WO2017090218A1 - 金色調多層コートおよびこれを備える反射体 - Google Patents

金色調多層コートおよびこれを備える反射体 Download PDF

Info

Publication number
WO2017090218A1
WO2017090218A1 PCT/JP2016/004266 JP2016004266W WO2017090218A1 WO 2017090218 A1 WO2017090218 A1 WO 2017090218A1 JP 2016004266 W JP2016004266 W JP 2016004266W WO 2017090218 A1 WO2017090218 A1 WO 2017090218A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
multilayer
gold
layer
dielectric
Prior art date
Application number
PCT/JP2016/004266
Other languages
English (en)
French (fr)
Inventor
下田 和人
康朗 中川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017552262A priority Critical patent/JP6760304B2/ja
Priority to US15/773,853 priority patent/US10816707B2/en
Priority to CN201680067776.2A priority patent/CN108351450B/zh
Publication of WO2017090218A1 publication Critical patent/WO2017090218A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present technology relates to a gold color multilayer coating having a color tone of gold color and a reflector including the same.
  • a transparent plate having a golden reflection color described in Patent Document 1 is configured by forming a titanium nitride (TiN) film and a metal oxide dielectric film on a glass plate.
  • TiN titanium nitride
  • the gold vapor deposition product described in Patent Document 2 has a low refractive index layer made of a material having a refractive index of 1.3 to 1.5, a high refractive index layer made of a material having a refractive index of 2.0 or more, and the uppermost layer being a high refractive index layer. Thus, it is configured by alternately laminating on the surface of the substrate.
  • the reflector described in Patent Document 3 is configured to have a reflection control layer having a reflection and absorption spectrum similar to gold on a silver film directly or via another transparent layer. Thereby, the reflected light of the color close
  • Patent Documents 1 to 3 have a problem that the reflectance is lower than the actual reflectance of gold, and improvement of the layer structure to approximate the gold is required.
  • An object of the present disclosure is to provide a gold-colored multilayer coat capable of obtaining a reflection characteristic as close as possible to gold and a reflector including the same.
  • a gold color multilayer coating according to the present technology includes a metal film and a multilayer film layer.
  • the multilayer film layer includes a plurality of dielectric films each having two or more different refractive indexes, and the dielectric films having different refractive indexes are alternately stacked.
  • Such a configuration makes it possible to obtain reflection characteristics as close as possible to gold.
  • the multilayer film layer may include a thin film having an extinction coefficient higher than that of the plurality of dielectric films.
  • the metal film may be made of Al, Ag, Cu, Ti, Ta, Nb, Co, Cu, Fe, In, Mn, Mo, Ni, or W.
  • the multilayer film layer may include SiO 2 and Nb 2 O 5 , Ta 2 O 5 , or TiO 2 having a refractive index higher than that of the SiO 2 .
  • the metal film may be made of Ti, and the multilayer film layer may include at least five layers of the dielectric film.
  • the metal film may be made of Cu, and the multilayer film layer may include at least three layers of the dielectric film.
  • the metal film may be made of Al, and the multilayer film layer may include at least five layers of the dielectric film.
  • the multilayer film layer may include a first assembled layer and a second assembled layer, and the thin film may be provided between the first assembled layer and the second assembled layer.
  • the first assembled layer includes a first dielectric film and a second dielectric film having a refractive index higher than that of the first dielectric film, and the second assembled layer includes the first dielectric film. And the second dielectric film.
  • the reflector according to the present technology includes a base material and the above-described gold color multilayer coating provided on the base material.
  • FIG. 1 is a cross-sectional view illustrating a reflector including a gold color multilayer coating according to an embodiment of the present technology.
  • FIG. 2 is a table showing the material and film thickness of each film constituting the multilayer coat according to Example 1.
  • FIG. 3A shows the reflectance spectrum in the visible light region of Au as a comparative example and the reflector according to Example 1.
  • FIG. 3B shows the reflection characteristics of light at incident angles of 0 °, 30 °, 50 °, and 70 ° in Example 1.
  • FIG. 4 is a table showing the material and film thickness of each film constituting the multilayer coat according to Example 2.
  • FIG. 5A shows the spectrum of the reflectance in the visible light region of Au as a comparative example and the reflector according to Example 2 (incident angle is 0 °).
  • FIG. 5B shows the reflection characteristics of light having incident angles of 0 °, 30 °, 50 °, and 70 ° in Example 2.
  • FIG. 6 is a table showing the material and film thickness of each film constituting the multilayer coat according to Example 3.
  • FIG. 7A shows the spectrum of the reflectance in the visible light region of Au as a comparative example and the reflector according to Example 3 (incident angle is 0 °).
  • FIG. 7B shows the light reflection characteristics of Example 3 at angles of incidence of 0 °, 30 °, 50 °, and 70 °.
  • FIG. 8 is a graph showing the results of calculating the incident angle dependence of the color difference from gold for each of the above Examples 1 to 3.
  • FIG. 1 is a cross-sectional view illustrating a reflector including a gold-colored multilayer coat (hereinafter simply referred to as “multilayer coat”) according to an embodiment of the present technology.
  • multilayer coat a gold-colored multilayer coat
  • the “reflector” may be a finished product (final product) or a part.
  • the reflector 100 can be applied as a housing of an electronic device such as a smart phone or a tablet, but is not limited to the electronic device, and can be applied to any other product.
  • the reflector 100 includes a base material 10 and a multilayer coat 30 provided on the base material 10.
  • Examples of the material of the substrate 10 include resin, metal, glass, and ceramics.
  • the multilayer coat 30 includes a metal film 15 provided on the substrate 10 and a multilayer film layer 20 provided on the metal film 15.
  • the multilayer film layer 20 includes a plurality of dielectric films (21, 22,%) Each having two or more different refractive indexes, and the dielectric films 21 and 22 having different refractive indexes are alternately stacked.
  • the material of the metal film for example, Al, Ag, Cu, Ti, Ta, Nb, Co, Cu, Fe, In, Mn, Mo, Ni, or W is used.
  • the dielectric films “laminated alternately” means that at least three dielectric films 21, 22, having different refractive indexes are laminated.
  • the multilayer film layer 20 includes, in order from the substrate 10 side, at least a first dielectric film 21 having a first refractive index, a second dielectric film 22 having a second refractive index higher than that, and Further, a first dielectric film 21 is laminated thereon.
  • the multilayer film layer 20 may include a third dielectric film having a third refractive index different from the first refractive index and the second refractive index.
  • a third dielectric film having a third refractive index different from the first refractive index and the second refractive index for example, the first dielectric film, the second dielectric film, the third dielectric film, the first dielectric film, the second dielectric film, and the like are assumed in order from the substrate 10 side.
  • the phrase “alternately laminated” of dielectric films includes that a film other than the dielectric film (for example, a metal thin film as described later) is interposed in the middle of the lamination.
  • the upper limit value of the number of dielectric films 21 and 22 in the multilayer film layer 20 is not particularly limited, but is actually 10 to 30.
  • SiO 2 , MgF, Nb 2 O 5 , Ta 2 O 5 , TiO 2 or the like is used as the material of the dielectric films 21 and 22.
  • SiO 2 and MgF are low refractive index materials (first dielectric film 21)
  • Nb 2 O 5 , Ta 2 O 5 , or TiO 2 are high refractive index materials (second dielectric film 22). .
  • a protective layer made of a transparent film may be provided on the multilayer coat 30 as the uppermost layer.
  • the protective layer is preferably composed of a relatively thick film of, for example, 100 nm or more.
  • the film thickness of the metal film 15 is typically not less than 50 nm and not more than 500 nm. More preferably, it is 70 nm or more and 300 nm.
  • the film thicknesses of the dielectric films 21 and 22 of the multilayer film layer 20 are typically 30 nm or more and 300 nm or less, but are not limited to this range. More preferably, it is 50 nm or more and 200 nm.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • a multilayer coat 30 is formed on a base film (not shown) and the formed multilayer coat 30 is transferred onto the substrate 10.
  • a method in which transfer is performed by insert molding may be employed.
  • the reflector 100 having the above configuration, it is possible to obtain a reflection characteristic as close to gold as possible. Therefore, reflection characteristics close to gold can be realized without using an expensive gold material, and the cost of the product can be significantly reduced.
  • FIG. 2 is a table showing the material and film thickness of each film constituting the multilayer coat 30 according to the first embodiment.
  • a metal film 15 and dielectric films 21 and 22 are provided in the order of the layer numbers (1 to 6) from the substrate 10 side.
  • FIG. 1 is referred to as the structure of the reflector 100 common to Examples 1 to 3, including Examples 2 and 3 described later.
  • Ti is used as the material of the metal film 15. This is to use a material having as high a reflectance as possible.
  • the film thickness of Ti is, for example, 100 nm.
  • the multilayer film layer 20 SiO 2 is used as the low refractive index dielectric film (first dielectric film 21), and Nb 2 O 5 is used as the high refractive index dielectric film (second dielectric film 22). Is used. These SiO 2 films and Nb 2 O 5 films are alternately stacked, and the multilayer film layer 20 has a five-layer structure.
  • the thicknesses of the dielectric films are 80 nm, 70 nm, 110 nm, 70 nm, and 50 nm in order from the lower layer side.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 1.
  • FIG. 3A shows the spectrum of the reflectance in the visible light region of the gold (
  • the reflection characteristic of Au is characterized by being small in the short wavelength region and large in the long wavelength region.
  • the reflector according to the first embodiment can also substantially realize the reflection characteristic of Au.
  • FIG. 3B shows the reflection characteristics of light with incident angles of 0 °, 30 °, 50 °, and 70 ° in Example 1. It can be seen that the peak of the reflection characteristic of Example 1 slightly shifts from the reflection characteristic of Au as the incident angle increases. This is due to the presence of the multilayer film layer 20.
  • FIG. 4 is a table showing the material and film thickness of each film constituting the multilayer coat 30 according to the second embodiment.
  • a metal film 15 and dielectric films 21 and 22 are provided in the order of the layer numbers (1 to 4) from the substrate 10 side.
  • Cu having a low reflectance in the short wavelength region and a high reflectance on the long wavelength side is used as the material of the metal film 15.
  • the film thickness of Cu is, for example, 100 nm.
  • SiO 2 is used as the first dielectric film 21 with a low refractive index
  • Nb 2 O 5 is used as the second dielectric film 22 with a high refractive index.
  • These SiO 2 films and Nb 2 O 5 films are alternately stacked, for example, in three layers.
  • the film thickness of the dielectric film is 80 nm, 70 nm, and 50 nm in order from the lower layer side.
  • FIG. 5A shows the spectrum of the reflectance in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 2 (incident angle is 0 °).
  • FIG. 5B shows the reflection characteristics of light having incident angles of 0 °, 30 °, 50 °, and 70 ° in Example 2.
  • the reflection characteristic of Cu is close to that of gold, the total number of dielectric films used to bring the optical waveform closer to gold can be suppressed. Therefore, productivity can be increased and cost reduction can be realized. Further, the reflection characteristic of Cu itself suppresses the influence of the peak shift due to the change in the incident angle of the multilayer film layer 20, and suppresses the change in the reflection characteristic when the incident angle is increased as compared with the first embodiment. Can do.
  • FIG. 6 is a table showing the material and film thickness of each film constituting the multilayer coat 30 according to Example 3.
  • a metal film 15 and dielectric films 21 and 22 are provided in the order of the layer numbers (1 to 6) from the substrate 10 side.
  • Al is used as the material of the metal film 15.
  • the film thickness of Al is, for example, 100 nm.
  • the multilayer film 20 SiO 2 is used as the first dielectric film 21 with a low refractive index, and Nb 2 O 5 is used as the second dielectric film 22 with a high refractive index.
  • the multilayer film layer 20 is made of, for example, a metal thin film as a thin film having an extinction coefficient higher than those of the dielectric films. In FIG. 1, the metal thin film is not shown.
  • a material having a refractive index of 2 or more is desirable.
  • Ti, Ta, Fe, Mo, and W are used as the material for the metal thin film.
  • Nb having a small extinction coefficient.
  • the first combined layer composed of the second layer SiO 2 and the third layer Nb 2 O 5 , the fifth layer SiO 2 and the sixth layer Nb 2 O 5.
  • a metal thin film (Nb) is provided between the second set layer composed of
  • the film thickness of the dielectric film is 80 nm, 90 nm, 90 nm, and 60 nm in order from the lower layer side.
  • the film thickness of the metal thin film is 20 nm.
  • the film thickness of the metal thin film not limited to the third embodiment is set to 10 nm or more and 30 nm or less. If the thickness of the metal thin film is smaller than 15 nm, the manufacturing error increases and the productivity may be reduced. When the film thickness is larger than 30 nm, the light transmittance is lowered and the reflectance is lowered. More preferably, it is 15 nm or more and 25 nm or less.
  • FIG. 7A shows the reflectance spectrum in the visible light region of the gold (Au) as a comparative example and the reflector according to Example 3 (incident angle is 0 °).
  • FIG. 7B shows the light reflection characteristics of Example 3 at angles of incidence of 0 °, 30 °, 50 °, and 70 °.
  • the metal thin film is inserted in the multilayer film layer 20
  • the reflection characteristics when the incident angle is increased can be suppressed as compared with that in the second embodiment.
  • the film thickness can be set larger as the extinction coefficient is smaller like Nb. That is, in the third embodiment, it is not necessary to manufacture an extremely thin film, manufacturing errors can be relatively reduced, and manufacturing stability is improved.
  • desired optical characteristics can be realized by providing the first and second assembled layers in the lower layer and the upper layer of the metal thin film, respectively.
  • FIG. 8 is a graph showing the results of calculating the incident angle dependency of the color difference from gold for each of the above Examples 1 to 3.
  • ⁇ Eab with a D65 light source was used as the color difference. It is generally accepted that ⁇ Eab is 5 or less. Since the configurations in Examples 1 to 3 can increase the reflectance, for example, as a comparative example, ⁇ Eab can be significantly reduced as compared with a product including a TiN metal film (see, for example, Patent Document 1). Can do.
  • ⁇ Eab satisfies 5 or less until the incident angle is around 50 °, and even when the incident angle is 70 °, it can take a value close to 5 as compared with the other examples.
  • the film in contact with the metal film 15 is the first dielectric film (SiO 2 ) 21 having a low refractive index, but the dielectric film (Nb 2 O 5 ) having a high refractive index. 22 may be in contact with the metal film 15.
  • the film in contact with the metal film 15 is desirably the first dielectric film 21 having a low refractive index.
  • the film in contact with the metal film 15 may be the second dielectric film 22 having a high refractive index.
  • the multilayer film layer 20 of the reflector according to the first embodiment may include a thin film (for example, a metal thin film) of the reflector according to the third embodiment.
  • Ag, Ta, Nb, Co, Cu, Fe, In, Mn, Mo, or Ni may be used.
  • this technique can also take the following structures.
  • a metal film, A gold-colored multilayer coat comprising: a plurality of dielectric films each having two or more different refractive indexes, and a multilayer film layer formed by alternately laminating dielectric films having different refractive indexes.
  • the gold color multilayer coat according to (1) above, The multilayer film layer includes a thin film having an extinction coefficient higher than that of the plurality of dielectric films.
  • the gold-colored multilayer coat according to (1) or (2), The metal film is a gold-colored multi-layer coating composed of Al, Ag, Cu, Ti, Ta, Nb, Co, Cu, Fe, In, Mn, Mo, Ni, or W.
  • the multilayer film is a gold color tone multilayer coating comprising a SiO 2, Nb 2 O 5, Ta 2 O 5 having a refractive index higher than the refractive index of the SiO 2, or a TiO 2.
  • the gold color multilayer coat according to (1) above, The metal film is composed of Ti,
  • the multilayer film layer includes a gold color multilayer coat including at least five layers of the dielectric film.
  • the gold color multilayer coat according to (1) above, The metal film is made of Cu,
  • the multilayer film layer is a gold color multilayer coat including at least three dielectric films.
  • the multilayer film layer includes a gold color multilayer coat including at least five layers of the dielectric film.
  • the multilayer film layer is A first assembled layer composed of a first dielectric film and a second dielectric film having a refractive index higher than that of the first dielectric film;
  • the thin film is a gold-colored multilayer coat provided between a first assembled layer and a second assembled layer.
  • a substrate Comprising a gold color multilayer coating provided on the substrate;
  • the gold color multilayer coat is A metal film provided on the substrate;
  • a reflector including a plurality of dielectric films each having two or more different refractive indexes, and a multilayer film layer configured by alternately laminating dielectric films having different refractive indexes.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)

Abstract

【解決手段】金色調多層コートは、金属膜と、多層膜層とを具備する。前記多層膜層は、2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成されている。

Description

金色調多層コートおよびこれを備える反射体
 本技術は、金色調の発色を有する金色調多層コートおよびこれを備える反射体に関する。
 従来から、例えば高価な金を使用することなく、擬似的に金色を発生するコーティングが施された製品がある。
 例えば、特許文献1に記載の金色反射色を有する透明板は、ガラス板に、窒化チタン(TiN)膜および金属酸化物誘電体膜が形成されて構成されている。
 特許文献2に記載の金色蒸着製品は、屈折率1.3~1.5の物質からなる低屈折率層と、屈折率2.0以上の物質からなる高屈折率層とが、最上層が高屈折率層となるように、基体表面に交互に積層されて構成されている。
 特許文献3に記載の反射体は、銀膜上に直接または他の透明層を介して、金色に似た反射、吸収スペクトルを持つ反射制御層を有して構成されている。これにより、金色に近い色の反射光を実現している。
特開平1-208344号公報 特開平6-256929号公報 特開平6-220610号公報
 しかしながら、特許文献1~3の技術では、実際の金色の反射率と比較して反射率が低いなどの問題があり、金色に近づけるための層構造の改善が要求されている。
 本開示の目的は、金色にできるだけ近い反射特性を得ることができる金色調多層コートおよびこれを備える反射体を提供することにある。
 上記目的を達成するため、本技術に係る金色調多層コートは、金属膜と、多層膜層とを具備する。
 前記多層膜層は、2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成されている。
 このような構成により、金色にできるだけ近い反射特性を得ることができる。
 前記多層膜層は、前記複数の誘電体膜の消衰係数より高い消衰係数を有する薄膜を含んでいてもよい。
 これにより、入射角が大きくなる場合の金色からの色ずれを抑制することができ、つまり、広い波長域で金色にできるだけ近い反射特性を得ることができる。
 前記金属膜は、Al、Ag、Cu、Ti、Ta、Nb、Co、Cu、Fe、In、Mn、Mo、Ni、またはWで構成されていてもよい。
 前記多層膜層は、SiO2と、前記SiO2の屈折率より高い屈折率を持つNb2O5、Ta2O5、またはTiO2とを含んでいてもよい。
 前記金属膜がTiで構成され、前記多層膜層は、少なくとも5層の前記誘電体膜を含んでいてもよい。あるいは、前記金属膜がCuで構成され、前記多層膜層は、少なくとも3層の前記誘電体膜を含んでいてもよい。あるいは、前記金属膜がAlで構成され、前記多層膜層は、少なくとも5層の前記誘電体膜を含んでいてもよい。
 前記多層膜層は、第1組層と第2組層とを含み、前記薄膜は、第1組層および第2組層の間に設けられていてもよい。
 前記第1組層は、第1誘電体膜および前記第1誘電体膜の屈折率より高い屈折率を持つ第2誘電体膜で構成され、前記第2組層は、前記第1誘電体膜および前記第2誘電体膜で構成されていてもよい。
 本技術に係る反射体は、基材と、前記基材上に設けられた上記金色調多層コートとを具備する。
 以上、本技術によれば、金色にできるだけ近い反射特性を得ることができる金色調多層コートおよびそれを備える反射体を提供することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
図1は、本技術の一実施形態に係る、金色調多層コートを備える反射体を示す断面図である。 図2は、実施例1に係る多層コートを構成する各膜の材料および膜厚を示す表である。 図3Aは、比較例としてのAuと、実施例1に係る反射体の、可視光域での反射率のスペクトラムを示す。図3Bは、実施例1において、0°、30°、50°、70°の入射角の光の反射特性を示す。 図4は、実施例2に係る多層コートを構成する各膜の材料および膜厚を示す表である。 図5Aは、比較例としてのAuと、実施例2に係る反射体の、可視光域での反射率のスペクトラムを示す(入射角は0°)。図5Bは、実施例2の、0°、30°、50°、70°の入射角の光の反射特性を示す。 図6は、実施例3に係る多層コートを構成する各膜の材料および膜厚を示す表である。 図7Aは、比較例としてのAuと、実施例3に係る反射体の、可視光域での反射率のスペクトラムを示す(入射角は0°)。図7Bは、実施例3の、0°、30°、50°、70°の入射角の光の反射特性を示す。 図8は、上記各実施例1~3について、金との色差の入射角依存性を算出した結果を示すグラフである。
 以下、本技術に係る実施形態を、図面を参照しながら説明する。
 1.金色調多層コートを備える反射体
 図1は、本技術の一実施形態に係る、金色調多層コート(以下、単に「多層コート」と言う。)を備える反射体を示す断面図である。
 「反射体」は、完成品(最終品)でもよいし、部品でもよい。反射体100は、例えばスマートホンやタブレット等の電子機器の筐体として応用可能であるが、電子機器に限られず、他のあらゆる製品に応用可能である。
 反射体100は、基材10と、基材10上に設けられた多層コート30とを備える。基材10の材料としては、樹脂、金属、ガラス、セラミックスが挙げられる。
 多層コート30は、基材10上に設けられた金属膜15と、金属膜15上に設けられた多層膜層20とを含む。多層膜層20は、2以上の異なる屈折率をそれぞれ有する複数の誘電体膜(21、22、、、)を含み、それら異なる屈折率の誘電体膜21、22が交互に積層されて構成される。
 金属膜15の材料としては、例えばAl、Ag、Cu、Ti、Ta、Nb、Co、Cu、Fe、In、Mn、Mo、Ni、またはWが用いられる。
 誘電体膜が「交互に積層される」とは、2以上の異なる屈折率の誘電体膜21、22、、、が、少なくとも3層積層されることを意味する。このような多層膜層20は、基材10側から順に、少なくとも、第1屈折率を有する第1誘電体膜21、それより高い第2屈折率を有する第2誘電体膜22、そして、その上にさら第1誘電体膜21が積層されて構成される。
 多層膜層20が、第1屈折率および第2屈折率とは異なる第3の屈折率を有する第3誘電体膜を含む場合もある。この場合、例えば、基材10側から順に、第1誘電体膜、第2誘電体膜、第3誘電体膜、第1誘電体膜、第2誘電体膜、、、などの形態が想定される。
 また、誘電体膜が「交互に積層される」とは、その積層の途中で、誘電体膜以外の膜(例えば後述するような金属薄膜)が介在することも含む。
 多層膜層20における誘電体膜21、22の数の上限値は、特に限定されないが、現実的には10~30である。
 誘電体膜21、22の材料としては、SiO2、MgF、Nb2O5、Ta2O5、またはTiO2等が用いられる。SiO2、MgFは、低屈折率材料(第1誘電体膜21)であり、Nb2O5、Ta2O5、またはTiO2は、高屈折率材料(第2誘電体膜22)である。
 なお、多層コート30上に、最上層として、透明な膜で構成される保護層が設けられていてもよい。保護層は、例えば100nm以上の比較的厚い膜で構成されることが望ましい。
 金属膜15の膜厚は、典型的には50nm以上500nm以下、この範囲に限られない。より好ましくは、70nm以上300nmである。
 多層膜層20の各誘電体膜21、22の膜厚は、典型的には30nm以上300nm以下であるが、この範囲に限られない。より好ましくは、50nm以上200nmである。
 この反射体100の製造方法として、例えばPVD(Physical Vaper Deposition)、または、CVD(Chemical Vapor Deposition)等が挙げられる。
 反射体100の別の製造方法として、図示しないベースフィルム上に多層コート30を成膜し、成膜された多層コート30を基材10上に転写する方法がある。この場合、例えばインサート成形により、転写が行われる方法が採られてもよい。
 以上のような構成の反射体100によれば、できるだけ金色にできるだけ近い反射特性を得ることができる。したがって、高価な金材料を用いることなく、金に近い反射特性を実現でき、製品のコストを大幅に抑えることができる。
 2.実施例
 2.1)実施例1
 図2は、実施例1に係る多層コート30を構成する各膜の材料および膜厚を示す表である。基材10側から、層番号(1~6)の順で、金属膜15および誘電体膜21、22が設けられている。
 なお、後述する実施例2、3も含め、実施例1~3に共通する反射体100の構造として、図1を参照する。
 金属膜15の材料としてTiが用いられる。これは、できるだけ高反射率の材料を用いる趣旨である。Tiの膜厚は、例えば100nmである。
 多層膜層20では、低屈折率の誘電体膜(第1誘電体膜21)として、SiO2が用いられ、高屈折率の誘電体膜(第2誘電体膜22)として、Nb2O5が用いられる。これらSiO2膜とNb2O5膜とが交互に積層され、多層膜層20は5層構造となっている。それら誘電体膜の膜厚は、下層側から順に、80nm、70nm、110nm、70nm、50nmである。
 図3Aは、比較例としての金(Au)と、実施例1に係る反射体の、可視光域での反射率のスペクトラムを示す。本明細書では、このような可視光域での物体の反射率の波形を「反射特性」と言う。実施例1の反射特性では、光の入射角は0°、つまり反射体の表面に垂直な方向の反射光の特性を示す。
 図3Aに示すように、Auの反射特性は、短波長域で小さく、長波長域で大きいという特徴を持っている。本実施例1に係る反射体も、概ねAuの反射特性を実現できている。
 なお、図3Bは、実施例1において、0°、30°、50°、70°の入射角の光の反射特性を示す。入射角が大きくなるにしたがい、実施例1の反射特性のピークが、Auの反射特性から多少シフトすることがわかる。これは、多層膜層20の存在に起因したものである。
 2.2)実施例2
 図4は、実施例2に係る多層コート30を構成する各膜の材料および膜厚を示す表である。基材10側から、層番号(1~4)の順で、金属膜15および誘電体膜21、22が設けられている。
 金属膜15の材料として、短波長域で反射率が低く、長波長側で反射率が高いCuが用いられる。Cuの膜厚は、例えば100nmである。
 多層膜層20では、実施例1と同様に、低屈折率の第1誘電体膜21として、SiO2が用いられ、高屈折率の第2誘電体膜22として、Nb2O5が用いられる。これらSiO2膜とNb2O5膜とが、交互に、例えば3層に積層されている。誘電体膜の膜厚は、下層側から順に、80nm、70nm、50nmである。
 図5Aは、比較例としての金(Au)と、実施例2に係る反射体の、可視光域での反射率のスペクトラムを示す(入射角は0°)。図5Bは、実施例2の、0°、30°、50°、70°の入射角の光の反射特性を示す。
 Cuの反射特性は金のそれと近いため、光学波形を金に近づけるために用いる誘電体膜の総数を抑えることができる。したがって、生産性が高まり、低コスト化を実現することができる。また、Cu自身が持つ反射特性が、多層膜層20の入射角変化によるピークシフトの影響を抑制し、入射角が大きくなる場合の反射特性の変化を、実施例1と比較して抑制することができる。
 2.3)実施例3
 図6は、実施例3に係る多層コート30を構成する各膜の材料および膜厚を示す表である。基材10側から、層番号(1~6)の順で、金属膜15および誘電体膜21、22が設けられている。
 金属膜15の材料としてAlが用いられる。Alの膜厚は、例えば100nmである。
 多層膜層20では、低屈折率の第1誘電体膜21として、SiO2が用いられ、高屈折率の第2誘電体膜22として、Nb2O5が用いられる。また、多層膜層20は、それら誘電体膜の消衰係数より高い消衰係数を有する薄膜として、例えば金属薄膜が用いられる。図1では、この金属薄膜の図示は省略されている。
 金属薄膜の材料として、屈折率は2以上である材料であることが望ましい。金属薄膜の材料として、Nbの他、Ti、Ta、Fe、Mo、Wが用いられる。特に、消衰係数が小さいNbを用いることが望ましい。
 多層膜層20では、第2層目のSiO2および第3層目のNb2O5で構成される第1組層と、第5層目のSiO2および第6層目のNb2O5で構成される第2組層との間に、金属薄膜(Nb)が設けられている。
 誘電体膜の膜厚は、下層側から順に、80nm、90nm、90nm、60nmである。金属薄膜の膜厚は、20nmである。
 本実施例3に限られない金属薄膜の膜厚として、10nm以上30nm以下に設定される。金属薄膜の膜厚が15nmより小さい場合、製造誤差が大きくなり、生産性が低下するおそれがある。当該膜厚が30nmより大きい場合、光透過性が低下し、反射率が低下する。より好ましくは、15nm以上25nm以下である。
 図7Aは、比較例としての金(Au)と、実施例3に係る反射体の、可視光域での反射率のスペクトラムを示す(入射角は0°)。図7Bは、実施例3の、0°、30°、50°、70°の入射角の光の反射特性を示す。
 本実施例3によれば、多層膜層20に金属薄膜が挿入されているので、入射角が大きくなる場合の反射特性を、実施例2のそれと比較して、抑制することができる。
 Nbのように消衰係数が小さいほど膜厚を大きく設定できる。すなわち、本実施例3では、極端に薄い膜を製造する必要がなく、製造誤差を相対的に小さくでき、製造上の安定性が向上する。
 また、金属薄膜の下層および上層に、第1組層および第2組層がそれぞれ設けられることにより、所望の光学特性を実現できる。
 ここで上記特許文献3に記載の技術では、短波長側の反射波形が、金のそれとは大きく異なる上に、斜めから対象物を見た場合、透明膜の見かけの膜厚が変化する。したがって、垂直から見た場合と比較して色ずれが大きく発生する。
 3.上記各実施例の、金との色差の入射角特性
 図8は、上記各実施例1~3について、金との色差の入射角依存性を算出した結果を示すグラフである。色差としてはD65光源でのΔEabを用いた。ΔEabは5以下であれば一般に許容することができるとされる。本実施例1~3での構成により、反射率を上げることができるため、例えば比較例として、TiNの金属膜を備える製品(例えば特許文献1参照)と比較して、大幅にΔEabを下げることができる。
 さらに、実施例3の構成では、入射角が50°付近までΔEabが5以下を満たすとともに、入射角が70°でも他の実施例と比較して5に近い値をとることができる。
 4.他の種々の実施形態
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
 例えば実施例1の多層膜層20において、金属膜15に接する膜が低屈折率の第1誘電体膜(SiO2)21であったが、高屈折率の誘電体膜(Nb2O5)22が金属膜15に接する構成であってもよい。このことは、実施例3についても同様である。
 実施例2のように、誘電体膜数が3の場合、金属膜15に接する膜が低屈折率の第1誘電体膜21であることが望ましい。しかし、実施例2において、誘電体膜数が4または5以上設けられる場合には、金属膜15に接する膜が高屈折率の第2誘電体膜22であってもよい。
 以上説明した各形態の特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。例えば、実施例1に係る反射体の多層膜層20に、実施例3に係る反射体の薄膜(例えば金属薄膜)が含まれていてもよい。
 実施例1~3に係る金属膜15に代えて、Ag、Ta、Nb、Co、Cu、Fe、In、Mn、Mo、またはNiが用いられてもよい。
 なお、本技術は以下のような構成もとることができる。
(1)
 金属膜と、
 2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成された多層膜層と
 を具備する金色調多層コート。
(2)
 前記(1)に記載の金色調多層コートであって、
 前記多層膜層は、前記複数の誘電体膜の消衰係数より高い消衰係数を有する薄膜を含む
 金色調多層コート。
(3)
 前記(1)または(2)に記載の金色調多層コートであって、
 前記金属膜は、Al、Ag、Cu、Ti、Ta、Nb、Co、Cu、Fe、In、Mn、Mo、Ni、またはWで構成される
 金色調多層コート。
(4)
 前記(1)から(3)のうちいずれか1項に記載の金色調多層コートであって、
 前記多層膜層は、SiO2と、前記SiO2の屈折率より高い屈折率を持つNb2O5、Ta2O5、またはTiO2とを含む
 金色調多層コート。
(5)
 前記(1)に記載の金色調多層コートであって、
 前記金属膜がTiで構成され、
 前記多層膜層は、少なくとも5層の前記誘電体膜を含む
 金色調多層コート。
(6)
 前記(1)に記載の金色調多層コートであって、
 前記金属膜がCuで構成され、
 前記多層膜層は、少なくとも3層の前記誘電体膜を含む
 金色調多層コート。
(7)
 前記(2)に記載の金色調多層コートであって、
 前記金属膜がAlで構成され、
 前記多層膜層は、少なくとも5層の前記誘電体膜を含む
 金色調多層コート。
(8)
 前記(2)から(7)のうちいずれか1項に記載の金色調多層コートであって、
 前記多層膜層は、
  第1誘電体膜および前記第1誘電体膜の屈折率より高い屈折率を持つ第2誘電体膜で構成される第1組層と、
  前記第1誘電体膜および前記第2誘電体膜で構成される第2組層とを含み、
 前記薄膜は、第1組層および第2組層の間に設けられている
 金色調多層コート。
(9)
 基材と、
 前記基材上に設けられた金色調多層コートとを具備し、
 前記金色調多層コートは、
  前記基材上に設けられた金属膜と、
  2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成された多層膜層とを有する
 反射体。
 10…基材
 15…金属膜
 20…多層膜層
 21…第1誘電体膜
 22…第2誘電体膜
 30…多層コート  
 100…反射体

Claims (9)

  1.  金属膜と、
     2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成された多層膜層と
     を具備する金色調多層コート。
  2.  請求項1に記載の金色調多層コートであって、
     前記多層膜層は、前記複数の誘電体膜の消衰係数より高い消衰係数を有する薄膜を含む
     金色調多層コート。
  3.  請求項1または2に記載の金色調多層コートであって、
     前記金属膜は、Al、Ag、Cu、Ti、Ta、Nb、Co、Cu、Fe、In、Mn、Mo、Ni、またはWで構成される
     金色調多層コート。
  4.  請求項1から3のうちいずれか1項に記載の金色調多層コートであって、
     前記多層膜層は、SiO2と、前記SiO2の屈折率より高い屈折率を持つNb2O5、Ta2O5、またはTiO2とを含む
     金色調多層コート。
  5.  請求項1に記載の金色調多層コートであって、
     前記金属膜がTiで構成され、
     前記多層膜層は、少なくとも5層の前記誘電体膜を含む
     金色調多層コート。
  6.  請求項1に記載の金色調多層コートであって、
     前記金属膜がCuで構成され、
     前記多層膜層は、少なくとも3層の前記誘電体膜を含む
     金色調多層コート。
  7.  請求項2に記載の金色調多層コートであって、
     前記金属膜がAlで構成され、
     前記多層膜層は、少なくとも5層の前記誘電体膜を含む
     金色調多層コート。
  8.  請求項2に記載の金色調多層コートであって、
     前記多層膜層は、
      第1誘電体膜および前記第1誘電体膜の屈折率より高い屈折率を持つ第2誘電体膜で構成される第1組層と、
      前記第1誘電体膜および前記第2誘電体膜で構成される第2組層とを含み、
     前記薄膜は、第1組層および第2組層の間に設けられている
     金色調多層コート。
  9.  基材と、
     前記基材上に設けられた金色調多層コートとを具備し、
     前記金色調多層コートは、
      前記基材上に設けられた金属膜と、
      2以上の異なる屈折率をそれぞれ有する複数の誘電体膜を含み、それら異なる屈折率の誘電体膜が交互に積層されて構成された多層膜層とを有する
     反射体。
PCT/JP2016/004266 2015-11-27 2016-09-20 金色調多層コートおよびこれを備える反射体 WO2017090218A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017552262A JP6760304B2 (ja) 2015-11-27 2016-09-20 金色調多層コートおよびこれを備える反射体
US15/773,853 US10816707B2 (en) 2015-11-27 2016-09-20 Gold color tone multilayer coat and reflector including the same
CN201680067776.2A CN108351450B (zh) 2015-11-27 2016-09-20 金色调多层涂层和包含所述涂层的反射体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015231238 2015-11-27
JP2015-231238 2015-11-27

Publications (1)

Publication Number Publication Date
WO2017090218A1 true WO2017090218A1 (ja) 2017-06-01

Family

ID=58763230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004266 WO2017090218A1 (ja) 2015-11-27 2016-09-20 金色調多層コートおよびこれを備える反射体

Country Status (4)

Country Link
US (1) US10816707B2 (ja)
JP (1) JP6760304B2 (ja)
CN (1) CN108351450B (ja)
WO (1) WO2017090218A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577369A (zh) * 2018-08-13 2019-12-17 蓝思科技股份有限公司 多层金属涂层Logo及其制备方法、玻璃基板和电子设备
WO2022185944A1 (ja) * 2021-03-01 2022-09-09 国立大学法人東海国立大学機構 光学製品及び集光器
JP2022540483A (ja) * 2019-07-08 2022-09-15 ヴイディーアイ リミテッド ライアビリティ カンパニー 一方向及び双方向の波長選択的反射色発生のための誘電性薄膜コーティング

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111273A1 (en) * 2017-12-08 2019-06-13 Saint-Gobain Glass France Solar control glass article
CN113817986A (zh) * 2020-06-19 2021-12-21 比亚迪股份有限公司 一种镀膜材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167702A (ja) * 1987-12-23 1989-07-03 Matsushita Electric Works Ltd 光学膜付き金属材
JPH06256929A (ja) * 1993-03-04 1994-09-13 Mitsubishi Shindoh Co Ltd 金色蒸着製品
JP2004269916A (ja) * 2003-03-05 2004-09-30 Citizen Watch Co Ltd 金色装飾品用金色硬質積層被膜、その積層被膜を有する金色装飾品およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635331B2 (ja) 1988-02-15 1994-05-11 日本板硝子株式会社 金色反射色を有する透明板
JP3301638B2 (ja) 1992-11-25 2002-07-15 ティーディーケイ株式会社 金色の反射体およびその製造方法
US6157489A (en) * 1998-11-24 2000-12-05 Flex Products, Inc. Color shifting thin film pigments
US6686042B1 (en) * 2000-09-22 2004-02-03 Flex Products, Inc. Optically variable pigments and foils with enhanced color shifting properties
CN101484309A (zh) * 2006-05-09 2009-07-15 Ppg工业俄亥俄公司 美观透明体
US9678260B2 (en) * 2012-08-10 2017-06-13 Toyota Motor Engineering & Manufacturing North America, Inc. Omnidirectional high chroma red structural color with semiconductor absorber layer
CN203217108U (zh) * 2012-12-20 2013-09-25 晋谱(福建)光电科技有限公司 一种基于同色异谱效应的金属介质光变防伪薄膜
CN103018813B (zh) * 2012-12-20 2015-07-22 晋谱(福建)光电科技有限公司 一种基于同色异谱效应的金属介质光变防伪薄膜
PE20180980A1 (es) * 2015-10-13 2018-06-19 Vision Ease Lp Filtro optico con transmitancia y reflectancia selectivas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167702A (ja) * 1987-12-23 1989-07-03 Matsushita Electric Works Ltd 光学膜付き金属材
JPH06256929A (ja) * 1993-03-04 1994-09-13 Mitsubishi Shindoh Co Ltd 金色蒸着製品
JP2004269916A (ja) * 2003-03-05 2004-09-30 Citizen Watch Co Ltd 金色装飾品用金色硬質積層被膜、その積層被膜を有する金色装飾品およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577369A (zh) * 2018-08-13 2019-12-17 蓝思科技股份有限公司 多层金属涂层Logo及其制备方法、玻璃基板和电子设备
CN110577369B (zh) * 2018-08-13 2021-12-03 蓝思科技股份有限公司 多层金属涂层Logo及其制备方法、玻璃基板和电子设备
JP2022540483A (ja) * 2019-07-08 2022-09-15 ヴイディーアイ リミテッド ライアビリティ カンパニー 一方向及び双方向の波長選択的反射色発生のための誘電性薄膜コーティング
JP7566001B2 (ja) 2019-07-08 2024-10-11 ヴイディーアイ リミテッド ライアビリティ カンパニー 一方向及び双方向の波長選択的反射色発生のための誘電性薄膜コーティング
WO2022185944A1 (ja) * 2021-03-01 2022-09-09 国立大学法人東海国立大学機構 光学製品及び集光器

Also Published As

Publication number Publication date
JP6760304B2 (ja) 2020-09-23
CN108351450A (zh) 2018-07-31
US10816707B2 (en) 2020-10-27
CN108351450B (zh) 2020-11-24
US20190064409A1 (en) 2019-02-28
JPWO2017090218A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
WO2017090218A1 (ja) 金色調多層コートおよびこれを備える反射体
TW503326B (en) High reflection mirror
WO2002086559B1 (fr) Film antireflet et substrat plastique a couche antireflet apposee
JP2011017782A (ja) 反射防止膜
KR20180116566A (ko) 적층 시스템
WO2018110499A1 (ja) 誘電体多層膜付きガラス板及びその製造方法
JP2011515714A (ja) 誘電体層及び金属層の対を使用する強固な光学フィルター
US20060245056A1 (en) Thin-film structure with counteracting layer
TWI549811B (zh) 紅外線濾光元件
CN213537738U (zh) 有色玻璃
TWI468722B (zh) 顯示裝置及其複合光學膜及複合光學膜的製造方法
US8305688B2 (en) Article having metal dielectric reflective film
JP2006259124A (ja) コールドミラー
JP2007233345A5 (ja)
KR102186514B1 (ko) 비전도성 저반사 판
JP2003004919A (ja) 高反射ミラー
JP2009031406A (ja) 非偏光ビームスプリッター及びそれを利用した光学計測機器
WO2014080742A1 (ja) 透明導電層付き光学部材
JP5125251B2 (ja) 光学薄膜積層体
JP2019006656A (ja) 膜付きガラス、及び膜付きガラスの製造方法
JP7563380B2 (ja) 膜付き透明基板
JP2018196938A (ja) 積層膜及び熱線反射材
JP2019117311A (ja) Ndフィルターおよびその製造方法
KR20220023662A (ko) 다층 박막 코팅이 구비된 투명 기재
KR100575563B1 (ko) 디스플레이 패널용 플라스틱 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868169

Country of ref document: EP

Kind code of ref document: A1