat portion 48 of a pilot valve 47 (valve element) to be described later is attached and detached is provided at the bottom of the main valve 35.
  • the valve seat 49 of the main valve 35 is provided with a pilot chamber 33 whose opening is surrounded by the seat portion 48 of the seated pilot valve 47, and the pilot chamber 33 communicates with the back pressure chamber 46 via the communication passage 50. .
  • the main valve 35 is a compression coil spring that applies a set load to the main valve 35.
  • the main valve 35 is biased downward with respect to the piston case 21 by the spring force of the compression coil spring 51. That is, it is biased in the valve closing direction.
  • the main valve 35 is fixed with disk valves 56 and 57 whose outer peripheral edge portions are held by the holding plate 36.
  • the control valve 34 includes a pilot valve 47, an operating pin 52 (shaft portion) to which the pilot valve 47 is fixed at a lower end (one end), a plunger 53 (movable element) attached to the outer periphery of the operating pin 52, and a plunger 53.
  • a solenoid 54 that drives in the vertical direction (axial direction) is included.
  • the pilot valve 47 is an on-off valve whose valve opening pressure is adjusted in response to energization of the solenoid 54, and a flange portion 55 that functions as a spring receiver is formed on the entire outer periphery of the pilot valve 47.
  • the pilot valve 47 has a plurality of passages 55A that penetrate the flange portion 55 in the vertical direction.
  • the pilot valve 47 is formed with a shaft hole that constitutes the communication path 70 together with the shaft hole of the operating pin 52.
  • the solenoid 54 when the solenoid 54 is in a non-energized state, that is, when the pilot valve 47 is farthest from the valve seat 49 of the main valve 35 due to the spring force of the fail spring 69 (compression coil spring), the pilot valve 47 Is brought into contact with the disk valve 56 to constitute a fail-safe valve.
  • the solenoid 54 has a case member 58 in which a plunger bore 59 is formed, and a core 60 in which a recess 61 into which a lower end portion of the plunger 53 is slidably fitted is formed.
  • the case member 58 is formed in a substantially cylindrical shape, and a flange portion 58A is formed on the outer periphery of the upper end portion.
  • the case member 58 has an upper end fitted into a recess 64 formed on the lower end surface of the coil cap 27.
  • the case member 58 is provided with a sleeve 65 on the outer peripheral surface, and the lower end portion of the sleeve 65 is fitted into the fourth shaft hole 45 of the piston case 21.
  • the case member 58 is coaxially positioned with respect to the center line of the piston case 21.
  • the core 60 is formed in a substantially cylindrical shape, and a flange portion 60A is formed on the outer periphery of the lower end portion.
  • the core 60 has a flange portion 60 ⁇ / b> A fitted into the fourth shaft hole 45 of the piston case 21, and the flange portion 60 ⁇ / b> A is formed between the third shaft hole 44 and the fourth shaft hole 45 of the piston case 21.
  • the annular convex portion 66 By being abutted against the annular convex portion 66, it is positioned in the vertical direction with respect to the piston case 21.
  • the inner peripheral surface of the lower end portion of the sleeve 65 is fitted to the outer peripheral surface of the core 60.
  • the sleeve 65 is positioned in the vertical direction with respect to the piston case 21 by abutting the lower end portion against the flange portion 60 ⁇ / b> A of the core 60.
  • reference numeral 67 in FIG. 2 is an O-ring that seals between the case member 58 and the sleeve 65, and reference numeral 68 in FIG. 2 seals between the sleeve 65 and the fourth shaft hole 45 of the piston case 21. O-ring.
  • the operation pin 52 is supported by a pair of bushes 62 and 63 assembled to the case member 58 and the core 60 so as to be movable in the vertical direction. Further, the operating pin 52 has a shaft hole that constitutes the communication passage 70 described above together with the shaft hole of the pilot valve 47.
  • the lower end side (one end side) of the communication passage 70 is communicated with the pilot chamber 33, and the upper end side (the other end side) is connected to the cylinder upper chamber 2 ⁇ / b> A (upstream side during the extension stroke of the piston rod 6) via the passage 73. Room).
  • the passage 73 includes a shaft hole 74 of the case member 58, a blind hole 75 having a certain depth formed in the center of the lower end surface of the coil cap 27, and an orifice 76 that communicates the blind hole 75 and the cylinder upper chamber 2A.
  • one end side of the communication path 70 communicates with the pilot chamber 33, and the other end side communicates directly with the upstream chamber of the two chambers in the cylinder 2, and the cylinder upper chamber 2 ⁇ / b> A through the orifice 76 in the extension stroke.
  • the orifice 76 is provided in the annular passage 77 formed between the upper end portion of the piston case 21 and the coil cap 27 and the upper end portion of the piston case 21.
  • the orifice 76 communicates the cylinder upper chamber 2 ⁇ / b> A and the annular passage 77.
  • An orifice 78 is provided in the coil cap 27, and is constituted by a second orifice 79 that communicates the blind hole 75 and the annular passage 77.
  • the shaft hole 74 of the case member 58 and the blind hole 75 of the coil cap 27 form a valve body back pressure chamber of the pilot valve 47.
  • a retaining ring 71 is attached to the annular groove formed on the outer peripheral surface of the operating pin 52.
  • the retaining ring 71 is engaged with an upper end portion of a pilot spring 72 having a lower end portion sandwiched between the main valve 35 and the compression coil spring 51.
  • the operating pin 52 is urged upward by the spring force of the pilot spring 72.
  • the spring force of the pilot spring 72 exceeds the solenoid thrust, and the control valve 34
  • the seat portion 48 is separated from the valve seat 49 of the main valve 35 and opens.
  • the damping force adjusting type shock absorber 1 is mounted between the sprung and unsprung parts of the vehicle suspension device.
  • the shock absorber 1 When the vehicle is traveling, if the vibration in the vertical direction occurs due to unevenness on the road surface, the shock absorber 1 is displaced so that the piston rod 6 extends and contracts from the outer cylinder 3, and the damping valve mechanism 31 generates a damping force. This causes the vibration of the vehicle to be buffered.
  • the damping valve mechanism 31 variably adjusts the damping force by changing the back pressure of the main valve 35 during the expansion stroke of the piston rod 6, and on the other hand, during the compression stroke of the piston rod 6.
  • the damping force By adjusting the thrust (control current) and changing the valve opening pressure of the pilot valve 47, the damping force is variably adjusted.
  • the fluid (working fluid) on the cylinder upper chamber 2A side is pressurized by the movement of the piston valve 5 (piston) in the cylinder 2.
  • the pressure of the oil in the cylinder upper chamber 2 ⁇ / b> A acts on the back pressure chamber 46 via the passage 73 including the orifice 76, the communication passage 70, the pilot chamber 33, and the communication passage 50.
  • the pressure receiving area (S1) of the main valve 35 is the sum of the area (S2) of the annular surface 38A of the main valve 35 and the area (S3) of the outer peripheral surface 39B of the annular seat 39 (S2 + S3).
  • the flange 55 has a passage 55A, a notch 36A formed in the holding plate 36, a notch 57A formed in the disc valve 57, a notch 56A formed in the outer peripheral edge of the disc valve 56, and the main valve 35. It passes through the formed upwardly extending passage 35A and is discharged to the cylinder lower chamber 2B.
  • the oil liquid corresponding to the withdrawal of the piston rod 6 from the cylinder 2 opens the check valve 13 of the base valve 10 from the reservoir 4 and flows into the cylinder lower chamber 2B.
  • the pressure receiving area of the pilot valve 47 is the sectional area (the area on the valve body back pressure chamber side) by the plane perpendicular to the axis of the operating pin 52 (shaft part) from the area inside the seat part 48 on the lower surface (area on the valve seat side) ) Minus the area.
  • the solenoid thrust exceeds the pushing-up force of the pilot spring 72 during the contraction stroke of the piston rod 6, the seat portion 48 of the pilot valve 47 is seated on the valve seat 49 of the main valve 35, thereby causing the pilot valve 47 (control valve 34) is closed.
  • the valve opening pressure of the main valve 35 depends on the thrust of the plunger 53 (movable element) generated by the solenoid 54.
  • the pressure receiving area of the main valve 35 at this time is an area obtained by subtracting the cross-sectional area of the third shaft hole 44 of the piston case 21 from the area inside the seat portion 39.
  • the oil liquid that has entered the cylinder 2 by the piston rod 6 reaches the valve opening pressure of the disk valve 14 of the base valve 10 by the pressure in the cylinder lower chamber 2B, and the disk valve 14 opens. It flows to the reservoir 4.
  • the pilot valve 47 is retracted by the spring force of the fail spring 69.
  • the pilot chamber 33 is opened and the annular upper end of the pilot valve 47 is brought into contact with the disc valve 56.
  • the cylinder upper chamber 2A and the cylinder lower chamber 2B include the passage 73 including the orifice 76, the communication passage 70, the passage 55A of the flange portion 55 of the pilot valve 47, the notch 56B of the disc valve 56, and the disc valve 57.
  • the notch 57 ⁇ / b> A, the disc valve 56 ⁇ / b> A and the passage 35 ⁇ / b> A of the main valve 35 communicate with each other. Thereby, the damping force of the orifice characteristic can be obtained even at the time of failure.
  • the cylinder upper chamber 2A when the pilot valve 47 is closed during the extension stroke of the piston rod 6, the cylinder upper chamber 2A has the passage 73 including the orifice 76 and the shaft hole of the operating pin 52 (shaft portion).
  • the communication passage 70, the pilot chamber 33 formed in the main valve 35, and the communication passage 50 communicate with the back pressure chamber 46 of the main valve 35.
  • the cylinder upper chamber 2A does not communicate with the cylinder lower chamber 2B, that is, the pressure of the cylinder upper chamber 2A is higher than the pressure of the cylinder lower chamber 2B. Since it does not flow to the lower chamber 2B, the delay of the rising of the damping force can be prevented.
  • the air moves upward in the communication passage 70 and passes through the passage 73. And is smoothly discharged to the cylinder upper chamber 2A. That is, the pilot valve 47 can serve as a check valve shown in the prior art document.
  • the control valve 34 can be bleed during the contraction stroke of the piston rod 6, that is, when the pressure in the piston upper chamber 2A is lower than the pressure in the piston lower chamber 2B.
  • the piston 5 is attached to the shaft portion 91 of the piston case 21.
  • the shaft portion 91 of the piston case 21 is provided coaxially with the piston rod 6 and extends downward from the bottom portion 92 of the piston case 21.
  • the piston 5 is provided with an extension side passage 93 whose one end (upper end) opens into the cylinder upper chamber 2A and a contraction side passage 94 whose one end (lower end) opens into the cylinder lower chamber 2B.
  • the damping valve mechanism 95 includes a damping force generating valve 96 biased in the valve closing direction (upward in FIG. 3) by the pressure of the pilot chamber 33, and the cylinder upper chamber 2A (upstream side) during the extension stroke of the piston rod 6. And a control valve 97 for controlling the flow of the oil (working fluid) through the orifice 76 from the cylinder lower chamber 2B (downstream chamber).
  • the damping force generation valve 96 has a main valve 98 (disc valve) provided at the lower end of the piston 5 and a back pressure chamber 99 in which the internal pressure acts on the main valve 98 in the valve closing direction.
  • the back pressure chamber 99 is an annular space centered on the shaft portion 91, and the seat portion 101 of the annular packing 100 provided on the outer peripheral side of the lower surface of the main valve 98 can slide in the annular recess 103 of the pilot case 102. It is formed by making it contact
  • the pilot case 102 is fixed to the piston case 21 by a nut 104 threadedly engaged with the tip end portion of the shaft portion 91.
  • the inner peripheral portion of the main valve 98 is sandwiched between the inner peripheral portion 105 of the piston 5 and the inner peripheral portion 106 of the pilot case 102.
  • a spacer 107 and a passage member 108 are provided in this order from the top between the inner peripheral portion of the main valve 98 and the inner peripheral portion 106 of the pilot case 102.
  • the control valve 97 has a pilot body 109 accommodated in the bottom of the piston case 21.
  • the pilot body 109 is formed in a substantially bottomed cylindrical shape having a shaft hole at the bottom, and the outer peripheral surface is fitted to the inner peripheral surface 110 of the piston case 21.
  • a valve seat 49 on which the pilot valve 47 is attached and detached is provided around the shaft hole at the center of the bottom of the pilot body 109.
  • the shaft hole of the pilot body 109 forms a pilot chamber 33 together with a shaft hole (a blind hole) extending in the vertical direction inside the shaft portion 91 of the piston case 21.
  • the cylinder upper chamber 2A When the control valve 97 is closed, that is, when the seat portion 48 of the pilot valve 47 is seated on the valve seat 49 of the pilot body 109, the cylinder upper chamber 2A includes the passage 73 including the orifice 76, the pilot chamber 33, Via the passage 111 formed in the shaft portion 91 of the piston case 21 and extending in the radial direction (left-right direction in FIG. 3), the annular passage 112 provided on the outer periphery of the shaft portion 91, and the notch 108A of the passage member 108, It communicates with the back pressure chamber 99. Thereby, the oil liquid (working fluid) in the cylinder upper chamber 2 ⁇ / b> A can be introduced into the back pressure chamber 99 during the extension stroke of the piston rod 6.
  • the oil liquid in the cylinder upper chamber 2A passes through the passage 73 including the orifice 76, the pilot chamber 33, the passage 111, and the annular shape.
  • a passage 112 a passage 113 provided on the lower end side of the inner peripheral portion 105 of the piston 5, and an annular passage 115 formed between the inner peripheral portion 105, the annular seat portion 114, and the main valve 98 at the lower end portion of the piston 5. Then, it flows into the cylinder lower chamber 2B through the notch 116 of the main valve 98.
  • the oil liquid in the cylinder upper chamber 2A flows to the cylinder lower chamber 2B through the extension side passage 93, the annular passage 115, and the notch 116 of the main valve 98.
  • the damping force can be variably adjusted by adjusting the thrust (control current) of the solenoid 54 to change the back pressure of the main valve 35.
  • the oil liquid in the pilot chamber 33 is notched 117A formed in the fail spring 117, the notch 118B formed in the circular plate 118, the passage 119A formed in the spacer 119, and the notch formed in the plate 118.
  • 118A a notch 120A formed in the spacer 120, a notch 121A formed in the disk valve 121, a notch 122 formed in the pilot body 109, and an annular shape formed between the piston case 21 and the pilot body 109
  • the cylinder upper chamber 2A and the cylinder lower chamber 2B include the passage 73 including the orifice 76, the communication passage 70, the notch 121B formed in the disk valve 121, the notch 118B formed in the plate, and the spacer 119.
  • the disc valve 130 can obtain a damping force having a valve characteristic that is generated by opening the disk valve 130 away from the annular seat portion 131 formed on the upper end surface of the piston 5. it can.
  • the cylinder upper chamber 2A when the pilot valve 47 is closed during the extension stroke of the piston rod 6, the cylinder upper chamber 2A includes the passage 73 including the orifice 76, the communication passage 70, the pilot chamber 33, the passage 111, The back pressure chamber 99 communicates with the annular passage 112 and the notch 108A.
  • the cylinder upper chamber 2A does not communicate with the cylinder lower chamber 2B, that is, the pressure of the cylinder upper chamber 2A is higher than the pressure of the cylinder lower chamber 2B. Since it does not flow to the lower chamber 2B, the delay of the rising of the damping force can be prevented.
  • the control valve 97 can be vented when the piston rod 6 is contracted, that is, when the pressure in the piston upper chamber 2A is lower than the pressure in the piston lower chamber 2B. Conversely, when the piston rod 6 extends, that is, when the pressure in the piston upper chamber 2A is higher than the pressure in the piston lower chamber 2B, the control valve 97 cannot be vented.
  • shock absorber 2 cylinder, 2A cylinder upper chamber, 2B cylinder lower chamber, 5 piston, 6 piston rod, 31 damping valve mechanism, 32 damping force generating valve, 33 pilot chamber, 34 control valve (valve element), 49 valve seat , 52 Actuation pin (shaft), 53 Plunger (mover), 54 Solenoid, 70 communication path, 76 orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

エア抜き性と減衰力の応答性とを低コストにて両立することが可能な減衰力調整式緩衝器を提供する。 ピストンロッド6の伸び行程におけるパイロットバルブ47の閉弁時に、シリンダ上室2Aが、オリフィス76を含む通路73、連通路70、パイロット室33、及び連通路50を介して、背圧室46に連通する。このとき、シリンダ上室2Aは、シリンダ下室2Bに連通していないので、減衰力の応答性が確保される。また、通路に逆止弁を設ける必要がないので、製造コストの増加を抑止することができる。さらに、パイロット室33に入り込んだエアは、連通路70を上方向へ移動するので、当該エアを、通路73を介してシリンダ上室2Aへ排出することができる。

Description

減衰力調整式緩衝器
 本発明は、ピストンロッドの移動により生じる作動流体の流れを制御して減衰力を発生する減衰力調整式緩衝器に関する。
 例えば、車両に搭載されるセミアクティブサスペンションにおいては、減衰弁機構がピストンに組み込まれた減衰力調整式緩衝器(例えば「特許文献1」参照)を適用したものが知られている。従来、このような減衰力調整式緩衝器は、シリンダ上室とシリンダ下室とが、油圧回路内に入り込んだエアを排出するための通路にて常時連通されていたため、減衰力の立ち上がりの遅れや、減衰力の調整幅が制限される等の問題があった。
 そこで、エアを排出するための通路の断面積(流路面積)を小さく設定して、減衰力の立ち上がりの遅れ、及び減衰力の調整幅減少を最小限に止めることが考えられるが、公差が厳格化されることにより製造コストが増加する。これに対して、例えば、特許文献1に示されるように、当該通路に逆止弁を設けて、シリンダ上室からシリンダ下室への作動流体の流れを阻止することが考えられるが、構造が煩雑化して組立工数及び製造コストが増加する。
特開2008-249107号公報
 本発明は、エア抜き性と減衰力の応答性とを低コストにて両立することが可能な減衰力調整式緩衝器を提供することを目的とする。
 本発明の一実施形態に係る減衰力調整式緩衝器は、作動流体が封入されたシリンダと、前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を2室に分画するピストンと、一端が前記ピストンに連結され、他端が前記シリンダの外部に延出するピストンロッドと、前記シリンダ内に設けられ、前記ピストンロッドの移動により生じる前記シリンダ内の2室間の作動流体の流れを制御して減衰力を発生させる減衰弁機構と、を備えた減衰力調整式緩衝器であって、前記減衰弁機構は、パイロット室の圧力により閉弁方向へ付勢される減衰力発生弁と、前記パイロット室の圧力を前記シリンダ内の2室のうちの下流側の室へ排出する制御弁と、からなり、前記制御弁は、内部に軸方向へ延びる連通路が設けられた軸部と、前記軸部の周囲に設けられた可動子と、前記可動子を軸方向へ駆動するソレノイドと、前記軸部の一端に設けられた弁体と、前記弁体が着座する弁座と、を有し、前記軸部の連通路は、一端側が前記パイロット室に連通され、他端側が、前記シリンダ内の2室のうちの上流側の室にオリフィスを介して連通される。その他端側は、前記シリンダ内の2室のうちの上流側の室にオリフィスを介して直接連通してもよい。
 本発明の一実施形態に係る減衰力調整式緩衝器は、作動流体が封入されたシリンダと、前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を2室に分画するピストンと、一端が前記ピストンに連結され、他端が前記シリンダの外部に延出するピストンロッドと、前記シリンダ内に設けられ、前記ピストンロッドの移動により生じる前記シリンダ内の2室間の作動流体の流れを制御して減衰力を発生させる減衰弁機構と、を備えた減衰力調整式緩衝器であって、前記減衰弁機構は、パイロット室の圧力により閉弁方向へ付勢される減衰力発生弁と、前記パイロット室の圧力を前記シリンダ内の2室のうちの下流側の室へ排出する制御弁と、からなり、前記シリンダ内の2室間を連通する通路を備え、前記通路には、前記シリンダ内の2室のうちの上流側の室に連通するオリフィスと、前記オリフィスを介して前記通路に連通する背圧室と、前記オリフィスを介する前記上流側の室から下流側の室への作動流体の流れを制御する前記制御弁と、が設けられる。
 本発明一実施形態に係る減衰力調整式緩衝器によれば、エア抜き性と減衰力の応答性とを低コストにて両立することができる。
第1実施形態に係る緩衝器の一軸平面による断面図である。 図1における要部を拡大して示す図である。 第2実施形態の説明図であって、第1実施形態における図2に相当する図である。
(第1実施形態) 本発明の第1実施形態を添付した図を参照して説明する。なお、以下の説明において、図1における上下方向をそのまま上下方向と称する。
 図1に示されるように、第1実施形態に係る減衰力調整式緩衝器1は、シリンダ2の外側に外筒3を設けた複筒構造であり、シリンダ2と外筒3との間には、リザーバ4が形成される。シリンダ2内には、ピストンバルブ5(ピストン)が摺動可能に嵌装され、当該ピストンバルブ5により、シリンダ2内が、シリンダ上室2Aとシリンダ下室2Bとの2室に分画される。
 図2に示されるように、ピストンバルブ5は、略円筒形のピストンケース21の下端部に設けられる。ピストンケース21の下端部には、後述するメインバルブ35が離着座する弁座部材22が設けられる。弁座部材22は、円筒形の軸部23と、軸部23の下端に形成されたフランジ部24と、軸部23の外周面に形成されたねじ部25と、を有する。また、弁座部材22は、ねじ部25を、ピストンケース21の第1軸孔42に形成されたねじ部26に螺合することにより、ピストンケース21に固定される。これにより、ピストンバルブ5の内フランジ部5Aが、ピストンケース21の下端部端面と弁座部材22のフランジ部24とにより挟持され、ピストンバルブ5がピストンケース21の下端部に固定される。
 図1に示されるように、シリンダ2の下端部には、シリンダ下室2Bとリザーバ4とを分画するベースバルブ10が設けられる。ベースバルブ10には、シリンダ下室2Bとリザーバ4とを連通する通路11、12が設けられる。通路11には、リザーバ4側からシリンダ下室2B側への油液の流通のみを許容する逆止弁13が設けられる。他方、通路12には、シリンダ下室2B側の油液の圧力が所定圧力に達したときに開弁し、この圧力をリザーバ4側へリリーフするディスクバルブ14が設けられる。なお、作動流体として、シリンダ2内には油液が封入され、リザーバ4内には油液及びガスが封入される。また、図1において、符号15は、外筒3の下端に接合されたボトムキャップ、符号16は、ボトムキャップ15に接合された取付アイである。
 図2に示されるように、ピストンケース21の上端は、略円柱形のコイルキャップ27により閉塞される。コイルキャップ27は、上端部外周面にねじ部28が形成され、当該ねじ部28を、ピストンケース21の第2軸孔43の上端に形成されたねじ部29に螺合することにより、ピストンケース21に固定される。また、コイルキャップ27は、下端部外周面に沿って環状のシール溝30が形成され、当該シール溝30に装着されたOリング18により、ピストンケース21の第2軸孔43との間がシールされる。なお、コイルキャップ27の上端部中央には、ピストンロッド6の一端が連結され、ピストンロッド6の他端側は、シリンダ上室2Aを通過し、さらにシリンダ2及び外筒3の上端部に装着されたロッドガイド8及びオイルシール9(図1参照)に挿通され、シリンダ2の外部へ延出する。
(減衰弁機構) ピストンケース21内、延いてはシリンダ2内には、ピストンロッド6の移動(伸縮)により生じる、シリンダ上室2Aとシリンダ下室2Bとの2室間の油液(作動流体)の流れを制御して、減衰力を発生させる減衰弁機構31が設けられる。減衰弁機構31は、後述するパイロット室33の圧力により閉弁方向(図2における下方向)へ付勢される減衰力発生弁32と、ピストンロッド6の伸び行程時に、パイロット室33の油液(圧力)をシリンダ下室2B(下流側の室)へ排出する(逃す)制御弁34と、を有する。ここで、本願発明の下流側の室とは、パイロット室33の圧力に対向して減衰弁機構31が開弁する際に、一側の室から排出される他側の室を意味する。
 減衰力発生弁32は、ピストンケース21の下部に収容されるメインバルブ35を有する。メインバルブ35は、略有底円筒形に形成され、上端部開口には、軸孔を有する保持プレート36が装着される。メインバルブ35の下端には、フランジ部37(外フランジ)が形成される。また、メインバルブ35の下端面38には、ピストンロッド6に対して同軸上に設けられ、弁座部材22の弁座40に離着座する環状のシート部39が形成される。
 なお、メインバルブ35の下端面38の、シート部39よりも外側の環状面38A(フランジ部37側の面38A)と、シート部39よりも内側の面38Bとの間に、段差が設けられており、シート部39よりも内側の面38Bを、環状面38Aよりも高い位置に設けることにより、シート部39の内周面39A(受圧面)の面積を確保している。また、メインバルブ35のシート部39が弁座部材22の弁座40に着座したとき、ピストンケース21の下端部と弁座部材22とメインバルブ35との間には、環状室80が形成される。そして、ピストンケース21の下端部には、環状室80とシリンダ上室2Aとを連通する複数個の通路81が設けられる。
 メインバルブ35は、外周面41が、ピストンケース21の第3軸孔44に摺動可能に嵌合され、フランジ部37の外周面37Aが、ピストンケース21の第1軸孔42に摺動可能に嵌合される。これにより、メインバルブ35と第1軸孔42との間には、環状の背圧室46が形成される。そして、メインバルブ35の底部には、後述のパイロットバルブ47(弁体)の環状のシート部48が離着座する弁座49が設けられる。メインバルブ35の弁座49には、着座したパイロットバルブ47のシート部48により開口が囲まれるパイロット室33が設けられ、パイロット室33は、連通路50を介して背圧室46に連通される。
 なお、図2における符号51は、メインバルブ35にセット荷重を付与する圧縮コイルばねであり、メインバルブ35は、圧縮コイルばね51のばね力により、ピストンケース21に対して下方向へ付勢、すなわち、閉弁方向へ付勢される。また、メインバルブ35には、外周縁部が保持プレート36により挟持されたディスクバルブ56、57が固定される。
 前述の制御弁34は、パイロットバルブ47、パイロットバルブ47が下端(一端)に固定される作動ピン52(軸部)、作動ピン52の外周に取り付けられるプランジャ53(可動子)、及びプランジャ53を上下方向(軸方向)へ駆動するソレノイド54を含む。パイロットバルブ47は、ソレノイド54の通電に応じて開弁圧力が調節される開閉弁であり、パイロットバルブ47の外周には、ばね受として機能するフランジ部55が全周にわたって形成される。また、パイロットバルブ47は、フランジ部55を上下方向へ貫通する複数個の通路55Aを有する。そして、パイロットバルブ47には、作動ピン52の軸孔とともに連通路70を構成する軸孔が形成される。
 第1実施形態において、ソレノイド54が非通電状態のとき、すなわち、フェイルばね69(圧縮コイルばね)のばね力により、パイロットバルブ47がメインバルブ35の弁座49から最も離れたとき、パイロットバルブ47がディスクバルブ56に当接することにより、フェールセーフバルブが構成される。
 ソレノイド54は、プランジャボア59が形成されたケース部材58と、プランジャ53の下端部が摺動可能に嵌合される凹部61が形成されたコア60と、を有する。ケース部材58は、略円筒形に形成され、上端部外周にフランジ部58Aが形成される。また、ケース部材58は、上端部が、コイルキャップ27の下端面に形成された凹部64に嵌合される。さらに、ケース部材58は、外周面にスリーブ65が装着され、スリーブ65の下端部は、ピストンケース21の第4軸孔45に嵌合される。これにより、ケース部材58は、ピストンケース21の中心線に対して同軸上に位置決めされる。
 他方、コア60は、略円筒形に形成され、下端部外周にフランジ部60Aが形成される。また、コア60は、フランジ部60Aが、ピストンケース21の第4軸孔45に嵌合され、フランジ部60Aが、ピストンケース21の第3軸孔44と第4軸孔45との間に形成された環状凸部66に突き当てられることにより、ピストンケース21に対して上下方向に位置決めされる。なお、コア60の外周面には、スリーブ65の下端部内周面が嵌合される。また、スリーブ65は、下端部を、コア60のフランジ部60Aに突き当てることにより、ピストンケース21に対して上下方向に位置決めされる。さらに、図2における符号67は、ケース部材58とスリーブ65との間をシールするOリングであり、図2における符号68は、スリーブ65とピストンケース21の第4軸孔45との間をシールするOリングである。
 他方、作動ピン52は、ケース部材58及びコア60に組み付けられた一対のブッシュ62、63により上下方向へ移動可能に支持される。また、作動ピン52は、パイロットバルブ47の軸孔とともに前述の連通路70を構成する軸孔を有する。当該連通路70は、下端側(一端側)がパイロット室33に連通され、上端側(他端側)が、通路73を介してシリンダ上室2A(ピストンロッド6の伸び行程時における上流側の室)に連通される。当該通路73は、ケース部材58の軸孔74と、コイルキャップ27の下端面中央に形成された一定深さの止り穴75と、止り穴75とシリンダ上室2Aとを連通するオリフィス76とを含む。言い換えると、連通路70は、一端側がパイロット室33に連通され、他端側がシリンダ2内の2室のうちの上流側の室、伸び行程ではシリンダ上室2Aにオリフィス76を介して直接連通される。なお、シリンダ2内の2室のうちの上流側の室とオリフィス76を介して直接連通したほうが、パイロット室33の圧力が所望の圧力になるため望ましいが、直接連通しないものを除くものではない。
 オリフィス76は、ピストンケース21の上端部とコイルキャップ27との間に形成された環状通路77と、ピストンケース21の上端部に設けられ、シリンダ上室2Aと環状通路77とを連通する第1オリフィス78と、コイルキャップ27に設けられ、止り穴75と環状通路77とを連通する第2オリフィス79とにより構成される。なお、ケース部材58の軸孔74及びコイルキャップ27の止り穴75は、パイロットバルブ47の弁体背圧室を形成する。
 また、作動ピン52の外周面に形成された環状溝には、止め輪71が装着される。当該止め輪71には、下端部がメインバルブ35と圧縮コイルばね51とにより挟持されたパイロットばね72の上端部が係合される。これにより、作動ピン52は、パイロットばね72のばね力にて上方向へ付勢され、ソレノイド54への制御電流が低電流時にパイロットばね72のばね力がソレノイド推力を上回り、制御弁34は、シート部48がメインバルブ35の弁座49から離座して開弁する。
(作用) 次に、第1実施形態の作用を説明する。
 減衰力調整式緩衝器1は、車両のサスペンション装置のばね上、ばね下間に装着される。車両の走行時には、路面の凹凸等により上下方向の振動が発生すると、緩衝器1は、ピストンロッド6が外筒3から伸長、縮小するように変位し、減衰弁機構31にて減衰力を発生させることにより、車両の振動を緩衝させる。このとき、減衰弁機構31は、ピストンロッド6の伸び行程時には、メインバルブ35の背圧を変化させることにより、減衰力を可変に調整し、他方、ピストンロッド6の縮み行程時には、ソレノイド54の推力(制御電流)を調整してパイロットバルブ47の開弁圧を変化させることにより、減衰力を可変に調整する。
 ここで、ピストンロッド6の伸び行程時には、シリンダ2内のピストンバルブ5(ピストン)の移動により、シリンダ上室2A側の油液(作動流体)が加圧される。シリンダ上室2Aの油液の圧力は、オリフィス76を含む通路73、連通路70、パイロット室33、及び連通路50を介して背圧室46に作用する。このとき、メインバルブ35の受圧面積(S1)は、メインバルブ35の環状面38Aの面積(S2)と、環状のシート部39の外周面39Bの面積(S3)と、を加えた面積(S2+S3)から、背圧室46の軸直角平面による断面積、換言すると、フランジ部37の環状の上端面82の面積(S4)を差引いた面積(S1=S2+S3-S4)となる。
 そして、パイロットバルブ47が開弁する、すなわち、パイロットバルブ47のシート部48がメインバルブ35の弁座49から離座すると、パイロット室33(背圧室46)内の油液は、パイロットバルブ47のフランジ部55の通路55A、保持プレート36に形成された切欠き36A、ディスクバルブ57に形成された切欠き57A、ディスクバルブ56の外周縁部に形成された切欠き56A、及びメインバルブ35に形成された上下方向へ延びる通路35Aを通り、シリンダ下室2Bへ排出される。
 このとき、ピストンロッド6がシリンダ2内から退出した分の油液は、リザーバ4から、ベースバルブ10の逆止弁13を開弁させてシリンダ下室2Bへ流入する。なお、パイロットバルブ47の受圧面積は、下面のシート部48内側の面積(弁座側の面積)から、作動ピン52(軸部)の軸直角平面による断面積(弁体背圧室側の面積)を差引いた面積となる。
 一方、ピストンロッド6の縮み行程において、ソレノイド54の制御電流が低電流のとき、パイロットばね72が作動ピン52を押し上げる力が、ソレノイド54の推力を上回る。これにより、パイロットバルブ47のシート部48がメインバルブ35の弁座49から離座して、パイロットバルブ47(制御弁34)が開弁する。その結果、シリンダ下室2Bの油液は、メインバルブ35の通路35A、ディスクバルブ56の切欠き56A、ディスクバルブ57の切欠き57A、保持プレート36の切欠き36A、パイロットバルブ47のフランジ部55の通路55A、連通路70、及びオリフィス76を含む通路73を通り、シリンダ上室2Aへ流れる。
 他方、ピストンロッド6の縮み行程において、ソレノイド推力がパイロットばね72の押し上げる力を上回るとき、パイロットバルブ47のシート部48がメインバルブ35の弁座49に着座することにより、パイロットバルブ47(制御弁34)は閉弁する。このとき、メインバルブ35(減衰力発生弁32)の開弁圧力は、ソレノイド54が発生するプランジャ53(可動子)の推力に依存する。このときのメインバルブ35の受圧面積は、シート部39内側の面積から、ピストンケース21の第3軸孔44の断面積を差引いた面積となる。
 なお、ピストンロッド6がシリンダ2内に進入した分の油液は、シリンダ下室2B内の圧力がベースバルブ10のディスクバルブ14の開弁圧力に達し、ディスクバルブ14が開弁することで、リザーバ4へ流通する。
 また、ソレノイド54のコイルの断線、車載コントローラの故障等のフェイル発生時に、プランジャ53、延いては作動ピン52の推力が失われた場合には、フェイルばね69のばね力によりパイロットバルブ47を後退させる。これにより、パイロット室33を開口させるとともに、パイロットバルブ47の環状の上端部を、ディスクバルブ56に当接させる。この状態では、シリンダ上室2Aとシリンダ下室2Bとは、オリフィス76を含む通路73、連通路70、パイロットバルブ47のフランジ部55の通路55A、ディスクバルブ56の切欠き56B、ディスクバルブ57の切欠き57A、ディスクバルブ56の56A、及びメインバルブ35の通路35Aを介して連通される。これにより、フェイル時においても、オリフィス特性の減衰力を得ることができる。
(効果) 第1実施形態によれば、ピストンロッド6の伸び行程におけるパイロットバルブ47の閉弁時には、シリンダ上室2Aは、オリフィス76を含む通路73、作動ピン52(軸部)の軸孔を含む連通路70、メインバルブ35に形成されたパイロット室33、及び連通路50を介して、メインバルブ35の背圧室46に連通する。
 この状態において、シリンダ上室2Aは、シリンダ下室2Bに連通していない、すなわち、シリンダ上室2Aの圧力がシリンダ下室2Bの圧力よりも高いことから、油液がシリンダ上室2Aからシリンダ下室2Bへ流れることがないので、減衰力の立ち上がりの遅れを阻止することができる。また、シリンダ上室2Aの圧力がシリンダ下室2Bへ逃げることがないので、減衰力の調整幅が制限される等の問題を解消することができる。
 さらに、従来、シリンダ上室2Aとシリンダ下室2Bとが常時連通されていた場合、通路に逆止弁を設けたり、通路の断面積(流路面積)を小さく設定していたため、構造の煩雑化、及び公差の厳格化に伴い、製造コストの増加を余儀なくされていたが、第1実施形態では、これら問題点を解消することができる。
 そして、第1実施形態では、例えば、減衰力調整式緩衝器1の組立時に、パイロット室33にエアが入り込んだとしても、当該エアは、連通路70を上方向へ移動し、通路73を介して、円滑にシリンダ上室2Aへ排出される。つまり、パイロットバルブ47が先行技術文献に示す逆止弁の役割を果たすことができる。
 なお、当該制御弁34のエア抜きは、ピストンロッド6の縮み行程時、すなわち、ピストン上室2Aの圧力がピストン下室2Bの圧力に対して低いときに行うことができる。
(第2実施形態) 本発明の第2実施形態を添付した図を参照して説明する。なお、前述した第1実施形態に係る減衰力調整式緩衝器1と同一または相当の構成要素については、同一の名称及び符号を付与するとともに詳細な説明を省略する。
 図3に示されるように、ピストン5は、ピストンケース21の軸部91に装着される。ピストンケース21の軸部91は、ピストンロッド6に対して同軸上に設けられ、ピストンケース21の底部92から下方向へ延びる。なお、ピストン5には、一端(上端)がシリンダ上室2Aに開口する伸び側通路93と、一端(下端)がシリンダ下室2Bに開口する縮み側通路94と、が設けられる。
(減衰弁機構) シリンダ2内には、ピストンロッド6の移動(伸縮)により生じる、シリンダ上室2Aとシリンダ下室2Bとの2室間の油液(作動流体)の流れを制御して、減衰力を発生させる減衰弁機構95が設けられる。減衰弁機構95は、パイロット室33の圧力にて閉弁方向(図3における上方向)へ付勢される減衰力発生弁96と、ピストンロッド6の伸び行程時に、シリンダ上室2A(上流側の部屋)からシリンダ下室2B(下流側の室)への、オリフィス76を介する油液(作動流体)の流れを制御する制御弁97と、により構成される。
 減衰力発生弁96は、ピストン5の下端に設けられるメインバルブ98(ディスクバルブ)と、内圧がメインバルブ98に対して閉弁方向へ作用する背圧室99とを有する。背圧室99は、軸部91を中心とする環状空間であり、メインバルブ98の下面外周側に設けられた環状のパッキン100のシート部101を、パイロットケース102の環状凹部103に摺動可能に当接させることにより形成される。パイロットケース102は、軸部91の先端部に螺合したナット104により、ピストンケース21に固定される。また、メインバルブ98の内周部分は、ピストン5の内周部105とパイロットケース102の内周部106とにより挟持される。なお、メインバルブ98の内周部分とパイロットケース102の内周部106との間には、上から順にスペーサ107、通路部材108が設けられる。
 制御弁97は、ピストンケース21の底部に収容されたパイロットボディ109を有する。パイロットボディ109は、底部に軸孔を有する略有底円筒形に形成され、外周面がピストンケース21の内周面110に嵌合される。また、パイロットボディ109の底部中央の軸孔の周囲には、パイロットバルブ47が離着座する弁座49が設けられる。パイロットボディ109の軸孔は、ピストンケース21の軸部91の内部を上下方向へ延びる軸孔(止り穴)とともにパイロット室33を形成する。
 制御弁97の閉弁時、すなわち、パイロットバルブ47のシート部48が、パイロットボディ109の弁座49に着座しているとき、シリンダ上室2Aは、オリフィス76を含む通路73、パイロット室33、ピストンケース21の軸部91に形成され、径方向(図3における左右方向)へ延びる通路111、軸部91の外周に設けられた環状通路112、及び通路部材108の切欠き108Aを介して、背圧室99に連通される。これにより、ピストンロッド6の伸び行程時には、シリンダ上室2Aの油液(作動流体)を背圧室99へ導入することができる。
 そして、ピストンロッド6の伸び行程におけるメインバルブ98(減衰力発生弁96)の開弁前には、シリンダ上室2Aの油液は、オリフィス76を含む通路73、パイロット室33、通路111、環状通路112、ピストン5の内周部105下端側に設けられた通路113、ピストン5の下端部の、内周部105と環状のシート部114とメインバルブ98との間に形成された環状通路115、メインバルブ98の切欠き116を介してシリンダ下室2Bへ流れる。この油液の流れに並行して、シリンダ上室2Aの油液は、伸び側通路93、環状通路115、メインバルブ98の切欠き116を介してシリンダ下室2Bへ流れる。これにより、メインバルブ98の開弁前には、オリフィス特性の減衰力を得ることができる。そして、ソレノイド54の推力(制御電流)を調整してメインバルブ35の背圧を変化させることにより、減衰力を可変に調整することができる。
 他方、制御弁97が開弁する、すなわち、パイロットバルブ47がソレノイド54の推力に抗して上方向へ移動して、パイロットバルブ47のシート部49がパイロットボディ109の弁座49から離座すると、パイロット室33の油液は、シリンダ下室2Bへ排出される。
 つまり、パイロット室33の油液は、フェイルばね117に形成された切欠き117A、円形のプレート118に形成された切欠き118B、スペーサ119に形成された通路119A、プレート118に形成された切欠き118A、スペーサ120に形成された切欠き120A、ディスクバルブ121に形成された切欠き121A、及びパイロットボディ109に形成された切欠き122、ピストンケース21とパイロットボディ109との間に形成された環状通路123、ピストンケース21の底部92に形成された通路124、弁座部材125に形成された切欠き125A、ピストンケース21の軸部91の外周に設けられた環状通路127、ピストン5の内周部105上端に設けられた切欠き128、及び縮み側通路94を経由して、シリンダ下室2Bへ流れる。
 また、フェイル発生時、すなわち、プランジャ53、延いては作動ピン52の推力が失われた場合には、フェイルばね117のばね力により、パイロットバルブ47が後退する。これにより、パイロット室33が開口するとともに、パイロットバルブ47の環状の上端部が、プレート118の軸孔の周囲に当接する。同時に、パイロットバルブ47のフランジ部55が、ディスクバルブ121に当接する。
 この状態では、シリンダ上室2Aとシリンダ下室2Bとは、オリフィス76を含む通路73、連通路70、ディスクバルブ121に形成された切欠き121B、プレートに形成された切欠き118B、スペーサ119に形成された通路119A、プレート118に形成された切欠き118A、スペーサ120に形成された切欠き120A、ディスクバルブ121に形成された切欠き121A、パイロットボディ109に形成された切欠き122、ピストンケース21とパイロットボディ109との間に形成された環状通路123、ピストンケース21の底部92に形成された通路124、弁座部材125に形成された切欠き125A、ピストンケース21の軸部91の外周に設けられた環状通路127、ピストン5の内周部105上端に設けられた切欠き128、及び縮み側通路94により連通される。これにより、フェイル時においても、オリフィス及びバルブ特性の減衰力を得ることができる。
 なお、ピストンロッド6の縮み行程時には、ディスクバルブ130が、ピストン5の上端面に形成された環状のシート部131から離座して開弁することにより発生するバルブ特性の減衰力を得ることができる。
(効果) 第2実施形態によれば、ピストンロッド6の伸び行程におけるパイロットバルブ47の閉弁時には、シリンダ上室2Aは、オリフィス76を含む通路73、連通路70、パイロット室33、通路111、環状通路112、及び切欠き108Aを介して、背圧室99に連通する。
 この状態において、シリンダ上室2Aは、シリンダ下室2Bに連通していない、すなわち、シリンダ上室2Aの圧力がシリンダ下室2Bの圧力よりも高いことから、油液がシリンダ上室2Aからシリンダ下室2Bへ流れることがないので、減衰力の立ち上がりの遅れを阻止することができる。また、シリンダ上室2Aの圧力がシリンダ下室2Bへ逃げることがないので、減衰力の調整幅が制限される等の問題を解消することができる。
 さらに、従来、シリンダ上室2Aとシリンダ下室2Bとが常時連通されていた場合、通路に逆止弁を設けたり、通路の断面積(流路面積)を小さく設定していたため、構造の煩雑化、及び公差の厳格化に伴い、製造コストの増加を余儀なくされていたが、第2実施形態では、これら問題点を解消することができる。
 そして、パイロット室33に入り込んだエアは、連通路70を上方向へ移動するので、当該エアを、通路73を介して円滑にシリンダ上室2Aへ排出することができる。
 なお、当該制御弁97のエア抜きは、ピストンロッド6の縮み行程時、すなわち、ピストン上室2Aの圧力がピストン下室2Bの圧力に対して低いときに行うことができる。逆に、ピストンロッド6の伸び行程時、すなわち、ピストン上室2Aの圧力がピストン下室2Bの圧力に対して高いとき、制御弁97をエア抜きすることができない。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。
 本願は、2015年11月26日付出願の日本国特許出願第2015-230748号に基づく優先権を主張する。2015年11月26日付出願の日本国特許出願第2015-230748号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1 緩衝器、2 シリンダ、2A シリンダ上室、2B シリンダ下室、5 ピストン、6 ピストンロッド、31 減衰弁機構、32 減衰力発生弁、33 パイロット室、34 制御弁(弁体)、49 弁座、52 作動ピン(軸部)、53 プランジャ(可動子)、54 ソレノイド、70 連通路、76 オリフィス

Claims (4)

  1.  減衰力調整式緩衝器であって、該減衰力調整式緩衝器は、
     作動流体が封入されたシリンダと、
     前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を2室に分画するピストンと、
     一端が前記ピストンに連結され、他端が前記シリンダの外部に延出するピストンロッドと、
     前記シリンダ内に設けられ、前記ピストンロッドの移動により生じる前記シリンダ内の2室間の作動流体の流れを制御して減衰力を発生させる減衰弁機構と、を備え、
     前記減衰弁機構は、
     パイロット室の圧力により閉弁方向へ付勢される減衰力発生弁と、前記パイロット室の圧力を前記シリンダ内の2室のうちの下流側の室へ排出する制御弁と、を備え、
     前記制御弁は、内部に軸方向へ延びる連通路が設けられた軸部と、前記軸部の周囲に設けられた可動子と、前記可動子を軸方向へ駆動するソレノイドと、前記軸部の一端に設けられた弁体と、前記弁体が着座する弁座と、を有し、
     前記軸部の連通路は、一端側が前記パイロット室に連通され、他端側が、前記シリンダ内の2室のうちの上流側の室にオリフィスを介して連通されることを特徴とする減衰力調整式緩衝器。
  2.  請求項1に記載の減衰力調整式緩衝器において、
     前記連通路の他端側は、前記上流側の室に直接連通されることを特徴とする減衰力調整式緩衝器。
  3.  請求項1又は2に記載の減衰力調整式緩衝器において、
     前記弁体が前記弁座に着座した状態で、前記パイロット室と、圧力が前記弁体を前記弁座に付勢する方向へ作用する前記軸部の連通路他端側の弁体背圧室と、を前記軸部の連通路を介して連通させたとき、前記弁体の受圧面積は、前記弁座側の面積から、前記弁体背圧室側の面積を差引いた面積となることを特徴とする減衰力調整式緩衝器。
  4.  減衰力調整式緩衝器であって、該減衰力調整式緩衝器は、
     作動流体が封入されたシリンダと、
     前記シリンダ内に摺動可能に嵌装され、前記シリンダ内を2室に分画するピストンと、
     一端が前記ピストンに連結され、他端が前記シリンダの外部に延出するピストンロッドと、
     前記シリンダ内に設けられ、前記ピストンロッドの移動により生じる前記シリンダ内の2室間の作動流体の流れを制御して減衰力を発生させる減衰弁機構と、を備え、
     前記減衰弁機構は、
     パイロット室の圧力により閉弁方向へ付勢される減衰力発生弁と、前記パイロット室の圧力を前記シリンダ内の2室のうちの下流側の室へ排出する制御弁と、からなり、
     前記シリンダ内の2室間を連通する通路を備え、
     前記通路には、前記シリンダ内の2室のうちの上流側の室に連通するオリフィスと、前記オリフィスを介して前記通路に連通する背圧室と、前記オリフィスを介する前記上流側の室から下流側の室への作動流体の流れを制御する前記制御弁と、が設けられることを特徴とする減衰力調整式緩衝器。
PCT/JP2016/083910 2015-11-26 2016-11-16 減衰力調整式緩衝器 WO2017090492A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017552373A JP6537628B2 (ja) 2015-11-26 2016-11-16 減衰力調整式緩衝器
US15/779,373 US10634207B2 (en) 2015-11-26 2016-11-16 Damping force control type shock absorber
DE112016005415.7T DE112016005415T5 (de) 2015-11-26 2016-11-16 Stossdämpfer mit steuerbarer Dämpfungskraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-230748 2015-11-26
JP2015230748 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090492A1 true WO2017090492A1 (ja) 2017-06-01

Family

ID=58764346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083910 WO2017090492A1 (ja) 2015-11-26 2016-11-16 減衰力調整式緩衝器

Country Status (4)

Country Link
US (1) US10634207B2 (ja)
JP (1) JP6537628B2 (ja)
DE (1) DE112016005415T5 (ja)
WO (1) WO2017090492A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780119A (zh) * 2018-03-05 2019-05-21 北京京西重工有限公司 活塞组件及阻尼器
EP3805597A4 (en) * 2018-06-01 2022-04-06 Showa Corporation FLOW PASSAGE CONTROL DEVICE AND VEHICLE HEIGHT ADJUSTMENT DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110475985B (zh) * 2017-07-27 2021-04-16 日立汽车系统株式会社 缓冲器
JP7104530B2 (ja) * 2018-03-13 2022-07-21 Kyb株式会社 ソレノイド、電磁弁、及び緩衝器
EP3767126A4 (en) * 2018-03-13 2021-12-22 KYB Corporation VALVE DEVICE AND BUFFER
WO2019230550A1 (ja) * 2018-05-29 2019-12-05 日立オートモティブシステムズ株式会社 サスペンション装置
DE102019105708B4 (de) * 2019-03-06 2022-05-05 Kendrion (Villingen) Gmbh Druckregelventil und Vorrichtung mit einem derartigen Druckregelventil zum Steuern oder Regeln eines Drucks eines Druckfluids in einem Pilotdruckraum
DE102019106494B4 (de) 2019-03-14 2022-05-05 Kendrion (Villingen) Gmbh Druckregelventil und Vorrichtung mit einem derartigen Druckregelventil zum Steuern oder Regeln eines Drucks eines Druckfluids in einem Pilotdruckraum
DE102020214289B4 (de) 2020-11-13 2022-07-07 Zf Friedrichshafen Ag Dämpfventileinrichtung mit einem Vorstufen- und einem Hauptstufenventil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978707B2 (ja) * 2001-11-29 2007-09-19 株式会社日立製作所 減衰力調整式油圧緩衝器
JP2008249107A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd 減衰力調整式流体圧緩衝器
JP2014199076A (ja) * 2013-03-29 2014-10-23 日立オートモティブシステムズ株式会社 緩衝器
JP2015194198A (ja) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100333435B1 (ko) * 1999-04-28 2002-04-25 다가야 레이지 감쇠력 제어형식의 유압식 완충기
JP4840557B2 (ja) * 2005-04-12 2011-12-21 日立オートモティブシステムズ株式会社 減衰力調整式油圧緩衝器
JP4919045B2 (ja) * 2007-04-19 2012-04-18 日立オートモティブシステムズ株式会社 減衰力調整式流体圧緩衝器
JP5582318B2 (ja) * 2010-02-12 2014-09-03 日立オートモティブシステムズ株式会社 サスペンション装置
JP2015230748A (ja) 2014-06-03 2015-12-21 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978707B2 (ja) * 2001-11-29 2007-09-19 株式会社日立製作所 減衰力調整式油圧緩衝器
JP2008249107A (ja) * 2007-03-30 2008-10-16 Hitachi Ltd 減衰力調整式流体圧緩衝器
JP2014199076A (ja) * 2013-03-29 2014-10-23 日立オートモティブシステムズ株式会社 緩衝器
JP2015194198A (ja) * 2014-03-31 2015-11-05 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780119A (zh) * 2018-03-05 2019-05-21 北京京西重工有限公司 活塞组件及阻尼器
US10746247B2 (en) 2018-03-05 2020-08-18 Beijingwest Industries Co., Ltd. Dual ride damper assembly
EP3805597A4 (en) * 2018-06-01 2022-04-06 Showa Corporation FLOW PASSAGE CONTROL DEVICE AND VEHICLE HEIGHT ADJUSTMENT DEVICE

Also Published As

Publication number Publication date
US20180355941A1 (en) 2018-12-13
US10634207B2 (en) 2020-04-28
JP6537628B2 (ja) 2019-07-03
JPWO2017090492A1 (ja) 2018-08-02
DE112016005415T5 (de) 2018-09-20

Similar Documents

Publication Publication Date Title
WO2017090492A1 (ja) 減衰力調整式緩衝器
JP5843842B2 (ja) 減衰力調整式緩衝器
KR101769148B1 (ko) 감쇠력 조정식 완충기
JP6188598B2 (ja) シリンダ装置
JP5365804B2 (ja) 緩衝器
JP7182592B2 (ja) 緩衝器
US10465765B2 (en) Damping force adjustment mechanism
JP2008267489A (ja) 流体圧緩衝器
JP2008267487A (ja) 減衰力調整式流体圧緩衝器
CN108027077B (zh) 阻尼阀和缓冲器
KR102348272B1 (ko) 완충기
JP2015194198A (ja) 減衰力調整式緩衝器
KR20160026753A (ko) 완충기
JP6652895B2 (ja) 減衰力調整式緩衝器
WO2017073218A1 (ja) 緩衝器及び緩衝器の組立方法
WO2018061726A1 (ja) 減衰力調整式緩衝器
WO2018216716A1 (ja) 緩衝器
JP5678348B2 (ja) 減衰力調整式緩衝器
JP7213161B2 (ja) 減衰力調整式緩衝器
US20190128360A1 (en) Damping force-adjusting valve and shock absorber
US20220099153A1 (en) Shock absorber
JP2015197106A (ja) 減衰力調整式緩衝器
JP2016070421A (ja) 緩衝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552373

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016005415

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868440

Country of ref document: EP

Kind code of ref document: A1