WO2017084375A1 - 新一代高容量双电解液铝空气微流体电池 - Google Patents

新一代高容量双电解液铝空气微流体电池 Download PDF

Info

Publication number
WO2017084375A1
WO2017084375A1 PCT/CN2016/090972 CN2016090972W WO2017084375A1 WO 2017084375 A1 WO2017084375 A1 WO 2017084375A1 CN 2016090972 W CN2016090972 W CN 2016090972W WO 2017084375 A1 WO2017084375 A1 WO 2017084375A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
plate
battery
electrolyte
Prior art date
Application number
PCT/CN2016/090972
Other languages
English (en)
French (fr)
Inventor
刘富德
王雷
郑大伟
Original Assignee
广州道动新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州道动新能源有限公司 filed Critical 广州道动新能源有限公司
Publication of WO2017084375A1 publication Critical patent/WO2017084375A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Definitions

  • the present invention relates to the field of battery technology, and in particular to a new generation high capacity double electrolyte aluminum air microfluidic battery.
  • Battery means a space in a cup, tank or other container or composite container containing an electrolyte solution and a metal electrode to generate electrical current, a device that converts chemical energy into electrical energy.
  • the battery As an energy source, it is possible to obtain a current with a stable voltage, a stable current, a stable power supply for a long time, and little influence from the outside, and the battery has a simple structure and is convenient to carry, and the charging and discharging operation is simple and easy, and is free from external climate and temperature.
  • the impact, stable and reliable performance plays a big role in all aspects of modern social life.
  • Aluminum air batteries are attracting attention due to their high energy density, light weight, safety, and low cost.
  • A1 (containing 99.99% aluminum) as the negative electrode, oxygen as the positive electrode, potassium hydroxide (KOH) or sodium hydroxide (NaOH) aqueous solution as the electrolyte, oxygen in the air as the oxidant, chemical reaction when the battery is discharged, aluminum and Oxygen is ultimately converted to alumina.
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • the object of the present invention is to provide a new generation high-capacity double-electrolyte aluminum air microfluidic battery for the deficiencies of the prior art, and a fundamentally solve the self-corrosion problem of the aluminum electrode in the electrolyte in the aluminum air battery, which is recognized as significant
  • the capacity of the aluminum air battery is improved, and the 11 electrolytes can be independently adjusted, which is beneficial to the electrochemical reaction of the cathode and anode of the battery to achieve the best state, and significantly improve the electrochemical performance.
  • the present invention achieves this object through the following technical solutions - a new generation of high capacity 3 ⁇ 4 electrolyte aluminum air microfluidic cells, including anode plates, cathode plates, and electricity in a flowing state
  • the electrolyte includes an anolyte, a catholyte, and an anode tube and a cathode tube for respectively conveying an anolyte and a catholyte, wherein the anode tube and the cathode tube correspond to an anode plate and a cathode.
  • the plate is connected to form an ion conducting inner cavity, the anode plate is in communication with the anode pipe and is in contact with the anolyte, the cathode plate is in communication with the cathode pipe and is in contact with the catholyte, the anode plate is an aluminum plate, the cathode The plate is an air electrode, the anolyte is a strong alkali organic solution, and the catholyte is a strong alkali aqueous solution.
  • the anolyte and the catholyte have the same flow direction in the ion-conducting inner cavity.
  • the anolyte and the catholyte are in a stratified flow state in the ion conducting inner cavity.
  • the strong alkali organic solution is any one or a mixture of two or more of an organic solution of potassium hydroxide, an organic solution of sodium hydroxide or an organic solution of lithium hydroxide.
  • the solvent in the strong alkali organic solution is methanol. Further preferably, the concentration of the strong alkali organic solution is from 1 to 6 moVL.
  • the aqueous strong alkali solution is any one or a mixture of two or more of an aqueous potassium hydroxide solution, an aqueous sodium hydroxide solution or an aqueous lithium hydroxide solution. Further preferably, the concentration of the strong alkali aqueous solution is i ⁇ 6 mol/L.
  • a porous diaphragm is disposed in the ion conducting inner cavity, and the porous diaphragm is disposed between the anode pipe and the cathode pipe.
  • an ion exchange membrane is disposed in the ion conducting inner cavity, and the ion exchange membrane is disposed between the anode conduit and the cathode conduit.
  • the beneficial effects of the present invention are: a new generation of high capacity double electrolyte aluminum air microfluidic battery of the present invention, comprising an anode plate, a cathode plate and an electrolyte in a flowing state, the electrolyte including anodic electrolysis
  • the liquid and the catholyte further include an anode pipe and a cathode pipe for respectively conveying the anolyte and the catholyte, and the anode pipe and the cathode pipe are connected to form an ion-conducting cavity at a position corresponding to the anode plate and the cathode plate.
  • the anode plate is in communication with the anode tube and is in contact with the anolyte
  • the cathode plate is in communication with the cathode tube and is in contact with the catholyte
  • the anode plate is an aluminum plate
  • the cathode plate is an air electrode
  • the anolyte is
  • the strong alkali organic solution the catholyte is a strong alkali aqueous solution
  • the aluminum plate electrode of the invention does not react with the non-aqueous anolyte from the corrosion reaction, thereby fundamentally solving the aluminum electrode in the aluminum air battery in the electrolyte Self-corrosion problem, which significantly improves the capacity of the aluminum air battery
  • the amount of the two electrolytes can be adjusted independently, which is beneficial to the electrochemical reaction of the cathode and anode of the battery to achieve the best state, and significantly improve the electrochemical performance.
  • FIG. 1 is a schematic view showing the structure of a new generation high-capacity double-electrolyte aluminum air levitation fluid battery of Embodiment 1.
  • FIG. 2 is a schematic view showing the structure of a new generation high-capacity double-electrolyte aluminum air microfluidic battery of Example 4.
  • FIG. 3 is a schematic view showing the structure of a new generation high-capacity double-electrolyte aluminum air microfluidic battery of Example 5.
  • the new generation high-capacity 3 ⁇ 4 electrolyte aluminum air microfluidic battery of the embodiment includes an anode plate 1, a cathode plate 2 and an electrolyte in a flowing state, and the electrolyte includes an anolyte 3 and a cathode.
  • the electrolyte 4 further includes an anode pipe 5 and a cathode pipe 6 for respectively transporting the anolyte 3 and the catholyte 4, and the anode pipe 5 and the cathode pipe 6 are connected to each other corresponding to the anode plate 1 and the cathode plate 2.
  • the anode plate 1 is in communication with the anode conduit 5 and is in contact with the anolyte 3
  • the cathode plate 2 is in communication with the cathode conduit 6 and is in contact with the catholyte 4
  • the anode plate 1 is an aluminum plate.
  • the cathode plate 2 is an air electrode
  • the anolyte 3 is an organic solution of potassium hydroxide
  • the catholyte 4 is an aqueous solution of potassium hydroxide.
  • the aluminum plate (aluminum electrode) of the present embodiment does not react spontaneously with the non-aqueous anolyte 3, and the bundle fundamentally solves the self-corrosion problem of the aluminum plate (aluminum electrode) in the electrolyte in the aluminum air battery.
  • the capacity of the aluminum air battery is significantly improved, and the two electrolytes can be independently adjusted, which is beneficial to the electrochemical reaction of the cathode and the anode at the same time to achieve an optimum state, and significantly improve the electrochemical performance.
  • the potassium hydroxide organic solution and the aqueous hydration solution have the same flow direction in the ion-conducting inner cavity, and the ruthenium is in a stratified flow state, so as to ensure that the potassium hydroxide organic solution and the potassium hydroxide aqueous solution are in a laminar flow state without occurrence
  • the flow velocity of each electrolyte solution can be determined by the range of the Reynolds number Re, and the flow velocity of each of the electrolyte solutions is controlled by the pump body.
  • V, p, and ⁇ are the flow rate, density, and viscosity coefficient of the electrolyte, respectively, and d is a characteristic length. For example, if the electrolyte flows through a circular pipe, d is the equivalent diameter of the pipe.
  • the anode pipe 5 and the cathode pipe 6 have the same size, each of which is 3 mm ⁇ 40 mm ⁇ 1 mm (length X width X height), the potassium hydroxide organic solution, potassium hydroxide.
  • the flow rate of the aqueous solution was the same, both being 0.065 ml min.
  • the concentration of the oxidized solution is 3 mol/L.
  • the concentration of the aqueous potassium hydroxide solution is 3 m ⁇ / L.
  • the working principle of the new generation high-capacity double-electrolyte aluminum air microfluidic battery of the present embodiment realizes the anolyte 3 by the microfluidic technology (through the electrolyte flowing pipe, the electrolyte in the flowing state) Separation from catholyte 4.
  • the anode plate 1 aluminum electrode
  • the cathode plate 2 air electrode
  • the hydroxide ions in the aqueous potassium hydroxide solution migrate to the potassium hydroxide organic solution. Since the anolyte 3 is a non-aqueous organic solution, the self-corrosion of aluminum is effectively suppressed, and the capacity of the aluminum air battery is remarkably improved, and the two electrolytes can be independently adjusted to facilitate the battery cathode, The electrochemical reaction of the anode is simultaneously optimized to significantly improve its electrochemical performance.
  • the new generation high-capacity double-electrolyte aluminum air microfluidic battery of the embodiment comprises an anode plate 1, a cathode plate 2 and an electrolyte in a flowing state, the electrolyte comprising an anolyte 3 and a catholyte 4, further comprising
  • the anode tube 5 and the cathode tube 6 are respectively used for conveying the anolyte 3 and the catholyte 4, and the anode tube 5 and the cathode tube 6 are connected to each other to form an ion-conducting cavity corresponding to the anode plate 1 and the cathode plate 2.
  • the anode plate 1 is in communication with the anode conduit 5 and is in contact with the anolyte 3, and the cathode plate 2 is in communication with the cathode conduit 6 and is in contact with the catholyte 4, the anode plate 1 is an aluminum plate, and the cathode plate 2 is The air electrode, the anolyte 3 is an organic solution of a fluorinated pin, and the catholyte 4 is an aqueous solution of sodium hydroxide.
  • the concentration of the hydroxide pin organic solution is 6 mol/L. Further preferably, the concentration of the aqueous solution of the hydrazine hydroxide is 6 rm) l/L.
  • the new generation high-capacity double-electrolyte aluminum air microfluidic battery of the embodiment comprises an anode plate 1, a cathode plate 2 and an electrolyte in a flowing state, the electrolyte comprising an anolyte 3 and a catholyte 4, further comprising
  • the anode tube 5 and the cathode tube 6 are respectively used for conveying the anolyte 3 and the catholyte 4, and the anode tube 5 and the cathode tube 6 are connected to each other to form an ion-conducting cavity corresponding to the anode plate 1 and the cathode plate 2.
  • the anode plate 1 is in communication with the anode conduit 5 and is in contact with the anolyte 3, and the cathode plate 2 is in communication with the cathode conduit 6 and is in contact with the catholyte 4, the anode plate 1 is an aluminum plate, and the cathode plate 2 is The air electrode, the anolyte 3 is a solution of lithium hydroxide, and the catholyte 4 is an aqueous lithium hydroxide solution.
  • the lithium hydroxide organic solution has a concentration of 1 mol/L.
  • the concentration of the aqueous lithium hydroxide solution is 1 mol/L.
  • the difference between the embodiment and the embodiment 1 is that: the ion conducting inner cavity is further provided with a porous diaphragm, the porous diaphragm 7 is preferably carbon paper, and the carbon paper is disposed on the anode duct 5.
  • the carbon paper can not only prevent turbulent flow in the ion conducting inner cavity of the anolyte 3 and the catholyte 4, but also ensure that the contact faces of the electrolytes are in a laminar flow state, and are favorable for Control the degree of mixing between the electrolytes to improve the electrochemical performance of the battery.
  • the difference between this embodiment and the embodiment 4 is that: the ion-conducting inner cavity is further provided with an ion exchange membrane 8, and the ion exchange membrane 8 is disposed between the anode conduit 5 and the cathode conduit 6.
  • the ion exchange membrane 8 of the present embodiment has better ion passage selectivity, further improving the electrochemical performance of the battery and the utilization rate of the electrolyte.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明涉及一种新一代高容量双电解液铝空气微流体电池,包括阳极板、阴极板以及处于流动状态的电解液,所述电解液包括阳极电解液、阴极电解液,还包括分别用于输送阳极电解液、阴极电解液的阳极管道、阴极管道,所述阳极管道、阴极管道在对应于阳极板、阴极板处连通构成一离子传导内腔,所述阳极板为铝板,阴极板为空气电极,所述阳极电解液为强碱有机溶液,阴极电解液为强碱水溶液,本发明的铝板不会与阳极电解液发生自腐蚀反应,从根本上解决了铝空气电池中铝电极在电解液中的自腐蚀问题,显著地提高了铝空气电池的容量,而且两种电解液可分别独立进行调节,有利于电池阴、阳极的电化学反应同时达到最佳状态,显著提高其电化学性能。

Description

新一代高容量双电解液铝空气微流体电池
技术领域
本发明涉及电池技术领域, 具体涉及一种新一代高容量双电解液铝空气微流体电 池。
背景技术
电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、 槽或其他容器或复合容 器的部分空间, 能将化学能转化成电能的装置。 利用电池作为能量来源, 可以得到具有稳定 电压,稳定电流,长时间稳定供电,受外界影响很小的电流,并旦电池结构简单,携带方便, 充放电操作简便易行, 不受外界气候和温度的影响, 性能稳定可靠, 在现代社会生活中的各 个方面发挥有很大作用。
铝空气电池因具备高能量密度、 质量轻、 安全、 便宜等优点而备受关注, 其以高纯度铝
A1 (含铝 99.99% )做为负极、 氧为正极, 以氢氧化钾 (KOH )或氢氧化钠 (NaOH )水溶液 为电解质, 空气中的氧为氧化剂, 在电池放电时产生化学反应, 铝和氧作用最终转化为氧化 铝。 但是, 铝质电极板在电解液中的自腐蚀现象十分严重, 制约了铠空气电池发展。 针对此 问题, 目前采用较多的两种解决办法是: (1 ) 使 κ添加了微量元素的铝合金作为电池的阳 极; (2 ) 在电解液溶液加添加剂, 以减缓铝电极的自腐蚀速率。 上述两种方法虽然能够在 一定程度起到抑制铝电极的自腐蚀的作 /¾, 然而效果并不显著, 不能从根本上解决铝空气电 池的铝质电极板自腐蚀的问题。 发明内容
本发明的目的在于针对现有技术的不足提供一种新一代高容量双电解液铝空气微 流体电池, A根本上解决了铝空气电池中铝电极在电解液中的自腐蚀 题, 认而显著地提高 了铝空气电池的容量, 而 11两种电解液可分别独立进行调节, 有利于电池阴、 阳极的电化学 反应同时达到最佳状态, 显著提高其电化学性能。
本发明通过以下技术方案实现该目的- 新一代高容量 ¾电解液铝空气微流体电池, 包括阳极板、 阴极板以及处于流动状态的电 解液, 所述电解液包括阳极电解液、 阴极电解液, 还包括分别用于输送阳极电解液、 阴极电 解液的阳极管道、 阴极管道, 所述阳极管道、 阴极管道在对应于阳极板、 阴极板处连通构成 一离子传导内腔, 所述阳极板与阳极管道连通并与阳极电解液接触, 所述阴极板与阴极管道 连通并与阴极电解液接触, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为 强碱有机溶液, 所述阴极电解液为强碱水溶液。
其中, 所述阳极电解液、 阴极电解液在离子传导内腔中的流向相同。
其中, 所述阳极电解液、 阴极电解液在离子传导内腔中呈分层流动状态。
作为优选的技术方案, 所述强碱有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢 氧化锂有机溶液中的任意一种或两种以上的混合物。
作为优选的技术方案, 所述强碱有机溶液中的溶剂为甲醇。 作为进一步优选的, 所述强碱有机溶液的浓度为 l〜6moVL。
作为优选的技术方案, 所述强碱水溶液为氢氧化钾水溶液、氢氧化钠水溶液或氢氧化锂 水溶液中的任意一种或两种以上的混合物。 作为进一步优选的, 所述强碱水溶液的浓度为 i〜6mol/L。
进一步的, 所述离子传导内腔中设置有多孔隔膜, 所述多孔隔膜设置于阳极管道与阴极 管道之间。
更进一步的, 所述离子传导内腔中设置有离子交换膜, 所述离子交换膜设置于阳极管道 与阴极管道之间。 相对于现有技术, 本发明的有益效果为: 本发明的新一代高容量双电解液铝空 气微流体电池, 包括阳极板、 阴极板以及处于流动状态的电解液, 所述电解液包括阳极电解 液、 阴极电解液, 还包括分别用于输送阳极电解液、 阴极电解液的阳极管道、 阴极管道, 所 述阳极管道、 阴极管道在对应于阳极板、 阴极板处连通构成一离子传导内腔, 所述阳极板与 阳极管道连通并与阳极电解液接触, 所述阴极板与阴极管道连通并与阴极电解液接触, 所述 阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱有机溶液, 所述阴极电解液 为强碱水溶液, 本发明的铝板电极不会与非水性的阳极电解液发生自腐饨反应, 从根本 上解决了铝空气电池中铝电极在电解液中的自腐蚀问题,从而显著地提高了铝空气电池的容 量, 而且两种电解液可分别独立进行调节, 有利于电池阴、 阳极的电化学反应同时达到最佳 状态, 显著提高其电化学性能。
图说明
图 1为实施例 1的新一代高容量双电解液铝空气徵流体电池的结构示意图。
图 2为实施例 4的新一代高容量双电解液铝空气微流体电池的结构示意图。
图 3为实施例 5的新一代高容量双电解液铝空气微流体电池的结构示意图。
图中: 1-阳极板, 2-阴极板, 3-阳极电解液, 4-阴极电解液, 5-阳极管道, 6-阴极管道, 7 -多孔隔膜, 8-离子交换膜。
具体实施方式
以下结合附图及具体实施例对本发明进行详细描述。
实施例 1
如图 1所示, 本实施例的新一代高容量 ¾电解液铝空气微流体电池, 包括阳极板 1、 阴 极板 2以及处于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还包括 分别用于输送阳极电解液 3、 阴极电解液 4的阳极管道 5、 阴极管道 6, 所述阳极管道 5、 阴 极管道 6在对应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述阳极板 1与阳极管 道 5连通并与阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化钾有机溶液, 所述阴极电解液 4为氢氧化钾水溶液。
本实施例的的铝板 (铝电极)不会与非水性的阳极电解液 3发生自腐蚀反应, 丛根本上 解决了铝空气电池中铝板(铝电极)在电解液中的自腐蚀 ^题, 从而显著地提高了铝空气电 池的容量, 而且两种电解液可分别独立进行调节, 有利于电池阴、 阳极的电化学反应同时达 到最佳状态, 显著提高其电化学性能。
其中, 所述氢氧化钾有机溶液、 氢氧化押水溶液在离子传导内腔中的流向相同, ϋ呈分 层流动状态,为了保证氢氧化钾有机溶液与氢氧化钾水溶液处于层流状态而不发生湍流现象, 可通过雷诺数 Re的范围确定各电解液的流动速度, 所述各电解液的流动速度有泵体进行控 制。
Figure imgf000006_0001
其中, V , p 、 μ分别为电解液的流速、 密度与黏性系数, d为一特征长度, 例如电解 液流过圆形管道, 则 d为管道的当量直径。
其中, 本实施例的双电解液结构电池中, 所述阳极管道 5和阴极管道 6的尺寸相同, 均 为 3mmX 40mmX lmm (长 X宽 X高) , 所述氢氧化钾有机溶液、 氢氧化钾水溶液的流速相 同, 均为 0.065 ml min 。
作为进一步优选的, 所述氢氧化押有 溶液的浓度为 3mol/L。
作为进一步优选的, 所述氢氧化钾水溶液的浓度为 3m^/L。
本实施例的新一代高容量双电解液铝空气微流体电池的工作原理 - 本实施例的微流体电池通过微流体技术(通过电解液流动管道、处于流动状态的电解液) 实现阳极电解液 3与阴极电解液 4的分离。 电池使 ffl过程中, 阳极板 1 (铝电极) 在碱性的 氢氧化钾有机溶液中被氧化, 释放电子, 电子通过外电路到达阴极板 2 (空气电极) , 参与 氧气在空气电极处发生还原反应, 为了维持电荷平衡, 氢氧化钾水溶液中的氢氧根离子向氢 氧化钾有机溶液迁移。 由于阳极电解液 3为非水系的有机溶液, 因此铝的自腐蚀得到了有效 抑制, 而显著地提高了铝空气电池的容量, 而且两种电解液可分别独立迸行调节, 有利于 电池阴、 阳极的电化学反应同时达到最佳状态, 显著提高其电化学性能。
实施例 2
本实施例的新一代高容量双电解液铝空气微流体电池, 包括阳极板 1、 阴极板 2以及处 于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还包括分别用于输送 阳极电解液 3、 阴极电解液 4的阳极管道 5、 阴极管道 6, 所述阳极管道 5、 阴极管道 6在对 应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述阳极板 1与阳极管道 5连通并与 阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1 为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化销有机溶液, 所述阴极电解 液 4为氢氧化钠水溶液。
作为迸一步优选的, 所述氢氧化销有机溶液的浓度为 6mol/L。 作为进一步优选的, 所述氢氧化销水溶液的浓度为 6rm)l/L。
本实施例的其它技术特征同实施例 1, 在此不再进行赘述。
实施例 3
本实施例的新一代高容量双电解液铝空气微流体电池, 包括阳极板 1、 阴极板 2以及处 于流动状态的电解液, 所述电解液包括阳极电解液 3、 阴极电解液 4, 还包括分别用于输送 阳极电解液 3、 阴极电解液 4的阳极管道 5、 阴极管道 6, 所述阳极管道 5、 阴极管道 6在对 应于阳极板 1、 阴极板 2处连通构成一离子传导内腔, 所述阳极板 1与阳极管道 5连通并与 阳极电解液 3接触, 所述阴极板 2与阴极管道 6连通并与阴极电解液 4接触, 所述阳极板 1 为铝板, 所述阴极板 2为空气电极, 所述阳极电解液 3为氢氧化锂有 溶液, 所述阴极电解 液 4为氢氧化锂水溶液。
作为迸一步优选的, 所述氢氧化锂有机溶液的浓度为 l mol/L。
作为进一步优选的, 所述氢氧化锂水溶液的浓度为 lmol/L。
实施例 4
如图 2所示, 本实施例与实施例 1的区别在于: 所述离子传导内腔中还设置有多孔隔膜 Ί, 所述多孔隔膜 7优选为碳纸, 所述碳纸设置于阳极管道 5与阴极管道 6之间, 所述碳纸 不仅能够更进一步的防止阳极电解液 3与阴极电解液 4在离子传导内腔中形成湍流现象,保 证各电解液接触面处于层流状态, 而且有利于控制各电解液之间的混合程度, 提高电池的电 化学性能。
实施例 5
如图 3所示, 本实施例与实施例 4的区别在于: 所述离子传导内腔中还设置有离子交换 膜 8, 所述离子交换膜 8设置于阳极管道 5与阴极管道 6之间, 相对于实施例 4中的多孔隔 膜 7, 本实施例的离子交换膜 8具有更好的离子通过选择性, 进一步提高电池的电化学性能 和电解液的利用率。
本实施例的其它技术特征同实施例 4, 在此不再进行赘述。
以上所述实施例仅表达了本发明的部分实施方式, 其摇述较为具体和详细, 但并不 能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本领域的普通技术人员 来说, 在不脱离本发明构思的前提下, 还可以做出若干变形和改进, 这些都属于本实用 型的保护范围。 因此, 本发明专利的保护范围应以所附权利要求为准。

Claims

权 利 要 求 书
新一代高容量双电解液铝空气微流体电池, 包括阳极板、 阴极板以及处于流动状态 的电解液, 其特征在于: 所述电解液包括阳极电解液、 阴极电解液, 还包括分别用于输送阳 极电解液、 阴极电解液的阳极管道、 阴极管道, 所述阳极管道、 阴极管道在对应于阳极板、 阴极板处连通构成一离子传导内腔, 所述阳极板与阳极管道连通并与阳极电解液接触, 所述 阴极板与阴极管道连通并与阴极电解液接触, 所述阳极板为铝板, 所述阴极板为空气电极, 所述阳极电解液为强碱有机溶液, 所述阴极电解液为强碱水溶液。
2、 根据权利要求 i所述的新一代高容量双电解液铝空气微流体电池, 其特征在于: 所 述阳极电解液、 阴极电解液在离子传导内腔中的流向相同。
3、 根据权利要求 2所述的新一代高容量双电解液铝空气微流体电池, 其特征在于: 所 述阳极电解液、 阴极电解液在离子传导内腔中呈分层流动状态。
4、 根据权利要求 1所述的新一代高容量双电解液铝空气徵流体电池, 其特征在于: 所 述强碱有机溶液为氢氧化钾有机溶液、氢氧化钠有机溶液或氢氧化锂有机溶液中的任意一种 或两种以上的混合物。
5、 根据权利要求 4所述的新一代高容量双电解液铝空气微流体电池, 其特征在于: 所 述强碱有机溶液中的溶剂为甲醇。
6、 根据权利要求 4所述的新一代高容量双电解液铝空气徵流体电池, 其特征在于: 所 述强碱有机溶液的浓度为 l〜6moVL。
7、 根据权利要求 1所述的新一代高容量双电解液铝空气徵流体电池, 其特征在于: 所 述强碱水溶液为氢氧化钾水溶液、氢氧化销水溶液或氢氧化锂水溶液中的任意一种或两种以 上的混合物。
8、 根据权利要求 7所述的新一代高容量双电解液铝空气微流体电池, 其特征在于: 所 述强碱水溶液的浓度为 l〜6m0l/L。
9、 根据权利要求 1··8任意一项所述的新一代高容量双电解液铝空气微流体电池, 其特 征在于: 所述离子传导内腔中设置有多孔隔膜, 所述多孔隔膜设置于阳极管道与阴极管道之 间。
10、 根据权利要求 1-8任意一项所述的新一代高容量双电解液铝空气微流体电池, 其特 征在于: 所述离子传导 ή腔中设置有离子交换膜, 所述离子交换膜设置于阳极管道与阴极管 道之间。
PCT/CN2016/090972 2015-11-19 2016-07-22 新一代高容量双电解液铝空气微流体电池 WO2017084375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520925882.2U CN205159473U (zh) 2015-11-19 2015-11-19 新一代高容量双电解液铝空气微流体电池
CN201520925882.2 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017084375A1 true WO2017084375A1 (zh) 2017-05-26

Family

ID=55695132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090972 WO2017084375A1 (zh) 2015-11-19 2016-07-22 新一代高容量双电解液铝空气微流体电池

Country Status (2)

Country Link
CN (1) CN205159473U (zh)
WO (1) WO2017084375A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205159473U (zh) * 2015-11-19 2016-04-13 广州道动新能源有限公司 新一代高容量双电解液铝空气微流体电池
CN205122732U (zh) * 2015-11-19 2016-03-30 广州道动新能源有限公司 新一代高容量双电解液铝空气电池
CN110233314A (zh) * 2019-06-28 2019-09-13 江苏大学 双电解液铝空气电池
CN113097606B (zh) * 2021-03-23 2023-02-03 深圳大学 一种液流金属空气电池系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714680A (zh) * 2008-10-07 2010-05-26 中国人民解放军63971部队 一种兼有电化学制备的可再充金属空气液流电池
CN103700907A (zh) * 2014-01-15 2014-04-02 湖南桑顿新能源有限公司 一种锌金属空气电池的制备方法
CN205159473U (zh) * 2015-11-19 2016-04-13 广州道动新能源有限公司 新一代高容量双电解液铝空气微流体电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714680A (zh) * 2008-10-07 2010-05-26 中国人民解放军63971部队 一种兼有电化学制备的可再充金属空气液流电池
CN103700907A (zh) * 2014-01-15 2014-04-02 湖南桑顿新能源有限公司 一种锌金属空气电池的制备方法
CN205159473U (zh) * 2015-11-19 2016-04-13 广州道动新能源有限公司 新一代高容量双电解液铝空气微流体电池

Also Published As

Publication number Publication date
CN205159473U (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN102013536B (zh) 一种液流式锂-空气电池
CN104716304B (zh) 一种锌镍双液液流电池
WO2017084375A1 (zh) 新一代高容量双电解液铝空气微流体电池
CN105742656B (zh) 一种锌碘液流电池
WO2016078491A1 (zh) 一种长寿命锌溴液流电池
CN205159452U (zh) 新一代双电解液锌二次电池
WO2017084376A1 (zh) 新一代高容量高电压双电解液铝空气微流体电池
WO2018103518A1 (zh) 一种中性锌铁液流电池
CN106549179B (zh) 一种有机体系锂醌液流电池
CN112786938B (zh) 具有双溶解沉积反应的酸碱混合高电压水系锌电池和锌液流电池
CN103872370B (zh) 液流电池
WO2017071319A1 (zh) 微流体多电解液结构电池
CN108615921A (zh) 一种中性锌铁液流电池用电解液
WO2017071318A1 (zh) 一种利用离子交换膜实现多电解液结构的新型电池
WO2017084374A1 (zh) 新一代高容量双电解液铝空气电池
WO2017071320A1 (zh) 一种利用离子交换膜和微流体技术的多电解液结构电池
CN110137527A (zh) 电极浆液和浆液电极以及液流电池和电池堆
CN208674268U (zh) 液流电池浆液电极装置和液流电池系统
JP2014170715A (ja) 電池
WO2016078492A1 (zh) 一种醌多卤化物液流电池
CN113097606B (zh) 一种液流金属空气电池系统
CN102376936B (zh) 一种多孔负极结构锂氧气电池
CN111525170B (zh) 一种锡铁碱性液流电池
CN109755620B (zh) 一种锌碘液流电池
CN103413992A (zh) 一种非液流锌溴电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865553

Country of ref document: EP

Kind code of ref document: A1