WO2017088108A1 - 医疗检测设备 - Google Patents

医疗检测设备 Download PDF

Info

Publication number
WO2017088108A1
WO2017088108A1 PCT/CN2015/095400 CN2015095400W WO2017088108A1 WO 2017088108 A1 WO2017088108 A1 WO 2017088108A1 CN 2015095400 W CN2015095400 W CN 2015095400W WO 2017088108 A1 WO2017088108 A1 WO 2017088108A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
link
spring
shaft
control panel
Prior art date
Application number
PCT/CN2015/095400
Other languages
English (en)
French (fr)
Inventor
陈军
赵彦群
陈志武
黄力锋
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201590001561.1U priority Critical patent/CN209548000U/zh
Priority to PCT/CN2015/095400 priority patent/WO2017088108A1/zh
Publication of WO2017088108A1 publication Critical patent/WO2017088108A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present invention relates to the field of structural design of medical devices, and in particular to a medical testing device.
  • the operating platform or the control panel can adjust the height within a certain range (such as the control panel of the ultrasonic device), that is, the lifting function is realized.
  • the lifting function is realized.
  • it comes to lifting it needs to be easy to operate, light in operation, and stable to stay at the required height. This is the basic requirement for the lifting function.
  • the implementation methods mainly include vertical lifting and tilting lifting, especially vertical lifting. Whether it is vertical lifting or tilting, the lifting system is mostly realized by a self-locking gas spring, that is, pulling the control zipper of the gas spring near the handle of the control panel to control the opening and closing of the gas spring valve and then driving the control panel Lifting and locking, when the zipper is pulled, the gas spring valve is opened, the control panel can be easily lifted and lowered.
  • a self-locking gas spring that is, pulling the control zipper of the gas spring near the handle of the control panel to control the opening and closing of the gas spring valve and then driving the control panel Lifting and locking, when the zipper is pulled, the gas spring valve is opened, the control panel can be easily lifted and lowered.
  • the gas spring valve When the zipper is released, the gas spring valve is closed and locked, and then the large load can be withstood, and the initial force value of the general gas spring is generally It is close to the gravity of the support member, so that the operator's operating force is not too great.
  • the lifting system realizes the electric control lifting, that is, the lifting and lowering buttons can be pressed to realize the lifting and lowering of the control panel, and the control panel is locked at the required height.
  • the realization of electric lifting is derived from manual lifting, also Can be divided into vertical electric lift and tilt electric lift.
  • the vertical electric lift is generally realized by a linear electric push rod plus a guide rail, that is, the telescopic expansion of the motor control screw in the linear electric push rod drives the control panel to be lifted and locked along the guide rail;
  • the current tilting electric lift is It is realized by a relatively complicated mechanism consisting of motor, gear transmission mechanism, tilting lifting arm, gas spring, etc.
  • the motor is controlled by the rotation of the gear pair to drive the tilting arm to swing and raise the angle, and the gas spring acts as a balancing force. Since the gear pair does not have a self-locking function, in order to make the control panel supported by the lifting system stably stay at the required height, a clutch mechanism is added between the motor and the gear pair, and the clutch is unlocked when lifting, and the lifting will be stopped. The clutch is locked.
  • the gas spring can balance most of the intercepting weight for a period of time, most gas springs have the risk of air leakage and force attenuation, and use for a period of time.
  • the manual auxiliary operation force will increase, which will cause difficulty in lifting and laborious; sometimes even the self-locking force caused by the excessive attenuation of the gas spring force value will be obviously weakened, resulting in the situation that the self-locking cannot be self-locked, so the gas needs to be replaced.
  • Springs greatly increase the cost of repairs and after-sales services.
  • the bending moment resistance is limited (that is, the downforce on the handle of the control panel is limited), and the noise generated by the linear push rod during lifting is large, and the lifting speed is also high.
  • Slower, and the mechanism consisting of a linear electric push rod plus a guide rail needs to vertically penetrate most of the area of the desktop ultrasound equipment, which will occupy the host space and make maintenance more difficult; in addition, when there is no power or the machine is off, It is difficult for the organization to manually adjust the height of the control panel.
  • the structure of the set is complicated, the cost is correspondingly high, and the maintenance difficulty is also large.
  • the height of the control panel needs to be manually adjusted.
  • the clutch can be released by the external lever, the process will cause the lifting mechanism to suddenly drop to the lowest position by the gravity of the intercepting force, because the falling speed is higher. Large, there are certain security risks, and the operator's operating experience is not good enough.
  • the present invention provides a medical detecting device.
  • the present invention provides a medical testing apparatus comprising: a control panel; a main body; and a lifting support arm device connecting the main body and the control panel, the lifting support arm device comprising: a link portion, the connecting rod One end of the portion is connected to the control panel, the other end of the link portion is rotatably connected to the main body; and a transmission mechanism including a transmission shaft and a torque conversion member, the transmission mechanism is disposed on the main body.
  • One end of the transmission shaft is connected to a power source and the transmission shaft is rotatable about a longitudinal axis of the transmission shaft itself under the driving force of the power source output, and the torque conversion member is provided with a torque output portion for connecting the a link portion that converts the rotational force into a rotational force that drives the link portion to rotate around the other end of the link portion by a movement between the drive shaft and the torque conversion member, so that the link portion is opposite Rotating at the host.
  • the invention also provides a medical detecting device, comprising: a display; a control panel; a host; and a lifting support arm device connecting the control panel and the display, the lifting support arm device comprising: a connecting rod portion One end of the connecting rod portion is connected to the display, the other end of the connecting rod portion is rotatably connected to the control panel; and a transmission mechanism including a transmission shaft and a torque conversion member, the transmission mechanism is disposed at the On the control panel, one end of the drive shaft is connected to a power source and the drive shaft is rotatable about a longitudinal axis of the drive shaft itself driven by a driving force outputted by the power source, and the torque output member is provided with a torque output portion Connecting the link portion, the rotational force is converted into a rotational force for driving the link portion to rotate around the other end of the link portion by a movement between the transmission shaft and the torque conversion member, so that the The link portion rotates relative to the main body.
  • the lifting support arm device of the present invention can realize a self-locking and self-balancing lifting support arm structure through a power source, a transmission mechanism (such as a worm gear or a screw slider and the like) and a connecting rod portion, in particular Tilting lifting support arm.
  • the lifting support arm structure can be driven by a motor or manually, the transmission mechanism realizes transmission, and the link portion realizes tilting and lifting.
  • FIG. 1(a) is a first positional view of the lifting support arm device on the ultrasonic diagnostic apparatus in one embodiment of the present invention
  • FIG. 1(b) is an embodiment of the present invention, wherein the lifting support arm device is a second position map on the ultrasonic diagnostic apparatus
  • FIG. 2a is a schematic structural view of a lifting support arm device in one embodiment of the present invention.
  • FIG. 2b is a schematic view showing the structure of the lifting support arm device in one embodiment of the present invention.
  • Figure 3a is a schematic view showing the structure of the lifting support arm device in one embodiment of the present invention.
  • Figure 3b is a schematic view showing another structural principle of the lifting support arm device in one embodiment of the present invention.
  • Figure 4 is a perspective view showing the three-dimensional structure of the lifting support arm device when it is contracted in one embodiment of the present invention
  • Figure 5 is a schematic exploded view of the structure of the lifting support arm device of Figure 4.
  • Figure 6 is a cross-sectional view of the lifting support arm device of Figure 4.
  • Figure 7 is a cross-sectional view of the lifting support arm device of Figure 4 after being lifted;
  • Figure 8 is a schematic view of the worm gear transmission mechanism of Figure 4.
  • Figure 9 is a schematic structural view showing the manner in which the worm wheel and the upper arm of the arm are connected;
  • Figure 10 is a schematic exploded view of the spring assembly of Figure 4.
  • the present invention provides an electric lifting device based on a linkage mechanism and a transmission mechanism.
  • FIG. 1(a) and FIG. 1(b) and FIG. 2a show a medical detecting device using the lifting and supporting arm device provided by the present invention, the medical detecting device comprising a display 1, a control panel 2
  • the support arm device 3 and the main body 4 are lifted.
  • the display 1 and the control panel 2 are electrically connected to the host 4.
  • the display 1 and the control panel 2 can also be connected by a lifting device and fixed together on the main unit 4.
  • the main unit 4 includes electronic components such as a circuit board, electronic components, cable wires, and the like, and a chassis case and a support frame for fixing the electronic device.
  • the lifting support arm device 3 is connected between the control panel 2 and the main body 4.
  • the medical detecting device may further comprise a component such as a caster 5, and the caster 5 is fixed on the host 4.
  • the top of the lifting support arm device 3 is connected to the control panel 2, the bottom of the lifting support arm device 3 is connected to the upper portion of the main body 4, and the lower portion of the main body 4 is used to fix the casters 5.
  • the above-mentioned lifting support arm device 3 may include the following parts:
  • a power source 32 having an output shaft 321 for outputting a rotational force that rotates the output shaft 321 about its center.
  • the power source 32 herein may be an electric drive source having an output shaft, such as a combination structure of a motor, a cylinder, and a crank-link mechanism, or may be an input of a human power source, such as a manual input device.
  • the link portion 31 and one end of the link portion 31 are connected to the control panel 2, and the other end of the link portion 31 is rotatably coupled to the main unit 4.
  • the link portion in this embodiment may be a link or may be In the embodiment of the embodiment shown in Figs. 3a and 3b, the link portion 31 may be a planar link mechanism composed of a plurality of links.
  • the transmission mechanism 33 including the transmission shaft 331 and the torque converter 332 is connected to the main body 4, one end of the transmission shaft 331 is connected to the power source 32, and the driving shaft 331 can be driven at the power source 32.
  • the drive rotates about the longitudinal axis of the drive shaft 331 itself.
  • the end of the transmission shaft 331 of the transmission mechanism 33 is connected to the output shaft 321 for rotation with the output shaft 321 , and the torque conversion member 332 of the transmission mechanism 33 is provided with a torque output portion for connecting the link portion 31 .
  • the transmission shaft 331 converts the rotational force into a rotational force that rotates the other end of the drive link portion 31 by the movement between the drive shaft 331 and the torque converter 332, so that the link portion 31 is vertically aligned with respect to the main body 4.
  • the rotational motion is generated so that the control panel 2 connected at one end of the link portion 31 is moved up and down in a vertical plane (as shown by the direction C in Fig. 2).
  • the output shaft 321 and the transmission shaft 331 are located on the same straight line.
  • the coupling between the output shaft 321 and the transmission shaft 331 may be connected by a coupling.
  • the plane in which the rotational movement of the link portion 31 is perpendicular to the radial cross section of the output shaft 321 can also optimize the space occupied by the mechanism.
  • the plane in which the link portion 31 rotates may also be the plane in which the plane rod mechanism is located.
  • the power source 32 of the present embodiment may be an electric drive source 32a having a first output shaft 321a, such as a combination of a motor, a cylinder, and a crank-link mechanism.
  • the power source 32 of the present embodiment may be a manual input device 32b, such as a manual drive handle having a second output shaft 321b. Therefore, the power source 32 in the present embodiment may include an electric drive source 32a having a first output shaft 321a and a manual drive handle 32b having a second output shaft 321b, but may be formed so that the output shaft 321 is rotated about its center.
  • the power-driven equipment, mechanisms, and combination mechanisms can all be used in the alternative of the power source 32 of the present invention.
  • one end of the transmission shaft 331 is connected to the first output shaft 321a, and the transmission is The other end of the shaft 331 is provided with a second output shaft 321b A detachable card slot for connecting the manual drive handle. Therefore, the drive shaft 331 can be a lead screw, a screw, or the like.
  • the modified embodiment of the embodiment further includes: a spring assembly 340, one end of the spring assembly 340 is rotatably connected to the host 4 Upper end of the spring assembly 340 is rotatably coupled to the link portion 31.
  • the spring assembly herein may include one of a compression spring, a tension spring, a gas spring, and a torsion spring.
  • the spring assembly 340 in this embodiment can be as shown in FIG. 10, and the spring assembly 340 includes a spring 341, a spring guide cylinder 345, a spring guide rod 342, a spring shaft 343, and a spring bayonet 344.
  • the spring guide cylinder 345 is an inner hollow cylindrical structure, the outer surface of the spring guide cylinder 345 is fitted with a spring 341, the spring guide rod 342 is inserted into the spring guide cylinder 345, and the spring guide rod 342 is exposed at the end of the spring guide cylinder 345.
  • a portion of the portion is provided with a through hole for the spring pin 344 to be inserted and the spring guide 342 is rotatably coupled to the link portion 31.
  • One end of the spring guide 345 facing away from the spring bayonet 344 is provided with a through hole for the spring shaft 343 to be inserted and the spring guide cylinder 345 is rotatably coupled to the main body 4.
  • the spring 341 may be one of a compression spring, a tension spring, a gas spring, and a torsion spring.
  • the link portion 31 has a function of protecting the spring assembly 340 when the lifting and lowering arm device is retracted, reducing the space utilization, avoiding falling dust, and affecting the performance of the mechanism.
  • the receiving cavity of the spring assembly 340 is accommodated. For example, as shown in FIG.
  • the link member may include a first strip plate 353a, a second strip plate 353b, and an intermediate plate 353c, and the first strip plate 353a
  • the second strip 353b is disposed in parallel with the second strip 353b
  • the intermediate strip 353c is located between the first strip 353a and the second strip 353b to form the accommodating groove 381b, in the first strip 353a and the second strip 353b.
  • the two ends are also respectively provided with through holes for rotatably connecting the main body 4 and the control panel 2 through the pin.
  • the accommodating groove chamber 381b is configured to accommodate the spring assembly 340 when the lifting and supporting arm device is retracted to form the receiving cavity.
  • the end of the spring assembly 340 that is coupled to the main unit 4 is adjacent the other end of the link portion 31 that is coupled to the main unit 4.
  • the link portion 31 includes two or more link members (the above includes the same number, the same herein)
  • the two link members are all disposed in the structure shown in FIG. 9 on the two link members.
  • the receiving cavity 381b is fastened to form a receiving cavity for accommodating the spring assembly 340.
  • a transmission mechanism 33 using a worm gear transmission mechanism is provided, wherein the transmission shaft 331 is a worm, the torque conversion member 332 is a worm wheel, and the torque output portion and the connecting rod are disposed on the worm wheel.
  • the portion 31 is rigidly or movably connected (e.g., by a sliding contact connection achieved by sliding contact therebetween, or by a rotatably connected relationship between the pin and the pin hole, etc.).
  • the worm wheel has a sector structure, and the arc surface of the worm wheel is provided with teeth that mesh with the worm.
  • the radius section 338 of the worm wheel is a torque output portion of the transmission mechanism 33 and is rigidly connected to the link portion 31.
  • the rigid connection can be achieved by means of fasteners fixed, bonded, welded, or interconnected to achieve a rigid connection by means of an integrated arrangement.
  • the radius section 338 on the worm wheel extends to form the link portion 31, or the radius section 338 on the worm wheel is connected to one end of the link portion 31 by a fastener or the like.
  • Another manner of rigid connection is shown in Figure 9, with minimal space utilization, with the intermediate plate 353c facing away from the lower surface of the accommodating groove 381b against the radial section 338 of the worm gear of the sector, or by a fastener.
  • a radial section 338 of the worm gear of the sector structure is used to achieve a rigid connection.
  • the center of rotation of the link portion 31 coincides with the center of the rotational axis of the worm wheel.
  • one end of the spring assembly 340 connected to the main body 4 is rotatably coupled to the center of the rotating shaft of the worm wheel.
  • Figure 2b shows another embodiment of a lifting support arm assembly 3 of the present invention.
  • the transmission mechanism 33 mentioned in the above Embodiment 1 adopts a screw slider structure.
  • the transmission mechanism 33 includes: a lead screw, a slider 332b and a support rod 332a, the transmission shaft 331 is a screw, the torque conversion member 332 is a slider 332b and a support rod 332a, and the end of the screw is connected to the output shaft 32, and the slider
  • the 332b is located on the lead screw, and one end of the support rod 332a is rotatably connected to the slider 332b, and the other end of the support rod 332a is a torque output portion rotatably connected to the link portion 31.
  • the connection position of the support rod 332a and the link portion 31 is raised, thereby driving the link portion to be lifted. l, the lifting movement of the control panel 2 is achieved.
  • the center of rotation of the link portion 31 (i.e., the position at which the link portion is connected to the main body) is located above the lead screw.
  • the cavity can also be used to receive the spring assembly 340 and the support rod 332a.
  • the spring assembly 340 and the support rod 332a are disposed in the same plane.
  • the transmission mechanism 33 in the lifting and lowering arm device 3 provided by the present invention can also adopt other driving methods, such as a connecting rod crank structure and the like, and can also achieve the purpose of lifting the connecting rod portion 31 of the present invention.
  • Embodiment 3 The difference from Embodiment 1 is that the link portion 31 adopts a planar link mechanism including a follower and an active member, and a rotating fulcrum of the follower and the active member (ie, as a follower and an active member)
  • the rotatable rotation center of the connecting rod is fixed on the main body 4, the control panel 2 is horizontally connected to the driven member, and the driving member is connected to the torque output portion, and the rotating motion is converted into the vertical surface of the control panel by the planar link mechanism
  • the lifting movement is always set horizontally.
  • the planar link mechanism 31 in this embodiment includes at least two rod-shaped members.
  • the active member refers to a member that acts as a driving force or a moment in the link mechanism, and the member that can move with the rotation of the active member in the remaining members is a driven member.
  • the direct link of the planar link mechanism 31 to the transmission mechanism 33 is the active member, and the link that moves or rotates with the active member is the driven member.
  • the planar link mechanism 31 and the control panel 2 The vertical projections of the connected positions on the horizontal plane are always on the same line. Specifically, the plane in which the planar link mechanism is located is perpendicular to the radial cross section of the output shaft 321, so that the vertical projection of the position where the other end of the planar link mechanism 31 is connected to the control panel 2 is always on the same straight line.
  • a water platform surface 34 is disposed on the follower 316 of the planar link mechanism 31 for fixing the control panel 2, and horizontally
  • the table top 34 is always in a horizontal setting.
  • the planar linkage shown in Figure 3a may be a planar four-bar linkage.
  • the planar link mechanism 31 adopts a planar four-bar linkage mechanism in a planar link mechanism
  • the planar four-bar linkage mechanism includes: a lower arm link as an active member 313 as a follower The upper arm link 312 of the 316, and the arm top seat 311.
  • an arm base 314 may be further included, and the planar four-bar linkage mechanism is fixed to the main body 4 through the arm base 314.
  • the arm base 314 is fixed to the main body 4 or integrated with the main body 4.
  • One end of the upper link 312 of the arm and the lower link of the arm are respectively rotatably connected to the main body 4 or the arm base 314 by the pivot point 315, and the other end of the upper arm link 312 and the lower arm of the arm respectively are connected to the arm
  • the top seat 311 is rotatably connected, and the arm top seat 311 is provided with the above-mentioned one water platform surface 34 for fixing the control panel 2.
  • the lower arm link is connected as an active member 313 to the torque output portion provided on the torque converter 332 of the transmission mechanism 33.
  • the upper arm link 312 can also be used as the active member, and the lower arm lower link can be used as the follower, that is, one of the upper arm link and the lower arm link can be selected as the active.
  • the same structural function as described above can also be realized.
  • the planar link mechanism 31 can adopt a parallel four-bar linkage. mechanism.
  • the upper arm link and the lower arm link may be arranged in parallel such that the planar four-bar linkage mechanism constitutes a parallel four-bar linkage mechanism, so that the control panel can be leveled smoothly. Lift and lower, and ensure that the space occupied by the retractable control panel is the smallest.
  • the upper link of the arm and the lower link of the arm have the same length.
  • the setting manner of the torque output portion has different setting manners depending on the type of the transmission mechanism 33.
  • the transmission mechanism 33 employs a worm gear drive mechanism, the drive shaft is a worm 337, and the torque conversion member is a worm gear 338.
  • the transmission mechanism 33 includes a worm wheel 338 and a worm 337, and the output shaft 321 and the worm 337 are disposed on the same straight line.
  • One end of the worm 337 is connected to the output shaft 321
  • the torque output portion of the worm wheel 338 is rigidly connected to the active member in the planar link mechanism 31 .
  • the torque output portion here may be a shaft of the worm wheel or a certain radius section of the sector worm wheel.
  • the radius section 333 of the worm wheel of the sector structure is used to rigidly connect the driving member 313 to pass through the worm wheel 332.
  • the rotation urges the active member 313 to rotate 315 about the pivot point.
  • the center of the rotating shaft of the worm wheel coincides with the center of the rotating shaft of the driving member 313.
  • the center of the shaft of the worm wheel and the center of the shaft of the driving member 313 may be rotatably coupled to the arm base 314.
  • the active member 313 is a lower arm link, so that the radius section 333 of the worm wheel of the sector structure is rigidly connected to the lower arm link.
  • the upper arm link 312 can also be rigidly connected by the radial section of the sector worm wheel to push the upper link 312 of the arm to rotate around the pivot point 315 by the rotation of the worm wheel, thereby driving the lower link of the arm to move.
  • the center of the rotating shaft of the worm wheel coincides with the center of the rotating shaft of the upper link of the arm.
  • the center of the shaft of the worm wheel and the center of the shaft of the driving member 313 may be rotatably coupled to the arm base 311.
  • the electric drive source 32a having the first output shaft 321a in FIG. 3a may be a drive motor, and one end of the worm as the drive shaft 331 of the transmission mechanism 33 is connected to the first output shaft 321a, and the end may also pass through the coupling 12
  • the first output shaft 321a of the electric drive source 32a is connected.
  • the other end of the worm as the transmission shaft 331 of the transmission mechanism 33 is connected to the second output shaft 321b of the manual driving handle 32b, and is used.
  • the worm and the second output shaft 321b are simultaneously rotated about the axis by rotating the manual lifting handle.
  • a detachably connected carding position (not labeled) is provided on the end surface of the worm 331 for inserting the second of the manual lifting handle 32b.
  • Output shaft 321b is provided on the end surface of the worm 331 for inserting the second of the manual lifting handle 32b.
  • the manual lift handle can be disengaged from the worm when not in use.
  • an electric driving source 32a and a manual driving handle 32b are respectively connected to both ends of the worm.
  • the modified embodiment of the embodiment it is conceivable to realize only automatic control of lifting and lowering, or manual control of lifting and lowering. Therefore, only one end of the worm is provided with a corresponding output shaft access position, and an output shaft connected to a certain power source. , the corresponding drive method can be realized.
  • one end of the worm is provided with a card position for detachably connecting the second output shaft for connecting the manual lifting handle 32b, so that manual lifting can be realized.
  • One end of the worm is connected to the first output shaft through a coupling for accessing the electric drive source 32a, so that automatic lifting can be realized.
  • the lifting arm device 3 further comprises a spring assembly 340, such as the spring assembly 340 in the embodiment shown in FIG.
  • One end of the spring assembly 340 is rotatably coupled to the upper link 312 of the arm.
  • the other end of the spring assembly 340 can also be selectively rotatably coupled to other followers, such as an arm top or the like.
  • the lower arm link is a follower
  • the other end of the spring assembly 340 may also be rotatably coupled to the lower arm link.
  • the spring assembly 340 herein may include one of a compression spring, a tension spring, a gas spring, a torsion spring, and the like.
  • the other end of the spring assembly and the torque output portion of the transmission mechanism are different from each other in order to ensure the motion transmission effect of the link mechanism and to balance the load on the top of the arm by the spring assembly.
  • the same link in the planar linkage is connected. That is, as shown in FIG. 3a, if the other end of the spring assembly 340 is rotatably coupled to the upper link 312 of the arm, the torque output portion of the transmission mechanism is rotatably coupled to the lower arm link 313. If the other end of the spring assembly 340 is rotatably coupled to the lower arm link 313, the torque output of the transmission mechanism is rotatably coupled to the upper link 312 of the arm.
  • the spring assembly 340 in this embodiment may include a spring 341, a spring guide cylinder 345, a spring guide rod 342, a spring shaft 343, and a spring bayonet 344 as shown in FIG.
  • a portion of the spring guide 342 exposed at the end of the spring guide 345 is provided with a through hole for the spring pin 344 to be rotatably coupled to the active member after the spring pin 344 is inserted.
  • One end of the spring guide 345 facing away from the spring bayonet 344 is provided with a through hole for the spring shaft 343 to be inserted and the spring guide cylinder 345 is rotatably coupled to the main body 4.
  • the spring 341 may be one of a compression spring, a tension spring, a gas spring, and a torsion spring.
  • the power source is coupled to the worm via a coupling, the worm and the worm gear are meshed, and the four-bar linkage is provided.
  • the worm wheel is rigidly coupled to the lower arm of the arm, and the center of the worm wheel is under the arm and under the arm.
  • the center of the shaft of the connecting rod coincides and is fixed to the base of the arm, and the spring assembly is mounted inside the four-bar assembly to balance the load on the top of the arm.
  • the manual lift handle can be plugged into the end of the worm.
  • the electric lifting realization process the driving motor outputs the power to the worm, and the output shaft of the driving motor rotates to drive the worm to rotate synchronously (motion A), and at the same time drives the rigid connecting member composed of the worm wheel and the lower link of the arm to rotate around the shaft of the arm base.
  • the rotary motion (motion B) is performed, so that the arm top seat is moved up and down by the four-bar linkage mechanism (motion C).
  • the four-bar linkage mechanism is composed of an arm base, an upper arm link, a lower arm support link and a support arm top seat.
  • the four-link link can generally form a parallelogram shape, so that the support arm top seat can maintain translational motion, wherein The arm base is fixed.
  • the height of the lifting support arm device can be quickly adjusted by the manual lifting handle for packaging, transportation and the like.
  • Manual lifting process After the manual lifting handle is inserted at the end of the worm, shake the manual lifting handle several times (about 3 turns, motion D), then the worm can be driven to rotate synchronously, then the arm top seat will be similar to the electric lifting The process is as simple as the top and bottom. Since the spring assembly balances most of the load, and the motor has no holding torque at this time, the torque of the rocking manual lifting handle is relatively light, and the operation is relatively good.
  • the transmission mechanism 33 adopts a screw-slider transmission mechanism.
  • the transmission mechanism 33 includes: a lead screw 334, a slider 335 and a support rod 336, and the transmission shaft is a screw 334.
  • the torque transmission member described above is a slider 335 and a support rod 336.
  • the output shaft 321 of the above power source and the lead screw 334 are disposed on the same straight line.
  • the end of the lead screw 334 is connected to the output shaft, the slider 335 is located on the lead screw 334, one end of the support rod 336 is rotatably connected to the slider 335, and the other end of the support rod 336 is used as a torque output portion and rotatably connected to the planar link Initiatives in the organization.
  • the slider 335 is arbitrarily movable on the lead screw 334.
  • one end of the lead screw 334 can be coupled to the first output shaft of the electric drive source via the coupling 12.
  • the electric drive source 32a having the first output shaft 321a in Fig. 3 may be a drive motor, and the torque input end of the transmission mechanism 33 is one end of the lead screw, and the end is connected to the output shaft 321a of the electric drive source 32a via the coupling 12.
  • the second output shaft 321b of the manual driving handle 32b is connected to the other end of the screw, and the user rotates the manual lifting handle to make the worm
  • the output shaft 321b rotates around the axis at the same time.
  • a detachably connected snap-in position (not labeled) is provided on the end surface of the lead screw 334 for inserting the output shaft 321b of the manual lifting handle 32b.
  • the manual lift handle can be disengaged from the worm when not in use.
  • the electric drive source 32a and the manual drive handle 32b are respectively connected at both ends of the lead screw.
  • the modified embodiment of the fourth embodiment it is conceivable to implement only automatic control of the lifting and lowering, or manually control the lifting and lowering. Therefore, only one end of the screw 334 is provided with a corresponding output shaft access position, and a certain power source is connected.
  • the output shaft can be used to achieve the corresponding drive mode.
  • one end of the lead screw is provided with a card position for detachably connecting the second output shaft for connecting the manual lifting handle 32b, so that manual lifting can be realized.
  • One end of the lead screw is connected to the first output shaft through a coupling for accessing the electric drive source 32a, so that automatic lifting can be realized.
  • the electric drive source 32a is coupled to the worm via a coupling, the lead screw is engaged in transmission, and a four-bar linkage.
  • the manual lift handle can be plugged into the end of the screw.
  • the electric lifting realizes the process: the driving motor outputs the power to the screw, and the output shaft of the driving motor rotates to drive the screw to rotate synchronously (motion A), and at the same time drives the slider to move, and pushes the rigidity of the lower link of the arm through the support rod
  • the connecting member rotates around the rotating shaft on the base of the arm (motion B), so that the arm top seat is moved up and down by the four-bar linkage mechanism (motion C).
  • Manual lifting process After the manual lifting handle is inserted at the end of the worm, shake the manual lifting handle several times (for example, about 3 turns, motion D), then the screw can be driven to rotate synchronously, then the arm top seat will be similar
  • the electric lifting process is similar to the upper and lower translation. Since the spring assembly balances most of the load, and the motor has no holding torque at this time, the torque of the rocking manual lifting handle is relatively light, and the operation is relatively good.
  • Example 5 referring to the embodiment shown in FIG. 4 to FIG. 10, a more specific structural design is provided on the basis of the third embodiment.
  • the link mechanism in this embodiment adopts a parallel four-bar linkage mechanism.
  • the parallel four-bar linkage mechanism includes: an arm upper link 312a, an arm lower link 313a, an arm base 314a, and an arm top seat 311a.
  • One ends of the upper arm link 312a and the lower arm link 313a are rotatably connected to the arm base 314a via the arm rotating shaft 318, respectively, and the other ends of the upper arm link 312a and the lower arm lower link 313a are respectively passed through the arm.
  • the rotating shaft 318 is rotatably coupled to the arm top seat 311a.
  • the rotatably connected by the arm rotating shaft is only one way, and the arm upper link 312a and the arm lower link 313a and the arm base 314a and the arm respectively can be realized by a threaded shaft, a snapping shaft or the like. A rotatable connection of the top seat 311a.
  • the arm top seat 311a has a water platform surface 34a for fixing the control panel 2.
  • the control panel 2 and the arm top seat 311a can be fixed in various manners.
  • the control panel 2 is rigidly connected with the arm top seat 311a, and the control panel is 2 is connected with the arm top seat 311a through the rotating pair, and the detachable connection is realized between the control panel 2 and the water platform surface 34 on the arm top seat 311a by plugging or snapping.
  • the arm base 314a is fixed to the main body 4 through the lifting bottom plate 350.
  • Lifting bottom The plate 350 is used to secure the drive motor or to provide support for all components of the lift support arm assembly 3. It can be understood that the lifting bottom plate 350 can also be integrally designed with the main body 4, and the arm base 314a is directly fixed on the top of the main body 4, or is integrally designed integrally with the main body 4.
  • the arm base 314a adopts a U-shaped structure, and the bottom edge of the arm base 314a can be fixed on the main body 4 by fasteners or welding, or can also be a U-shaped arm base 314a and The main unit 4 is designed in one piece.
  • the arm base 314a of the U-shaped structure includes a first vertical support wall 319a and a second vertical support wall 319b.
  • the first vertical support wall 319a and the second vertical support wall 319b respectively have corresponding through holes 320, and the arm shafts are respectively
  • the 318 sequentially passes through the through hole 320 disposed on the first vertical support wall 319a, the upper arm link 312a, and the through hole 329 formed in the lower arm link 313a and the through hole 320 disposed on the second vertical support wall 319b.
  • the arm upper link 312a and the arm lower link 313a are rotatably coupled to the arm base 314a via the arm pivot 318. It can be understood that the arm base 314a can also adopt a U-shaped structural member other than the embodiment.
  • the arm base 314a includes two vertical wall members disposed in parallel, and the detailed structure of the two vertical wall members is as described above.
  • the first vertical support wall 319a and the second vertical support wall 319b have the same structural design, except that the bottom ends of the two parallel vertical wall members are respectively fixed to the lifting bottom plate 350 or the main body 4.
  • the arm top seat 311a can also be provided with two vertical side walls (not shown) perpendicular to the water platform surface 34.
  • a through hole 328 is defined in the vertical side wall, and the arm rotating shaft 318 passes through the vertical side wall.
  • the upper arm link 312a and the through hole 329 formed in the lower arm link 313a are rotatably connected to the branch through the arm rotating shaft 318.
  • the through hole 329 is generally formed at the end of the arm upper link 312a and the arm lower link 313a.
  • the upper arm link 312a and the lower arm link 313a may be arranged in parallel, and the upper arm link 312a
  • the arm lower link 313a, the arm base 314a, and the arm top seat 311a constitute a parallelogram link mechanism.
  • the projection positions of the through holes provided on the arm top 311a and the arm base 314a for respectively rotatably connecting the upper arm link 312a and the lower arm link 313a on the horizontal plane do not coincide, that is, in the same vertical support Opened on the wall for respectively rotatably connecting the upper link 312a of the arm and the lower arm
  • the projection positions of the two through holes 320 of the connecting rod 313a on the horizontal plane do not coincide, and two through holes are formed on the same vertical side wall for respectively rotatably connecting the upper arm link 312a and the lower arm lower link 313a.
  • the projection positions of 328 on the horizontal plane do not coincide.
  • a through hole provided in the arm base 314a for respectively rotatably connecting the arm upper link 312a and the arm lower link 313a is perpendicular to the support surface (such as a fixing surface on the main body 4) (or vertical) Height) is not the same.
  • the through holes formed in the arm top seats 311a for respectively rotatably connecting the arm upper link 312a and the arm lower link 313a are different from the vertical distance of the water platform face 34.
  • the electric drive source 32a can be fixed to the lift base 350 via the motor mount 322, and then fixed to the main body 4 through the lift base 350. It can be understood that the lifting bottom plate 350 can also be integrally designed with the main body 4, and the driving motor 32a can be fixed to the top of the main body 4 directly through the motor fixing base 322.
  • the transmission mechanism 33 in this embodiment is driven by a worm gear.
  • the end of the worm 331a is rotatably coupled to the shaft support 336, and the shaft support 336 is fixed to the main body 4 by a lifting base 350.
  • the shaft support 336 can be directly fixed to the main body 4.
  • the shaft support base 336 may be a vertical plate member that is disposed perpendicular to the top of the lifting floor 350 or the main body 4, and a recess for receiving the end of the worm 331a may be formed on the vertical plate member. Or open a through hole for passing through the end of the worm 331a. As shown in FIG.
  • a step portion is provided at a portion where the shaft support base 336 is connected to the end of the worm 331a for limiting the rotation of the worm 331a to avoid the detachment during the rotation. Or slip off the initial position to avoid causing blockages and bumps in the control panel during lifting.
  • axle support seats 336 are used to fix both ends of the worm 331a.
  • one of the shaft support seats 336 is integrally provided with the arm base 314a of the U-shaped structure.
  • the arm base 314a has a back plate 317 which is perpendicular to the arm base 314a.
  • the first vertical support wall 319a and the second vertical support wall 319b have through holes formed in the back plate 317 for supporting the ends of the worm 331a.
  • the back plate 317 can be provided with a groove to support the end of the worm 331a, so that the worm 331a is horizontally erected by a separate shaft support seat 336 and the back plate 317 of the arm base 314a.
  • the rear plate 317 can also be arranged to enclose the lifting support arm device 3 in an enclosed space or a semi-enclosed space to protect the transmission mechanism.
  • the two shaft support seats 336 can also adopt a free-standing design, that is, two shaft support seats 336 are respectively fixed on the top of the main body 4 or the lifting bottom plate 350 for supporting the ends of the worm 331a, so that the worm 331a Stand up horizontally.
  • the coupling 12a is located between the shaft support base 336 and the motor mount 322 for connecting the output shaft 321 and one end of the worm 331a, respectively.
  • the other end of the worm 331a passes through a through hole formed in the back plate 317 to form an exposed portion, and the exposed portion is provided with a connecting device (for example, a jack) 316 for connecting the manual driving handle 32b, which is a detachable access.
  • a connecting device for example, a jack
  • the output shaft (such as the first output shaft 321a) is disposed on the same line as the worm 331a.
  • the worm wheel 332a meshes with the teeth of the worm 331a.
  • the worm wheel 332a employs a sector-shaped worm wheel, and the center of the shaft of the worm wheel 332a of the sector structure coincides with the center of the shaft of the lower arm link 313a.
  • the shaft center opening 339 of the sector-shaped worm wheel 332a is rotatably coupled to the arm base 314a by the arm pivot 318 together with the arm lower link 312a.
  • the center of the rotating shaft of the sector worm wheel coincides with the center of the rotating shaft of the upper arm of the arm, and the center of the rotating shaft of the sector worm wheel is pivotally connected to the base of the arm by using the arm rotating shaft and the upper link of the arm.
  • the arm lower link 313a is rigidly connected by the radial section 338 of the sector worm gear 332a to push the lower arm link by the rotation of the worm wheel 332a.
  • 313a implements motion B in FIG.
  • the arm lower link 313a includes a first strip plate 353a, a second strip plate 353b, and an intermediate plate 353c, and the first strip plate 353a and the second strip plate 353b are disposed in parallel.
  • the intermediate plate 353c is located between the first strip plate 353a and the second strip plate 353b to form a receiving groove chamber 381b.
  • the through holes 329 for connecting the arm base and the arm top seat are respectively disposed on the first strip plate. Both ends of the 353a and the second strip 353b. Middle The lower surface of the plate 353c facing away from the accommodating groove chamber 381b is rigidly connected to the torque output portion, that is, the radial section 338 of the sector worm gear 332a described in FIG.
  • the intermediate plate 353c faces away from the lower surface of the accommodating groove 381b against the radial section 338 of the worm wheel 332a.
  • the intermediate plate 353c may also be fixedly coupled to the radial section 338 of the worm gear 332a by fasteners 354.
  • the worm wheel 332a, the arm base, the first strip plate 353a and the second strip plate 353b can be smoothly fixed together, the first strip plate 353a and the second strip shape.
  • the through hole 329 on the plate 353b is located on the same axis as the hole 339 at the center of the shaft of the worm wheel 332a.
  • FIG. 6 and FIG. 7 provides a manner of rigidly connecting the worm wheel 332a and the lower arm link 313a.
  • the rigid connection of the worm wheel 332a and the upper arm link 312a can also be adopted.
  • the manner of connection is rigidly connected to the lower arm link 313a of the sector 338 of the sector worm wheel 332a, and will not be described herein.
  • the structure of the upper link 312a of the arm may be the same as the structure of the lower link 313a of the above arm.
  • a receiving groove chamber 381a is formed on the upper link 312a of the arm, and the two are engaged to form a receiving cavity for receiving the spring assembly 340.
  • the specific structure of the upper link 312a of the arm will not be described here.
  • the lower arm connecting rod and the upper arm connecting rod are provided with accommodating groove cavities 381a and 381b along the longitudinal direction, and the lower arm connecting rod and the upper arm of the arm are parallel to each other for accommodating.
  • the slot cavity is formed to receive the receiving cavity of the spring assembly.
  • One end of the spring assembly 340 is rotatably coupled to the mounting seat, and the other end of the spring assembly 340 is rotatably coupled to the follower.
  • the accommodating groove cavities 381a and 381b may be directly formed by grooving, or the embodiment of the embodiment shown in Fig. 9 may be employed.
  • the first groove portion 381a is formed by grooving the link 312a on the arm for accommodating the portion of the spring assembly.
  • the lower arm link 313a is disposed in parallel with the first strip plate 353a and the second strip plate 353b shown in FIG. 9, and the intermediate plate 353c is formed between the first strip plate 353a and the second strip plate 353b. Having the cavity 381b In the manner, after the four-bar linkage is contracted, the accommodating groove cavities 381a and 381b are fastened to form a receiving cavity for completely accommodating the spring assembly.
  • the load on the top of the arm is also balanced by adding a spring assembly 340.
  • the spring assembly 340 can include a spring 341, a spring guide 345, a spring guide 342, a spring shaft 343, and a spring bayonet 344.
  • the spring guide cylinder 345 is an inner hollow cylindrical structure, the outer surface of the spring guide cylinder 345 is fitted with a spring 341, the spring guide rod 342 is inserted into the spring guide cylinder 345, and the spring guide rod 342 is exposed at the end of the spring guide cylinder 345.
  • a portion of the portion is provided with a through hole for the spring pin 344 to be inserted and the spring guide 342 is rotatably coupled to the upper link 312a of the arm.
  • One end of the spring guide cylinder 345 facing away from the spring bayonet 344 is provided with a through hole for the spring shaft 343 to be inserted and the spring guide cylinder 345 is rotatably coupled to the arm base 314a.
  • the spring assembly 340 can also be rotatably coupled to the lower arm link, which is the same as the spring assembly 340 and the support in the structure shown in FIGS. 5-7 and 10.
  • the spring guide cylinder 345 is rotatably connected to the arm base 314a. It can be understood that the end of the spring guide cylinder 345 facing away from the spring bayonet 344 serves as a pivot point, and can also be fixed on the fixed seat or through the arm base. 314a is fixed on the fixed seat, and the like, which are not enumerated here.
  • the spring guide and the spring guide act as guides and retaining springs to prevent the spring from destabilizing due to compression.
  • the spring 341 may include one of a compression spring, a tension spring, a gas spring, a torsion spring, and the like. If a compression spring is used, the compression spring is used to balance the gravity of the components above the control panel, and to reduce the operating force during lifting, that is, the torque of the upper part of the control panel and the equivalent gravity of the support arm at any position and the damper The torque generated by the compression of the compression spring is approximately equal, that is, the mechanism is approximately equal in clockwise torque and counterclockwise torque at any position. In addition, by changing the mounting position of the spring in the four-bar linkage mechanism, the metal compression spring can be changed into a metal tension spring, and the same effect can be achieved by the moment generated by the force of the metal tension spring balance control panel.
  • the bomb The connection position of the spring assembly 340 and the upper link 312a of the arm is located at the middle of the upper link 312a of the arm.
  • the spring assembly is rotatably connected with the lower link of the arm, the spring assembly 340 and the lower link of the arm
  • the connection position is located in the middle of the lower link of the arm.
  • the back plate 317 of the arm base 314a for the U-shaped structure may be A fixing portion is formed on the inner wall side of the back plate 317 facing the spring assembly for fixing one end of the spring assembly 340.
  • a fixing portion is formed on the inner wall side of the back plate 317 facing the spring assembly for rotatably connecting one end of the spring guide cylinder 345 away from the spring bayonet 344.
  • the lifting support arm device 3 is driven by a motor, a transmission mechanism (such as a worm gear or a screw slider), and a set of four links (for example, a parallel four-link, or a non-parallel length of the opposite link)
  • the parallel four-bar linkage as well as the structure of the spring assembly, the support arm shaft, the spring shaft, the spring bayonet, etc., realize a lifting support arm structure with self-locking and self-balancing, especially a tilting lifting support arm.
  • the lifting support arm structure can be powered by a motor, the worm gear or the screw block slider realizes the transmission, the four links realize the tilting and lifting, and the spring is installed inside the four-link to balance most of the intercepting gravity.
  • the arm seat can stay anywhere in the stroke; without the need to increase the locking structure (such as clutch or mechanical lock), the structure is simplified, simpler and more compact. The cost is also reduced accordingly. And the modularization of the entire electric lifting mechanism is better, decoupled from the host (does not occupy the host space), and improves the platform and reusability.
  • the spring assembly inside the four-bar linkage can balance most of the bearing gravity, greatly reducing the bearing capacity of the motor and the worm gear, reducing the load capacity of the motor and improving the reliability and service life of the worm gear.
  • the worm gear transmission mechanism is taken as an example in the above fifth embodiment, it can be understood that the worm gear transmission mechanism can be replaced by the screw rod slider and the support rod transmission mechanism in the fourth embodiment.
  • Various technical effects in the above embodiments for example, replacing the worm in FIG. 4 to FIG. 10 with a screw, replacing the worm wheel with a slider and a support rod, and using one end of the support rod as a torque output portion, and other structures are
  • the embodiment in which the relevant structure is applied to the transmission mechanism of the screw slider and the support rod is not described.
  • the power source 32 in the various embodiments described above may also be disposed within the host 4.
  • a through hole is formed in the back plate of the arm base for supporting one end end of the transmission shaft, and the independent shaft support seat 336 can also be passed.
  • the independent shaft support seat 336 can also be passed.
  • the two ends of the drive shaft are supported by two separate shaft support seats 336 to horizontally erect the drive shaft.
  • the elevating support arm device is connected between the main body 4 and the control panel 2 as an example.
  • the elevating support arm device provided in the various embodiments of the present invention may be connected between the control panel 2 and the display 1. Used to achieve the lifting of the display 1.
  • the connection structure and the connection relationship of the elevating support arm device 3 connected between the control panel 2 and the display 1 are not described herein.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Accommodation For Nursing Or Treatment Tables (AREA)

Abstract

一种医疗检测设备,包括:控制面板(2)、主机(4)以及连接所述主机(4)和所述控制面板(2)的升降支撑臂装置(3)。所述升降支撑臂装置(3)包括:具有输出轴(321)的动力源(32),其用于输出使所述输出轴(321)绕其自身纵向轴线旋转的转动力;包括从动件(316)和主动件(313)的平面连杆机构(31),所述平面连杆机构(31)的转动支点(315)固定在所述主机(4)上,所述控制面板(2)水平连接在从动件(316)上;以及包括传动轴(331)和力矩转换件(332)的传动机构(33),所述传动轴(331)的端部连接所述输出轴(321)以随所述输出轴(321)转动,所述力矩转换件(332)上设置力矩输出部以连接主动件(313)。该医疗检测设备解决了现有技术中工作台升降结构复杂、成本高和维护麻烦的问题。

Description

医疗检测设备 技术领域
本发明涉及医疗设备的结构设计领域,具体涉及一种医疗检测设备。
背景技术
医疗设备在使用时,基于操作、诊断与治疗的需要,往往需要操作平台或控制面板能在一定范围内调整高度(如超声设备的控制面板),即实现升降功能。在实现升降时,需要操作简便,操作力度轻,并且能够稳定停留在需要的高度,这就是对升降功能提出的基本需求。
目前市场上的台式超声设备的控制面板大多都能在一定范围内升降,实现方式主要有垂直升降和倾斜升降两种,尤其以垂直升降最为常见。而不论是垂直升降还是倾斜升降,升降系统大多采用带自锁式的气弹簧来实现的,即在控制面板的手柄附近拉动气弹簧的控制拉锁,来控制气弹簧气门的开合进而带动控制面板的升降和锁定,当拉动拉锁,气弹簧气门打开,控制面板可以轻松升降,当松开拉锁,气弹簧气门关闭并锁定不动,这时能承受较大的载荷,一般气弹簧的初始力值与支撑部件的重力接近,这样工作人员操作力不会太大。
由于上述的升降方式主要还是基于人力操作,虽然升降机构能平衡大部分的承重,但升降时还是需要人力辅助抬起和下压,尤其是当气弹簧发生泄露或平衡力设计偏差较大时。所以,为了实现升降操作更轻松简便,让医生能将更多的精力集中在诊疗和与患者的沟通上,同时也为了带来更好的操作体验和设备的高档感,目前也有少数台式超声设备的升降系统实现了电动控制升降,即只需按下升、降按钮就可以实现控制面板的升降,松开按钮,控制面板就锁定在需要的高度。电动升降的实现方式由手动升降衍化而来,也 可分为垂直电动升降和倾斜电动升降两种。其中垂直电动升降一般是通过直线电动推杆加导向滑轨来实现,即通过直线电动推杆内的电机控制螺杆的伸缩来带动控制面板沿导向滑轨升降和锁定;目前出现的倾斜电动升降则是通过电机、齿轮传动机构、倾斜升降臂、气弹簧等组成的一套较为复杂的机构实现的,通过电机控制齿轮副的转动从而带动倾斜升降臂角度摆动来实现升降,气弹簧起平衡力作用,由于齿轮副不具有自锁功能,为了使该升降系统支撑的控制面板能稳定停留在需要高度,则在电机与齿轮副之间增加了一个离合器机构,升降时将离合器解锁,升降停止时将离合器锁定。
对于通过带自锁式的气弹簧实现的升降机构,虽然在一段时间内气弹簧可以平衡绝大部分承截重量,但是大多数气弹簧都存在着漏气及力值衰减的风险,使用一段时间后需要的人工辅助操作力就会加大,会造成升降困难和费力;有时甚至会出现因气弹簧力值衰减过大引起自锁力也明显减弱,导致不能自锁的情况,这样就需要更换气弹簧,大大增加了维修及售后服务成本。
对于通过直线电动推杆加导向滑轨实现的垂直电动升降,抗弯矩能力有限(即在控制面板手柄上承受的下压力有限),升降时直线推杆的产生的噪音较大,升降速度也较慢,并且直线电动推杆加导向滑轨组成的机构需垂直贯穿台式超声设备的大部分区域,会占用主机空间,同时使维护难度加大;此外当无电源或机器处于关机状态时,该机构难以实现手动调整控制面板高度的功能。
对于通过电机、齿轮传动机构、倾斜升降臂加气弹簧等一套机构实现的倾斜电动升降,由于此套机构结构复杂,成本也相应较高,同时维护难度也较大。当无电源或机器关机状态需手动调整控制面板高度时,虽可以通过外部拨杆触发离合器松开,但该过程会使升降机构依靠其承截的重力瞬时突然下落到最低位置,由于下落速度较大,存在一定的安全风险,也使操作者的操作体验不够好。
基于此现有技术中存在的问题,有待进一步地提高。
发明内容
基于此,为了解决现有技术中医疗设备工作台升降结构复杂、成本高、维护麻烦的问题,本发明提供了一种医疗检测设备。
本发明提供了一种医疗检测设备,其包括:控制面板;主机;及连接所述主机与所述控制面板的升降支撑臂装置,所述升降支撑臂装置包括:连杆部,所述连杆部的一端连接所述控制面板,所述连杆部的另一端可转动地连接在所述主机上;及包括传动轴和力矩转换件的传动机构,所述传动机构设置在所述主机上,所述传动轴的一端连接到动力源并且所述传动轴能够在动力源输出的驱动力的驱动下绕传动轴自身的纵向轴线转动,所述力矩转换件上设置力矩输出部用以连接所述连杆部,通过传动轴与力矩转换件之间的运动作用将所述转动力转化为驱动所述连杆部绕所述连杆部的另一端旋转的转动力,使所述连杆部相对于所述主机转动。
本发明还提供了一种医疗检测设备,其包括:显示器;控制面板;主机;及连接所述控制面板与所述显示器的升降支撑臂装置,所述升降支撑臂装置包括:连杆部,所述连杆部的一端连接所述显示器,所述连杆部的另一端可转动地连接在所述控制面板上;及包括传动轴和力矩转换件的传动机构,所述传动机构设置在所述控制面板上,所述传动轴的一端连接到动力源并且所述传动轴能够在动力源输出的驱动力的驱动下绕传动轴自身的纵向轴线转动,所述力矩转换件上设置力矩输出部用以连接所述连杆部,通过传动轴与力矩转换件之间的运动作用将所述转动力转化为驱动所述连杆部绕所述连杆部的另一端旋转的转动力,使所述连杆部相对于所述主机转动。
本发明的升降支撑臂装置可以通过动力源、传动机构(如蜗轮蜗杆或丝杠滑块等等传动机构)和连杆部来实现一种带自锁和自平衡的升降支撑臂结构,尤其是倾斜式升降支撑臂。该升降支撑臂结构可以通过电机或手动提供动力驱动,传动机构实现传动,连杆部实现倾斜升降。
附图说明
图1(a)为本发明的其中一个实施例中,升降支撑臂装置在超声诊断仪上的第一位置图;图1(b)为本发明的其中一个实施例中,升降支撑臂装置在超声诊断仪上的第二位置图;
图2a为本发明的其中一个实施例中,升降支撑臂装置的结构原理示意图;
图2b为本发明的其中一个实施例中,升降支撑臂装置的结构原理示意图;
图3a为本发明的其中一个实施例中,升降支撑臂装置的结构原理示意图;
图3b为本发明的其中一个实施例中,升降支撑臂装置的另一结构原理示意图;
图4为本发明的其中一个实施例中,升降支撑臂装置收缩时的立体结构示意图;
图5为图4的升降支撑臂装置的结构爆炸示意图;
图6为图4的升降支撑臂装置的剖视图;
图7为图4的升降支撑臂装置抬升后的剖视图;
图8为图4中蜗轮蜗杆传动机构示意图;
图9为图4中蜗轮与支臂上连杆连接方式的结构示意图;
图10为图4中弹簧组件的爆炸结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了 说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
基于现有技术中有关医疗检测设备的显示器和控制面板的升降复杂问题,本发明提供了一种基于连杆机构和传动机构的电动升降装置。具体结合附图进行详细说明以下各个实施例。
实施例一:图1(a)和图1(b)、图2a中给出了一种利用本发明提供的升降支撑臂装置的医疗检测设备,该医疗检测设备包括显示器1、控制面板2、升降支撑臂装置3、和主机4。显示器1和控制面板2与主机4电连接。显示器1和控制面板2之间也可以通过升降装置连接,并一同固定在主机4上。主机4包括电路板、电子元件、电缆线等等电子器件,以及用于固定所述电子器件的机箱壳及支撑架。升降支撑臂装置3连接在控制面板2和主机4之间。
当然为了便于医疗检测设备移动,在实施例一的变形实施例中,该医疗检测设备还可以包括脚轮5等部件组成,该脚轮5固定在上述主机4上。升降支撑臂装置3的顶部与控制面板2连接,升降支撑臂装置3的底部与主机4的上部连接,主机4的下部用以固定脚轮5。
在本实施例中,如图2a所示,上述升降支撑臂装置3,可以包括以下几部分:
第一,具有输出轴321的动力源32,动力源32用于输出使输出轴321绕其中心旋转的转动力。此处的动力源32可以是电机、气缸及曲柄连杆机构的组合结构等具有输出轴的电动驱动源,也可以是人力动力源的输入,如手动输入设备。
第二,连杆部31,连杆部31的一端连接控制面板2,连杆部31的另一端可转动连接在主机4上。本实施例中的连杆部可以是一个连杆,也可以是 连个以上连杆构成的连杆机构,比如,图3a和图3b所示的实施例中,连杆部31可以是由多个连杆构成的平面连杆机构。
第三,包括传动轴331和力矩转换件332的传动机构33,传动机构33连接到主机4上,传动轴331的一端连接到动力源32,并且传动轴331能够在动力源32输出的驱动力的驱动下绕传动轴331自身的纵向轴线转动。传动机构33的传动轴331的端部连接输出轴321用以随输出轴321转动,传动机构33的力矩转换件332上设置力矩输出部用以连接连杆部31。传动轴331通过传动轴331与力矩转换件332之间的运动作用将所述转动力转化为驱动连杆部31的另一端旋转的转动力,使连杆部31相对于主机4在垂直方向上产生转动运动,从而使连杆部31一端连接的控制面板2在垂直面上实现升降运动(如图2中C方向所示)。
为了保证空间占用最小,升降平稳,则输出轴321与传动轴331位于同一条直线上。在本实施例的变形实施例中,输出轴321与传动轴331之间可以采用联轴器连接。
同样地,使连杆部31转动运动所在的平面垂直于输出轴321的径向截面,也可以优化机构的空间占用体积。连杆部31转动运动所在的平面,也可以是平面杆机构所在的平面。
如果采用自动升降控制面板2的方式,本实施例的动力源32可以是电机、气缸及曲柄连杆机构的组合结构等具有第一输出轴321a的电动驱动源32a。或者,如果采用手动升降控制面板2的方式,那么本实施例的动力源32可以是手动输入设备32b,例如具有第二输出轴321b的手动驱动手柄。因此,本实施例中的动力源32可以包括具有第一输出轴321a的电动驱动源32a和具有第二输出轴321b的手动驱动手柄32b,但只要是可以形成使输出轴321绕其中心旋转的转动力的设备、机构及组合机构,均可以用于本发明的动力源32的替代方案。此外,为了缩减空间占用、且同时实现自动驱动升降和手动驱动升降两种功能,则在本实施例的变形实施例中,如图2a中,传动轴331的一端连接第一输出轴321a,传动轴331的另一端设置有供第二输出轴321b 可拆卸连接的卡接位,用于连接手动驱动手柄。因此,传动轴331可以是丝杠、螺杆等等。
为了能够平衡连杆部被抬升时的承载力,有利于控制面板2被匀速抬升,则在本实施例的变形实施例中还包括:弹簧组件340,弹簧组件340的一端可转动连接于主机4上,弹簧组件340的另一端可转动连接在连杆部31上。此处的弹簧组件可以包括压簧、拉簧、气弹簧、和扭簧等的其中之一。当然,本实施例中的弹簧组件340可以如图10所示,弹簧组件340包括弹簧341、弹簧导筒345、弹簧导杆342、弹簧转轴343、弹簧卡销344。图10中,弹簧导筒345为内部中空的筒状结构,弹簧导筒345的外表面套装弹簧341,弹簧导杆342插入弹簧导筒345内,弹簧导杆342外露于弹簧导筒345的端部的部分开设有通孔、以供弹簧卡销344插入后将弹簧导杆342可转动连接于连杆部31上。弹簧导筒345背离弹簧卡销344的一端开设有通孔、以供弹簧转轴343插入后将弹簧导筒345可转动连接于主机4上。这种方式结构紧凑、零件简单易加工,成本低廉。弹簧341可以为压簧、拉簧、气弹簧、和扭簧等的其中之一。
此外,为了在升降支撑臂装置收放时能够对弹簧组件340起到保护作用,缩减空间利用,避免落灰尘、影响机构性能,则在本实施例的变形实施例中,连杆部31具有用于容置弹簧组件340的收容腔。例如,如图9所示,若连杆部31包括一个连杆件,则该连杆件可以包括第一条状板353a、第二条状板353b和中间板353c,第一条状板353a和第二条状板353b平行设置,中间板353c位于第一条状板353a和第二条状板353b之间形成容置槽腔381b,在第一条状板353a和第二条状板353b的两端还分别设置有用于通过销轴可转动连接主机4和控制面板2的通孔。容置槽腔381b用于在升降支撑臂装置收放时容置弹簧组件340,形成上述收容腔。为了更好的收置弹簧组件340,则弹簧组件340上与主机4相连的一端靠近连杆部31上与主机4相连的另一端。又例如,若连杆部31包括两个以上(以上包含本数,本文同)的连杆件,则其中两个连杆件均采用图9所示的结构设置方式,在两个连杆件上形成的容 置槽腔381b扣合后形成用于容置弹簧组件340的收容腔。
如图2a所示的原理图中,给出了采用蜗轮蜗杆传动机构的传动机构33,其中传动轴331为蜗杆,上述力矩转换件332为蜗轮,在蜗轮上设置上述力矩输出部并与连杆部31刚性连接或者活动地连接(例如,通过二者之间相互滑动接触实现的滑动接触连接,或者通过销轴和销孔之间的配合实现的可转动连接,等等)。具体地如图8所示,蜗轮为扇形结构,蜗轮的圆弧面设置有与蜗杆咬合的齿,蜗轮上的半径断面338为传动机构33的力矩输出部、与连杆部31刚性连接。刚性连接的方式可以是通过紧固件固定、粘接、焊接、或者互相连接的双方通过一体化设置的方式来实现刚性连接。例如,蜗轮上的半径断面338延伸形成连杆部31,或者蜗轮上的半径断面338通过紧固件连接连杆部31的一端等等。图9中给出了另一种刚性连接的方式,且空间利用最小,中间板353c背离容置槽腔381b的下底面抵靠扇形结构的蜗轮的径向断面338,或者通过紧固件固定连接扇形结构的蜗轮的径向断面338,来实现刚性连接。
更进一步地,为了缩小空间利用,连杆部31的转动中心(即连杆部与主机相连的位置)与蜗轮的转动转轴中心重合。或者,还可以更进一步地,弹簧组件340与主机4相连的一端可转动连接于蜗轮的转动转轴中心。
当然,本实施例中不限于只采用蜗轮蜗杆传动机构的传动机构33,还可以采用丝杠滑块机构,曲柄连杆机构等等,亦可以实现本发明所要抬升连杆部31的目的。例如,图2b给出了展示本发明的升降支撑臂装置3的另一个实施例。
实施例二:如图22b所示,上述实施例一提到的传动机构33采用丝杠滑块结构。例如,传动机构33包括:丝杠、滑块332b和支撑杆332a,传动轴331为丝杠,力矩转换件332为滑块332b和支撑杆332a,丝杠的端部连接输出轴32,滑块332b位于丝杠上,支撑杆332a的一端可转动连接于滑块332b,支撑杆332a的另一端为力矩输出部、可转动连接于连杆部31。滑块332b沿着丝杠移动时抬升支撑杆332a与连杆部31的连接位置,从而驱动连杆部抬 升,实现控制面板2的升降运动。
更进一步地,为了缩小空间利用,连杆部31的转动中心(即连杆部与主机相连的位置)位于丝杠的上方位置。或者,还可以更进一步地,为了在升降支撑臂装置收放时能够对弹簧组件340和支撑杆332a起到保护作用,缩减空间利用,避免落灰尘、影响机构性能,连杆部31上的收容腔还可以用于容置弹簧组件340和支撑杆332a。弹簧组件340和支撑杆332a位于同一平面内设置。
本实施例中的其余结构及其连接关系,以及本实施例的变形实施例的结构及连接关系与上述实施例一相同,在此不再累述。
此外,本发明提供的升降支撑臂装置3中的传动机构33还可以采用其他驱动方式,如连杆曲柄结构等等亦可以实现本发明所要抬升连杆部31的目的。
实施例三:与实施例一的不同之处在于,连杆部31采用包括从动件和主动件的平面连杆机构,从动件和主动件的转动支点(即作为从动件和主动件的连杆可转动的转动中心)固定在主机4上,控制面板2水平连接在从动件上,主动件连接力矩输出部,通过平面连杆机构将转动运动转化为使控制面板在垂直面上始终水平设置的升降运动。本实施例中的平面连杆机构31中包括至少两个杆状构件。通常,主动件是指连杆机构中作用有驱动力或力矩的构件,其余构件中可随主动件的转动而运动的构件为从动件。在本文中,平面连杆机构31中与传动机构33直接相连的即为主动件,而随主动件移动或转动的连杆即为从动件。
为了保证控制面板2的平稳性,平面连杆机构31受转动力的驱动水平升降上述控制面板2时,平面连杆机构31上从动件316上连接的控制面板2始终处于水平。
当然为了达到上述控制面板2始终水平放置,减少显示器1和控制面板2的震荡,及保证收放显示器1和控制面板2时,医疗检测设备的空间占用最小,则在本实施例的一个变形实施例中,平面连杆机构31上与控制面板2 相连的位置在水平面上的垂直投影始终位于同一直线上。具体地,该平面连杆机构所在的平面垂直于输出轴321的径向截面,从而使平面连杆机构31的另一端与控制面板2相连的位置的垂直投影始终位于同一直线上。
具体地,还可以如图1(a)和图1(b)所示的实施例,在平面连杆机构31的从动件316上设置一水平台面34,用于固定控制面板2,且水平台面34始终处于水平设置。
在本实施例的一个变形实施例中,图3a所示的平面连杆机构中可以为平面四连杆机构。例如,图3a中具体描述了连杆机构31和传动机构33协作的结构示意图。参见图3a,本实施例中上述平面连杆机构31采用平面连杆机构中的平面四连杆机构,该平面四连杆机构包括:作为主动件313的支臂下连杆,作为从动件316的支臂上连杆312,和支臂顶座311。或者更进一步地还可以包括支臂底座314,通过支臂底座314将平面四连杆机构固定在主机4上。支臂底座314用以固定在主机4上,或者与主机4一体设计。
支臂上连杆312和支臂下连杆的一端为转动支点315分别与主机4或支臂底座314可转动连接,支臂上连杆312和支臂下连杆的另一端分别与支臂顶座311可转动连接,支臂顶座311设置上述一水平台面34用于固定控制面板2。本实施例中支臂下连杆作为主动件313连接传动机构33中力矩转换件332上设置的力矩输出部。可以理解地是,同样可以将支臂上连杆312作为主动件,而将支臂下连杆作为从动件,即在支臂上连杆和支臂下连杆中择一选择一个作为主动件,亦可实现上述相同的结构功能。
在本实施例的一个变形实施例中,为了能够保证控制面板能够相对平稳的升降,并且水平台面34在升降过程中较好的处于水平放置,则上述平面连杆机构31可以采用平行四连杆机构。例如,图2中的实施例中,支臂上连杆和支臂下连杆可平行设置,从而使上述平面四连杆机构构成平行四连杆机构,从而可以是的控制面板能够平稳的水平升降,并且保证收放控制面板占用的空间最小。或者,还可以更进一步地,支臂上连杆和支臂下连杆长度相同。
此外,力矩输出部的设置方式根据传动机构33的类型有不同的设置方 式。例如,在图3a所示的实施例中,传动机构33采用蜗轮蜗杆传动机构,传动轴为蜗杆337,力矩转换件为蜗轮338。具体为,传动机构33包括:蜗轮338和蜗杆337,输出轴321与蜗杆337设置在同一条直线上。蜗杆337的一端连接输出轴321,蜗轮338上设置力矩输出部与平面连杆机构31中的主动件刚性连接。这里的力矩输出部可以是蜗轮的轴,或者扇形蜗轮的某个半径断面,例如,如图3a所示的实施例中利用扇形结构的蜗轮的半径断面333刚性连接主动件313,来通过蜗轮332的旋转推动主动件313绕转动支点转动315。此外,为了缩小装置的占用用空间,在本实施例的变形实施例中,蜗轮的转轴中心与主动件313的转轴中心重合。或者还可以更进一步地,蜗轮的转轴中心与主动件313的转轴中心均可转动连接在支臂底座314上。
在图3a所示的实施例中主动件313为支臂下连杆,所以图示中扇形结构的蜗轮的半径断面333刚性连接支臂下连杆。可以理解的是,还可以利用扇形蜗轮的径向断面刚性连接支臂上连杆312,来通过蜗轮的旋转推动支臂上连杆312绕转动支点315转动,从而带动支臂下连杆运动。同理,为了缩小装置的占用用空间,在本实施例的变形实施例中,蜗轮的转轴中心与支臂上连杆的转轴中心重合。或者还可以更进一步地,蜗轮的转轴中心与主动件313的转轴中心都可转动连接在支臂底座311上。
参见图3a,本实施例及变形实施例中基于蜗轮蜗杆传动机构,还提供了自动控制升降和手动升降两种方式。图3a中具有第一输出轴321a的电动驱动源32a,可以是驱动电机,传动机构33中作为传动轴331的蜗杆的一端连接第一输出轴321a,此外,该端还可以通过联轴器12连接电动驱动源32a的第一输出轴321a。
为了在自动控制升降的基础上,同时实现手动控制升降,图3a所示的实施例中,传动机构33中作为传动轴331的蜗杆的另一端连接手动驱动手柄32b的第二输出轴321b,使用者通过旋转手动升降手柄使蜗杆、第二输出轴321b同时绕轴心线旋转。为便于手动升降手柄32b可拆卸,则在蜗杆331的端面设置可拆卸连接的卡接位(未标识),用于插入手动升降手柄32b的第二 输出轴321b。一般出于安全考虑,非使用时可将手动升降手柄与蜗杆脱离。
可以理解,图3a中提供的实施例中是为了同时实现自动控制升降和手动控制升降,所以在蜗杆的两端分别连接了电动驱动源32a和手动驱动手柄32b。那么在本实施例的变形实施例中,可以考虑只实现自动控制升降,或者手动控制升降,因此,只要将蜗杆的其中一端设置相应的输出轴接入位、及连接某种动力源的输出轴,即可实现相应的驱动方式。例如,将蜗杆的其中一端设置供第二输出轴可拆卸连接的卡接位,用以连接手动升降手柄32b,则可实现手动升降。将蜗杆的其中一端通过联轴器连接第一输出轴,用以接入电动驱动源32a,则可实现自动升降。
此外,为了能够平衡从动件的承载力,在本实施例的一个变形实施例中,上述升降支撑臂装置3还包括:弹簧组件340,如图2中所示的实施例中,弹簧组件340的一端可转动连接于支臂底座314上用以与主机4连接,弹簧组件340的另一端可转动连接在支臂上连杆312上。可以理解的是,弹簧组件340的另一端还可以选择可转动连接于其他从动件上,例如支臂顶座等。或者当支臂下连杆为从动件时,弹簧组件340的另一端还可以选择可转动连接于支臂下连杆。这里的弹簧组件340可以包括压簧、拉簧、气弹簧、扭簧等中之一。
弹簧组件340的安装在连杆机构31上可用来平衡支臂顶座上的载重。因此,若上述平面连杆机构采用其他形式的话,同样可以设置弹簧组件340,用以实现平衡支臂顶座上的载重。
为了保证连杆机构的运动传递效果和利用弹簧组件平衡支臂顶座上的载重效果,在本实施例的一个变形实施例中,弹簧组件的另一端和上述传动机构的力矩输出部不同时与平面连杆机构中的同一个连杆相连。即,如图3a所示,若弹簧组件340的另一端可转动连接在支臂上连杆312上,则上述传动机构的力矩输出部则可转动连接在支臂下连杆313上,反之,若弹簧组件340的另一端可转动连接在支臂下连杆313上,则上述传动机构的力矩输出部则可转动连接在支臂上连杆312上。
此外,本实施例中的弹簧组件340可以如图10所示,包括弹簧341、弹簧导筒345、弹簧导杆342、弹簧转轴343、弹簧卡销344。具体连接方式可参见实施例一中的相关说明。弹簧导杆342外露于弹簧导筒345的端部的部分开设有通孔、以供弹簧卡销344插入后将弹簧导杆342可转动连接于主动件上。弹簧导筒345背离弹簧卡销344的一端开设有通孔、以供弹簧转轴343插入后将弹簧导筒345可转动连接于主机4上。这种方式结构紧凑、零件简单易加工,成本低廉。弹簧341可以为压簧、拉簧、气弹簧、和扭簧等的其中之一。
在图3a所示的实施例中,动力源通过联轴器与蜗杆联接,蜗杆与蜗轮啮合传动,以及四连杆机构,蜗轮与支臂下连杆刚性连接,蜗轮的转轴中心与支臂下连杆的转轴中心重合并且都固定在支臂底座上,弹簧组件安装在四连杆组件内部用来平衡支臂顶座上的载重。手动升降手柄可插接在蜗杆端部。电动升降实现过程:驱动电机把动力输出到蜗杆上,驱动电机的输出轴转动带动蜗杆同步转动(运动A),同时带动蜗轮与支臂下连杆组成的刚性连接件绕支臂底座上的转轴做旋转运动(运动B),从而实现支臂顶座依靠四连杆机构做上下平动(运动C)。
四连杆机构由支臂底座、支臂上连杆、支臂下连杆和支臂顶座组成,该四连杆一般可以构成平行四边形,目的是使支臂顶座能保持平动,其中支臂底座固定不动。当无电源或关机状态时,出于对包装、转运等需要,可以通过手动升降手柄快速调整升降支撑臂装置的高度。手动升降实现过程:将手动升降手柄在蜗杆端部插接好后,摇动手动升降手柄若干圈(约3圈,运动D),即可带动蜗杆同步转动,然后支臂顶座会类似于电动升降过程一样实现上下平动。由于弹簧组件平衡了大部分载重,且此时电机无保持力矩,摇动手动升降手柄的扭力是相对比较轻的,比较好操作。
实例四,在上述实施例三的结构基础上,参见图3b,本实施例与上述实施例三的不同之处在于,传动机构33采用丝杠滑块传动机构。具体为,传动机构33包括:丝杠334、滑块335和支撑杆336,上述传动轴为丝杠334, 上述力矩传动件为滑块335和支撑杆336。上述动力源的输出轴321与丝杠334设置在同一条直线上。丝杠334的端部连接输出轴,滑块335位于丝杠334上,支撑杆336的一端可转动连接于滑块335,支撑杆336的另一端作为力矩输出部、可转动连接于平面连杆机构中的主动件。滑块335可在丝杠334上任意移动。
为了减震以及动力传输,丝杠334的一端可以通过联轴器12与电动驱动源的第一输出轴连接。
实施例四中基于丝杠滑块传动机构,还提供了自动控制升降和手动升降两种方式。图3中具有第一输出轴321a的电动驱动源32a,可以是驱动电机,传动机构33的力矩输入端为丝杠的一端,该端通过联轴器12连接电动驱动源32a的输出轴321a。
为了在自动控制升降的基础上,同时实现手动控制升降,图3所示的实施例中在丝杠的另一端连接手动驱动手柄32b的第二输出轴321b,使用者通过旋转手动升降手柄使蜗杆、输出轴321b同时绕轴心线旋转。为便于手动升降手柄32b可拆卸,则在丝杠334的端面设置可拆卸连接的卡接位(未标识),用于插入手动升降手柄32b的输出轴321b。一般出于安全考虑,非使用时可将手动升降手柄与蜗杆脱离。
可以理解,图2中提供的实施例中是为了同时实现自动控制升降和手动控制升降,所以在丝杠的两端分别连接了电动驱动源32a和手动驱动手柄32b。那么在实施例四的变形实施例中,可以考虑只实现自动控制升降,或者手动控制升降,因此,只要将丝杠334的其中一端设置相应的输出轴接入位、及连接某种动力源的输出轴,即可实现相应的驱动方式。例如,将丝杠的其中一端设置供第二输出轴可拆卸连接的卡接位,用以连接手动升降手柄32b,则可实现手动升降。将丝杠的其中一端通过联轴器连接第一输出轴,用以接入电动驱动源32a,则可实现自动升降。
本实施例中的有关连杆机构、动力源等其他结构组成和连接关系与实施例三相同,在此不再累述。
在图3b所示的实施例中,电动驱动源32a通过联轴器与蜗杆联接,丝杠滑块啮合传动,以及四连杆机构。手动升降手柄可插接在丝杠端部。电动升降实现过程:驱动电机把动力输出到丝杠上,驱动电机的输出轴转动带动丝杠同步转动(运动A),同时带动滑块移动,并通过支撑杆推动支臂下连杆组成的刚性连接件绕支臂底座上的转轴做旋转运动(运动B),从而实现支臂顶座依靠四连杆机构做上下平动(运动C)。手动升降实现过程:将手动升降手柄在蜗杆端部插接好后,摇动手动升降手柄若干圈(例如约3圈,运动D),即可带动丝杠同步转动,然后支臂顶座会类似于电动升降过程一样实现上下平动。由于弹簧组件平衡了大部分载重,且此时电机无保持力矩,摇动手动升降手柄的扭力是相对比较轻的,比较好操作。
当然,可以理解地是,本发明提到的传动机构除了上述两种蜗轮蜗杆或者丝杠滑块的传动方式,还可以采用其相关变形或替换方案来实现,具体不再一一累述。
实例五,参见图4至图10所示的实施例,在实施例三的基础上提供了更加具体的结构设计方案。
本实施例中的连杆机构采用平行四连杆机构。具体地,平行四连杆机构包括:支臂上连杆312a、支臂下连杆313a、支臂底座314a和支臂顶座311a。支臂上连杆312a和支臂下连杆313a的一端分别通过支臂转轴318与支臂底座314a可转动连接,支臂上连杆312a和支臂下连杆313a的另一端分别通过支臂转轴318与支臂顶座311a可转动连接。通过支臂转轴实现可转动连接仅仅只是一种方式,还可以通过螺纹轴、卡接轴等方式,来实现支臂上连杆312a和支臂下连杆313a分别与支臂底座314a、支臂顶座311a的可转动连接。
支臂顶座311a具有一水平台面34a用于固定控制面板2,控制面板2与支臂顶座311a的固定方式可以有很多种,比如,控制面板2与支臂顶座311a刚性连接,控制面板2与支臂顶座311a通过转动副连接,控制面板2与支臂顶座311a上的水平台面34之间通过插接或卡接的方式实现可拆卸连接。
本实施例中,支臂底座314a通过升降底板350固定在主机4上。升降底 板350用于固定驱动电机或提供升降支撑臂装置3的所有组件的支撑件。可以理解的是,升降底板350还可以与主机4一体设计,则支臂底座314a直接固定在主机4上的顶部,或者整体与主机4一体设计。
本实施例中支臂底座314a采用U型结构,该支臂底座314a的底边可通过紧固件或焊接的方式固定在主机4上,或者还可以是,U型结构的支臂底座314a与主机4一体设计。该U型结构的支臂底座314a包括第一垂直支撑壁319a和第二垂直支撑壁319b,第一垂直支撑壁319a和第二垂直支撑壁319b上分别开设有对应的通孔320,支臂转轴318依次穿过第一垂直支撑壁319a上设置的通孔320、支臂上连杆312a和支臂下连杆313a上开设的通孔329、第二垂直支撑壁319b上设置的通孔320后,将支臂上连杆312a和支臂下连杆313a通过支臂转轴318可转动连接于支臂底座314a上。可以理解的是,支臂底座314a还可以采用非本实施例中的U型结构件,例如,支臂底座314a包括两个平行设置的垂直壁件,此两个垂直壁件的细节结构与上述第一垂直支撑壁319a和第二垂直支撑壁319b的结构设计相同,不同之处在于,两个平行设置的垂直壁件的底端分别固定于升降底板350或主机4上。
同理,支臂顶座311a也可以设置两个垂直于上述水平台面34的垂直侧壁(图中未标出),在该垂直侧壁开设通孔328,支臂转轴318穿过垂直侧壁的通孔328、支臂上连杆312a和支臂下连杆313a上开设的通孔329后,将支臂上连杆312a和支臂下连杆313a通过支臂转轴318可转动连接于支臂顶座311a上。上述通孔329通常开设在支臂上连杆312a和支臂下连杆313a的端部。
为了能够在缩小升降支撑臂装置3收放后的占用空间,则在实施例四的变形实施例中,支臂上连杆312a和支臂下连杆313a可以平行设置,支臂上连杆312a、支臂下连杆313a、支臂底座314a和支臂顶座311a构成平行四边形连杆机构。在支臂顶座311a和支臂底座314a上开设的用于分别可转动连接支臂上连杆312a和支臂下连杆313a的通孔在水平面上的投影位置不重合,即在同一垂直支撑壁上开设的用于分别可转动连接支臂上连杆312a和支臂下 连杆313a的两个通孔320在水平面上的投影位置不重合,在同一垂直侧壁上开设的用于分别可转动连接支臂上连杆312a和支臂下连杆313a的两个通孔328在水平面上的投影位置不重合。此外,在支臂底座314a上开设的用于分别可转动连接支臂上连杆312a和支臂下连杆313a的通孔距离支撑面(如在主机4上的固定面)垂直距离(或垂直高度)不相同。在支臂顶座311a上开设的用于分别可转动连接支臂上连杆312a和支臂下连杆313a的通孔距离上述水平台面34的垂直距离不相同。
电动驱动源32a可以通过电机固定座322固定在升降底板350上,再通过升降底板350固定在主机4上。可以理解的是,升降底板350还可以与主机4一体设计,驱动电机32a可以直接通过电机固定座322固定在主机4上的顶部。
本实施例中的传动机构33采用蜗轮蜗杆传动。蜗杆331a的端部可转动连接在轴支撑座336上,轴支撑座336通过升降底板350固定在主机4上。可以理解的是,轴支撑座336可以直接固定在主机4上。在一变形实施例中,轴支撑座336可以为垂直板件,该垂直板件垂直于升降底板350或主机4的顶部设置,垂直板件上可以开设用于容置蜗杆331a端部的凹槽,或者开设用于穿过蜗杆331a端部的通孔。如图6所示,无论是凹槽设置或者通孔设置,在轴支撑座336与蜗杆331a端部相连的部位设置台阶部,用于对蜗杆331a的转动进行限位,避免在转动的过程脱离或滑脱初始位置,从而避免引起控制面板在升降过程中发生的阻塞和颠簸。
通常轴支撑座336采用两个,用于固定蜗杆331a的两端。图6所示的实施例中,其中一个轴支撑座336与U型结构的支臂底座314a一体设置,具体为,支臂底座314a具有一背板317,背板317垂直于支臂底座314a的第一垂直支撑壁319a和第二垂直支撑壁319b,背板317上开设通孔,用于支撑蜗杆331a的端部。可以理解的是,背板317上可以开设凹槽来支撑蜗杆331a的端部,从而利用一个独立的轴支撑座336和支臂底座314a的背板317将蜗杆331a水平架起。
设置背板317还可以将升降支撑臂装置3封闭在一个封闭空间或半封闭空间中,保护传动机构。可以理解的是,两个轴支撑座336也可以采用独立式设计,即在主机4的顶部或者升降底板350上分别固定两个轴支撑座336,用于支撑蜗杆331a的端部,使蜗杆331a水平架起。
此外,图6和图7所示的实施例中,联轴器12a位于轴支撑座336与电机固定座322之间,用于分别连接输出轴321和蜗杆331a的一端。蜗杆331a的另一端穿过背板317上开设的通孔而形成外露部分,该外露部分上设置用于连接手动驱动手柄32b的连接装置(例如,插孔)316,为一种可拆卸接入手动驱动手柄的第二输出轴的方式。可以理解的是,如果两个轴支撑座336采用独立式设计,则蜗杆331a的另一端穿过轴支撑座336上开设的通孔或凹槽后而形成可设置插孔316的外露部分。
可以理解的是,上述仅提供了几种变形实施方案用来支撑作为传动轴的蜗杆331a,当然还可以采用其他实施方式,只要是能将传动轴水平架起即可。
输出轴(如第一输出轴321a)与蜗杆331a设置在同一条直线上。蜗轮332a与蜗杆331a齿啮合。图6和图7所示的实施例中,蜗轮332a采用扇形结构的蜗轮,扇形结构的蜗轮332a的转轴中心与支臂下连杆313a的转轴中心重合。扇形结构的蜗轮332a的转轴中心开孔339后利用支臂转轴318与支臂下连杆312a一起可转动连接在支臂底座314a上。同理,扇形蜗轮的转轴中心与支臂上连杆的转轴中心重合,扇形蜗轮的转轴中心开孔后利用支臂转轴与支臂上连杆一起可转动连接在支臂底座上。
为了实现蜗轮332a的力矩输出,图6和图7所示的实施例中,利用扇形蜗轮332a的径向断面338刚性连接支臂下连杆313a,来通过蜗轮332a的旋转推动支臂下连杆313a实现图2中的运动B。具体的,如图9所示,支臂下连杆313a包括第一条状板353a、第二条状板353b和中间板353c,第一条状板353a和第二条状板353b平行设置,中间板353c位于第一条状板353a和第二条状板353b之间形成容置槽腔381b,上述用于连接支臂底座和支臂顶座的通孔329分别设置在第一条状板353a和第二条状板353b的两端。中间 板353c背离上述容置槽腔381b的下底面刚性连接上述力矩输出部,即图9中所述的扇形结构蜗轮332a的径向断面338。
此外,在采用蜗轮蜗杆的传动机构时,本实施例中,中间板353c背离上述容置槽腔381b的下底面抵靠蜗轮332a的径向断面338。为了避免传动过程中的晃动,在变形实施例中,还可以采用紧固件354将中间板353c固定连接在蜗轮332a的径向断面338上。在这些连接的过程中,为了方便支臂转轴能顺利将蜗轮332a、支臂底座、第一条状板353a和第二条状板353b固定在一起,第一条状板353a和第二条状板353b上的通孔329与蜗轮332a的转轴中心的孔339位于同一轴线上。
可以理解地是,图6和图7所示的实施例给出了蜗轮332a与支臂下连杆313a刚性连接的方式,当然还可以采用蜗轮332a与支臂上连杆312a的刚性连接方式,该连接方式同上述扇形蜗轮332a的断面338刚性连接支臂下连杆313a的方式,在此不再累述。
此外,在变形实施例中,支臂上连杆312a的结构可以与上述支臂下连杆313a的结构相同,
在支臂上连杆312a上形成容置槽腔381a,两者扣合后形成收容腔,用于容置弹簧组件340。在此不再累述支臂上连杆312a的具体结构。
可以理解的是,上述提供的实施方式中还可以采用其他变形实施例来形成容置槽腔381a和381b。例如,在支臂下连杆和支臂上连杆上均设置有沿长度方向的容置槽腔381a和381b,支臂下连杆和支臂上连杆平行抵靠后两者的容置槽腔形成用以容置弹簧组件的收容腔,弹簧组件340的一端可转动连接于固定座上,弹簧组件340的另一端可转动连接在从动件上。容置槽腔381a和381b可以直接是开槽实现,也可以采用图9所示实施例的方式。比如,在其中一个变形实施例中,参见图5至图7所示的实例中,通过在支臂上连杆312a开槽形成第一槽腔部381a,用于容置弹簧组件的部分。此外,支臂下连杆313a采用图9所示的第一条状板353a和第二条状板353b平行设置、中间板353c位于第一条状板353a和第二条状板353b之间形成容置槽腔381b的 方式,在四连杆机构收缩后容置槽腔381a和381b扣合形成收容腔,用于完整收容弹簧组件。
本实施例的变形实施例中,还通过增加弹簧组件340来平衡支臂顶座上的载重。具体地,参见图5至图7和图10所示,弹簧组件340可以包括弹簧341、弹簧导筒345、弹簧导杆342、弹簧转轴343、弹簧卡销344。图10中,弹簧导筒345为内部中空的筒状结构,弹簧导筒345的外表面套装弹簧341,弹簧导杆342插入弹簧导筒345内,弹簧导杆342外露于弹簧导筒345的端部的部分开设有通孔、以供弹簧卡销344插入后将弹簧导杆342可转动连接于支臂上连杆312a上。弹簧导筒345背离弹簧卡销344的一端开设有通孔、以供弹簧转轴343插入后将弹簧导筒345可转动连接于支臂底座314a上。可以理解,图5至图7和图10所示的实施例中仅给出了弹簧组件340与支臂上连杆312a的连接方式,当然,弹簧组件340还可以与其他从动件可转动连接,例如当支臂下连杆为从动件时,弹簧组件340还可以与支臂下连杆可转动连接,该连接方式同图5至图7和图10所示结构中弹簧组件340与支臂上连杆312a的连接方式,在此不再累述。并且图中弹簧导筒345可转动连接于支臂底座314a上,可以理解的时,弹簧导筒345背离弹簧卡销344的一端作为转动支点,还可以固定在固定座上,或者通过支臂底座314a固定在固定座上,等等实现方式,在此不一一列举。
弹簧导杆和弹簧导筒起到导向和固定弹簧的作用,防止弹簧因压缩而失稳。弹簧341可以包括压簧、拉簧、气弹簧、扭簧等中之一。若采用压簧,压簧用来平衡支撑控制面板以上部件的重力,减轻升降时操作力,即在任意位置控制面板以上部件的重力及支撑臂的等效重力形成的转矩和阻尼器中的压簧受压产生的张力形成的转矩近似相等,也就是说该机构在任意位置顺时针转矩和逆时针转矩近似相等。另外,通过改变弹簧在四连杆机构内的安装位置,可将金属压簧更改成金属拉簧,通过金属拉簧的产生力矩平衡控制面板重力形成的力矩也能达到同样的效果。
在本发明的其中一个变形实施例中,参见图5至图7所示的实例中,弹 簧组件340与支臂上连杆312a的连接位置位于支臂上连杆312a的中部,同理,若弹簧组件与支臂下连杆可转动连接,则弹簧组件340与支臂下连杆的连接位置位于支臂下连杆的中部。这样可以通过调整安装位置,可自由选择不同的金属弹簧类型,从而实现相同的平衡支臂顶座上的载重的效果。
在其中一个变形实施例中,参见图5至图7所示的实例中,为了便于弹簧组件340与支臂底座314a的连接,则针对U型结构的支臂底座314a具有的背板317,可以在背板317上面向弹簧组件的内壁侧延伸出固定部,用于固定弹簧组件340的一端。比如,在背板317上面向弹簧组件的内壁侧延伸出固定部,用于可转动连接弹簧导筒345背离弹簧卡销344的一端。
本实施例中,升降支撑臂装置3通过驱动电机、传动机构(如蜗轮蜗杆或丝杠滑块)和一组四连杆(例如平行四连杆,也可以是对边连杆长度接近的非平行四连杆)、以及弹簧组件、支撑臂转轴、弹簧转轴、弹簧卡销等组成的结构,实现了一种带自锁和自平衡的升降支撑臂结构,尤其是倾斜式升降支撑臂。该升降支撑臂结构可以通过电机提供动力驱动,蜗轮蜗杆或丝杠滑块实现传动,四连杆实现倾斜升降,弹簧安装在四连杆内部,用来平衡大部分承截的重力。
由于蜗轮蜗杆和丝杠滑块具用自锁特性,使得支臂顶座能停留在行程内的任意位置;而不需增加锁定结构(如离合器或机械锁),使结构更简化,更简单紧凑,成本也相应降低。并且整个电动升降机构的模块化更好,与主机解耦(不占用主机空间),提高了平台化和可复用性。
四连杆内部的弹簧组件能平衡大部分承载重力,使电机和蜗轮蜗杆的承载力大大减小,降低了对电机负载能力的要求,提高了蜗轮蜗杆的可靠性和使用寿命。
由于是可以采用电动控制升降,操作时只需按下升、降按钮,升降操作更轻松简便,让医生能将更多的精力集中在诊疗和与患者的沟通上,同时也为了带来更好的操作体验和设备的高档感。同时,该机构不存在力值衰减的风险,即使长时间使用也很难失效,很好地解决了以往技术中气弹簧在使用 一段时间后出现漏气及力值衰减的问题。
上述实施例五中虽然是以蜗轮蜗杆传动机构为例进行了说明,但是可以理解地是,将蜗轮蜗杆传动机构替换为实施例四中的丝杠滑块和支撑杆的传动机构,亦可实现上述实施例中的各种技术效果,比如,将图4至图10中的蜗杆替换为丝杠、将蜗轮替换为滑块和支撑杆,并将支撑杆的一端作为力矩输出部,其他结构均可参见上述实施例四和实施例二的各个组件的具体结构描述。因此不再累述相关结构应用到丝杠滑块和支撑杆的传动机构的实施例,具体可参见上述各个实施例的相关结构。上述各个实施例中动力源32还可以设置在主机4内。
无论是蜗杆或丝杠作为传动轴,则在上述实施例五中,通过在支臂底座的背板上开设通孔用于支撑传动轴的一端端部,还可以通过独立的上述轴支撑座336,来开设用以容置传动轴的另一端端部的凹槽或通孔。或者通过两个独立的上述轴支撑座336来支撑传动轴的两端,从而水平架起传动轴。在此不再具体描述其相关结构,可参见上述各个实施例的详细说明。
上述各个实施例中均以升降支撑臂装置连接在主机4和控制面板2之间为例,当然本发明各个实施例中提供的升降支撑臂装置还可以连接在控制面板2与显示器1之间,用于实现对显示器1的升降。升降支撑臂装置的具体结构的变形可参见前文中的相关说明,将上述各个实施例中连接关系中的“主机4”替换为“控制面板2”,“控制面板2”替换为“显示器1”,即为连接在控制面板2与显示器1之间的升降支撑臂装置3的连接结构及连接关系,在此不再累述。
以上实施例仅表达了几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (29)

  1. 一种医疗检测设备,其特征在于,所述设备包括:
    控制面板;
    主机;及
    连接所述主机与所述控制面板的升降支撑臂装置,所述升降支撑臂装置包括:
    连杆部,所述连杆部的一端连接所述控制面板,所述连杆部的另一端可转动地连接在所述主机上;及
    包括传动轴和力矩转换件的传动机构,所述传动机构连接到所述主机上,所述传动轴的一端连接到动力源,并且所述传动轴能够在动力源输出的驱动力的驱动下绕传动轴自身的纵向轴线转动,所述力矩转换件上设置力矩输出部用以连接所述连杆部,所述传动轴通过传动轴与力矩转换件之间的运动作用将所述转动力转化为驱动所述连杆部绕所述连杆部的另一端旋转的转动力,使所述连杆部相对于所述主机在垂直方向上转动。
  2. 根据权利要求1所述的医疗检测设备,其特征在于,所述连杆部采用包括从动件和主动件的平面连杆机构,所述从动件和主动件的转动支点固定在所述主机上,所述控制面板水平连接在所述从动件上,所述主动件连接所述力矩输出部,通过所述平面连杆机构将所述转动运动转化为使所述控制面板在垂直面上始终水平设置的升降运动。
  3. 根据权利要求1所述的医疗检测设备,其特征在于,所述升降支撑臂装置还包括:弹簧组件,所述弹簧组件的一端可转动连接于所述主机上,所述弹簧组件的另一端可转动连接在所述连杆部上。
  4. 根据权利要求3所述的医疗检测设备,其特征在于,所述连杆部具有用于容置所述弹簧组件的收容腔。
  5. 根据权利要求1所述的医疗检测设备,其特征在于,所述动力源包括具有第一输出轴的电动驱动源并且所述传动轴的一端连接所述第一输出轴; 和/或
    所述动力源包括具有第二输出轴的手动驱动手柄,并且所述传动轴的一端设置有供所述第二输出轴可拆卸连接的卡接位。
  6. 根据权利要求5所述的医疗检测设备,其特征在于,所述第一输出轴与所述传动轴通过联轴器连接。
  7. 根据权利要求1所述的医疗检测设备,其特征在于,所述传动机构采用以下方式之一实现:
    所述传动机构为蜗轮蜗杆传动机构,所述传动轴为蜗杆,所述力矩转换件为蜗轮,在所述蜗轮上设置力矩输出部并与所述连杆部连接;和,
    所述传动机构包括:丝杠、滑块和支撑杆,所述传动轴为丝杠,所述力矩转换件为滑块和支撑杆,所述丝杠的端部连接所述输出轴,所述滑块位于所述丝杠上,所述支撑杆的一端可转动地连接于所述滑块,所述支撑杆的另一端为所述力矩输出部并可转动地连接于所述连杆部。
  8. 根据权利要求7所述的医疗检测设备,其特征在于,所述蜗轮为扇形结构,所述蜗轮的圆弧面设置有与所述蜗杆咬合的齿,所述蜗轮上的半径断面为所述传动机构的力矩输出部并与所述连杆部连接。
  9. 根据权利要求7所述的医疗检测设备,其特征在于,所述连杆部的转动中心与所述蜗轮的转动转轴中心重合。
  10. 根据权利要求4所述的医疗检测设备,其特征在于,所述连杆部包括至少一个连杆件,其中至少一个连杆件包括第一条状板、第二条状板和中间板,所述第一条状板和第二条状板平行设置,所述中间板连接在所述第一条状板和第二条状板之间形成容置槽腔获得所述收容腔,或者两个连杆件上形成的所述容置槽腔扣合获得所述收容腔。
  11. 根据权利要求2所述的医疗检测设备,其特征在于,所述平面连杆机构为平面四连杆机构,该平面四连杆机构包括:支臂上连杆、支臂下连杆和支臂顶座;所述支臂上连杆和支臂下连杆的一端为所述转动支点分别与所述主机可转动连接,所述支臂上连杆和支臂下连杆的另一端分别与所述支臂 顶座可转动地连接,所述支臂顶座连接到所述控制面板,所述主动件为支臂上连杆或支臂下连杆。
  12. 根据权利要求11所述的医疗检测设备,其特征在于,所述支臂上连杆和支臂下连杆的长度相同,且所述支臂上连杆和支臂下连杆平行设置。
  13. 根据权利要求11所述的医疗检测设备,其特征在于,所述平面四连杆机构还包括支臂底座,所述传动机构为蜗轮蜗杆传动机构,所述蜗轮的转轴中心与所述支臂下连杆或支臂上连杆的转轴中心重合、并且均可转动连接在支臂底座上,所述支臂底座固定在主机上或者与主机为一体。
  14. 根据权利要求13所述的医疗检测设备,其特征在于,所述支臂底座包括第一垂直支撑壁和第二垂直支撑壁,所述第一垂直支撑壁和第二垂直支撑壁上分别开设有位置对应的通孔,通过将支臂转轴依次穿过所述第一垂直支撑壁上设置的通孔、所述支臂上连杆和所述支臂下连杆上开设的通孔、所述第二垂直支撑壁上设置的通孔后,将所述支臂上连杆和支臂下连杆通过支臂转轴可转动连接于支臂底座上;和/或,
    所述支臂顶座包括垂直于所述水平台面的垂直侧壁,在所述垂直侧壁上开设有通孔,通过支臂转轴穿过所述垂直侧壁上的通孔、以及在所述支臂上连杆和支臂下连杆上开设的通孔后,将所述支臂上连杆和支臂下连杆通过所述支臂转轴可转动连接于所述支臂顶座上。
  15. 根据权利要求13所述的医疗检测设备,其特征在于,所述支臂底座具有一背板,所述背板垂直于所述支臂底座的第一垂直支撑壁和第二垂直支撑壁,所述背板上开设通孔用于支撑所述传动轴的一端端部。
  16. 根据权利要求14所述的医疗检测设备,其特征在于,所述传动轴的一端穿过所述背板上开设的通孔而形成外露部分,该外露部分上设置用于连接手动驱动手柄的连接装置。
  17. 根据权利要求15所述的医疗检测设备,其特征在于,所述设备还包括:轴支撑座,所述轴支撑座垂直固定在所述主机上,所述轴支撑座开设有用以容置所述传动轴的另一端端部的凹槽或通孔。
  18. 根据权利要求11所述的医疗检测设备,其特征在于,在所述支臂下连杆和所述支臂上连杆上均设置有沿长度方向的容置槽腔,所述支臂下连杆和所述支臂上连杆平行抵靠后两者的容置槽腔形成用以容置弹簧组件的收容腔,所述弹簧组件的一端可转动连接于所述主机上,所述弹簧组件的另一端可转动连接在所述从动件上。
  19. 据权利要求3或18所述的医疗检测设备,其特征在于,所述弹簧组件包括弹簧、弹簧导筒、弹簧导杆、弹簧转轴、弹簧卡销,所述弹簧导筒为内部中空的筒状结构,所述弹簧导筒的外表面套装弹簧,所述弹簧导杆插入弹簧导筒内,所述弹簧导杆外露于所述弹簧导筒端部的部分开设有通孔、以供所述弹簧卡销插入后将所述弹簧导杆可转动连接于所述从动件上,所述弹簧导筒背离所述弹簧卡销的一端开设有通孔、以供所述弹簧转轴插入后将所述弹簧导筒可转动连接于所述主机上。
  20. 一种医疗检测设备,其特征在于,所述设备包括:
    显示器;
    控制面板;
    主机;及
    连接所述控制面板与所述显示器的升降支撑臂装置,所述升降支撑臂装置包括:
    连杆部,所述连杆部的一端连接所述显示器,所述连杆部的另一端可转动地连接在所述控制面板上;及
    包括传动轴和力矩转换件的传动机构,所述传动机构连接到所述控制面板上,所述传动轴的一端连接到动力源,并且所述传动轴能够在动力源输出的驱动力的驱动下绕传动轴自身的纵向轴线转动,所述力矩转换件上设置力矩输出部用以连接所述连杆部,通过传动轴与力矩转换件之间的运动作用将所述转动力转化为驱动所述连杆部绕所述连杆部的另一端旋转的转动力,使所述连杆部相对于所述主机在垂直方向上转动。
  21. 根据权利要求20所述的医疗检测设备,其特征在于,所述连杆部采用包括从动件和主动件的平面连杆机构,所述从动件和主动件的转动支点固定在所述控制面板上,所述显示器水平连接在所述从动件上,所述主动件连接所述力矩输出部,通过所述平面连杆机构将所述转动运动转化为使所述显示器在垂直面上始终水平设置的升降运动。
  22. 根据权利要求20所述的医疗检测设备,其特征在于,所述升降支撑臂装置还包括:弹簧组件,所述弹簧组件的一端可转动连接于所述控制面板上,所述弹簧组件的另一端可转动连接在所述连杆部上。
  23. 根据权利要求20所述的医疗检测设备,其特征在于,所述动力源包括具有第一输出轴的电动驱动源并且所述传动轴的一端连接所述第一输出轴;和/或
    所述动力源包括具有第二输出轴的手动驱动手柄,并且所述传动轴的一端设置有供所述第二输出轴可拆卸连接的卡接位。
  24. 根据权利要求20所述的医疗检测设备,其特征在于,所述传动机构采用以下方式之一实现:
    所述传动机构为蜗轮蜗杆传动机构,所述传动轴为蜗杆,所述力矩转换件为蜗轮,在所述蜗轮上设置力矩输出部并与所述连杆部连接;
    所述传动机构包括:丝杠、滑块和支撑杆,所述传动轴为丝杠,所述力矩转换件为滑块和支撑杆,所述丝杠的端部连接所述输出轴,所述滑块位于所述丝杠上,所述支撑杆的一端可转动地连接于所述滑块,所述支撑杆的另一端为所述力矩输出部并可转动地连接于所述连杆部。
  25. 根据权利要求24所述的医疗检测设备,其特征在于,所述蜗轮为扇形结构,所述蜗轮的圆弧面设置有与所述蜗杆咬合的齿,所述蜗轮上的半径断面为所述传动机构的力矩输出部并与所述连杆部连接。
  26. 根据权利要求24所述的医疗检测设备,其特征在于,所述连杆部的转动中心与所述蜗轮的转动转轴中心重合。
  27. 根据权利要求20所述的医疗检测设备,其特征在于,所述传动轴的 一端上设置有用于连接手动驱动手柄的连接装置。
  28. 根据权利要求20所述的医疗检测设备,其特征在于,所述设备还包括:轴支撑座,所述轴支撑座垂直固定在所述控制面板上,所述轴支撑座开设有用以容置所述传动轴的另一端端部的凹槽或通孔。
  29. 据权利要求22所述的医疗检测设备,其特征在于,所述弹簧组件包括弹簧、弹簧导筒、弹簧导杆、弹簧转轴、弹簧卡销,所述弹簧导筒为内部中空的筒状结构,所述弹簧导筒的外表面套装弹簧,所述弹簧导杆插入弹簧导筒内,所述弹簧导杆外露于所述弹簧导筒端部的部分开设有通孔、以供所述弹簧卡销插入后将所述弹簧导杆可转动连接于所述从动件上,所述弹簧导筒背离所述弹簧卡销的一端开设有通孔、以供所述弹簧转轴插入后将所述弹簧导筒可转动连接于所述控制面板上。
PCT/CN2015/095400 2015-11-24 2015-11-24 医疗检测设备 WO2017088108A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201590001561.1U CN209548000U (zh) 2015-11-24 2015-11-24 医疗检测设备
PCT/CN2015/095400 WO2017088108A1 (zh) 2015-11-24 2015-11-24 医疗检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/095400 WO2017088108A1 (zh) 2015-11-24 2015-11-24 医疗检测设备

Publications (1)

Publication Number Publication Date
WO2017088108A1 true WO2017088108A1 (zh) 2017-06-01

Family

ID=58762844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095400 WO2017088108A1 (zh) 2015-11-24 2015-11-24 医疗检测设备

Country Status (2)

Country Link
CN (1) CN209548000U (zh)
WO (1) WO2017088108A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237381A (zh) * 2019-07-11 2019-09-17 南京晨伟医疗设备有限公司 一种麻醉机钠石灰罐自动升降装置
CN110292497A (zh) * 2019-06-06 2019-10-01 浙江工业大学 一种角度可控辅助翻身四连杆机构
CN113511411A (zh) * 2021-05-24 2021-10-19 郭玉 一种用于模具生产的金属模板除锈储存装置
CN113599693A (zh) * 2021-07-16 2021-11-05 合肥凯利光电科技有限公司 胃肠动力治疗仪
CN114344631A (zh) * 2022-01-07 2022-04-15 重庆医科大学 一种安全有效的静脉输液装置系统
CN114484202A (zh) * 2022-01-25 2022-05-13 中川新迈科技有限公司 一种手动、自动双切换升降旋转装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7527153B2 (ja) 2020-08-18 2024-08-02 キヤノンメディカルシステムズ株式会社 超音波診断装置
CN114469165A (zh) * 2020-10-26 2022-05-13 深圳迈瑞生物医疗电子股份有限公司 一种超声设备
CN114305360B (zh) * 2021-12-31 2024-08-23 浙江善时生物药械(商丘)有限公司 血压或血流动力学检测感应器的智能驱动装置
CN114305361B (zh) * 2021-12-31 2024-08-27 浙江善时生物药械(商丘)有限公司 用于动脉血压或血流检测器的感应器的智能垂直驱动装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109620A (ja) * 1989-08-30 1991-05-09 Toshiba Corp 超音波診断装置
CN101929596A (zh) * 2009-06-19 2010-12-29 深圳迈瑞生物医疗电子股份有限公司 一种显示设备支撑装置
CN103006257A (zh) * 2011-09-27 2013-04-03 深圳迈瑞生物医疗电子股份有限公司 一种显示设备支撑装置及其超声诊断仪
US20130168511A1 (en) * 2012-01-03 2013-07-04 Samsung Medison Co., Ltd. Ultrasonic diagnostic apparatus
CN203099261U (zh) * 2012-12-06 2013-07-31 深圳市贝斯达医疗器械有限公司 一种彩超显示器摇臂升降装置
US20140366674A1 (en) * 2013-06-14 2014-12-18 Ergotron, Inc. Arm locking system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109620A (ja) * 1989-08-30 1991-05-09 Toshiba Corp 超音波診断装置
CN101929596A (zh) * 2009-06-19 2010-12-29 深圳迈瑞生物医疗电子股份有限公司 一种显示设备支撑装置
CN103006257A (zh) * 2011-09-27 2013-04-03 深圳迈瑞生物医疗电子股份有限公司 一种显示设备支撑装置及其超声诊断仪
US20130168511A1 (en) * 2012-01-03 2013-07-04 Samsung Medison Co., Ltd. Ultrasonic diagnostic apparatus
CN203099261U (zh) * 2012-12-06 2013-07-31 深圳市贝斯达医疗器械有限公司 一种彩超显示器摇臂升降装置
US20140366674A1 (en) * 2013-06-14 2014-12-18 Ergotron, Inc. Arm locking system and method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110292497A (zh) * 2019-06-06 2019-10-01 浙江工业大学 一种角度可控辅助翻身四连杆机构
CN110292497B (zh) * 2019-06-06 2024-03-26 浙江工业大学 一种角度可控辅助翻身四连杆机构
CN110237381A (zh) * 2019-07-11 2019-09-17 南京晨伟医疗设备有限公司 一种麻醉机钠石灰罐自动升降装置
CN110237381B (zh) * 2019-07-11 2024-06-18 南京晨伟医疗设备有限公司 一种麻醉机钠石灰罐自动升降装置
CN113511411A (zh) * 2021-05-24 2021-10-19 郭玉 一种用于模具生产的金属模板除锈储存装置
CN113599693A (zh) * 2021-07-16 2021-11-05 合肥凯利光电科技有限公司 胃肠动力治疗仪
CN113599693B (zh) * 2021-07-16 2024-05-24 合肥凯利光电科技有限公司 胃肠动力治疗仪
CN114344631A (zh) * 2022-01-07 2022-04-15 重庆医科大学 一种安全有效的静脉输液装置系统
CN114484202A (zh) * 2022-01-25 2022-05-13 中川新迈科技有限公司 一种手动、自动双切换升降旋转装置

Also Published As

Publication number Publication date
CN209548000U (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
WO2017088108A1 (zh) 医疗检测设备
CN111358488B (zh) 浮动机构及其超声诊断仪
CN205144598U (zh) 用于医疗设备的操作面板浮动装置及超声诊断设备
US20150105660A1 (en) Carriage for ultrasonic diagnosis device
JP2005504605A (ja) 手術台
CN102537608A (zh) 升降系统
JP2010523851A (ja) モジュール式ガレージ収納
JP2011147786A (ja) 超音波診断装置
WO2024040923A1 (zh) 旋转机构、座椅结构总成及车辆
CN213309859U (zh) 一种床旁触摸式超声设备
JP3232917U (ja) 介護ベッド用昇降装置及びその介護ベッド
WO2024040939A1 (zh) 抬升机构、座椅结构总成及车辆
CN111657688B (zh) 一种升降抽屉
JP2004129932A (ja) 什器等の昇降装置
CN108944618B (zh) 车辆的升降装置
CN116250934A (zh) 单端口手术机器人系统
JP4008769B2 (ja) 展示装置
CN112654292B (zh) 台式超声设备
CN211611332U (zh) 升降机构及诊疗床
CN110840474B (zh) 一种医学摄影机架及医学摄影系统
CN212996495U (zh) 一种床旁触摸式超声设备
RU2638422C2 (ru) Механизм наклона прямого привода для медицинских устройств для ухода за детьми
CN213097972U (zh) 一种床旁触摸式超声设备
JPH08391A (ja) 椅子の背凭れの上下調整装置
CN212996493U (zh) 触控式床旁超声设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.10.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15909020

Country of ref document: EP

Kind code of ref document: A1