WO2017084374A1 - 新一代高容量双电解液铝空气电池 - Google Patents

新一代高容量双电解液铝空气电池 Download PDF

Info

Publication number
WO2017084374A1
WO2017084374A1 PCT/CN2016/090971 CN2016090971W WO2017084374A1 WO 2017084374 A1 WO2017084374 A1 WO 2017084374A1 CN 2016090971 W CN2016090971 W CN 2016090971W WO 2017084374 A1 WO2017084374 A1 WO 2017084374A1
Authority
WO
WIPO (PCT)
Prior art keywords
anolyte
plate
catholyte
air battery
electrolyte
Prior art date
Application number
PCT/CN2016/090971
Other languages
English (en)
French (fr)
Inventor
刘富德
王雷
郑大伟
Original Assignee
广州道动新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州道动新能源有限公司 filed Critical 广州道动新能源有限公司
Publication of WO2017084374A1 publication Critical patent/WO2017084374A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Definitions

  • the invention relates to the technical field of batteries, and in particular to a new generation high-capacity double electrolyte aluminum air battery.
  • Battery means a space in a cup, tank or other container or composite container containing an electrolyte solution and a metal electrode to generate electrical current, a device that converts chemical energy into electrical energy.
  • the battery As an energy source, it is possible to obtain a current having a stable voltage, a stable current, a stable power supply, and a small influence from the outside, and the battery has a simple structure and is convenient to carry, and the charging and discharging operation cylinder is easy to operate, and is free from the outside climate and The influence of temperature, stable and reliable performance, plays a big role in all aspects of modern social life.
  • Aluminum air batteries are attracting attention due to their high energy density, light weight, safety, and low cost.
  • A1 (containing 99.99% aluminum) as the negative electrode, oxygen as the positive electrode, potassium hydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution as the electrolyte, oxygen in the air as the oxidant, chemical reaction when the battery is discharged, aluminum and Oxygen is ultimately converted to alumina.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the object of the present invention is to provide a new generation high-capacity double-electrolyte aluminum air battery for the deficiencies of the prior art, which fundamentally solves the problem of self-corrosion of the aluminum electrode in the electrolyte in the aluminum air battery, thereby significantly improving the problem.
  • the capacity of the aluminum air battery, and the two electrolytes can be independently adjusted, which is beneficial to the electrochemical reaction of the cathode and anode of the battery to achieve the best state, and significantly improve the electrochemical performance.
  • the present invention achieves the object by the following technical solutions - a new generation of high capacity dual electrolyte aluminum air battery, comprising an anode plate, a cathode plate and an electrolyte, the electrolyte comprising an anolyte, a catholyte, the anolyte and Contacting the anode plate, the catholyte is in contact with the cathode plate, An ion exchange membrane is disposed between the anolyte and the catholyte, the anode plate is an aluminum plate, the cathode plate is an air electrode, the anolyte is a strong alkali organic solution, and the catholyte is strong Aqueous aqueous solution.
  • the strong alkali organic solution is a mixture of any one or two or more of a potassium hydroxide organic solution, a sodium hydroxide organic solution, or a lithium hydroxide organic solution.
  • the organic solvent in the strong alkali organic solution is methanol.
  • the concentration of the strong alkali organic solution is from 1 to 6 mol/L.
  • the strong alkali aqueous solution is a mixture of any one or a mixture of two or more of an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution, or a lithium hydroxide aqueous solution. Further preferably, the concentration of the strong alkali aqueous solution is from 1 to 6 mol/L.
  • the ion exchange membrane is an anion exchange membrane.
  • a new generation high-capacity double-electrolyte aluminum air battery of the present invention comprising an anode plate, a cathode plate and an electrolyte, the electrolyte comprising an anolyte and a catholyte,
  • the anolyte is in contact with the anode plate
  • the catholyte is in contact with the cathode plate
  • an ion exchange membrane is disposed between the anolyte and the catholyte
  • the anode plate is an aluminum plate
  • the cathode plate is air.
  • the electrode, the anolyte is a strong alkali organic solution
  • the catholyte is a strong alkali aqueous solution
  • the aluminum plate electrode of the invention does not react spontaneously with the non-aqueous anolyte, thereby fundamentally solving the aluminum air battery.
  • the self-corrosion problem of the medium-aluminum electrode in the electrolyte significantly increases the capacity of the aluminum-air battery, and the two electrolytes can be independently adjusted, which is beneficial to the electrochemical reaction of the cathode and anode of the battery and achieve the best state at the same time. Significantly improve its electrochemical performance.
  • FIG. 1 is a schematic structural view of a new generation high capacity double electrolyte aluminum air battery of the present invention.
  • the new generation high-capacity double-electrolyte aluminum air battery of the embodiment includes an anode plate 1 , a cathode plate 2 and an electrolyte, and the electrolyte includes an anolyte 3 and a catholyte 4, Anolyte 3 and anode plate 1
  • the catholyte 4 is in contact with the cathode plate 2
  • an ion exchange membrane 5 is disposed between the anolyte 3 and the catholyte 4
  • the anode plate 1 is an aluminum plate
  • the cathode plate 2 is an air electrode.
  • the anolyte 3 is an organic solution of potassium hydroxide
  • the catholyte 4 is an aqueous solution of potassium hydroxide.
  • the organic solvent in the potassium hydroxide organic solution is methanol.
  • the potassium hydroxide organic solution has a concentration of 3 moi/L.
  • the concentration of the aqueous potassium hydroxide solution is 3 mol/L.
  • the ion exchange membrane 5 is an anion exchange membrane.
  • the anode plate 1 (aluminum electrode) is oxidized in an alkaline potassium hydroxide organic solution to release electrons, and electrons pass through an external circuit.
  • the cathode plate 2 (air electrode) ' participates in the reduction reaction of oxygen at the cathode plate 2, and in order to maintain charge balance, the hydroxide ions in the aqueous potassium hydroxide solution migrate to the organic solution having potassium hydroxide.
  • the anolyte 3 of the present invention is a non-aqueous organic solution, the self-corrosion of aluminum 1* is effectively suppressed, thereby significantly increasing the capacity of the aluminum air battery, and the two electrolytes can be independently adjusted, It is beneficial to the electrochemical reaction of the cathode and anode of the battery to achieve the best state at the same time, and significantly improve its electrochemical performance.
  • the new generation high capacity double electrolyte aluminum air battery of the embodiment comprises an anode plate 1, a cathode plate 2 and an electrolyte, the electrolyte comprising an anolyte 3, a catholyte 4, the anolyte 3 and an anode
  • the plate 1 is in contact with the cathode electrolyte 4
  • the cathode plate 2 is in contact with the cathode plate 2.
  • An ion exchange membrane 5 is disposed between the anolyte 3 and the catholyte 4.
  • the anode plate 1 is an aluminum plate
  • the cathode plate 2 is The air electrode
  • the anolyte 3 is an organic solution of sodium hydroxide
  • the catholyte 4 is an aqueous solution of sodium hydroxide.
  • the organic solvent in the sodium hydroxide organic solution is methanol.
  • the concentration of the sodium hydroxide organic solution is 6 moi/L.
  • the aqueous sodium hydroxide solution has a concentration of 6 mol/L.
  • the new generation high capacity double electrolyte aluminum air battery of the embodiment comprises an anode plate 1, a cathode plate 2 and an electrolyte, the electrolyte comprising an anolyte 3, a catholyte 4, the anolyte 3 and an anode
  • the plate 1 is in contact with the cathode electrolyte 4
  • the cathode plate 2 is in contact with the cathode plate 2.
  • An ion exchange membrane 5 is disposed between the anolyte 3 and the catholyte 4.
  • the anode plate 1 is an aluminum plate
  • the cathode plate 2 is The air electrode
  • the anolyte 3 is an organic solution of lithium hydroxide
  • the catholyte 4 is an aqueous solution of lithium hydroxide.
  • the organic solvent in the lithium hydroxide organic solution is methanol.
  • the concentration of the lithium hydroxide organic solution is lmo!/L.
  • the lithium hydroxide aqueous solution has a concentration of 1 mol/L.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

一种高容量双电解液铝空气电池,包括阳极板(1)、阴极板(2)以及电解液,所述电解液包括阳极电解液(3)、阴极电解液(4),所述阳极电解液(3)与阳极板(1)接触,所述阴极电解液(4)与阴极板(2)接触,所述阳极电解液(3)与阴极电解液(4)之间设置有离子交换膜(5),所述阳极板(1)为铝板,所述阴极板(2)为空气电极,所述阳极电解液(3)为强碱有机溶液,所述阴极电解液(4)为强碱水溶液,该电池的铝板电极不会与非水性的阳极电解液发生自腐蚀反应,从根本上解决了铝空气电池中铝电极在电解液中的自腐蚀问题,从而显著地提高了铝空气电池的容量,而且两种电解液可分别独立进行调节,有利于电池阴、阳极的电化学反应同时达到最佳状态,显著提高其电化学性能。

Description

新一代高容量双电解液铝空气电池
技术领域
本发明涉及电池技术领域, 具体涉及一种新一代高容量双电解液铝空气电池。
背景技术
电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、 槽或其他容器或复合容 器的部分空间, 能将化学能转化成电能的装置。 利用电池作为能量来源, 可以得到具有稳定 电压,稳定电流,长^间稳定供电,受外界影响很小的电流,并且电池结构简单,携带方便, 充放电操作筒便易行, 不受外界气候和温度的影响, 性能稳定可靠, 在现代社会生活中的各 个方面发挥有很大作用。 铝空气电池因具备高能量密度、 质量轻、 安全、 便宜等优点而备受关注, 其以高纯度铝
A1 (含铝 99.99% )做为负极、 氧为正极, 以氢氧化钾 (KOH)或氢氧化钠 (NaOH) 水溶液 为电解质, 空气中的氧为氧化剂, 在电池放电时产生化学反应, 铝和氧作用最终转化为氧化 铝。 但是, 铝质电极板在电解液中的自腐蚀现象十分严重, 制约了铝空气电池发展。 针对此 问题, 目前采用较多的两种解决办法是: (1 ) 使用添加了徼量元素的铝合金作为电池的阳 极; (2) 在电解液溶液加添加剂, 以减缓铝的自腐蚀速率。 上述两种方法虽然能够在一定 程度起到抑制铝的自腐蚀的作用, 然而效果并不显著, 不能 根本上解决铝空气电池的铝质 电极板自腐蚀的问题。 发明内容
本发明的目的在于针对现有技术的不足提供一种新一代高容量双电解液铝空气电 池, 从根本上解决了铝空气电池中铝电极在电解液中的自腐蚀问题, 从而显著地提高了铝空 气电池的容量, 而且两种电解液可分别独立进行调节, 有利于电池阴、 阳极的电化学反应同 时达到最佳状态, 显著提高其电化学性能。
本发明通过以下技术方案实现该目的- 新一代高容量双电解液铝空气电池, 包括阳极板、 阴极板以及电解液, 所述电解液包括 阳极电解液、 阴极电解液, 所述阳极电解液与阳极板接触, 所述阴极电解液与阴极板接触, 所述阳极电解液与阴极电解液之间设置有离子交换膜, 所述阳极板为铝板, 所述阴极板为空 气电极, 所述阳极电解液为强碱有机溶液, 所述阴极电解液为强碱水溶液。 作为优选的技术方案, 所述强碱有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢 氧化锂有机溶液中的任意一种或两种以上的混合液。 作为优选的技术方案, 所述强碱有机溶液中的有机溶剂为甲醇。 作为进一步优选的, 所述强碱有机溶液的浓度为 l〜6mol/L。
作为优选的技术方案, 所述强碱水溶液为氢氧化钾水溶液、氢氧化钠水溶液或氢氧化锂 水溶液中的任意一种或两种以上的混合液。 作为进一步优选的, 所述强碱水溶液的浓度为 l〜6moi/L。 作为优选的技术方案, 所述离子交换膜为阴离子交换膜。 相对于现有技术, 本发明的有益效果为: 本发明的新一代高容量双电解液铝空 气电池, 包括阳极板、 阴极板以及电解液, 所述电解液包括阳极电解液、 阴极电解液, 所述 阳极电解液与阳极板接触, 所述阴极电解液与阴极板接触, 所述阳极电解液与阴极电解液之 间设置有离子交换膜, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱 有机溶液, 所述阴极电解液为强碱水溶液, 本发明的铝板电极不会与非水性的阳极电解 液发生自腐蚀反应, 从根本上解决了铝空气电池中铝电极在电解液中的自腐蚀问题, 从而显 著地提高了铝空气电池的容量, 而且两种电解液可分别独立进行调节, 有利于电池阴、 阳极 的电化学反应同时达到最佳状态, 显著提高其电化学性能。
附图说明
图 1为本发明的新一代高容量双电解液铝空气电池的结构示意图。
图中: -阳极板, 2-阴极板, 3 阳极电解液, 4-阴极电解液, 5-离子交换膜。
具体实施方式
以下结合附图及具体实施例对本发明进行详细描述。
实施例 1。 如图 1所示, 本实施例的新一代高容量双电解液铝空气电池, 包括阳极板 1、 阴极板 2 以及电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 所述阳极电解液 3与阳极板 1 接触, 所述阴极电解液 4与阴极板 2接触, 所述阳极电解液 3与阴极电解液 4之间设置有离 子交换膜 5, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化 钾有机溶液, 所述阴极电解液 4为氢氧化钾水溶液。
作为优选的技术方案, 所述氢氧化钾有机溶液中的有机溶剂为甲醇。
作为优选的技术方案, 所述氢氧化钾有机溶液的浓度为 3moi/L。
作为优选的技术方案, 所述氢氧化钾水溶液的浓度为 3mol/L。
作为优选的技术方案, 所述离子交换膜 5为阴离子交换膜。
本实施例的新一代高容量双电解液铝空气电池的工作原理- 电池使用过程中, 阳极板 1 (铝电极)在碱性的氢氧化钾有机溶液中被氧化,释放电子, 电子通过外电路到达阴极板 2 (空气电极) ' 参与氧气在阴极板 2处发生还原反应, 为了维 持电荷平衡, 氢氧化钾水溶液中的氢氧根离子向有氢氧化钾有机溶液迁移。 由于本发明 的阳极电解液 3为非水系的有机溶液, 因此铝的自腐 1*得到了有效抑制, 从而显著地提高了 铝空气电池的容量, 而且两种电解液可分别独立进行调节, 有利于电池阴、 阳极的电化学反 应同时达到最佳状态, 显著提高其电化学性能。
实施例 2。
本实施例的新一代高容量双电解液铝空气电池, 包括阳极板 1、 阴极板 2 以及电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 所述阳极电解液 3与阳极板 1接触, 所述阴 极电解液 4与阴极板 2接触, 所述阳极电解液 3与阴极电解液 4之间设置有离子交换膜 5, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化钠有机溶液, 所述阴极电解液 4为氢氧化钠水溶液。
作为优选的技术方案, 所述氢氧化钠有机溶液中的有机溶剂为甲醇。
作为优选的技术方案, 所述氢氧化钠有机溶液的浓度为 6moi/L。
作为优选的技术方案, 所述氢氧化钠水溶液的浓度为 6mol/L。
本实施例的其它技术特征同实施例 1, 在此不再进行赘述。
实施例 3。 本实施例的新一代高容量双电解液铝空气电池, 包括阳极板 1、 阴极板 2 以及电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 所述阳极电解液 3与阳极板 1接触, 所述阴 极电解液 4与阴极板 2接触, 所述阳极电解液 3与阴极电解液 4之间设置有离子交换膜 5, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化锂有机溶液, 所述阴极电解液 4为氢氧化锂水溶液。
作为优选的技术方案, 所述氢氧化锂有机溶液中的有机溶剂为甲醇。
作为优选的技术方案, 所述氢氧化锂有机溶液的浓度为 lmo!/L。
作为优选的技术方案, 所述氢氧化锂水溶液的浓度为 l mol/L。
本实施例的其它技术特征同实施例 1 , 在此不再进行赘述。 以上所述实施例仅表达了本发明的部分实施方式, 其描述较为具体和详细, 但并不 能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若千变形和改进, 这些都属于本实用 新型 的保护范围。 因此, 本发明专利的保护范围应以所 权利要求为准。

Claims

权 利 要 求 书
1、 新一代高容量双电解液铝空气电池,包括阳极板、阴极板以及电解液,其特征在于: 所述电解液包括阳极电解液、 阴极电解液, 所述阳极电解液与阳极板接触, 所述阴极电解液 与阴极板接触, 所述阳极电解液与阴极电解液之间设置有离子交换膜, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱有机溶液, 所述阴极电解液为强碱水溶液。
2、 根据权利要求 1所述的新一代高容量¾电解液铝空气电池, 其特征在于: 所述强碱 有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢氧化锂有机溶液中的任意一种或两种 以上的混合液。
3、 根据权利要求 2所述的新一代高容量双电解液铝空气电池, 其特征在于: 所述强碱 有机溶液中的有机溶剂为甲醇。
4、 根据权利要求 2所述的新一代高容量双电解液铝空气电池, 其特征在于: 所述强碱 有机溶液的浓度为 i〜6mol/L。
5、 根据权利要求 1所述的新一代高容量双电解液铝空气电池, 其特征在于: 所述强碱 水溶液为氢氧化钾水溶液、氢氧化钠水溶液或氢氧化锂水溶液中的任意一种或两种以上的混 合液。
6、 根据权利要求 5所述的新一代高容量双电解液铝空气电池, 其特征在于: 所述强碱 水溶液的浓度为 l〜6mol/L。
7、根据权利要求 1··6任意一项所述的新一代高容量双电解液铝空气电池,其特征在于- 所述离子交换膜为阴离子交换膜。
PCT/CN2016/090971 2015-11-19 2016-07-22 新一代高容量双电解液铝空气电池 WO2017084374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520925262.9 2015-11-19
CN201520925262.9U CN205122732U (zh) 2015-11-19 2015-11-19 新一代高容量双电解液铝空气电池

Publications (1)

Publication Number Publication Date
WO2017084374A1 true WO2017084374A1 (zh) 2017-05-26

Family

ID=55578313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090971 WO2017084374A1 (zh) 2015-11-19 2016-07-22 新一代高容量双电解液铝空气电池

Country Status (2)

Country Link
CN (1) CN205122732U (zh)
WO (1) WO2017084374A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205122732U (zh) * 2015-11-19 2016-03-30 广州道动新能源有限公司 新一代高容量双电解液铝空气电池
CN106450588B (zh) * 2016-09-12 2019-09-24 哈尔滨工业大学 一次性铝-空气电池
CN110233314A (zh) * 2019-06-28 2019-09-13 江苏大学 双电解液铝空气电池
CN111172562A (zh) * 2020-01-20 2020-05-19 镇江慧诚新材料科技有限公司 一种铝空气电池用燃料铝的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714680A (zh) * 2008-10-07 2010-05-26 中国人民解放军63971部队 一种兼有电化学制备的可再充金属空气液流电池
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN205122732U (zh) * 2015-11-19 2016-03-30 广州道动新能源有限公司 新一代高容量双电解液铝空气电池
CN205159473U (zh) * 2015-11-19 2016-04-13 广州道动新能源有限公司 新一代高容量双电解液铝空气微流体电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714680A (zh) * 2008-10-07 2010-05-26 中国人民解放军63971部队 一种兼有电化学制备的可再充金属空气液流电池
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN205122732U (zh) * 2015-11-19 2016-03-30 广州道动新能源有限公司 新一代高容量双电解液铝空气电池
CN205159473U (zh) * 2015-11-19 2016-04-13 广州道动新能源有限公司 新一代高容量双电解液铝空气微流体电池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAO, H.B. ET AL.: "Anodic dissolution of aluminum in KOH ethanol solutions", ELECTROCHEMISTRY COMMUNICATIONS, vol. 6, no. 1, 27 October 2003 (2003-10-27), pages 6 - 9, XP055596623, ISSN: 1388-2481 *
WANG, LEI ET AL.: "A high-capacity dual-electrolyte aluminum/air electrochemical cell", RSC ADVANCES, vol. 4, no. 58, 4 July 2014 (2014-07-04), pages 30857 - 30863, ISSN: 2046-2069 *
YU ET AL: "The progress of electrolyte in aluminium-air batteries", CHEMICAL RESEARCH AND APPLICATION, vol. 16, no. 5, 31 October 2004 (2004-10-31), pages 612 - 614, 687, ISSN: 1004-1656 *

Also Published As

Publication number Publication date
CN205122732U (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2017084372A1 (zh) 新一代双电解液锌二次电池
WO2017084374A1 (zh) 新一代高容量双电解液铝空气电池
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
US20150221956A1 (en) Water-Activated Permanganate Electrochemical Cell
WO2021208299A1 (zh) 一种水系钠基混合离子二次电池
CN103579588B (zh) 一种锌基三元层状复合氧化物用作锌镍电池电极材料的用途
CN112786938B (zh) 具有双溶解沉积反应的酸碱混合高电压水系锌电池和锌液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
WO2017084376A1 (zh) 新一代高容量高电压双电解液铝空气微流体电池
CN205159473U (zh) 新一代高容量双电解液铝空气微流体电池
WO2017071318A1 (zh) 一种利用离子交换膜实现多电解液结构的新型电池
CN104934611A (zh) 铜碱蓄电池
CN105355991A (zh) 一种利用电解液的导通实现多电解液电池电芯开关的方法
WO2017071320A1 (zh) 一种利用离子交换膜和微流体技术的多电解液结构电池
CN103904352B (zh) 一种液流电池用锌电解液及其制备方法
JP2017147045A (ja) フロー電池、蓄電池及び給電システム
JP2014170715A (ja) 電池
CN112803084A (zh) 一种高能量密度充放电电池及其充放电方法
CN108365301A (zh) 一种可充放电式液态金属电池
CN108346844B (zh) 一种金属燃料电池
TWI539646B (zh) 空氣電池及其空氣電極
CN106549188B (zh) 一种锌硫单液流电池系统
US20160126575A1 (en) Electrochemical cell
Yongan et al. Research progress on anode protection strategies of lithium sulfur battery
CN106450400A (zh) 一种全钒氧化还原液流电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865552

Country of ref document: EP

Kind code of ref document: A1