WO2017090278A1 - ガスバリア性フィルム、およびその製造方法 - Google Patents

ガスバリア性フィルム、およびその製造方法 Download PDF

Info

Publication number
WO2017090278A1
WO2017090278A1 PCT/JP2016/072656 JP2016072656W WO2017090278A1 WO 2017090278 A1 WO2017090278 A1 WO 2017090278A1 JP 2016072656 W JP2016072656 W JP 2016072656W WO 2017090278 A1 WO2017090278 A1 WO 2017090278A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
group
film
barrier film
layer
Prior art date
Application number
PCT/JP2016/072656
Other languages
English (en)
French (fr)
Inventor
真人 奥山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017552286A priority Critical patent/JP6720981B2/ja
Publication of WO2017090278A1 publication Critical patent/WO2017090278A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material

Definitions

  • the present invention relates to a gas barrier film and a method for producing the same.
  • a gas barrier film formed by laminating a plurality of layers including thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of a plastic substrate or film is used to block various gases such as water vapor and oxygen.
  • metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide
  • it is widely used for packaging of articles that require the use of, for example, packaging for preventing deterioration of foods, industrial products, pharmaceuticals, and the like.
  • gas barrier films are required to be developed into flexible electronic devices such as flexible solar cell elements, organic electroluminescence (EL) elements, and liquid crystal display elements, and many studies have been made.
  • EL organic electroluminescence
  • liquid crystal display elements many studies have been made.
  • these flexible electronic devices are required to have an extremely high gas barrier property at the glass substrate level.
  • Patent Document 1 discloses that a clear hard coat layer is formed and cured on the surface of a cycloolefin polymer substrate that has been hydrophilized by vacuum ultraviolet irradiation treatment, A method for producing a gas barrier film characterized by forming a gas barrier layer on a clear hard coat layer is described.
  • an object of the present invention is to provide a gas barrier film in which the formation of foam marks in the gas barrier layer is suppressed.
  • the present inventor conducted intensive research to solve the above problems. As a result, the present inventors have found that the above problems can be solved by a gas barrier film including a cycloolefin polymer substrate and a gas barrier layer including an oxygen deficient region having a predetermined composition, and the present invention has been completed.
  • One aspect of the present invention relates to a gas barrier film including a cycloolefin polymer substrate and a gas barrier layer including an oxygen deficient region represented by the following formulas (1) and (2):
  • M1 is one or more elements selected from the group consisting of Si, Ge, Sn, B, Al, Ga and In; M2 is a transition metal element; ⁇ x ⁇ 49, 0 ⁇ y, and 0 ⁇ z; when the maximum valences of M1 and M2 are a and b, respectively, x, y, and z satisfy the relationship of the following formula (2).
  • One aspect of the present invention is a method for producing a gas barrier film having a cycloolefin polymer substrate, and at least an element (M1) selected from the group consisting of Si, Ge, Sn, B, Al, Ga, and In.
  • a gas barrier film comprising: a step of forming a coating film containing one kind on the cycloolefin polymer substrate; and a step of performing vapor phase film formation on the coating film surface using a transition metal alone or a transition metal oxide as a source. It relates to the manufacturing method.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • Gas barrier film including a cycloolefin polymer substrate and a gas barrier layer including an oxygen deficient region represented by the following formulas (1) and (2).
  • M1 is one or more elements selected from the group consisting of Si, Ge, Sn, B, Al, Ga and In; M2 is a transition metal element; ⁇ x ⁇ 49, 0 ⁇ y, and 0 ⁇ z; when the maximum valences of M1 and M2 are a and b, respectively, x, y, and z satisfy the relationship of the following formula (2).
  • a gas barrier film in which the formation of foam marks in the gas barrier layer is suppressed.
  • the technical scope of the present invention is not limited, but it is presumed that this is due to the following mechanism. Since a low-polarity hydrophobic substrate such as a cycloolefin polymer substrate has extremely low moisture permeability, moisture derived from the atmosphere and raw materials may be present on the cycloolefin polymer substrate in the gas barrier film production process. In this case, since the water vaporized in the manufacturing process cannot pass through the cycloolefin polymer substrate, it is assumed that a local force due to the vapor pressure of the water is likely to be applied to the gas barrier layer side.
  • the physical strength of the film is weak, such as a thin film in the middle of gas barrier layer formation or before curing, it will foam without being able to withstand the above-mentioned local force, thereby forming foam marks in the gas barrier layer Is done.
  • the gas barrier layer included in the gas barrier film according to the present invention includes an oxygen deficient region having a composition in which oxygen is deficient with respect to the stoichiometric composition.
  • a composite oxide of M1 (one or more selected from the group consisting of Si, Ge, Sn, B, Al, Ga and In) and M2 (transition metal element) present in the oxygen deficient region has a stoichiometry. Since oxygen is deficient with respect to a typical composition, it has a function of trapping moisture, and it is assumed that foaming is suppressed by this.
  • the transition metal element present in the oxygen deficient region can have a plurality of valences, it can exist in the gas barrier layer as a compound having various intermolecular distances. Thereby, it is presumed that the gas barrier film has a flexible structure and functions to relieve the local force.
  • a cycloolefin polymer base material containing a cycloolefin polymer (COP) or a cycloolefin copolymer (COC) as a main component is used.
  • main component means that the total ratio of COP and COC is 60% by mass or more among the resin components constituting the substrate.
  • the total proportion of COP and COC contained in the cycloolefin polymer substrate is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass. % Or more (the upper limit is 100% by mass).
  • the cycloolefin polymer substrate used in the present invention has a low moisture permeability as compared with a polyethylene terephthalate film that has been widely used in the past, and has excellent light transmittance (transparency). For this reason, when it uses for an organic EL element, luminous efficiency can improve. Furthermore, since the cycloolefin polymer base material has low retardation, there is an advantage that the color viewing angle dependency is small when used for an organic EL device.
  • Method A provides a cycloolefin copolymer (COC) and Method B provides a cycloolefin polymer (COP).
  • COC cycloolefin copolymer
  • COP cycloolefin polymer
  • a resin obtained by polymerizing or copolymerizing cycloolefin is used as the main component of the film substrate used in the present invention.
  • cycloolefin for example, norbornene, dicyclopentadiene, tetracyclododecene, ethyl tetracyclododecene, ethylidene tetracyclododecene, tetracyclo [7.4.0.1 10,13.
  • cycloolefins may have a hydrocarbon group having 1 to 10 carbon atoms or a polar group as a substituent.
  • the hydrocarbon group having 1 to 10 carbon atoms is a linear, branched or cyclic hydrocarbon group, and more specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, sec-butyl group, tert-butyl group, isobutyl group, n-hexyl group, 2-hexyl group, 3-hexyl group, cyclohexyl group, 1-methylcyclohexyl group, n-heptyl group, 2-heptyl group, 3-heptyl group Group, isoheptyl group, tert-heptyl group, n-octyl group, isooctyl group, tert-octyl group, 2-ethylhexy
  • Examples of the polar group include a hydroxy group, a carboxy group, an alkoxy group having 1 to 10 carbon atoms, an epoxy group, a glycidyl group, an alkoxycarbonyl group having 2 to 11 carbon atoms, and an aryloxycarbonyl group having 7 to 14 carbon atoms.
  • Carboxy groups include those in which two or more dehydrate to form a ring.
  • a cycloolefin copolymer obtained by addition copolymerization of a monomer other than cycloolefin is also preferably used.
  • addition copolymerizable monomers include chain olefins such as ethylene, propylene, 1-butene and 1-pentene; 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- And dienes such as 1,4-hexadiene and 1,7-octadiene.
  • the main component of the film substrate used in the present invention is preferably one obtained by polymerizing or copolymerizing cycloolefin and then hydrogenating it to convert unsaturated bonds in the molecule into saturated bonds.
  • the hydrogenation reaction may be performed by blowing hydrogen in the presence of a known hydrogenation catalyst.
  • cycloolefin polymer and cycloolefin copolymer examples include ZEONOR (registered trademark), ZEONEX (registered trademark) (Nippon Zeon Co., Ltd.), Arton (registered trademark) (JSR Co., Ltd.), Essina (registered trademark) (Sekisui Chemical Co., Ltd.). And Apel (registered trademark) (Mitsui Chemicals).
  • production methods such as a normal inflation method, a T-die method, a calendering method, a cutting method, a casting method, an emulsion method, and a hot press method can be used.
  • the conventionally known solution casting film forming method or melt casting film forming method can be selected.
  • the surface of the cycloolefin polymer base material may be subjected to various known treatments for improving adhesion, such as ultraviolet irradiation treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, as necessary.
  • various known treatments for improving adhesion such as ultraviolet irradiation treatment, corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, as necessary.
  • the above processes may be combined.
  • the thickness of the cycloolefin polymer substrate is, for example, 10 to 500 ⁇ m, and preferably 25 to 150 ⁇ m.
  • the cycloolefin polymer substrate in the present invention preferably contains a structural unit represented by the following formula (3):
  • n 0, 1 or 2;
  • Q is independently at least 1 selected from a group represented by —CH ⁇ CH— and a group represented by —CH 2 CH 2 —.
  • R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 10 carbon atoms or a polar group, and at least one of R 1 to R 4 is a polar group. Specific examples of the hydrocarbon group having 1 to 10 carbon atoms and the polar group are as described above.
  • the cycloolefin polymer base material has a low-polar main chain structure and a hydrophilic side chain (polar group) as represented by the above formula (3), the detailed mechanism is unknown, but low permeability There is an advantage that foam formation can be further suppressed while maintaining wetness.
  • n is preferably 0 or 1, more preferably 1.
  • Q is preferably a group represented by —CH 2 CH 2 —.
  • At least one of R 1 ⁇ R 4 is a hydrocarbon group having 1 to 10 carbon atoms, and be at least one of the polar groups of R 1 ⁇ R 4, intended present invention This is preferable from the standpoint of achieving the effect of the above.
  • the hydrocarbon group having 1 to 10 carbon atoms is preferably selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and more preferably a methyl group.
  • the polar group is preferably selected from the group consisting of an alkoxycarbonyl group having 2 to 11 carbon atoms, an aryloxycarbonyl group having 7 to 14 carbon atoms, and a carboxy group.
  • alkoxycarbonyl group examples include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, iso-propoxycarbonyl group, n-butoxycarbonyl group, iso-butoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxy group.
  • aryloxycarbonyl group examples include a phenoxycarbonyl group, a naphthyloxycarbonyl group, a fluorenyloxycarbonyl group, and a biphenylyloxycarbonyl group.
  • polar groups include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, iso-propoxycarbonyl group, n-butoxycarbonyl group, iso-butoxycarbonyl group, sec-butoxycarbonyl group, and tert-butoxycarbonyl. More preferably, it is selected from the group consisting of groups.
  • At least one of R 1 to R 4 is selected from the group consisting of a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and at least one of R 1 to R 4 has a carbon number It is selected from the group consisting of an alkoxycarbonyl group having 2 to 11 carbon atoms, an aryloxycarbonyl group having 7 to 14 carbon atoms, and a carboxy group.
  • the cycloolefin polymer substrate is a cycloolefin copolymer containing the structural unit represented by the above formula (3)
  • the unit is preferably contained in an amount of 50 to 99 mol% (that is, 50 to 99 mol% of the structural unit represented by the formula (3) and 1 to 50 mol% of the structural unit represented by the formula (3) are derived.
  • structural units derived from other monomers copolymerizable with the monomer
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography of cycloolefin polymer and cycloolefin copolymer is, for example, in the range of 5,000 to 200,000.
  • the gas barrier layer included in the gas barrier film according to the present invention includes an oxygen deficient region represented by the following formulas (1) and (2).
  • the “region” means a plane that is substantially perpendicular to the thickness direction of the gas barrier layer (that is, a plane parallel to the outermost surface of the gas barrier layer) and has a constant or arbitrary thickness. This refers to a three-dimensional range (region) between two opposing surfaces formed when divided, and the composition of the components in the region changes continuously even if it is constant in the thickness direction. You may do.
  • M1 is one or more elements selected from the group consisting of Si, Ge, Sn, B, Al, Ga and In; M2 is a transition metal element; ⁇ x ⁇ 49, 0 ⁇ y, and 0 ⁇ z; when the maximum valences of M1 and M2 are a and b, respectively, x, y, and z satisfy the relationship of the following formula (2).
  • the composition of the oxygen deficient region according to the present invention is represented by (M1) (M2) x O y N z which is the formula (1).
  • the composition of the composite region may partially include a nitride structure, and it is preferable from the viewpoint of barrier properties to include a nitride structure.
  • the maximum valence of each element is calculated by weighted averaging according to the abundance ratio of each element.
  • the composite valence to be used is adopted as the values of a and b of the “maximum valence”.
  • the region represented by the above formula (1) includes M1 (one or more elements selected from the group consisting of Si, Ge, Sn, B, Al, Ga, and In) and M2 (transition metal element). It is a mixed region.
  • M1 and M2 bonds are equal to the total number of O and N bonds (that is, the chemical composition represented by (M1) (M2) x O y N z is the stoichiometric composition).
  • M1 (M2) x O y N z is the stoichiometric composition.
  • this state is defined as “oxygen deficiency” (a region having a thickness of 5 nm or more that satisfies the above formulas (1) and (2) is defined as “oxygen deficiency”). Area ”).
  • the free bonds of M1 and M2 have the possibility of bonding to each other, and when the metals of M1 and M2 are directly bonded to each other, they are bonded to each other through O or N It is considered that a denser and denser structure is formed, and as a result, foaming is suppressed.
  • the mixed region satisfies 0.02 ⁇ x ⁇ 49 (0 ⁇ y, 0 ⁇ z) (that is, the value of the atomic ratio of M1 and M2 (M2 / M1) is from 0.02 to 49.) Since it is considered that the closer the abundance ratio of M1 and M2 is, the oxygen barrier region preferably includes a region satisfying 0.1 ⁇ x ⁇ 10, and 0.2 ⁇ x ⁇ 5 is more preferable, and a region satisfying 0.3 ⁇ x ⁇ 4 is more preferable.
  • the presence of a mixed region (that is, an oxygen deficient region) satisfying (2) exhibits the effect of suppressing the formation of foaming marks, but the minimum of (2y + 3z) / (a + bx) in the oxygen deficient region
  • the value preferably satisfies (2y + 3z) / (a + bx) ⁇ 0.9, more preferably satisfies (2y + 3z) / (a + bx) ⁇ 0.85, and satisfies (2y + 3z) / (a + bx) ⁇ 0.8. It is more preferable to satisfy.
  • the minimum value of (2y + 3z) / (a + bx) is preferably 0.2 ⁇ (2y + 3z) / (a + bx), and 0.3 More preferably, ⁇ (2y + 3z) / (a + bx), and further preferably 0.4 ⁇ (2y + 3z) / (a + bx).
  • the thickness of the oxygen deficient region is preferably 8 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more as the sputtering thickness in terms of SiO 2 .
  • an upper limit in particular is not restrict
  • the existence and thickness of the oxygen deficient region of the gas barrier layer as described above can be determined by the following composition analysis by XPS.
  • the oxygen-deficient region as used in the present invention has an atomic ratio of M1 and M2 in the range of 0.02 to 49 when the composition distribution in the thickness direction of the gas barrier layer is analyzed by the XPS method. It is defined as a region that satisfies (2).
  • a method for measuring the oxygen deficient region by XPS analysis will be described.
  • the element concentration distribution in the thickness direction of the gas barrier layer (hereinafter referred to as a depth profile) specifically includes an M1 distribution curve (for example, a silicon distribution curve), an M2 distribution curve (for example, a niobium distribution curve), oxygen (O ), Nitrogen (N), carbon (C) distribution curves, etc. by using X-ray photoelectron spectroscopy measurement together with rare gas ion sputtering such as argon, the surface is exposed sequentially from the surface of the gas barrier layer. It can be created by so-called XPS depth profile measurement in which composition analysis is performed.
  • a distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio of each element (unit: atom%) and the horizontal axis as the etching time (sputtering time).
  • the etching time generally correlates with the distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer in the layer thickness direction.
  • the distance from the surface of the gas barrier layer in the thickness direction of the layer the distance from the surface of the gas barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement can be adopted. .
  • etching rate is 0.05 nm / It is preferable to set to sec (SiO 2 thermal oxide film conversion value).
  • ⁇ Analyzer QUANTERASXM manufactured by ULVAC-PHI ⁇ X-ray source: Monochromatic Al-K ⁇ ⁇ Sputtering ion: Ar (2 keV)
  • Depth profile Measurement is repeated at a predetermined thickness interval with a SiO 2 equivalent sputtering thickness to obtain a depth profile in the depth direction. The thickness interval is 1 nm (data every 1 nm is obtained in the depth direction).
  • the background is obtained by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area.
  • Data processing uses MultiPak manufactured by ULVAC-PHI.
  • the composition ratio is calculated, and the range in which M1 and M2 coexist and the M2 / M1 atomic ratio value is 0.02 to 49 is determined. This is defined as the mixed region.
  • the thickness of the mixed region represents the sputter depth in XPS analysis in terms of SiO 2 .
  • a region continuously satisfying the formula (2) with a thickness of 5 nm or more is defined as an oxygen deficient region.
  • an oxygen-deficient target (stoichiometric composition) It is possible to control by using a target having a composition ratio deficient in oxygen) or adjusting the oxygen partial pressure during film formation.
  • the entire region in the layer thickness direction may be an oxygen deficient region, but a region having a composition different from this (for example, (M1) (M2) x O y N a region where the chemical composition represented by z is a stoichiometric composition, a region formed of M1 or M2, or an oxide or oxynitride thereof, or the like may be included.
  • the “gas barrier layer” is a layer that has a function of suppressing intrusion of components that cause deterioration of elements such as moisture and oxygen and includes at least one of M1 and M2.
  • the gas barrier property of the gas barrier film is preferably 3 or more (the time when the transmission concentration is less than 50% is 10 hours or more) as evaluated by the Ca method measured by the method described in Examples, and is 4 or more ( More preferably, the time during which the transmission density is less than 50% is 25 hours or more.
  • the gas barrier layer formed in the present invention may be a single layer or a laminated structure of two or more layers.
  • the gas barrier layers may have the same composition or different compositions.
  • the thickness of the gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 2000 nm, and more preferably 50 to 700 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable.
  • the thickness of the gas barrier layer can be measured by TEM observation.
  • M1 contained in the oxygen deficient region is one or more elements selected from the group consisting of Si, Ge, Sn, B, Al, Ga, and In, but preferably contains Si, and M1 is Si. It is more preferable.
  • the transition metal element (M2) is not particularly limited, and any transition metal element can be used alone or in combination.
  • the transition metal element refers to a Group 3 element to a Group 12 element in the long-period periodic table, and more specifically, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf , Ta, W, Re, Os, Ir, Pt, and Au.
  • Nb, Ta, V, Zr, Ti, Hf, Y, La, Ce, and the like can be given as examples of the transition metal element (M2) that can provide good gas barrier properties.
  • V, Nb, and Ta which are Group 5 elements are preferable from the viewpoint of easy bonding to M1, and further, transition metal element (M2) has good transparency from the viewpoint of optical characteristics.
  • the compound is particularly preferably at least one of Nb and Ta.
  • the transition metal element (M2) is a Group 5 element (particularly Nb) and M1 described above is Si, a high gas barrier property can be obtained. This is presumably because the bond between Si and the Group 5 element (particularly Nb) is particularly likely to occur.
  • the gas barrier layer including the oxygen deficient region uses a cycloolefin polymer base material as a base material, and uses a vacuum film formation method such as a physical vapor deposition method (PVD method) and a chemical vapor deposition method (CVD method)
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • the film can be formed by a method of simultaneously forming a compound having M1 as a main component (for example, an oxide of M1) and a compound having M2 as a main component (for example, an oxide of M2) by a coating film forming method. .
  • M1 and M2 are obtained. It may be formed by natural mixing.
  • the formation of the layer containing M1 or the transition metal element (M2) is not particularly limited.
  • a conventionally known vapor deposition method using an existing thin film deposition technique can be used to efficiently reduce the mixed region. It is preferable from the viewpoint of formation.
  • the vapor deposition method is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, ion plating, and ion assist vapor deposition, plasma CVD (chemical vapor deposition), and ALD. Examples thereof include a chemical vapor deposition (CVD) method such as an (Atomic Layer Deposition) method.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • film formation is possible without damaging the base material, and since it has high productivity, it is preferably formed by a physical vapor deposition (PVD) method, and more preferably formed by a sputtering method.
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, or the like can be used alone or in combination of two or more.
  • the target (source) application method is appropriately selected according to the target type, and any of DC (direct current) sputtering, DC pulse sputtering, AC (alternating current) sputtering, and RF (radio frequency) sputtering may be used.
  • a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used.
  • the reactive sputtering method is preferable because the metal oxide film can be formed at a high film formation speed by controlling the sputtering phenomenon so as to be in the transition region.
  • the inert gas used for the process gas He, Ne, Ar, Kr, Xe or the like can be used, and Ar is preferably used. Furthermore, by introducing oxygen, nitrogen, carbon dioxide, and carbon monoxide into the process gas, a thin film such as a complex oxide, oxynitride, or oxycarbide of M1 and a transition metal element (M2) can be formed. .
  • film formation conditions in the sputtering method include a degree of vacuum, magnetic force, supply amount of process gas, applied power, discharge current, discharge voltage, time, and the like. These include a sputtering apparatus, a film material, a layer thickness, and the like. It can be selected as appropriate according to the conditions.
  • the sputtering method may be a multi-source simultaneous sputtering method using a plurality of sputtering targets including M1 or a transition metal element (M2) alone or an oxide thereof.
  • M1 a transition metal element
  • M2 a transition metal element
  • JP 2000-160331 A, JP 2004-068109 A, JP The methods and conditions described in JP 2013-047361 A can be referred to as appropriate.
  • a known co-evaporation method is preferably used as a method for forming the gas barrier layer.
  • a co-sputtering method is preferable.
  • a composite target made of an alloy containing both M1 and a transition metal element (M2) or a composite target made of a composite oxide of M1 and a transition metal element (M2) is sputtered. It may be a single sputtering used as a target. Alternatively, binary simultaneous sputtering using a target 1 containing M1 alone or an oxide and a target 2 containing a transition metal element (M2) alone or an oxide may be used.
  • the target is preferably an oxygen deficient target.
  • the gas barrier layer By forming the gas barrier layer using the co-evaporation method, most of the region in the thickness direction of the formed gas barrier layer can be a mixed region. For this reason, according to such a method, a desired gas barrier property can be realized by an extremely simple operation of controlling the thickness of the mixed region. In addition, what is necessary is just to adjust the film-forming time at the time of implementing a co-evaporation method, for example, in order to control the thickness of a mixing area
  • the transition metal alone or the transition metal oxide is used as a source for the coating surface containing at least one kind of oxide, nitride and / or oxynitride of M1.
  • a gas barrier layer is formed by performing vapor deposition.
  • one embodiment of the present invention is a method for producing a gas barrier film having a cycloolefin polymer substrate, and is an element selected from the group consisting of Si, Ge, Sn, B, Al, Ga and In (M1
  • a gas barrier comprising a step of forming a coating film containing at least one kind on a cycloolefin polymer substrate; and a step of performing vapor phase film formation on the coating film surface using a transition metal alone or a transition metal oxide as a source. It is a manufacturing method of an adhesive film. Thereby, the gas barrier property of the obtained gas barrier film becomes particularly excellent.
  • the “coating film” includes both a dried coating film and an undried coating film. Moreover, the said coating film does not need to be in direct contact with the cycloolefin polymer base material.
  • TEOS tetraethoxysilane
  • HMDSO hexamethyldisiloxane
  • silicon oxides such as polysiloxanes such as silsesquioxane
  • aluminum alkoxides aluminum alkylates
  • organoaluminum compounds such as ⁇ -
  • a method for producing a gas barrier film having a cycloolefin polymer substrate, the step of forming a polysilazane-containing coating film; and a polysilazane-containing coating film surface
  • a method for producing a gas barrier film which includes a step of performing vapor phase film formation using a transition metal alone or a transition metal oxide as a source.
  • Another preferred embodiment of the present invention provides a gas barrier film in which M1 is derived from polysilazane. That is, a preferred embodiment of the present invention is a gas barrier film in which the gas barrier layer contains polysilazane.
  • the polysilazane which is a preferred embodiment of the present invention will be described as an example in more detail, but the following description may be appropriately modified and applied to other materials forming the coating film.
  • Examples of the polysilazane include compounds having a structure represented by the following general formula (1).
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group, or an alkoxy group.
  • PHPS perhydropolysilazane
  • the organopolysilazane in which the hydrogen part bonded to Si is partially substituted with an alkyl group or the like has an alkyl group such as a methyl group, so that the adhesion to an adjacent substrate is improved and it may be hard.
  • the ceramic film made of polysilazane can be tough, and even when the film thickness is increased, the generation of cracks is preferred.
  • these perhydropolysilazane and organopolysilazane may be selected as appropriate and may be used in combination.
  • Perhydropolysilazane is presumed to have a structure in which a linear structure and a ring structure centered on a 6- or 8-membered ring coexist.
  • the molecular weight of polysilazane is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and is a liquid or solid substance and varies depending on the molecular weight.
  • polysilazanes are commercially available in a solution state dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing coating solution.
  • polysilazanes that are ceramicized at a low temperature include silicon alkoxide-added polysilazanes obtained by reacting the above polysilazanes with silicon alkoxides (Japanese Patent Laid-Open No. 5-238827), and glycidol-added polysilazanes obtained by reacting glycidol (specially No. 6-122852), an alcohol-added polysilazane obtained by reacting an alcohol (Japanese Patent Laid-Open No. 6-240208), and a metal carboxylate-added polysilazane obtained by reacting a metal carboxylate (Japanese Patent Laid-Open No. 6-299118). No.
  • acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (JP-A-7- 1969 6 No.), and the like.
  • polysilazane examples include, for example, paragraphs 0024 to 0040 of JP2013-255910A, paragraphs 0037 to 0043 of JP2013-188942, and paragraphs 0014 to 0021 of JP2013-151123A.
  • paragraphs 0033 to 0045 of JP 2013-052569 A paragraphs 0062 to 0075 of JP 2013-129557 A, paragraphs 0037 to 0064 of JP 2013-226758 A, and the like. Can be applied.
  • organic solvent for preparing the polysilazane-containing coating solution it is preferable to avoid using an alcohol or water-containing one that easily reacts with polysilazane.
  • Suitable organic solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, halogenated hydrocarbon solvents, ethers such as aliphatic ethers and alicyclic ethers. it can.
  • organic solvents such as pentane, hexane, cyclohexane, toluene, xylene, solvesso and terpene, halogen hydrocarbons such as methylene chloride and trichloroethane, and ethers such as dibutyl ether, dioxane and tetrahydrofuran.
  • organic solvents may be selected according to the purpose such as the solubility of polysilazane and the evaporation rate of the solvent, and a plurality of organic solvents may be mixed.
  • the polysilazane concentration in the polysilazane-containing coating solution is preferably about 0.2 to 35% by mass, although it varies depending on the film thickness of the target gas barrier layer and the pot life of the coating solution.
  • the coating liquid containing polysilazane can contain an inorganic precursor compound in addition to polysilazane.
  • the inorganic precursor compound other than polysilazane is not particularly limited as long as a coating liquid can be prepared.
  • compounds other than polysilazane described in paragraphs 0110 to 0114 of JP2011-143577A can be appropriately employed.
  • a conventionally known appropriate wet coating method can be employed as a method of applying the polysilazane-containing coating solution.
  • a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.
  • the coating thickness can be appropriately set according to the preferred thickness and purpose.
  • the thickness of the coating liquid (coating film) after drying is preferably 40 nm or more and 1000 nm or less, more preferably 100 nm or more. 400 nm or less.
  • the coating film may be dried.
  • the drying temperature of the coating film varies depending on the substrate to be applied, but is preferably 50 to 200 ° C.
  • the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the substrate due to heat.
  • the temperature can be set by using a hot plate, oven, furnace or the like.
  • the drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes.
  • the drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.
  • a modification treatment such as plasma treatment or ultraviolet irradiation treatment is generally performed on the polysilazane-containing coating film before or after drying.
  • a modification treatment such as plasma treatment or ultraviolet irradiation treatment is generally performed on the polysilazane-containing coating film before or after drying.
  • a modification treatment may be performed to improve gas barrier properties.
  • the adhesion of the gas barrier layer to the cycloolefin polymer substrate may be lowered.
  • the gas barrier layer without substantially performing the modification treatment, and after forming the polysilazane-containing coating film, it is dried until the gas barrier film is obtained.
  • the energy applied to the containing coating film is less than 0.1 mJ / cm 2 . That is, in one embodiment of the present invention, the energy applied to the polysilazane-containing coating film is less than 0.1 mJ / cm 2 .
  • the energy applied to the polysilazane-containing coating film is less than 0.1 mJ / cm 2 , the oxidation conversion reaction of polysilazane does not proceed in the production process, and the adhesion can be improved.
  • the energy applied to the polysilazane-containing coating film is more preferably 0.05 mJ / cm 2 or less (lower limit is 0 mJ / cm 2 ).
  • substantially no modification treatment refers to plasma treatment, ultraviolet irradiation treatment, or heat treatment at 450 ° C. or higher in the process from application of the polysilazane-containing coating solution to obtaining a gas barrier film. In other words, it does not impede the application of energy to the extent that the polysilazane coating film is exposed to visible light exceeding 400 nm and does not affect the modification of the polysilazane.
  • the fact that the modification treatment is not substantially carried out is that the atomic ratio of the gas barrier layer in the obtained gas barrier film is measured, and the element ratio of nitrogen to silicon (atom%) within 10 nm from the surface layer of the polysilazane-containing coating film is , 0.9 to 1.0.
  • the conversion reaction of polysilazane to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method.
  • Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment.
  • the formation of a silicon oxide film or silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so it is suitable for flexible substrates such as plastics. Is difficult. For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.
  • a conversion reaction by a plasma treatment or an ultraviolet irradiation treatment capable of a conversion reaction at a lower temperature is preferable.
  • a rare gas excimer lamp is preferably used.
  • an excimer lamp (single wavelength of 172 nm, 222 nm, 308 nm, for example, manufactured by USHIO INC., Manufactured by M.D. Can be mentioned.
  • the treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in polysilazane, and the bonding of atoms is an action of only a photon called a photon process.
  • a silicon oxide film is formed at a relatively low temperature (about 200 ° C. or less) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly.
  • the manufacturing method according to the present invention can include a step of providing layers having various functions.
  • An anchor coat layer may be formed on the surface of the base material on the side where the gas barrier layer is formed for the purpose of improving adhesion.
  • polyester resin isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicone resin, alkyl titanate, etc. are used alone. Or in combination of two or more.
  • the above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent.
  • an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 ⁇ m.
  • the gas barrier film produced by the production method according to the present invention may have a smooth layer between the substrate and the gas barrier layer.
  • the smooth layer used in the present invention flattens the rough surface of the resin base material where protrusions and the like exist, or fills the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the base material and flattens the surface.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • a resin composition containing an acrylate compound having a radical reactive unsaturated compound for example, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved.
  • a UV curable organic / inorganic hybrid hard coat material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.
  • thermosetting materials include Tutprom Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Coat, Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), inorganic / organic nanocomposite material SSG coat manufactured by Nittobo Co., Ltd., acrylic polyol and isocyanate prepolymer
  • a thermosetting urethane resin, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, a silicone resin, etc. are mentioned.
  • an epoxy resin-based material having heat resistance is particularly preferable.
  • the method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • a wet coating method such as a spin coating method, a spray method, a blade coating method, a dip method, or a dry coating method such as an evaporation method.
  • any smooth layer may use an appropriate resin or additive for improving the film formability.
  • the thickness of the smooth layer is preferably in the range of 1 to 10 ⁇ m, more preferably in the range of 2 to 7 ⁇ m, from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.
  • the smoothness of the smooth layer is a value expressed by the surface roughness defined by JIS B 0601: 2001, and the 10-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply
  • CHC layer In the gas barrier film produced by the production method according to the present invention, a clear hard coat layer (CHC layer) may be provided on the substrate surface.
  • CHC layer a clear hard coat layer
  • the durability and smoothness of the gas barrier film can be improved.
  • curable resin used for forming the CHC layer examples include thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins, and ultraviolet curable resins.
  • thermosetting resins such as epoxy resins, cyanate ester resins, phenol resins, bismaleimide-triazine resins, polyimide resins, acrylic resins, and vinylbenzyl resins, and ultraviolet curable resins.
  • examples include urethane acrylate resins, UV curable polyester acrylate resins, UV curable epoxy acrylate resins, UV curable polyol acrylate resins, and UV curable epoxy resins.
  • the clear hard coat layer has fine particles of inorganic compounds such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide and magnesium oxide to adjust the scratch resistance, slipperiness and refractive index; or polymethacrylic acid Methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicone resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin resin powder, polyester resin powder Further, an ultraviolet curable resin composition such as polyamide resin powder, polyimide resin powder, or polyfluoroethylene resin powder can be added.
  • inorganic compounds such as silicon oxide, titanium oxide, aluminum oxide, zirconium oxide and magnesium oxide to adjust the scratch resistance, slipperiness and refractive index
  • polymethacrylic acid Methyl acrylate resin powder acrylic styrene resin powder, polymethyl methacrylate resin powder, silicone resin powder, polystyrene resin powder, polycarbonate resin powder,
  • the antioxidant which does not suppress photocuring reaction can be selected and used.
  • the clear hard coat layer may contain a silicone-based surfactant or a polyoxyether compound or a fluorine-siloxane graft polymer.
  • Examples of the organic solvent contained in the clear hard coat layer forming coating solution include hydrocarbons (eg, toluene, xylene, etc.), alcohols (eg, methanol, ethanol, isopropanol, butanol, cyclohexanol, etc.), ketones. (For example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), esters (for example, methyl acetate, ethyl acetate, methyl lactate, etc.), glycol ethers, other organic solvents, or a mixture thereof. Available.
  • hydrocarbons eg, toluene, xylene, etc.
  • alcohols eg, methanol, ethanol, isopropanol, butanol, cyclohexanol, etc.
  • ketones For example, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • the curable resin content contained in the clear hard coat layer forming coating solution is, for example, 5 to 80% by weight.
  • the clear hard coat layer can be applied by a known wet coating method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method, using a clear hard coat layer forming coating solution.
  • the layer thickness of the hard coat layer coating solution is, for example, 0.1 to 30 ⁇ m.
  • surface treatment such as vacuum ultraviolet irradiation or corona treatment in advance.
  • the clear hard coat layer is formed by irradiating the coating film formed by applying the clear hard coat layer forming coating liquid with an active energy ray such as ultraviolet rays to cure the curable resin.
  • an active energy ray such as ultraviolet rays
  • a light source used for curing for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • the irradiation conditions are, for example, in the range of 50 mJ / cm 2 to 10 J / cm 2 .
  • the gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, the gas barrier film of the present invention can be applied to an electronic device provided with an electronic device body.
  • Examples of the electronic device body used in the electronic device having the gas barrier film of the present invention include, for example, a QD film having a quantum dot (QD) -containing resin layer, an organic electroluminescence element (organic EL element), and a liquid crystal display element. (LCD), thin film transistor, touch panel, electronic paper, solar cell (PV), and the like. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • QD quantum dot
  • organic EL element organic electroluminescence element
  • LCD liquid crystal display element
  • the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.
  • the gas barrier film of the present invention can be applied to a QD film having a quantum dot (QD) -containing resin layer.
  • the QD-containing resin layer preferably has a thickness in the range of 50 to 200 ⁇ m.
  • the optimum amount of quantum dots in the QD-containing resin layer varies depending on the compound used, but is generally preferably in the range of 15 to 60% by volume.
  • QD quantum dots
  • quantum dots semiconductor nanoparticles that exhibit a quantum confinement effect with a nanometer-sized semiconductor material are also referred to as “quantum dots”.
  • quantum dots Such a quantum dot is a small lump within about 10 and several nanometers in which several hundred to several thousand semiconductor atoms are gathered, but when absorbing energy from an excitation source and reaching an energy excited state, the energy of the quantum dot Releases energy corresponding to the band gap.
  • quantum dots have unique optical characteristics due to the quantum size effect. Specifically, (1) By controlling the size of the particles, various wavelengths and colors can be emitted. (2) The absorption band is wide and fine particles of various sizes can be obtained with a single wavelength of excitation light. It has the characteristics that it can emit light, (3) it has a symmetrical fluorescence spectrum, and (4) it has excellent durability and fading resistance compared to organic dyes.
  • the quantum dots contained in the QD-containing resin layer may be known, and can be generated using any method known to those skilled in the art.
  • suitable QDs and methods for forming suitable QDs include US Pat. No. 6,225,198, US 2002/0066401, US Pat. No. 6,207,229, US Pat. No. 6,322,901. No. 6,949,206, US Pat. No. 7,572,393, US Pat. No. 7,267,865, US Pat. No. 7,374,807, US Patent Application No. 11/299299, and US Pat. No. 6,861,155. Things.
  • QD is composed of an arbitrary material, preferably an inorganic material, more preferably an inorganic conductor or a semiconductor material.
  • Suitable semiconductor materials include any type of semiconductor, including II-VI, III-V, IV-VI and IV semiconductors.
  • Suitable semiconductor materials include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb. , InN, InP, InAs, InSb, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe , BeTe, MgS, MgSe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 , (Al,
  • the following core / shell type quantum dots for example, CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS, and the like can be preferably used.
  • a resin can be used as a binder for holding the quantum dots.
  • polycarbonate, polyarylate, polysulfone (including polyethersulfone), polyester such as polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate Cellulose esters such as pionate and cellulose acetate butyrate, polyvinylidene chloride, polyvinyl alcohol, ethylene vinyl alcohol, syndiotactic polystyrene, norbornene, polymethylpentene, polyether ketone, polyether ketone imide And acrylic resins such as polyamide resins, fluororesins, nylon resins, and polymethyl methacrylate.
  • the gas barrier film of the present invention can be applied to an organic EL element.
  • the organic EL element for example, JP2013-157634A, JP2013-168552A, JP 2013-177361 A, JP 2013-187221 A, JP 2013-191644 A, JP 2013-191804 A, JP 2013-225678 A, JP 2013-235994 A, JP JP 2013-243234, JP 2013-243236, JP 2013-242366, JP 2013-243371, JP 2013-245179, JP 2014-003249, JP 2014-2014.
  • No. 003299, JP 2014-013910 A, Open 2014-017493 JP include a configuration described in JP-2014-017494 Publication.
  • the gas barrier layer was formed in a vapor phase using a magnetron sputtering apparatus (Canon Anelva Co., Ltd .: Model EB1100).
  • the following targets were used as targets (sources), and Ar and O 2 were used as process gases, and film formation was performed by an RF method or a DC method using a magnetron sputtering apparatus.
  • the sputtering power source power was 5.0 W / cm 2 unless otherwise specified, and the film forming pressure was 0.4 Pa. Further, the oxygen partial pressure was adjusted under each film forming condition. It should be noted that, after film formation using a cycloolefin polymer base material in advance, data on the change in layer thickness with respect to the film formation time under each film formation condition was calculated and the layer thickness formed per unit time was calculated and then set. The film formation time was set so as to obtain a layer thickness.
  • T1 Polycrystalline silicon target
  • T2 Oxygen deficient niobium oxide target (composition: Nb 12 O 29 )
  • T3 Metal Nb target
  • T4 Metal Ta target.
  • T1 was used as a target, and sputtering was performed by an RF method.
  • the sputtering power source power was 4.0 W / cm 2 and the oxygen partial pressure was 20% (v / v).
  • the film formation time was set so that the layer thickness was 100 nm.
  • T1-2 Performed in the same manner as T1-1 except that the film formation time was set so that the layer thickness was 90 nm.
  • T2-1 A film was formed by DC method using T2 as a target.
  • the oxygen partial pressure was 12% (v / v).
  • the film formation time was set so that the layer thickness was 10 nm.
  • T1 and T3 were used as targets, and binary simultaneous sputtering was performed by a DC method.
  • the oxygen partial pressure was 18% (v / v).
  • the power supply power at T1 and the power supply power at T3 were adjusted so that the atomic ratio of Si and Nb was the same.
  • the film formation time was set so that the layer thickness was 50 nm.
  • T4-1 T1 and T4 were used as targets, and binary simultaneous sputtering was performed by a DC method.
  • the oxygen partial pressure was 18% (v / v).
  • the power supply power at T1 and the power supply power at T4 were adjusted so that the atomic ratio of Si and Ta was the same.
  • the film formation time was set so that the layer thickness was 50 nm.
  • composition distribution profile in the thickness direction of the gas barrier layer was measured by XPS analysis.
  • the XPS analysis conditions are as follows.
  • the composition of the gas barrier layer can be represented by (Si) (Nb) x O y N z from the data obtained from the XPS composition analysis. .
  • Si that is M1 and Nb that is M2 in the interface region between the first layer and the second layer
  • a region where the value x of the number ratio of Nb / Si is in the range of 0.02 ⁇ x ⁇ 49 is referred to as a “mixed region”, and the above formula is continuously added with a thickness of 5 nm or more.
  • a region satisfying the requirement (2) was defined as an “oxygen deficient region”. The same measurement was performed when the gas barrier layer was formed by binary simultaneous sputtering.
  • Example 1 Using ZEONOR (registered trademark) ZF14 as a base material, a film was formed under film formation conditions T1-2, and then continuous sputtering was performed under the film formation conditions of T2-1. Thereby, the gas barrier film 102 was obtained.
  • ZEONOR registered trademark
  • Example 2 The cycloolefin polymer base material in Example 1 was surface treated by the following method to form a clear hard coat layer (CHC layer). That is, the surface corona treatment for 10 seconds under the condition that the gap between the discharge electrode of the corona discharge treatment apparatus (AGI-080, Kasuga Denki Co., Ltd.) and the cycloolefin polymer substrate is set to 1 mm and the treatment output is 600 mW / cm 2. Went.
  • CHC layer clear hard coat layer
  • a UV-curable resin-containing coating liquid (purple light UV-1700B manufactured by Nippon Gosei Kagaku Co., Ltd.) mainly composed of polyurethane acrylate and acrylic acid ester is applied on a cycloolefin polymer substrate subjected to corona treatment using a wet coater. Then, it was applied so as to have a dry film thickness of 4 ⁇ m. Then, using a high-pressure mercury lamp in the atmosphere on the coating film dried at 80 ° C. for 3 minutes, the UV curable resin is cured under the condition of 1.0 J / cm 2 , and a clear hard coat layer (CHC layer) is formed. Formed.
  • CHC layer clear hard coat layer
  • a CHC layer was formed by the method of Comparative Example 2 using Arton (registered trademark) (JSR Corporation, film thickness: 100 ⁇ m) as the cycloolefin polymer substrate.
  • Arton (registered trademark) includes a structural unit represented by the above formula (3) (in the above formula (3), n is 1; Q is —CH 2 CH 2 —; R 1 and R 2 is a hydrogen atom, R 3 is a methyl group, and R 4 is a methoxycarbonyl group.
  • a gas barrier layer was formed on the CHC layer under the same film forming conditions as in Example 1 to obtain a gas barrier film 104.
  • a polysilazane-containing coating film was formed by the following method under the condition that substantially no modification treatment was performed. That is, a 10% by mass dibutyl ether solution of perhydropolysilazane (PHPS; NN120-10, non-catalytic type, Merck Ltd.) was prepared as a polysilazane-containing coating solution.
  • the prepared polysilazane-containing coating solution is coated on the substrate with a wireless bar so that the average layer thickness after drying is 300 nm, and dried by treating for 1 minute in an atmosphere at a temperature of 85 ° C. and a humidity of 55% RH. I let you.
  • the gas barrier film 105 was obtained by performing vapor phase film formation on the polysilazane-containing coating surface obtained by the above-described method under the film formation condition T2-1.
  • Example 4 Using Arton (registered trademark) as a base material, vapor-phase film formation was performed under the above-described film formation conditions T3-1 to obtain a gas barrier film 106.
  • Arton registered trademark
  • Example 5 ZEONOR (registered trademark) ZF14 having a CHC layer formed by the method of Comparative Example 2 was used as a substrate.
  • a gas-barrier film 107 was obtained on the polysilazane-containing coating surface formed by the same method as in Example 3 under film formation conditions T2-1.
  • Example 6 Arton (registered trademark) in which a CHC layer was formed by the method of Example 2 was used as a substrate.
  • a gas barrier film 108 was obtained by performing vapor phase film formation on the polysilazane-containing coating film surface formed by the same method as in Example 3 under film formation conditions T4-1.
  • Example 7 A gas barrier layer was formed under the same film forming conditions as in Example 1 except that the base material was changed to Arton (registered trademark) without a CHC layer, and a gas barrier film 109 was obtained.
  • thermosetting sheet-like adhesive epoxy resin
  • One side of a 50 mm ⁇ 50 mm non-alkali glass plate was UV cleaned.
  • Ca was vapor-deposited by the size of 20 mm x 20 mm through the mask in the center of the glass plate using the vacuum vapor deposition apparatus made from an EILS technology.
  • the thickness of Ca was 80 nm.
  • a glass plate on which Ca was deposited was placed in a glove box, and the gas barrier layer surface of the gas barrier film to which the adhesive layer was bonded was placed in contact with the Ca vapor deposition surface of the glass plate, and adhered by vacuum lamination. At this time, heating at 110 ° C. was performed. Further, the adhered sample was placed on a hot plate set at 110 ° C. with the glass plate facing down, and cured for 30 minutes to produce an evaluation cell.
  • the Ca method evaluation sample produced as described above was stored in an 85 ° C. and 85% RH environment, and the corrosion rate of Ca was observed at regular intervals. 1 hour, 5 hours, 10 hours, 25 hours, and thereafter, observation and transmission density measurement (average of 4 points) every 25 hours, observation when the measured transmission density is less than 50% of the initial value Time was used as an indicator of gas barrier properties.
  • the transmission density measured after storage for 500 hours was 50% or more of the initial value of the transmission density, it was set to 50 hours or more.
  • a black and white transmission densitometer TM-5 manufactured by Konica Minolta Co., Ltd. was used for measurement of transmission density. The transmission density was measured at any four points in the cell, and the average value was calculated.
  • the obtained gas barrier film was bonded to glass via a sealing material (thermosetting epoxy resin), and left for 300 hr under the condition of 85 ° C. and 85% RH. Thereafter, the state between the sealing material and the gas barrier layer was observed with micro X-ray CT ( ⁇ 40 ⁇ , field of view: 350 ⁇ 450 ⁇ m) (manufactured by Rigaku Corporation, nano3DX), and the state of fine foaming was evaluated in five stages according to the following criteria. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

シクロオレフィンポリマー基材、および所定組成の酸素欠損領域を含むガスバリア層を含む、ガスバリア性フィルムにより、ガスバリア層の発泡痕の形成が抑えられたガスバリア性フィルムが提供される。

Description

ガスバリア性フィルム、およびその製造方法
 本発明は、ガスバリア性フィルム、およびその製造方法に関する。
 従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層して形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。
 包装用途以外にも、ガスバリア性フィルムは、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性が要求される。
 有機EL素子に用いるガスバリア性フィルムの製造方法に関する発明として、特許文献1には、真空紫外線照射処理を施して親水化したシクロオレフィンポリマー基材の表面にクリアハードコート層を形成・硬化し、当該クリアハードコート層上にガスバリア層を形成することを特徴とするガスバリア性フィルムの製造方法が記載されている。
特開2015-024536号公報
 本発明者は、シクロオレフィンポリマー基材をガスバリア性フィルムの基材として用いると、ガスバリア層に発泡痕が形成されやすく、これによって層の平滑性が損なわれたり、所望のガスバリア性が得られなかったりするという問題が存在することを見出した。
 したがって、本発明は、上記事情を鑑みてなされたものであり、ガスバリア層の発泡痕の形成が抑えられたガスバリア性フィルムの提供を目的とする。
 本発明者は、上記の問題を解決すべく、鋭意研究を行った。その結果、シクロオレフィンポリマー基材、および所定の組成の酸素欠損領域を含むガスバリア層を含むガスバリア性フィルムによって上記課題が解決されることを見出し、本発明を完成させるに至った。
 本発明の一側面は、シクロオレフィンポリマー基材、および下記式(1)および(2)で示される酸素欠損領域を含むガスバリア層を含む、ガスバリア性フィルムに関する:
Figure JPOXMLDOC01-appb-C000004
 ただし、上記式(1)において、M1はSi、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素であり;M2は遷移金属元素であり;0.02≦x≦49、0<y、および0≦zであり;M1およびM2の最大価数をそれぞれaおよびbとしたとき、x、yおよびzが下記式(2)の関係を満たす。
Figure JPOXMLDOC01-appb-C000005
 本発明のある側面は、シクロオレフィンポリマー基材を有するガスバリア性フィルムの製造方法であって、Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される元素(M1)を少なくとも1種含む塗膜を前記シクロオレフィンポリマー基材上に形成する工程;ならびに上記塗膜面に対し、遷移金属単体または遷移金属酸化物をソースとして気相成膜を行う工程を含む、ガスバリア性フィルムの製造方法に関する。
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。
 本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
 [ガスバリア性フィルム]
 本発明の一側面は、シクロオレフィンポリマー基材、および下記式(1)および(2)で示される酸素欠損領域を含むガスバリア層を含む、ガスバリア性フィルムである。
Figure JPOXMLDOC01-appb-C000006
 ただし、上記式(1)において、M1はSi、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素であり;M2は遷移金属元素であり;0.02≦x≦49、0<y、および0≦zであり;M1およびM2の最大価数をそれぞれaおよびbとしたとき、x、yおよびzが下記式(2)の関係を満たす。
Figure JPOXMLDOC01-appb-C000007
 本発明によれば、ガスバリア層の発泡痕の形成が抑えられたガスバリア性フィルムを提供することができる。本発明の技術的範囲を制限するものではないが、これは、以下のメカニズムによるのではないかと推測される。シクロオレフィンポリマー基材のような低極性の疎水性基材は透湿性が極めて低いため、ガスバリア性フィルムの製造工程において、雰囲気や原料に由来する水分がシクロオレフィンポリマー基材上に存在し得る。この場合、製造過程において気化した水分はシクロオレフィンポリマー基材を通過できないため、水分の蒸気圧による局所的な力がガスバリア層側に加わりやすいことが想定される。ガスバリア層形成途中の薄い膜や硬化前など、膜の物理的強度が脆弱であると、上記の局所的な力に耐え切れずに発泡し、これによってガスバリア層に発泡痕が形成されると推定される。
 一方、本発明にかかるガスバリア性フィルムが含むガスバリア層は、化学量論的な組成に対して酸素が欠損した組成である酸素欠損領域を含む。当該酸素欠損領域に存在するM1(Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上)とM2(遷移金属元素)との複合酸化物は、化学量論的な組成に対して酸素が欠損しているため、水分をトラップする働きがあり、これによって発泡が抑制されるのではないかと推測される。また、酸素欠損領域に存在する遷移金属元素は複数の価数をとることができるため、多様な分子間距離を有する化合物としてガスバリア層に存在し得る。これにより、ガスバリア性フィルムが柔軟な構造となり、上記の局所的な力を緩和する働きをしているのではないかと推測される。
 <シクロオレフィンポリマー基材>
 本発明に係るガスバリア性フィルムでは、シクロオレフィンポリマー(COP)またはシクロオレフィンコポリマー(COC)を主成分とする、シクロオレフィンポリマー基材を用いる。本発明において、「主成分とする」とは、基材を構成する樹脂成分のうち、COPおよびCOCの合計割合が60質量%以上であることをいう。シクロオレフィンポリマー基材に含まれるCOPおよびCOCの合計割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは98質量%以上である(上限は100質量%)。
 本発明に用いられるシクロオレフィンポリマー基材は、従来広く使用されてきたポリエチレンテレフタレート製のフィルムと比較して低い透湿性能を有し、優れた光線透過性(透明性)を有する。このため、有機EL素子に用いた場合、発光効率が向上し得る。更に、シクロオレフィンポリマー基材はリターデーションが低いため、有機EL素子に用いた場合、色の視野角依存性が小さいという利点がある。
 シクロオレフィンの重合方法としては、シクロオレフィンをα-オレフィン等と付加重合する方法(方法A)、およびシクロオレフィンの開環重合による方法(方法B)が知られている。方法Aによりシクロオレフィンコポリマー(COC)を、方法Bによりシクロオレフィンポリマー(COP)を得ることができる。重合反応は、通常、触媒の存在下で行われる。
 本発明に用いられるフィルム基材の主成分としては、シクロオレフィンを重合または共重合した樹脂が用いられる。シクロオレフィンとしては、例えば、ノルボルネン、ジシクロペンタジエン、テトラシクロドデセン、エチルテトラシクロドデセン、エチリデンテトラシクロドデセン、テトラシクロ〔7.4.0.110,13.02,7〕トリデカ-2,4,6,11-テトラエンなどの多環構造の不飽和炭化水素およびその誘導体;シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、シクロヘプテン、シクロペンタジエン、シクロヘキサジエンなどの単環構造の不飽和炭化水素およびその誘導体等が挙げられる。
 これらシクロオレフィンは、置換基として炭素原子数1~10の炭化水素基または極性基を有していてもよい。炭素数1~10の炭化水素基は、直鎖、分岐鎖または環状の炭化水素基であり、より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、イソブチル基、n-ヘキシル基、2-ヘキシル基、3-ヘキシル基、シクロヘキシル基、1-メチルシクロヘキシル基、n-ヘプチル基、2-ヘプチル基、3-ヘプチル基、イソヘプチル基、tert-ヘプチル基、n-オクチル基、イソオクチル基、tert-オクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、およびデシル基が例示できる。上記の極性基としては、例えば、ヒドロキシ基、カルボキシ基、炭素数1~10のアルコキシ基、エポキシ基、グリシジル基、炭素数2~11のアルコキシカルボニル基、炭素数7~14のアリーロキシカルボニル基、アミノ基、スルホ基、スルホニル基、アシル基などが挙げられる。カルボキシ基は、2つ以上が脱水して環を形成するものを含む。
 本発明に用いられるフィルム基材の主成分としては、シクロオレフィン以外の単量体を付加共重合したシクロオレフィンコポリマーも好ましく用いられる。付加共重合可能な単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテンなどの鎖状オレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどのジエン等が挙げられる。
 本発明に用いられるフィルム基材の主成分としては、シクロオレフィンを重合または共重合させた後、水素添加反応させて、分子中の不飽和結合を飽和結合に変換したものであることが好ましい。水素添加反応は、公知の水素化触媒の存在下で、水素を吹き込んで行えばよい。
 シクロオレフィンポリマーやシクロオレフィンコポリマーとしては、市販品を用いることもできる。かような市販品としては、例えば、ゼオノア(登録商標)、ゼオネックス(登録商標)(以上、日本ゼオン株式会社)、アートン(登録商標)(JSR株式会社)、エスシーナ(登録商標)(積水化学工業株式会社)、アペル(登録商標)(三井化学株式会社)などが例示できる。
 シクロオレフィンポリマー基材の製造方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用でき、フィルム製膜方法としては、従来公知の溶液流延製膜法、または溶融流延製膜法が選択できる。
 シクロオレフィンポリマー基材の表面は、密着性向上のための公知の種々の処理、例えば紫外線照射処理、コロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。
 シクロオレフィンポリマー基材の厚さは、例えば10~500μmであり、好ましくは25~150μmである。
 本発明におけるシクロオレフィンポリマー基材は、以下の式(3)で表される構造単位を含むことが好ましい:
Figure JPOXMLDOC01-appb-C000008
 ただし、上記式(3)中、nは0、1または2であり;Qは独立に-CH=CH-で表される基および-CHCH-で表される基から選ばれる少なくとも1つであり;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基または極性基を表し、R~Rの少なくとも1つが極性基である。炭素数1~10の炭化水素基および極性基の具体例は、上述のとおりである。
 シクロオレフィンポリマー基材が上記式(3)で表されるような低極性の主鎖構造と親水性の側鎖(極性基)とを有することにより、詳細なメカニズムは不明ではあるものの、低透湿性を維持しながら、発泡痕の形成をさらに抑制し得るという利点がある。
 上記式(3)中、nは0または1であることが好ましく、より好ましくは1である。
 上記式(3)中、好ましくは、Qは-CHCH-で表される基である。
 上記式(3)において、R~Rの少なくとも1つが炭素数1~10の炭化水素基であり、且つR~Rの少なくとも1つが極性基であることが、本発明の所期の効果をより顕著に奏するという観点から好ましい。上記の炭素数1~10の炭化水素基は、好ましくはメチル基、エチル基、n-プロピル基、およびイソプロピル基からなる群から選択され、より好ましくはメチル基である。上記の極性基は、好ましくは炭素数2~11のアルコキシカルボニル基、炭素数7~14のアリーロキシカルボニル基、およびカルボキシ基からなる群から選択される。上記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、iso-プロポキシカルボニル基、n-ブトキシカルボニル基、iso-ブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基等が例示でき、アリーロキシカルボニル基としては、例えば、フェノキシカルボニル基、ナフチルオキシカルボニル基、フルオレニルオキシカルボニル基、ビフェニリルオキシカルボニル基等が例示できる。このうち、極性基は、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、iso-プロポキシカルボニル基、n-ブトキシカルボニル基、iso-ブトキシカルボニル基、sec-ブトキシカルボニル基、およびtert-ブトキシカルボニル基からなる群から選択されることがより好ましい。本発明の好ましい一実施形態では、R~Rの少なくとも1つがメチル基、エチル基、n-プロピル基、およびイソプロピル基からなる群から選択され、R~Rの少なくとも1つが炭素数2~11のアルコキシカルボニル基、炭素数7~14のアリーロキシカルボニル基、およびカルボキシ基からなる群から選択される。
 シクロオレフィンポリマー基材が上記式(3)で表される構造単位を含むシクロオレフィンコポリマーである場合、当該コポリマーにおける全構造単位を100モル%としたとき、上記式(3)で表される構造単位は好ましくは50~99モル%含まれる(すなわち、50~99モル%の式(3)で表される構造単位と、1~50モル%の式(3)で表される構造単位が由来するモノマーと共重合可能な他のモノマーに由来する構造単位とからなる)。
 シクロオレフィンポリマーおよびシクロオレフィンコポリマーのゲル浸透クロマトグラフィーで測定されるポリスチレン換算の重量平均分子量(Mw)は、例えば5,000~200,000の範囲である。
 <ガスバリア層>
 本発明にかかるガスバリア性フィルムが含むガスバリア層は、下記式(1)および(2)で示される酸素欠損領域を含む。なお、本発明において、「領域」とは、ガスバリア層の厚さ方向に対して略垂直な面(すなわち当該ガスバリア層の最表面に平行な面)で当該ガスバリア層を一定または任意の厚さで分割したときに形成される対向する二つの面の間の三次元的範囲内(領域)をいい、当該領域内の構成成分の組成は、厚さ方向において一定であっても、連続的に変化するものであってもよい。
Figure JPOXMLDOC01-appb-C000009
 ただし、上記式(1)において、M1はSi、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素であり;M2は遷移金属元素であり;0.02≦x≦49、0<y、および0≦zであり;M1およびM2の最大価数をそれぞれaおよびbとしたとき、x、yおよびzは下記式(2)の関係を満たす。
Figure JPOXMLDOC01-appb-C000010
 上述したように、本発明に係る酸素欠損領域の組成は、式(1)である(M1)(M2)で示される。この組成からも明らかなように、上記複合領域の組成は、一部窒化物の構造を含んでいてもよく、窒化物の構造を含んでいる方がバリア性の観点から好ましい。
 なお、本発明において、M1として2種以上が併用される場合や、M2として2種以上が併用される場合には、各元素の最大価数を各元素の存在比率によって加重平均することにより算出される複合価数を「最大価数」のaおよびbの値として採用するものとする。
 上記の式(1)で示される領域は、M1(Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素)とM2(遷移金属元素)とを含む混合領域である。M1およびM2の結合手の合計とOおよびNの結合手の合計とが同数である場合(すなわち、(M1)(M2)で表される化学組成が化学量論的組成になっている場合)、上記式(1)におけるa、b、x、yおよびzは、(2y+3z)/(a+bx)=1.0という関係を満たす。一方、上記式(1)におけるa、b、x、yおよびzが上記式(2)の関係を満たす場合は、M1およびM2の結合手の合計に対して、OおよびNの結合手の合計が不足していることを意味し、本発明においては、この状態が「酸素欠損」であると定義する(上記式(1)および式(2)を満たす厚さ5nm以上の領域を「酸素欠損領域」という)。酸素欠損状態においては、M1およびM2のフリーの結合手は互いに結合する可能性を有しており、M1およびM2の金属同士が直接結合すると、金属の間にOやNを介して結合した場合よりも緻密で高密度な構造が形成され、その結果として、発泡が抑制されると考えられる。
 本発明において、上記混合領域は、0.02≦x≦49(0<y、0≦z)を満たす(すなわち、M1およびM2の原子数比率(M2/M1)の値が、0.02~49の範囲内にある。)。M1およびM2の存在比率が近いほどガスバリア性の向上に寄与し得ると考えられることから、酸素欠損領域は、0.1≦x≦10を満たす領域を含むことが好ましく、0.2≦x≦5を満たす領域を含むことがより好ましく、0.3≦x≦4を満たす領域を含むことが更に好ましい。
 本発明においては、(2)を満たす混合領域(すなわち、酸素欠損領域)が存在することにより発泡痕の形成の抑制効果が発揮されるが、酸素欠損領域における(2y+3z)/(a+bx)の最小値は、(2y+3z)/(a+bx)≦0.9を満たすことが好ましく、(2y+3z)/(a+bx)≦0.85を満たすことがより好ましく、(2y+3z)/(a+bx)≦0.8を満たすことが更に好ましい。ここで、混合領域における(2y+3z)/(a+bx)の値が小さくなるほど、ガスバリア性の向上効果は高くなるものの可視光での吸収も大きくなる。したがって、透明性が望まれる用途に使用するガスバリア層の場合には、(2y+3z)/(a+bx)の最小値は、0.2≦(2y+3z)/(a+bx)であることが好ましく、0.3≦(2y+3z)/(a+bx)であることがより好ましく、0.4≦(2y+3z)/(a+bx)であることが更に好ましい。
 なお、本発明において酸素欠損領域の厚さは、SiO換算のスパッタ厚さとして、8nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。上限は特に制限されないが、例えば100nm以下である。
 上記のようなガスバリア層の酸素欠損領域の存在およびその厚さは、以下のXPSによる組成分析によって求めることができる。
 (XPSによる組成分析と酸素欠損領域の厚さの測定)
 本発明でいう酸素欠損領域は、ガスバリア層の厚さ方向の組成分布をXPS法により分析したとき、M1およびM2の原子数比率の値が0.02~49の範囲内にあり、且つ上記式(2)を満たす領域と定義する。以下、XPS分析法による酸素欠損領域の測定方法について説明する。
 ガスバリア層の厚さ方向における元素濃度分布(以下、デプスプロファイルという。)は、具体的には、M1分布曲線(例えば、ケイ素分布曲線)、M2分布曲線(例えば、ニオブ分布曲線)、酸素(O)、窒素(N)、炭素(C)分布曲線等を、X線光電子分光法の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、ガスバリア層の表面より内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。
 このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:atom%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は層厚方向における前記ガスバリア層の厚さ方向におけるガスバリア層の表面からの距離におおむね相関することから、「ガスバリア層の厚さ方向におけるガスバリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出されるガスバリア層の表面からの距離を採用することができる。また、このようなXPSデプスプロファイル測定に際して採用するスパッタ法としては、エッチングイオン種としてアルゴン(Ar)を用いた希ガスイオンスパッタ法を採用し、そのエッチング速度(エッチングレート)を0.05nm/sec(SiO熱酸化膜換算値)とすることが好ましい。
 以下に、本発明に係るガスバリア層の組成分析に適用可能なXPS分析の具体的な条件の一例を示す。
 ・分析装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを求める。この厚さ間隔は、1nmとする(深さ方向に1nmごとのデータが得られる)。
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量する。データ処理は、アルバックファイ社製のMultiPakを用いる。
 得られたデータから、組成比を計算し、M1とM2とが共存し、かつ、M2/M1の原子数比率の値が、0.02~49になる範囲を求め、これを混合領域と定義する。混合領域の厚さは、XPS分析におけるスパッタ深さをSiO換算で表したものである。混合領域のうち、連続して5nm以上の厚さで式(2)を満たす領域を酸素欠損領域とする。
 上記のように化学量論的組成に対して酸素が欠乏した組成をガスバリア層内に形成させるためには、例えばスパッタ法によりガスバリア層を形成する場合は、酸素欠損型ターゲット(化学量論的組成よりも酸素を欠損した組成比を有するターゲット)を用いたり、成膜時の酸素分圧を調整したりすることによって制御することができる。
 本発明に係るガスバリア性フィルムが含むガスバリア層は、層厚方向における全領域が酸素欠損領域であってもよいが、これとは異なる組成の領域(例えば、(M1)(M2)で表される化学組成が化学量論的組成である領域や、M1もしくはM2またはこれらの酸化物または酸窒化物からなる領域等)を含んでもよい。なお、本明細書において「ガスバリア層」とは、水分や酸素等素子の劣化をもたらす成分の浸入を抑制する機能を有し、M1およびM2の少なくとも一方を含む層である。ガスバリア性フィルムのガスバリア性は、実施例に記載の方法で測定されるCa法による評価が、3以上(透過濃度が50%未満となる時間が10時間以上)であることが好ましく、4以上(透過濃度が50%未満となる時間が25時間以上)であることがより好ましい。
 本発明において形成されるガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。ガスバリア層が2層以上の積層構造である場合、各ガスバリア層は同じ組成であってもよいし異なる組成であってもよい。
 ガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、10~2000nmであることが好ましく、50~700nmであることがより好ましい。この範囲であれば、ガスバリア性と耐久性とのバランスが良好となり好ましい。ガスバリア層の厚さは、TEM観察により測定することができる。
 酸素欠損領域に含まれるM1は、Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素であるが、Siを含むことが好ましく、M1がSiであることがより好ましい。
 遷移金属元素(M2)も特に制限されず、任意の遷移金属元素が単独でまたは組み合わせて用いられ得る。ここで、遷移金属元素とは、長周期型周期表の第3族元素から第12族元素を指し、より具体的には、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Pd、Ag、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、およびAuなどが挙げられる。
 なかでも、良好なガスバリア性が得られる遷移金属元素(M2)としては、Nb、Ta、V、Zr、Ti、Hf、Y、La、Ce等が挙げられる。これらのなかでも、M1に対する結合が生じやすいという観点から、第5族元素であるV、NbおよびTaが好ましく、さらに、光学特性の観点から、遷移金属元素(M2)は、透明性が良好な化合物であるNbおよびTaの少なくとも一方であることが特に好ましい。
 特に遷移金属元素(M2)が第5族元素(特に、Nb)であって、上述したM1がSiであると、高いガスバリア性が得られる。これは、Siと第5族元素(特に、Nb)との結合が特に生じやすいためであると考えられる。
 <ガスバリア性フィルムの製造方法>
 本発明に係る酸素欠損領域を含むガスバリア層は、シクロオレフィンポリマー基材を基材として用い、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法や、塗膜形成法により、M1を主成分とする化合物(例えば、M1の酸化物)およびM2を主成分とする化合物(例えば、M2の酸化物)を同時に成膜する方法により形成することができる。あるいは、M1またはM2のいずれか一方を主成分とする化合物を上記手法により成膜した後、他方を主成分とする化合物を上記手法にて連続的に成膜することにより、M1とM2とを自然混合させて形成してもよい。
 M1や遷移金属元素(M2)を含有する層の形成は、特に限定されず、例えば、既存の薄膜堆積技術を利用した従来公知の気相成膜法を用いることが、混合領域を効率的に形成する観点から好ましい。
 これらの気相成膜法は公知の方法で用いることができる。気相成膜法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法、イオンアシスト蒸着法等の物理気相成長(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)法などの化学気相成長(CVD)法が挙げられる。中でも、基材へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、物理気相成長(PVD)法により形成することが好ましく、スパッタ法により形成することがより好ましい。
 スパッタ法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲット(ソース)の印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、DCパルススパッタリング、AC(交流)スパッタリング、およびRF(高周波)スパッタリングのいずれを用いてもよい。
 また、金属モードと、酸化物モードとの中間である遷移モードを利用した反応性スパッタ法も用いることができる。反応性スパッタ法は、遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。
 プロセスガスに用いられる不活性ガスとしては、He、Ne、Ar、Kr、Xe等を用いることができ、Arを用いることが好ましい。更に、プロセスガス中に酸素、窒素、二酸化炭素、一酸化炭素を導入することで、M1および遷移金属元素(M2)の複合酸化物、酸窒化物、酸炭化物等の薄膜を形成することができる。スパッタ法における成膜条件としては、真空度、磁力、プロセスガスの供給量、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、層厚等に応じて適宜選択することができる。
 スパッタ法は、M1もしくは遷移金属元素(M2)の単体またはそれらの酸化物を含む複数のスパッタリングターゲットを用いた多元同時スパッタ方式であってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて複合酸化物からなる薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載の方法や条件を適宜参照することができる。
 ガスバリア層を形成する方法としては、公知の共蒸着法を用いることが好ましい。このような共蒸着法として、好ましくは、共スパッタ法が挙げられる。本発明において採用される共スパッタ法は、例えば、M1および遷移金属元素(M2)の双方を含む合金からなる複合ターゲットや、M1および遷移金属元素(M2)の複合酸化物からなる複合ターゲットをスパッタリングターゲットとして用いた1元スパッタであり得る。あるいは、M1の単体または酸化物を含むターゲット1と、遷移金属元素(M2)単体または酸化物を含むターゲット2とを用いた2元同時スパッタであってもよい。ターゲットは酸素欠損型ターゲットであることが好ましい。成膜原料におけるM1や遷移金属元素(M2)と酸素との比率、成膜時の不活性ガスと反応性ガスとの比率、成膜時のガスの供給量、成膜時の真空度、成膜時の磁力、および、成膜時の電力からなる群から選択される1種または2種以上の条件が例示され、これらの成膜条件(好ましくは、酸素分圧)を調節することによって、酸素欠損組成を有する薄膜を形成することができる。
 共蒸着法を用いてガスバリア層を形成することで、形成されるガスバリア層の厚さ方向のほとんどの領域を混合領域とすることができる。このため、かような手法によれば、混合領域の厚さを制御するという極めて簡便な操作により、所望のガスバリア性を実現することができる。なお、混合領域の厚さを制御するには、例えば、共蒸着法を実施する際の成膜時間を調節すればよい。
 本発明に係るガスバリア性フィルムの製造方法の好ましい一態様では、M1の酸化物、窒化物および/または酸窒化物を少なくとも1種含む塗膜面に対し、遷移金属単体または遷移金属酸化物をソースとして気相成膜を行うことによりガスバリア層を形成する。すなわち、本発明の一実施形態は、シクロオレフィンポリマー基材を有するガスバリア性フィルムの製造方法であって、Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される元素(M1)を少なくとも1種含む塗膜をシクロオレフィンポリマー基材上に形成する工程;ならびに上記塗膜面に対し、遷移金属単体または遷移金属酸化物をソースとして気相成膜を行う工程を含む、ガスバリア性フィルムの製造方法である。これにより、得られるガスバリア性フィルムのガスバリア性が特に優れたものとなる。なお、上記の「塗膜」は、乾燥した塗膜および未乾燥の塗膜の両者を含む。また、上記塗膜は、シクロオレフィンポリマー基材と直接接触していなくともよい。
 上記のようなSi、Ge、Sn、B、Al、GaおよびInからなる群から選択される元素(M1)を少なくとも1種含む塗膜を形成する材料としては、ポリシラザン、テトラエトキシシラン(TEOS)、ヘキサメチルジシロキサン(HMDSO)のような有機ケイ素化合物、シルセスキオキサン等のポリシロキサンのようなケイ素酸化物、アルミニウムアルコキシド、アルミニウムアルキレート、アルミニウムのβ-ジケトン錯体のような有機アルミニウム化合物等が例示できる。このうち、ガスバリア性や塗布性が良好であるという観点から、ポリシラザンが好ましい。すなわち、本発明に係るガスバリア性フィルムの製造方法の一実施形態では、シクロオレフィンポリマー基材を有するガスバリア性フィルムの製造方法であって、ポリシラザン含有塗膜を形成する工程;ならびにポリシラザン含有塗膜面に対し、遷移金属単体または遷移金属酸化物をソースとして気相成膜を行う工程を含む、ガスバリア性フィルムの製造方法が提供される。また、本発明の好ましい別の実施形態は、M1がポリシラザンに由来する、ガスバリア性フィルムが提供される。すなわち、本発明の好ましい一実施形態は、ガスバリア層がポリシラザンを含む、ガスバリア性フィルムである。以下、本発明の好ましい態様であるポリシラザンを例に、本形態についてより詳細に説明するが、塗膜を形成する他の材料についても下記記載が適宜修正されて適用され得る。
 上記ポリシラザンとしては、下記一般式(1)で表す構造を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式中、R、R及びRは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、又はアルコキシ基を表す。
 本発明では、薄膜としての緻密性の観点からは、R、R及びRのすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。
 一方、そのSiと結合する水素部分が一部アルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより、隣接する基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より膜厚を厚くした場合でもクラックの発生が抑えられる点で好ましい。
 用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンを選択してよく、混合して使用することもできる。
 なお、パーヒドロポリシラザンは、直鎖構造と6または8員環を中心とする環構造とが共存した構造を有していると推定されている。
 ポリシラザンの分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体または固体の物質であり、分子量により異なる。
 これらのポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。
 低温でセラミック化するポリシラザンの他の例としては、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等が挙げられる。
 また、その他、ポリシラザンの詳細については、例えば、特開2013-255910号公報の段落0024~0040、特開2013-188942号公報の段落0037~0043、特開2013-151123号公報の段落0014~0021、特開2013-052569号公報の段落0033~0045、特開2013-129557号公報の段落0062~0075、特開2013-226758号公報の段落0037~0064等に記載されている内容を参照して適用することができる。
 ポリシラザン含有塗布液を調製する有機溶媒としては、ポリシラザンと容易に反応してしまうようなアルコール系や水分を含有するものを用いることは避けることが好ましい。好適な有機溶媒としては、例えば、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒、ハロゲン化炭化水素溶媒、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。具体的には、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の炭化水素、塩化メチレン、トリクロロエタン等のハロゲン炭化水素、ジブチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。これらの有機溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等、目的にあわせて選択し、複数の有機溶剤を混合してもよい。
 ポリシラザン含有塗布液におけるポリシラザンの濃度は、目的とするガスバリア層の膜厚や塗布液のポットライフによっても異なるが、0.2~35質量%程度であることが好ましい。
 ポリシラザンを含有する塗布液には、ポリシラザン以外にも無機前駆体化合物を含有させることができる。ポリシラザン以外の無機前駆体化合物としては、塗布液の調製が可能であれば特に限定はされない。例えば、特開2011-143577号公報の段落0110~0114に記載のポリシラザン以外の化合物を適宜採用することができる。
 ポリシラザン含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
 塗布厚さは、好ましい厚さや目的に応じて適切に設定され得る。一例を挙げれば、乾燥後の塗布液(塗膜)の厚さ(複数回塗膜形成を行う場合は1回当たりの厚さ)は、好ましくは40nm以上1000nm以下であり、より好ましくは100nm以上400nm以下である。
 塗布液を塗布した後は、塗膜を乾燥させてもよい。塗膜の乾燥温度は、適用する基材によっても異なるが、50~200℃であることが好ましい。乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定され得る。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。
 ポリシラザン含有塗膜を形成する場合、乾燥前または乾燥後のポリシラザン含有塗膜に対してプラズマ処理や紫外線照射処理等の改質処理が一般的に行われている。かような改質処理により、ポリシラザンが酸化ケイ素または酸窒化珪素へ転化し、ガスバリア性が向上し得る。本発明においても、ガスバリア性向上のため、改質処理を行ってもよい。しかしながら、本発明に係る製造方法において、ポリシラザンの改質処理を行うと、シクロオレフィンポリマー基材に対するガスバリア層の密着性が低下する場合がある。従って、本発明に係る製造方法においては、実質的に改質処理を行わずにガスバリア層を形成することが好ましく、ポリシラザン含有塗膜の形成後、乾燥し、ガスバリア性フィルムが得られるまでにポリシラザン含有塗膜に印加されるエネルギーが、0.1mJ/cm未満であることがより好ましい。すなわち、本発明の一実施形態は、ポリシラザン含有塗膜に印加されるエネルギーが、0.1mJ/cm未満である。
 ポリシラザン含有塗膜に印加されるエネルギーが0.1mJ/cm未満であれば、製造工程においてポリシラザンの酸化転化反応が進行せず、密着性が向上し得る。ポリシラザン含有塗膜に印加されるエネルギーは、より好ましくは0.05mJ/cm以下である(下限は0mJ/cm)。
 なお、上記の「実質的に改質処理を行わない」とは、ポリシラザン含有塗布液を塗布後、ガスバリア性フィルムを得るまでの工程において、プラズマ処理、紫外線照射処理または450℃以上の加熱処理等の改質処理を実施しないことをいい、例えばポリシラザン塗膜が400nm超の可視光に曝されるような、ポリシラザンの改質に影響しない程度のエネルギー付与が妨げられるものではない。実質的に改質処理が行われていないことは、得られたガスバリア性フィルムにおけるガスバリア層の原子比を測定し、ポリシラザン含有塗膜表層から10nm以内におけるケイ素に対する窒素の元素比(atom%)が、0.9~1.0の範囲内であることにより確認できる。
 ガスバリア性を向上させるためにポリシラザン含有塗膜の改質処理を行う場合、ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック製等のフレキシブル基材においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。
 したがって、改質処理としては、プラスチック基材への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理(例えば、真空紫外線照射処理)による転化反応が好ましい。
 真空紫外光源としては、希ガスエキシマランプが好ましく用いられ、例えば、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)等を挙げることができる。
 真空紫外線照射による処理は、ポリシラザン内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。
 これらの改質処理の詳細については、例えば、特開2012-086394号公報の段落0055~0091、特開2012-006154号公報の段落0049~0085、特開2011-251460号公報の段落0046~0074等に記載の内容を参照することができる。
 <種々の機能を有する層>
 本発明に係る製造方法は、種々の機能を有する層を設ける工程を含むことができる。
 (アンカーコート層)
 ガスバリア層を形成する側の基材の表面には、密着性の向上を目的として、アンカーコート層を形成してもよい。
 アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコーン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5.0g/m(乾燥状態)程度が好ましい。
 また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。あるいは、特開2004-314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10μm程度が好ましい。
 (平滑層)
 本発明に係る製造方法により製造されるガスバリア性フィルムは、基材とガスバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は突起等が存在する樹脂基材の粗面を平坦化し、あるいは、基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
 平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。
 熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V-8000シリーズ、EPICLON(登録商標) EXA-4710(超高耐熱性エポキシ樹脂)、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。
 平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。
 平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上等のために適切な樹脂や添加剤を使用してもよい。
 平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1~10μmの範囲が好ましく、さらに好ましくは、2μm~7μmの範囲にすることが好ましい。
 平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、バリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。
 (CHC層)
 本発明に係る製造方法により製造されるガスバリア性フィルムにおいては、基材面にクリアハードコート層(CHC層)を設けてもよい。クリアハードコート層を設けることにより、ガスバリア性フィルムの耐久性や平滑性が向上し得る。
 CHC層の形成に使用される硬化型樹脂としては、エポキシ樹脂、シアネートエステル樹脂、フェノール樹脂、ビスマレイミド-トリアジン樹脂、ポリイミド樹脂、アクリル樹脂、ビニルベンジル樹脂等の熱硬化型樹脂や、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等の活性エネルギー線硬化型樹脂が挙げられる。
 また、クリアハードコート層には、耐傷性、滑り性や屈折率を調整するために、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機化合物の微粒子;または、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコーン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、もしくはポリ弗化エチレン系樹脂粉末等の紫外線硬化性樹脂組成物を加えることができる。また、クリアハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。更にクリアハードコート層は、シリコーン系界面活性剤またはポリオキシエーテル化合物や、フッ素-シロキサングラフトポリマーを含有させてもよい。
 クリアハードコート層形成用塗布液に含有される有機溶媒としては、例えば、炭化水素類(例えば、トルエン、キシレン等)、アルコール類(例えば、メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エステル類(例えば、酢酸メチル、酢酸エチル、乳酸メチル等)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。
 クリアハードコート層形成用塗布液に含有される硬化型樹脂含量は、例えば、5~80重量%である。
 クリアハードコート層は、クリアハードコート層形成用塗布液を用いて、グラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の湿式塗布方法で塗設することができる。ハードコート層塗布液の層厚としては、例えば0.1~30μmである。基材にクリアハードコート層を塗布する前に、あらかじめ基材に真空紫外線照射やコロナ処理等の表面処理を行うことが好ましい。
 クリアハードコート層形成用塗布液を塗布して形成した塗膜に対し、紫外線等の活性エネルギー線を照射して硬化型樹脂を硬化させ、クリアハードコート層を形成する。硬化に用いる光源としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件は、例えば50mJ/cm~10J/cmの範囲内である。
 [電子デバイス]
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明のガスバリア性フィルムは、電子デバイス本体を備える電子デバイスに適用することができる。
 本発明のガスバリア性フィルムを具備した電子デバイスに用いられる電子デバイス本体の例としては、例えば、量子ドット(QD)含有樹脂層を有するQDフィルム、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。
 (量子ドット(QD)含有樹脂層)
 本発明のガスバリア性フィルムは、量子ドット(QD)含有樹脂層を有するQDフィルムに適用することができる。
 QD含有樹脂層は、厚さが50~200μmの範囲内であることが好ましい。
 なお、QD含有樹脂層における量子ドットの含有量は、使用する化合物によって最適量は異なるが、一般的には15~60体積%の範囲内であることが好ましい。
 以下、QD含有樹脂層の主要な構成要素である量子ドット(QD)および樹脂等について説明する。
 一般に、ナノメートルサイズの半導体物質で量子閉じ込め(quantum confinement)効果を示す半導体ナノ粒子は、「量子ドット」とも称されている。このような量子ドットは、半導体原子が数百個から数千個集まった10数nm程度以内の小さな塊であるが、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに相当するエネルギーを放出する。
 したがって、量子ドットは、量子サイズ効果によりユニークな光学特性を有することが知られている。具体的には、(1)粒子のサイズを制御することにより、様々な波長、色を発光させることができる、(2)吸収帯が広く、単一波長の励起光で様々なサイズの微粒子を発光させることができる、(3)蛍光スペクトルが良好な対称形である、(4)有機色素に比べて耐久性、耐退色性に優れる、といった特徴を有する。
 QD含有樹脂層が含有する量子ドットは公知のものであってもよく、当業者に既知の任意の方法を使用して生成することができる。例えば、好適なQD及び好適なQDを形成するための方法には、米国特許第6225198号明細書、米国特許出願公開第2002/0066401号明細書、米国特許第6207229号明細書、同第6322901号明細書、同第6949206号明細書、同第7572393号明細書、同第7267865号明細書、同第7374807号明細書、米国特許出願第11/299299号及び米国特許第6861155号明細書に記載のものが挙げられる。
 QDは、任意の材料で構成され、好適には無機材料、より好適には無機導体又は半導体材料から構成される。好適な半導体材料には、II-VI族、III-V族、IV-VI族及びIV族の半導体を含む、任意の種類の半導体が含まれる。
 好適な半導体材料には、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む。)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Al、(Al、Ga、In)(S、Se、Te)、AlCO、及び二つ以上のこのような半導体の適切な組合せが含まれるが、これらに限定されない。
 本発明においては、次のようなコア/シェル型の量子ドット、例えば、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等も好ましく使用できる。
 QD含有樹脂層には、量子ドットを保持するバインダーとして樹脂を用いることができる。例えば、ポリカーボネート系、ポリアリレート系、ポリスルホン(ポリエーテルスルホンも含む。)系、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系、ポリエチレン系、ポリプロピレン系、セロファン系、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースエステル系、ポリ塩化ビニリデン系、ポリビニルアルコール系、エチレンビニルアルコール系、シンジオタクティックポリスチレン系、ノルボルネン系、ポリメチルペンテン系、ポリエーテルケトン系、ポリエーテルケトンイミド系、ポリアミド樹脂、フッ素樹脂、ナイロン系、ポリメチルメタクリレート等のアクリル系樹脂等を挙げることができる。
 (有機EL素子)
 本発明のガスバリア性フィルムは、有機EL素子に適用することができ、本発明に適用可能な有機EL素子の概要については、例えば、特開2013-157634号公報、特開2013-168552号公報、特開2013-177361号公報、特開2013-187211号公報、特開2013-191644号公報、特開2013-191804号公報、特開2013-225678号公報、特開2013-235994号公報、特開2013-243234号公報、特開2013-243236号公報、特開2013-242366号公報、特開2013-243371号公報、特開2013-245179号公報、特開2014-003249号公報、特開2014-003299号公報、特開2014-013910号公報、特開2014-017493号公報、特開2014-017494号公報等に記載されている構成を挙げることができる。
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 <スパッタ成膜方法及び成膜条件>
 ガスバリア層の気相成膜は、マグネトロンスパッタ装置(キャノンアネルバ社製:型式EB1100)を用いた。
 ターゲット(ソース)としては、下記の各ターゲットを用い、プロセスガスにはArとOとを用いて、マグネトロンスパッタ装置により、RF方式、もしくは、DC方式による成膜を行った。スパッタ電源パワーは以下に記載がないものは5.0W/cmとし、成膜圧力は0.4Paとした。また、各成膜条件において、それぞれ酸素分圧を調整した。なお、事前にシクロオレフィンポリマー基材を用いた成膜により、各成膜条件において、成膜時間に対する層厚変化のデータを取り、単位時間当たりに成膜される層厚を算出した後、設定層厚となるように成膜時間を設定した。
 (ターゲット)
 T1:多結晶シリコンターゲット
 T2:酸素欠損型酸化ニオブターゲット(組成:Nb1229
 T3:金属Nbターゲット
 T4:金属Taターゲット。
 (成膜条件)
 T1-1:ターゲットとしてT1を用い、RF方式によりスパッタ成膜した。スパッタ電源パワーは4.0W/cm、酸素分圧は20%(v/v)とした。また、層厚が100nmとなるように成膜時間を設定した。
 T1-2:層厚が90nmとなるように成膜時間を設定した以外は、T1-1と同様にして行った。
 T2-1:ターゲットとしてT2を用い、DC方式により成膜した。酸素分圧を12%(v/v)とした。また、層厚が10nmとなるように成膜時間を設定した。
 T3-1:ターゲットとしてT1とT3とを用い、DC方式により2元同時スパッタを行った。酸素分圧を18%(v/v)とした。バリア層の組成として、SiとNbの原子比率が同量となるように、T1における電源パワーと、T3における電源パワーとを調整した。また、層厚が50nmとなるように成膜時間を設定した。
 T4-1:ターゲットとしてT1とT4とを用い、DC方式により2元同時スパッタを行った。酸素分圧を18%(v/v)とした。バリア層の組成として、SiとTaの原子比率が同量となるように、T1における電源パワーと、T4における電源パワーとを調整した。また、層厚が50nmとなるように成膜時間を設定した。
 <ガスバリア層の厚さ方向の組成分布の測定>
 XPS分析により、ガスバリア層の厚さ方向の組成分布プロファイルを測定した。なお、XPS分析条件は以下の通りである。
 (XPS分析条件)
 ・装置:アルバック・ファイ社製QUANTERASXM
 ・X線源:単色化Al-Kα
 ・スパッタイオン:Ar(2keV)
 ・デプスプロファイル:SiO換算スパッタ厚さで、所定の厚さ間隔で測定を繰り返し、深さ方向のデプスプロファイルを得た。この厚さ間隔は、1nmとした(深さ方向に1nmごとのデータが得られる)
 ・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバック・ファイ社製のMultiPakを用いた。なお、分析した元素は、Si、Nb、Ta、O、N、Cである。
 M1がSiでありM2がNbである場合を例に取ると、上記XPS組成分析から得られたデータから、ガスバリア層の組成は、(Si)(Nb)で表すことができる。第1層および第2層(連続スパッタ、またはPHPS塗膜とスパッタとの組み合わせ)を積層した態様においては、第1層と第2層との界面領域において、M1であるSiとM2であるNbとが共存し、かつNb/Siの原子数比率の値xが、0.02≦x≦49の範囲内にある領域を「混合領域」とし、さらに連続して5nm以上の厚さで上記式(2)の要件を満たす領域を「酸素欠損領域」とした。ガスバリア層を2元同時スパッタで形成した場合も同様の測定を行った。
 (酸素欠損領域の酸素欠損指標の計算)
 上記XPS分析データを用いて、各測定点における(2y+3z)/(a+bx)の値を計算した。ここで、M1はSiであるため、a=4、また、M2はNbまたはTaであるため、a=5である。(2y+3z)/(a+bx)の値の最小値を求め、これを酸素欠損度指標として、表1に記載した。(2y+3z)/(a+bx)<1.0となる場合、酸素欠損の状態であることを示す。
 <比較例1>
 (フィルム基材の表面処理とCHC層の形成)
 シクロオレフィンポリマー基材として、ゼオノア(登録商標)ZF14(日本ゼオン株式会社、フィルム厚さ100μm)を用いた。上記の成膜条件T1-1により成膜を行い、ガスバリア性フィルム101を得た。
 <実施例1>
 ゼオノア(登録商標)ZF14を基材として、成膜条件T1-2で成膜した後、続けてT2-1の成膜条件で連続スパッタを行った。これにより、ガスバリア性フィルム102を得た。
 <比較例2>
 実施例1におけるシクロオレフィンポリマー基材を以下の方法により表面処理し、クリアハードコート層(CHC層)を形成した。すなわち、コロナ放電処理装置(AGI-080、春日電機社)の放電用電極とシクロオレフィンポリマー基材との間隙を1mmに設定し、処理出力が600mW/cmの条件で10秒間の表面コロナ処理を行った。次いで、コロナ処理を施したシクロオレフィンポリマー基材上に、ポリウレタンアクリレートおよびアクリル酸エステルを主成分とした紫外線硬化型樹脂含有塗布液(日本合成化学社製 紫光UV-1700B)を、湿式コーターを用いて、ドライ膜厚4μmになるように塗布した。その後、80℃で3分乾燥した塗膜に、大気下で高圧水銀ランプを使用して、1.0J/cmの条件で紫外線硬化型樹脂を硬化させ、クリアハードコート層(CHC層)を形成した。
 上記のCHC層上に成膜条件T1-1により成膜を行い、ガスバリア性フィルム103を得た。
 <実施例2>
 シクロオレフィンポリマー基材としてアートン(登録商標)(JSR株式会社、フィルム厚さ100μm)を用い、比較例2の方法によりCHC層を形成した。なお、アートン(登録商標)は、上記式(3)で表される構造単位を含む(上記式(3)中、nは1であり;Qは-CHCH-であり;RおよびRは水素原子であり、Rはメチル基であり、Rはメトキシカルボニル基である。)。CHC層上に実施例1と同様の成膜条件によりガスバリア層を形成し、ガスバリア性フィルム104を得た。
 <実施例3>
 アートン(登録商標)を基材として用いて、以下の方法により、実質的に改質処理を行わない条件でポリシラザン含有塗膜を形成した。すなわち、ポリシラザン含有塗布液として、パーヒドロポリシラザン(PHPS;NN120-10、無触媒タイプ、メルク株式会社)の10質量%ジブチルエーテル溶液を調製した。調製したポリシラザン含有塗布液を、ワイヤレスバーにて、乾燥後の平均層厚が300nmとなるように基材上に塗布し、温度85℃、湿度55%RHの雰囲気下で1分間処理して乾燥させた。更に、温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行って、ポリシラザン含有塗膜を形成した。
 上記の手法により得たポリシラザン含有塗膜面に対し、成膜条件T2-1により気相成膜を行い、ガスバリア性フィルム105を得た。
 <実施例4>
 アートン(登録商標)を基材として用いて、上記の成膜条件T3-1により気相成膜を行い、ガスバリア性フィルム106を得た。
 <実施例5>
 比較例2の方法によりCHC層を形成したゼオノア(登録商標)ZF14を基材として用いた。実施例3と同様の方法により形成したポリシラザン含有塗膜面に対し、成膜条件T2-1で気相成膜を行い、ガスバリア性フィルム107を得た。
 <実施例6>
 実施例2の方法によりCHC層を形成したアートン(登録商標)を基材として用いた。実施例3と同様の方法により形成したポリシラザン含有塗膜面に対し、成膜条件T4-1により気相成膜を行い、ガスバリア性フィルム108を得た。
 <実施例7>
 CHC層の無いアートン(登録商標)に基材を変更した以外は実施例1と同様の成膜条件によりガスバリア層を形成し、ガスバリア性フィルム109を得た。
 (ガスバリア性評価)
 ガスバリア性フィルムのガスバリア層表面をUV洗浄した後、ガスバリア層面に熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した。これを50mm×50mmのサイズに打ち抜いた後、グローブボックス内に入れて、24時間乾燥処理を行った。
 50mm×50mmサイズの無アルカリガラス板(厚さ0.7mm)の片面をUV洗浄した。株式会社エイエルエステクノロジー製の真空蒸着装置を用い、ガラス板の中央に、マスクを介して20mm×20mmのサイズでCaを蒸着した。Caの厚さは80nmとした。Ca蒸着済のガラス板をグローブボックス内に入れて、接着剤層を貼合したガスバリア性フィルムのガスバリア層面とガラス板のCa蒸着面とを接するように配置し、真空ラミネートにより接着した。この際、110℃の加熱を行った。更に、接着した試料を110℃に設定したホットプレート上にガラス板を下にして置き、30分間硬化させて、評価用セルを作製した。
 上記のようにして作製したCa法評価試料を85℃85%RH環境に保存し、一定時間ごとにCaの腐食率を観察した。1時間、5時間、10時間、25時間、それ以降は25時間ごとに観察・透過濃度測定(任意4点の平均)し、測定した透過濃度が初期値の50%未満となった時点の観察時間をガスバリア性の指標とした。500時間の保存で測定した透過濃度が透過濃度初期値の50%以上であった場合は50時間以上とした。なお、透過濃度測定には、コニカミノルタ株式会社製の白黒透過濃度計 TM-5を用いた。透過濃度は、セルの任意の4点で測定し、その平均値を算出した。以下の指標を基準に、ガスバリア性の評価結果として表1に記入した。
指標 透過濃度が50%未満となる時間
  0:1時間未満
  1:1時間以上5時間未満
  2:5時間以上10時間未満
  3:10時間以上25時間未満
  4:25時間以上50時間未満
  5:50時間以上。
 (発泡痕の評価)
 得られたガスバリア性フィルムを封止材(熱硬化性エポキシ樹脂)を介してガラスに貼合し、85℃85%RHの条件で300hr放置した。その後、封止材-ガスバリア層間の状態をマイクロX線CT(×40倍、視野:350×450μm)(リガク社製、nano3DX)で観察し、以下の基準で微細発泡の状態を5段階評価した。下記評価基準において「3」以上が実生産上良好である:
1:視野にφ10μm以上の発泡痕が21個以上
2:視野にφ10μm以上の発泡痕が11~20個
3:視野にφ10μm以上の発泡痕が3~10個
4:視野にφ10μm以上の発泡痕が1~2個
5:視野にφ10μm以上の発泡痕無し。
Figure JPOXMLDOC01-appb-T000012
 本出願は、2015年11月24日に出願された日本特許出願第2015-228999号に基づいており、その開示内容は、参照により全体として本開示に引用される。

Claims (8)

  1.  シクロオレフィンポリマー基材、および下記式(1)および(2)で示される酸素欠損領域を含むガスバリア層を含む、ガスバリア性フィルム:
    Figure JPOXMLDOC01-appb-C000001
     ただし、上記式(1)において、M1はSi、Ge、Sn、B、Al、GaおよびInからなる群から選択される1種以上の元素であり;M2は遷移金属元素であり;0.02≦x≦49、0<y、および0≦zであり;M1およびM2の最大価数をそれぞれaおよびbとしたとき、x、yおよびzが下記式(2)の関係を満たす。
    Figure JPOXMLDOC01-appb-C000002
  2.  前記シクロオレフィンポリマー基材が、以下の式(3)で表される構造単位を含む、請求項1に記載のガスバリア性フィルム;
    Figure JPOXMLDOC01-appb-C000003
     ただし、上記式(3)中、nは0、1または2であり;Qは独立に-CH=CH-で表される基および-CHCH-で表される基から選ばれる少なくとも1つであり;R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~10の炭化水素基または極性基を表し、R~Rの少なくとも1つが極性基である。
  3.  前記M1がSiである、請求項1または2に記載のガスバリア性フィルム。
  4.  前記M1がポリシラザンに由来する、請求項3に記載のガスバリア性フィルム。
  5.  前記M2が、NbおよびTaの少なくとも一方である、請求項1~4のいずれか1項に記載のガスバリア性フィルム。
  6.  シクロオレフィンポリマー基材を有するガスバリア性フィルムの製造方法であって、
     Si、Ge、Sn、B、Al、GaおよびInからなる群から選択される元素(M1)を少なくとも1種含む塗膜を前記シクロオレフィンポリマー基材上に形成する工程;ならびに
     上記塗膜面に対し、遷移金属単体または遷移金属酸化物をソースとして気相成膜を行う工程を含む、ガスバリア性フィルムの製造方法。
  7.  前記塗膜がポリシラザン含有塗膜である、請求項6に記載のガスバリア性フィルムの製造方法。
  8.  前記ポリシラザン含有塗膜に印加されるエネルギーが、0.1mJ/cm未満である、請求項7に記載のガスバリア性フィルムの製造方法。
PCT/JP2016/072656 2015-11-24 2016-08-02 ガスバリア性フィルム、およびその製造方法 WO2017090278A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017552286A JP6720981B2 (ja) 2015-11-24 2016-08-02 ガスバリア性フィルム、およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228999 2015-11-24
JP2015-228999 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090278A1 true WO2017090278A1 (ja) 2017-06-01

Family

ID=58764178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072656 WO2017090278A1 (ja) 2015-11-24 2016-08-02 ガスバリア性フィルム、およびその製造方法

Country Status (3)

Country Link
JP (1) JP6720981B2 (ja)
TW (1) TW201718263A (ja)
WO (1) WO2017090278A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065147A1 (ja) * 2017-09-29 2019-04-04 東洋紡株式会社 積層フィルム
CN108546927B (zh) * 2018-07-23 2019-12-03 业成科技(成都)有限公司 以化学气相沉积长碳链硅烷化合物作为气密防水之方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161893A (ja) * 2010-02-15 2011-08-25 Gunze Ltd 透明導電膜付ガスバリアフィルム
JP2012148416A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc 積層体およびその製造方法
JP2014151571A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス
WO2015002156A1 (ja) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161893A (ja) * 2010-02-15 2011-08-25 Gunze Ltd 透明導電膜付ガスバリアフィルム
JP2012148416A (ja) * 2011-01-17 2012-08-09 Mitsui Chemicals Inc 積層体およびその製造方法
JP2014151571A (ja) * 2013-02-08 2014-08-25 Konica Minolta Inc ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス
WO2015002156A1 (ja) * 2013-07-01 2015-01-08 コニカミノルタ株式会社 ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス

Also Published As

Publication number Publication date
JPWO2017090278A1 (ja) 2018-09-20
JP6720981B2 (ja) 2020-07-08
TW201718263A (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5895687B2 (ja) ガスバリア性フィルム
JP6720981B2 (ja) ガスバリア性フィルム、およびその製造方法
JP2017095758A (ja) ガスバリア性フィルムの製造方法
WO2017090606A1 (ja) ガスバリアーフィルム、その製造方法及びそれを用いた電子デバイス
JP6627521B2 (ja) 機能性フィルムおよびこれを含む量子ドット(qd)含有積層部材の製造方法
WO2017014083A1 (ja) 機能性フィルム及びこれを備えた電子デバイス
WO2017090592A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
JP6645137B2 (ja) ガスバリアー性粘着シート及びそれを備える電子デバイス
WO2017090609A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090576A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017110463A1 (ja) ガスバリアーフィルム及びその製造方法
JP2017094576A (ja) ガスバリアー性フィルム、その製造方法及び電子デバイス
WO2017090591A1 (ja) ガスバリアー性フィルム及び電子デバイス
JP2018012267A (ja) ガスバリアーフィルム及びその製造方法
WO2017013980A1 (ja) ガスバリアー性フィルム
WO2017090602A1 (ja) ガスバリアー性フィルム及びこれを備えた電子デバイス
WO2017090605A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017090498A1 (ja) ガスバリア性フィルムの製造方法
WO2017090613A1 (ja) ガスバリアー性フィルム及び電子デバイス
WO2017010249A1 (ja) ガスバリア性フィルム
WO2016136841A1 (ja) ガスバリア性フィルム
JP2017154124A (ja) ガスバリア性フィルムの製造方法
WO2017090579A1 (ja) 積層型ガスバリアー性フィルム及び電子デバイス
JPWO2016136841A6 (ja) ガスバリア性フィルム
JP6477077B2 (ja) ガスバリア性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868228

Country of ref document: EP

Kind code of ref document: A1