WO2017084376A1 - 新一代高容量高电压双电解液铝空气微流体电池 - Google Patents

新一代高容量高电压双电解液铝空气微流体电池 Download PDF

Info

Publication number
WO2017084376A1
WO2017084376A1 PCT/CN2016/090973 CN2016090973W WO2017084376A1 WO 2017084376 A1 WO2017084376 A1 WO 2017084376A1 CN 2016090973 W CN2016090973 W CN 2016090973W WO 2017084376 A1 WO2017084376 A1 WO 2017084376A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
plate
anode
cathode
anolyte
Prior art date
Application number
PCT/CN2016/090973
Other languages
English (en)
French (fr)
Inventor
刘富德
王雷
郑大伟
Original Assignee
广州道动新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州道动新能源有限公司 filed Critical 广州道动新能源有限公司
Publication of WO2017084376A1 publication Critical patent/WO2017084376A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the field of battery technology, and in particular to a new generation high-capacity high-voltage double electrolyte aluminum air microfluidic battery.
  • Battery means a space in a cup, tank or other container or composite container containing an electrolyte solution and a metal electrode to generate electrical current, a device that converts chemical energy into electrical energy.
  • the battery As an energy source, it is possible to obtain a current with a stable voltage, a stable current, a stable power supply for a long time, and little influence from the outside, and the battery has a simple structure and is convenient to carry, and the charging and discharging operation is simple and easy, and is free from external climate and temperature.
  • the impact, stable and reliable performance plays a big role in all aspects of modern social life.
  • Aluminum air batteries are attracting attention due to their high energy density, light weight, safety, and low cost.
  • A1 (containing 99.99% aluminum) as the negative electrode, oxygen as the positive electrode, potassium hydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution as the electrolyte, oxygen in the air as the oxidant, chemical reaction when the battery is discharged, aluminum and Oxygen is ultimately converted to alumina.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the object of the present invention is to provide a new generation high-capacity high-voltage double-electrolyte aluminum air microfluidic battery for the deficiencies of the prior art, which fundamentally solves the problem of self-corrosion of an aluminum electrode in an electrolyte in an aluminum air battery, thereby The capacity of the aluminum air battery is remarkably improved, and since the anolyte is alkaline and the catholyte is acidic, the voltage of the battery can be significantly improved.
  • the present invention achieves the object by the following technical solutions - a new generation of high capacity high voltage double electrolyte aluminum air microfluidic cells, including anode plates, cathode plates, and in a flowing state
  • the electrolyte solution includes an anolyte and a catholyte, and further includes an anode pipe and a cathode pipe for respectively conveying the anolyte and the catholyte, wherein the anode pipe and the cathode pipe correspond to the anode plate.
  • the cathode plate is connected to form an ion conducting inner cavity, and the ion conducting inner cavity is further provided with a diaphragm.
  • the diaphragm is disposed between the anode pipe and the cathode pipe, and the anode plate is connected with the anode pipe and the anolyte Contacting, the cathode plate is in communication with the cathode tube and is in contact with the catholyte, the anode plate is an aluminum plate, the cathode plate is an air electrode, the anolyte is a strong alkali organic solution, and the catholyte is acidic Aqueous solution.
  • the anolyte and the catholyte have the same flow direction in the ion-conducting inner cavity.
  • the anolyte and the catholyte are in a stratified flow state in the ion conducting inner cavity.
  • the strong alkali organic solution is any one of an organic solution of potassium hydroxide, an organic solution of sodium hydroxide or an organic solution of lithium hydroxide.
  • the solvent in the strong alkali organic solution is methanol.
  • the concentration of the strong alkali organic solution is from 1 to 6 mol/L.
  • the acidic aqueous solution is any one of an aqueous sulfuric acid solution, an aqueous hydrochloric acid solution, or an aqueous solution of nitric acid.
  • the concentration of the acidic aqueous solution is from 1 to 6 mol/L.
  • the separator is carbon paper.
  • the separator is an anion exchange membrane.
  • a new generation high-capacity high-voltage double-electrolyte aluminum air microfluidic battery of the present invention comprising an anode plate, a cathode plate and an electrolyte in a flowing state, the electrolyte comprising
  • the anolyte and the catholyte further include an anode pipe and a cathode pipe for respectively conveying the anolyte and the catholyte, and the anode pipe and the cathode pipe are connected to each other to form an ion conduction in correspondence with the anode plate and the cathode plate.
  • a porous membrane is disposed in the ion conducting inner cavity, the porous membrane is disposed between the anode conduit and the cathode conduit, and the anode plate is in communication with the anode conduit and is in contact with the anolyte, the cathode plate and the cathode
  • the pipe is connected to and in contact with the catholyte, the anode plate is an aluminum plate, the cathode plate is an air electrode, the anolyte is a strong alkali organic solution, the catholyte is an acidic aqueous solution, and the aluminum plate electrode of the invention is not It will react with the non-aqueous anolyte to cause self-corrosion reaction, which fundamentally solves the problem of aluminum battery in the air battery.
  • the problem of self-corrosion in the electrolyte, and the aluminum air battery is significantly improved
  • the capacity, and through the acidic and alkaline electrolytes, can significantly increase the voltage of the aluminum air battery.
  • FIG. 1 is a schematic structural view of a new generation high-capacity ⁇ voltage double electrolyte aluminum air levitation fluid battery of the present invention.
  • the new generation high-capacity high-voltage double-electrolyte aluminum air microfluidic battery of the embodiment includes an anode plate 1, a cathode plate 2, and an electrolyte in a flowing state, and the electrolyte includes an anolyte 3
  • the catholyte 4 further includes an anode pipe 5 and a cathode pipe 6 for respectively transporting the anolyte 3 and the catholyte 4, and the anode pipe 5 and the cathode pipe 6 correspond to the anode plate 1 and the cathode plate 2 Connecting to form an ion conducting inner cavity, wherein the ion conducting inner cavity is further provided with a diaphragm 7 disposed between the anode pipe 5 and the cathode pipe 6, the anode plate 1 communicating with the anode pipe 5 and the anode
  • the electrolyte plate 3 is in contact with the cathode plate 2 and is in contact with the catholyte 4, the anode plate
  • the flow directions of the anolyte 3 and the catholyte 4 in the ion-conducting cavity are the same, and the anolyte 3 and the catholyte 4 are in a stratified flow state in the ion-conducting cavity, in order to ensure hydrogen.
  • the potassium oxide organic solution and the sulfuric acid water are in a laminar flow state without turbulence, and the flow velocity of each electrolyte can be determined by the range of the Reynolds number Re, and the flow velocity of each of the electrolytes is controlled by the pump body.
  • v, p, and ⁇ are the flow rate, density, and viscosity coefficient of the electrolyte, respectively, and d is a characteristic length. For example, if the electrolyte flows through a circular pipe, d is the equivalent diameter of the pipe.
  • the anode pipe 5 and the cathode pipe 6 have the same size, and each has a size of 3 mm ⁇ 40 mm ⁇ 1 mm (length X width X height), and the potassium hydroxide organic solution and the sulfuric acid aqueous solution are The flow rate is the same, both are 0.065 ml min" 1 0 Further preferably, the concentration of the oxidized solution is 3 mol/L.
  • the concentration of the aqueous sulfuric acid solution is 3 mol/L.
  • the diaphragm 7 is carbon paper.
  • the working principle of the new generation high-capacity high-voltage double-electrolyte aluminum air microfluidic battery of the present embodiment passes the microfluidic technology (through the electrolyte flow pipe, the electrolyte in the flowing state) and the carbon paper Separation of the anolyte 3 from the catholyte 4 is achieved.
  • the anode plate 1 aluminum electrode
  • the cathode plate 2 air electrode
  • potassium ions in the potassium hydroxide organic solution migrate into the aqueous sulfuric acid solution. Since the anolyte 3 is a non-aqueous organic solution, the self-corrosion of aluminum is effectively suppressed, and the problem of self-corrosion of the aluminum plate (aluminum electrode) in the electrolyte in the aluminum air battery is fundamentally solved, and the corrosion is remarkably improved.
  • the capacity of the aluminum air battery, and by using both acidic and alkaline electrolytes, can significantly increase the voltage of the aluminum air battery.
  • the new generation high-capacity high-voltage double-electrolyte aluminum air microfluidic battery of the embodiment includes an anode plate 1, a cathode plate 2 and an electrolyte in a flowing state, and the electrolyte includes an anolyte 3 and a catholyte 4, Further, an anode pipe 5 and a cathode pipe 6 for respectively conveying the anolyte 3 and the catholyte 4 are provided, and the anode pipe 5 and the cathode pipe 6 are connected to each other at an anode plate 1 and a cathode plate 2 to constitute an ion conduction.
  • a porous membrane 7 is disposed in the ion-conducting lumen, and the porous membrane 7 is disposed between the anode conduit 5 and the cathode conduit 6, and the anode plate 1 is in communication with the anode conduit 5 and is in contact with the anolyte 3.
  • the cathode plate 2 is in communication with the cathode tube 6 and is in contact with the catholyte 4, the anode plate 1 is an aluminum plate, the cathode plate 2 is an air electrode, and the anolyte 3 is an organic solution of sodium hydroxide.
  • the catholyte 4 is an aqueous hydrochloric acid solution.
  • the concentration of the hydroxide pin organic solution is 6 mol/L.
  • the concentration of the aqueous hydrochloric acid solution is 6 mol!/L.
  • the separator 7 is an anion exchange membrane.
  • the new generation high-capacity high-voltage double-electrolyte aluminum air levitation fluid battery of the embodiment includes an anode plate 1, a cathode plate 2 and an electrolyte in a flowing state, and the electrolyte includes an anolyte 3 and a catholyte 4, Further, an anode pipe 5 and a cathode pipe 6 for respectively conveying the anolyte 3 and the catholyte 4 are provided, and the anode pipe 5 and the cathode pipe 6 are connected to each other at an anode plate 1 and a cathode plate 2 to constitute an ion conduction.
  • a porous membrane 7 is disposed in the ion-conducting lumen, and the porous membrane 7 is disposed between the anode conduit 5 and the cathode conduit 6, and the anode plate 1 is in communication with the anode conduit 5 and is in contact with the anolyte 3.
  • the cathode plate 2 is in communication with the cathode tube 6 and is in contact with the catholyte 4, the anode plate 1 is an aluminum plate, the cathode plate 2 is an air electrode, and the anolyte 3 is an organic solution of lithium hydroxide.
  • the catholyte 4 is an aqueous solution of nitric acid.
  • the concentration of the cerium hydroxide organic solution is 1 mol/L.
  • the concentration of the aqueous nitric acid solution is 1 mol/L.
  • the separator 7 is carbon paper.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种新一代高容量高电压双电解液铝空气微流体电池,包括阳极板、阴极板以及处于流动状态的电解液,所述电解液包括阳极电解液、阴极电解液,还包括分别用于输送阳极电解液、阴极电解液的阳极管道、阴极管道,所述阳极管道、阴极管道在对应于阳极板、阴极板处连通构成一离子传导内腔,离子传导内腔中还设置有多孔隔膜,所述阳极板为铝板,阴极板为空气电极,所述阳极电解液为强碱有机溶液,阴极电解液为酸性水溶液,本发明的铝板不会与非水性的阳极电解液发生自腐饨反应,从根本上解决了铝空气电池中铝电极在电解液中的自腐饨问题,显著地提高了铝空气电池的容量,而i通过酸性和碱性两种电解液,可显著提高铝空气电池的电压。

Description

新一代高容量高电压双电解液铝空气徼流体电池
技术领域
本发明涉及电池技术领域, 具体涉及一种新一代高容量高电压双电解液铝空气微 流体电池。
背景技术
电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、 槽或其他容器或复合容 器的部分空间, 能将化学能转化成电能的装置。 利用电池作为能量来源, 可以得到具有稳定 电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并旦电池结构简单,携带方便, 充放电操作简便易行, 不受外界气候和温度的影响, 性能稳定可靠, 在现代社会生活中的各 个方面发挥有很大作用。
铝空气电池因具备高能量密度、 质量轻、 安全、 便宜等优点而备受关注, 其以高纯度铝
A1 (含铝 99.99% )做为负极、 氧为正极, 以氢氧化钾 (KOH )或氢氧化钠 (NaOH )水溶液 为电解质, 空气中的氧为氧化剂, 在电池放电时产生化学反应, 铝和氧作用最终转化为氧化 铝。 但是, 铝质电极板在电解液中的自腐蚀现象十分严重, 制约了铠空气电池发展。 针对此 问题, 目前采用较多的两种解决办法是: (1 ) 使 κ添加了微量元素的铝合金作为电池的阳 极; (2 ) 在电解液溶液加添加剂, 以减缓铝电极的自腐蚀速率。 上述两种方法虽然能够在 一定程度起到抑制铝电极的自腐蚀的作 /¾, 然而效果并不显著, 不能从根本上解决铝空气电 池的铝质电极板自腐蚀的问题。 发明内容
本发明的目的在于针对现有技术的不足提供一种新一代高容量高电压双电解液铝 空气微流体电池, 从根本上解决了铝空气电池中铝电极在电解液中的自腐蚀问题, 从而显著 地提高了铝空气电池的容量, 而且, 由于阳极电解液呈碱性、 阴极电解液呈酸性, 电池的电 压可得到显著提升。
本发明通过以下技术方案实现该目的- 新一代高容量高电压双电解液铝空气微流体电池, 包括阳极板、 阴极板以及处于流动状 态的电解液, 所述电解液包括阳极电解液、 阴极电解液, 还包括分别用于输送阳极电解液、 阴极电解液的阳极管道、 阴极管道, 所述阳极管道、 阴极管道在对应于阳极板、 阴极板处连 通构成一离子传导內腔, 所述离子传导内腔中还设置有隔膜, 所述隔膜设置于阳极管道与阴 极管道之间, 所述阳极板与阳极管道连通并与阳极电解液接触, 所述阴极板与阴极管道连通 并与阴极电解液接触, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱 有机溶液, 所述阴极电解液为酸性水溶液。
其中, 所述阳极电解液、 阴极电解液在离子传导内腔中的流向相同。
其中, 所述阳极电解液、 阴极电解液在离子传导内腔中呈分层流动状态。
作为优选的技术方案, 所述强碱有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢 氧化锂有机溶液中的任意一种。 作为优选的技术方案, 所述强碱有机溶液中的溶剂为甲醇。
作为迸一步优选的, 所述强碱有机溶液的浓度为 l〜6mol/L。
作为优选的技术方案, 所述酸性水溶液为硫酸水溶液、盐酸水溶液或硝酸水溶液中的任 意一种。
作为进一步优选的, 所述酸性水溶液的浓度为 l〜6mol/L。
作为优选的技术方案, 所述隔膜为碳纸。
作为另一优选的技术方案, 所述隔膜为阴离子交换膜。
相对于现有技术, 本发明的有益效果为: 本发明的新一代高容量高电压双电解 液铝空气微流体电池, 包括阳极板、 阴极板以及处于流动状态的电解液, 所述电解液包括阳 极电解液、 阴极电解液, 还包括分别用于输送阳极电解液、 阴极电解液的阳极管道、 阴极管 道, 所述阳极管道、 阴极管道在对应于阳极板、 阴极板处连通构成一离子传导内腔, 所述离 子传导内腔中还设置有多孔隔膜, 所述多孔隔膜设置于阳极管道与阴极管道之间, 所述阳极 板与阳极管道连通并与阳极电解液接触, 所述阴极板与阴极管道连通并与阴极电解液接触, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱有机溶液, 所述阴极电 解液为酸性水溶液, 本发明的铝板电极不会与非水性的阳极电解液发生自腐蚀反应, 认 根本上解决了铠空气电池中铝电极在电解液中的自腐蚀问题,丛而显著地提高了铝空气电池 的容量, 而且通过酸性和碱性两种电解液, 可显著提高铝空气电池的电压。
图说明
图 1为本发明的新一代高容量髙电压双电解液铝空气徵流体电池的结构示意图。
图中: 1-阳极板, 2 阴极板, 3 阳极电解液, 4 -阴极电解液, 5 阳极管道, 6-阴极管道, 7-隔膜。
具体实施方式
以下结合 图及具体实施例对本发明进行详细描述。 实施例 1。
如图 i所示, 本实施例的新一代高容量高电压双电解液铝空气微流体电池, 包括阳极板 1、 阴极板 2以及处于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还 包括分别用于输送阳极电解液 3、阴极电解液 4的阳极管道 5、阴极管道 6,所述阳极管道 5、 阴极管道 6在对应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述离子传导内腔中 还设置有隔膜 7, 所述隔膜 7设置于阳极管道 5与阴极管道 6之间, 所述阳极板 1与阳极管 道 5连通并与阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化钾有机溶液, 所述阴极电解液 4为硫酸水溶液。
其中, 所述阳极电解液 3、 阴极电解液 4在离子传导内腔中的流向相同, 且所述阳极电 解液 3、 阴极电解液 4在离子传导内腔中呈分层流动状态, 为了保证氢氧化钾有机溶液与硫 酸水溶处于层流状态而不发生湍流现象,可通过雷诺数 Re的范围确定各电解液的流动速度, 所述各电解液的流动速度有泵体进行控制。
Re=p vd/μ
其中, v、 p 、 μ分别为电解液的流速、 密度与黏性系数, d为一特征长度, 例如电解 液流过圆形管道, 则 d为管道的当量直径。
其中, 本实施例的双电解液结构电池中, 所述阳极管道 5和阴极管道 6的尺寸相同, 均 为 3mmX 40mmX lmm (长 X宽 X高) , 所述氢氧化钾有机溶液、 硫酸水溶液的流速相同, 均为 0.065 ml min"1 0 作为进一步优选的, 所述氢氧化押有 溶液的浓度为 3mol/L。
作为进一步优选的, 所述硫酸水溶液的浓度为 3mol/L。 作为优选的技术
方案, 所述隔膜 7为碳纸。
本实施例的新一代高容量高电压双电解液铝空气微流体电池的工作原理- 本实施例的微流体电池通过微流体技术(通过电解液流动管道、处于流动状态的电解液) 以及碳纸实现阳极电解液 3与阴极电解液 4的分离。 电池使用过程中, 阳极板 1 (铝电极) 在碱性的氢氧化钾有机溶液中被氧化,释放电子,电子通过外电路到达阴极板 2(空气电极), 参与氧气在空气电极处发生还原反应, 为了维持电荷平衡, 氢氧化钾有机溶液中的钾离子向 硫酸水溶液中迁移。 由于阳极电解液 3为非水系的有机溶液, 因此铝的自腐蚀得到了有效抑 制, 从根本上解决了铝空气电池中铝板(铝电极)在电解液中的自腐饨问题, 而显著地提 高了铝空气电池的容量, 而且通过采用酸性和碱性两种电解液, 可显著提高铝空气电池的电 压。
实施例 2。
本实施例的新一代高容量高电压双电解液铝空气微流体电池, 包括阳极板 1、 阴极板 2 以及处于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还包括分别用 于输送阳极电解液 3、 阴极电解液 4的阳极管道 5、 阴极管道 6, 所述阳极管道 5、 阴极管道 6在对应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述离子传导内腔中还设置有 多孔隔膜 7, 所述多孔隔膜 7设置于阳极管道 5与阴极管道 6之间, 所述阳极板 1与阳极管 道 5连通并与阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化钠有机溶液, 所述阴极电解液 4为盐酸水溶液。
作为迸一步优选的, 所述氢氧化销有机溶液的浓度为 6mol/L。
作为进一步优选的, 所述盐酸水溶液的浓度为 6mo!/L。
作为优选的技术方案, 所述隔膜 7为阴离子交换膜。
本实施例的其它技术特征同实施例 1 , 在此不再进行赘述。 实施例 3。
本实施例的新一代高容量高电压双电解液铝空气徵流体电池, 包括阳极板 1、 阴极板 2 以及处于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还包括分别用 于输送阳极电解液 3、 阴极电解液 4的阳极管道 5、 阴极管道 6, 所述阳极管道 5、 阴极管道 6在对应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述离子传导内腔中还设置有 多孔隔膜 7, 所述多孔隔膜 7设置于阳极管道 5与阴极管道 6之间, 所述阳极板 1与阳极管 道 5连通并与阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化锂有机溶液, 所述阴极电解液 4为硝酸水溶液。
作为进一步优选的, 所述氢氧化锃有机溶液的浓度为 lmol/L。
作为进一步优选的, 所述硝酸水溶液的浓度为 lmol/L。
作为优选的技术方案, 所述隔膜 7为碳纸。
本实施例的其它技术特征同实施例 1 , 在此不再进行赘述。 以上所述实施例仅表达了本发明的部分实施方式, 其描述较为具体和详细, 但并不 能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若千变形和改进, 这些都属于本实用 新型的保护范围。 因此, 本发明专利的保护范围应以所^权利要求为准。

Claims

权 利 要 求 书
1、 新一代高容量高电压双电解液铝空气微流体电池, 包括阳极板、 阴极板以及处于流 动状态的电解液, 其特征在于: 所述电解液包括阳极电解液、 阴极电解液, 还包括分别用于 输送阳极电解液、 阴极电解液的阳极管道、 阴极管道, 所述阳极管道、 阴极管道在对应于阳 极板、 阴极板处连通构成一离子传导内腔, 所述离子传导内腔中还设置有隔膜, 所述隔膜设 置于阳极管道与阴极管道之间, 所述阳极板与阳极管道连通并与阳极电解液接触, 所述阴极 板与阴极管道连通并与阴极电解液接触, 所述阳极板为铝板, 所述阴极板为空气电极, 所述 阳极电解液为强碱有机溶液, 所述阴极电解液为酸性水溶液。
2、 根据权利要求 1所述的新一代高容量高电压¾电解液铝空气微流体电池, 其特征在 -τ-: 所述阳极电解液、 阴极电解液在离子传导内腔中的流向相同。
3、 根据权利要求 2所述的新一代高容量高电压 ¾电解液铝空气微流体电池, 其特征在 于- 所述阳极电解液、 阴极电解液在离子传导内腔中呈分层流动状态。
4、 根据权利要求 1所述的新一代高容量高电压双电解液铝空气微流体电池, 其特征在 于- 所述强碱有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢氧化锂有机溶液中的任 意一种或两种以上的混合物。
5、 根据权利要求 4所述的新一代高容量高电压双电解液铝空气微流体电池, 其特征在 于: 所述强碱有机溶液的溶剂为甲醇。
6、 根据权利要求 4所述的新一代髙容量高电压¾电解液铝空气微流体电池, 其特征在 于- 所述强碱有机溶液的浓度为 l〜6moi/L。
7、 根据权利要求 i所述的新一代髙容量高电压¾电解液铝空气微流体电池, 其特征在 于: 所述酸性水溶液为硫酸水溶液、 盐酸水溶液或硝酸水溶液中的任意一种或两种以上的混 合物。
8、 根据权利要求 7所述的新一代高容量高电压双电解液铝空气微流体电池, 其特征在 于- 所述酸性水溶液的浓度为 l〜6moVL。
9、根据权利要求 1··8任意一项所述的新一代高容量高电压双电解液铝空气微流体电池, 其特征在于: 所述隔膜为碳纸。
10、根据权利要求 1-8任意一项所述的新一代高容量高电压双电解液铝空气微流体电池, 其特征在于: 所述隔膜为阴离子交换膜。
PCT/CN2016/090973 2015-11-19 2016-07-22 新一代高容量高电压双电解液铝空气微流体电池 WO2017084376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520925261.4 2015-11-19
CN201520925261.4U CN205319270U (zh) 2015-11-19 2015-11-19 新一代高容量高电压双电解液铝空气微流体电池

Publications (1)

Publication Number Publication Date
WO2017084376A1 true WO2017084376A1 (zh) 2017-05-26

Family

ID=56311829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090973 WO2017084376A1 (zh) 2015-11-19 2016-07-22 新一代高容量高电压双电解液铝空气微流体电池

Country Status (2)

Country Link
CN (1) CN205319270U (zh)
WO (1) WO2017084376A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205319270U (zh) * 2015-11-19 2016-06-15 广州道动新能源有限公司 新一代高容量高电压双电解液铝空气微流体电池
CN110233314A (zh) * 2019-06-28 2019-09-13 江苏大学 双电解液铝空气电池
CN110492144A (zh) * 2019-08-17 2019-11-22 哈尔滨工业大学 一种铝空气电池待机保护方法
CN112542596B (zh) * 2019-09-23 2023-07-11 易航时代(北京)科技有限公司 一种防自腐蚀金属空气电池及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084364A (zh) * 2004-11-19 2007-12-05 康奈尔研究基金会(有限公司) 双电解液无膜微通道燃料电池
CN102088115A (zh) * 2011-01-11 2011-06-08 中南大学 碱性铝电池碱性电解液的复合缓蚀剂、电解液及制备方法
CN205319270U (zh) * 2015-11-19 2016-06-15 广州道动新能源有限公司 新一代高容量高电压双电解液铝空气微流体电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084364A (zh) * 2004-11-19 2007-12-05 康奈尔研究基金会(有限公司) 双电解液无膜微通道燃料电池
CN102088115A (zh) * 2011-01-11 2011-06-08 中南大学 碱性铝电池碱性电解液的复合缓蚀剂、电解液及制备方法
CN205319270U (zh) * 2015-11-19 2016-06-15 广州道动新能源有限公司 新一代高容量高电压双电解液铝空气微流体电池

Also Published As

Publication number Publication date
CN205319270U (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Zhang et al. An all-aqueous redox flow battery with unprecedented energy density
WO2017084376A1 (zh) 新一代高容量高电压双电解液铝空气微流体电池
CN104716304B (zh) 一种锌镍双液液流电池
WO2017084372A1 (zh) 新一代双电解液锌二次电池
WO2017084375A1 (zh) 新一代高容量双电解液铝空气微流体电池
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
CN108232265A (zh) 一种中性锌铁液流电池
WO2017084374A1 (zh) 新一代高容量双电解液铝空气电池
CN105355958B (zh) 一种利用微流体技术实现多电解液结构的新型电池
CN105280964A (zh) 一种锌锰液流电池
WO2017071318A1 (zh) 一种利用离子交换膜实现多电解液结构的新型电池
CN105406154B (zh) 一种利用离子交换膜和微流体技术的多电解液结构电池
US11411216B2 (en) Electrode slurry, slurry electrode, flow battery and stack
JP6766368B2 (ja) フロー電池、蓄電池及び給電システム
WO2017186151A1 (zh) 一种等效三电极结构的锌-空气电池
WO2016078492A1 (zh) 一种醌多卤化物液流电池
CN102376936B (zh) 一种多孔负极结构锂氧气电池
JP2021502667A (ja) 亜鉛−ヨウ化物フロー電池
CN111525170B (zh) 一种锡铁碱性液流电池
CN106549188B (zh) 一种锌硫单液流电池系统
CN103413992A (zh) 一种非液流锌溴电池及其制备方法
CN109755620B (zh) 一种锌碘液流电池
KR20160091154A (ko) 설폰화 개질된 폴리에테르에테르케톤 막을 포함하는 바나듐 레독스 흐름전지
CN103956509B (zh) 陶瓷化铝合金基自呼吸醇类燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865554

Country of ref document: EP

Kind code of ref document: A1