WO2017081953A1 - ハロゲン系ガスを用いる処理装置における処理方法 - Google Patents

ハロゲン系ガスを用いる処理装置における処理方法 Download PDF

Info

Publication number
WO2017081953A1
WO2017081953A1 PCT/JP2016/079249 JP2016079249W WO2017081953A1 WO 2017081953 A1 WO2017081953 A1 WO 2017081953A1 JP 2016079249 W JP2016079249 W JP 2016079249W WO 2017081953 A1 WO2017081953 A1 WO 2017081953A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
halogen
processing method
based gas
Prior art date
Application number
PCT/JP2016/079249
Other languages
English (en)
French (fr)
Inventor
智仁 松尾
宏史 長池
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US15/775,606 priority Critical patent/US11158490B2/en
Priority to KR1020187016443A priority patent/KR102205225B1/ko
Publication of WO2017081953A1 publication Critical patent/WO2017081953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3288Maintenance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Definitions

  • the present invention relates to a processing method in a processing apparatus using a halogen-based gas such as an etching apparatus.
  • a plasma etching process in which a predetermined pattern is formed on a predetermined layer formed on a semiconductor wafer that is an object to be processed, and etching is performed by plasma using a resist or the like as a mask.
  • Such a plasma etching process is performed by introducing a corrosive etching gas into a chamber held in a vacuum of a plasma etching apparatus and turning the etching gas into plasma.
  • a plasma etching apparatus needs to be regularly maintained, and the chamber is opened to the atmosphere during the maintenance.
  • the reaction product in the chamber reacts with moisture in the air when it is opened to the atmosphere as it is, harmful substances are generated, so the chamber is cycle purged before the chamber is opened to the atmosphere (for example, Patent Document 1 “Prior Art”).
  • the cycle purge is a process in which N 2 gas is introduced into the chamber, the pressure is increased, the reaction product is mixed, the inside of the chamber is evacuated, and N 2 gas is introduced again a plurality of times.
  • the chamber is opened to the atmosphere for maintenance, and then the wafer is processed to mainly contain chromium on the wafer. Metal contamination occurs. For this reason, even after the chamber is opened to the atmosphere, N 2 purge and cycle purge are performed until the metal contamination is below the reference value, and then dummy wafer processing is performed.
  • a halogen-based gas such as Cl 2 gas or HBr as an etching gas
  • Such metal contamination of the wafer after opening the chamber to the atmosphere is considered to be caused by corrosion of stainless steel piping by halogen-based gas due to opening to the atmosphere, and metal contamination is below the standard value. Even if N 2 purge or cycle purge is performed until this occurs, and then dummy wafer processing is performed, it will be handled after corrosion has occurred. For this reason, it takes a long time to purge, and several tens to several hundreds of dummy wafers are required, and a total time of about half a day to about a day is required.
  • an object of the present invention is to provide a treatment method capable of suppressing corrosion per se caused by a halogen-based gas generated in a treatment apparatus using a halogen-based gas.
  • a halogen-based gas is supplied into the chamber while a member having an oxide film formed on the surface is connected or the inside of the chamber having the oxide film is maintained in a vacuum.
  • ion sputtering may be performed simultaneously with the purging step or prior to the purging step.
  • the ion sputtering treatment can be performed using argon ions obtained by generating argon gas plasma.
  • a halogen-based gas is supplied into the chamber while a member having an oxide film formed on the surface is connected, or the chamber having the oxide film on the surface is kept in vacuum.
  • a processing method in a processing apparatus for performing a predetermined process on an object to be processed, the step of performing the predetermined process on the object to be processed one or more times in the chamber, and then the inside of the chamber by oxygen plasma There is provided a processing method in a processing apparatus using a halogen-based gas, which includes a processing step and a step of opening the chamber to the atmosphere.
  • a halogen-based gas is supplied into the chamber while a member having an oxide film formed on the surface is connected or the inside of the chamber having the oxide film on the surface is kept in vacuum.
  • a processing method is provided.
  • the purging at the time of idling can be performed by mixing nitrogen gas with oxygen gas. Further, after the purge at the time of idling is performed with oxygen gas for a predetermined period, the inside of the chamber may be purged with nitrogen gas for the remaining period of idling.
  • an example in which the member connected to the chamber and having an oxide film formed on the surface is a gas supply pipe made of stainless steel, and the oxide film is a passive film of chromium.
  • a typical example can be given.
  • a typical example of the halogen gas is chlorine gas.
  • the oxide film can be re-oxidized by oxygen gas, dry air, or oxygen plasma, corrosion itself by the halogen-based gas that occurs in the processing apparatus using the halogen-based gas can be suppressed.
  • Stainless steel has a passive film (Cr 2 O 3 ) formed on the surface by combining chromium (Cr) contained as a component with oxygen in the air.
  • This passive film is a stable substance and has high corrosion resistance against halogen-based gases.
  • corrosion occurs due to reaction with halogen-based gas in an environment where moisture exists.
  • chlorine (Cl) is used as the halogen
  • the passive film is destroyed by hydrochloric acid generated by the reaction of water and chlorine in an environment where there is a lot of moisture when released to the atmosphere, and a large amount of chromium chloride (CrCl 3 ). When generated, it peels off or volatilizes from the surface of the stainless steel, causing particles and gas molecules to cause metal contamination.
  • oxygen gas or dry air is supplied to the chamber through the gas supply pipe to purge the chamber, thereby removing halogen-based components such as chlorine in the pipe.
  • the passive film can be returned to its initial healthy state, and even when it comes into contact with moisture due to release to the atmosphere, corrosion by halogen hardly occurs.
  • the passive film is slightly corroded by the halogen-based gas during the treatment with the halogen-based gas in a vacuum atmosphere, but oxygen gas or oxygen is introduced into the chamber via the gas supply pipe during idling during the treatment with the halogen-based gas. It has been found that by purging the inside of the chamber by supplying dry air, the passive film can be returned to the initial healthy state and corrosion by halogen can be suppressed.
  • the present invention has been made based on such knowledge.
  • FIG. 1 is a sectional view showing a schematic configuration of such a processing apparatus.
  • the processing apparatus 1 shown in FIG. 1 is configured as a plasma etching apparatus.
  • the processing apparatus 1 includes a chamber 2 that houses a semiconductor wafer (hereinafter simply referred to as a wafer) W that is an object to be processed.
  • the chamber 2 has a main body portion 2a and a lid portion 2b provided on the main body portion 2a so as to be openable and closable, and is grounded.
  • the chamber 2 is made of aluminum whose inner surface is anodized (anodized).
  • a mounting table 4 On the bottom wall in the main body 2a of the chamber 2, there is provided a mounting table 4 on which a wafer W is mounted via an insulating member 3 and functions as a lower electrode.
  • a feeding line 5 is connected to the mounting table 4, and a matching unit 6 and a high-frequency power source 7 are connected to the feeding line 5.
  • a high frequency power having a predetermined frequency is applied from the high frequency power source 7.
  • a shower head 8 that introduces gas into the chamber 2 and functions as an upper electrode is provided inside the lid portion 2 b of the chamber 2 so as to face the mounting table 4.
  • the shower head 8 has a gas diffusion space 8a for diffusing a processing gas therein, and a plurality of gas discharge holes 8b formed on the lower surface.
  • the shower head 8 is grounded via the chamber 2 and constitutes a pair of parallel plate electrodes together with the mounting table 4. Therefore, by applying high frequency power from the high frequency power source 7 to the mounting table 4, a high frequency electric field is generated between the mounting table 4 and the shower head 8, and plasma is generated in the chamber 2.
  • a gas inlet 9 is provided on the upper surface of the shower head 8, and a gas supply pipe 10 made of stainless steel is connected to the gas inlet 9.
  • the gas supply pipe 10 is connected to a gas supply mechanism (not shown), and from the gas supply mechanism, Cl 2 gas as a halogen-based gas, which is an etching gas, and O 2 gas or dry air as a purge gas are supplied to the shower head 8. To supply. It should be noted that other components of the etching gas, dilution gas, and the like are supplied from the gas supply mechanism. Then, Cl 2 gas, which is an etching gas, is turned into plasma by the high frequency electric field, and a predetermined layer of the wafer W is etched.
  • An exhaust pipe 11 is connected to the bottom of the main body 2a of the chamber 2, and an exhaust device 12 is connected to the exhaust pipe 11 and a pressure adjusting valve (not shown) is provided.
  • the exhaust device 12 includes a vacuum pump such as a turbo molecular pump, and is configured so that the inside of the chamber 2 can be exhausted to be evacuated to a predetermined degree of vacuum.
  • a loading / unloading port 13 for loading / unloading the wafer W is formed on the side wall of the main body 2a of the chamber 2, and a gate valve 14 for opening / closing the loading / unloading port 13 is provided. Sometimes, the wafer W is carried in and out of the chamber 2 by a transfer means (not shown).
  • the gate valve 14 is opened, the wafer W is loaded from the loading / unloading port 13 by a transfer means (not shown), and the wafer W is mounted on the mounting table 4. After the transfer means is retracted from the chamber 2, the gate valve 14 is closed.
  • the pressure in the chamber 2 is adjusted to a predetermined degree of vacuum by the pressure adjusting valve, and Cl 2 gas is supplied into the shower head 8 as an etching gas via the gas supply pipe 10.
  • Cl 2 gas is introduced into 2 .
  • a high frequency electric field is formed between the mounting table 4 and the shower head 8, and plasma of Cl 2 gas that is an etching gas is generated.
  • a predetermined film of the wafer W is etched.
  • FIG. 2 is a flowchart showing the processing method according to the first embodiment of the present invention.
  • the plasma etching process as described above is performed once or a plurality of times by the processing apparatus 1 (step 1), and then oxygen gas (O 2 gas) or dry air (D-Air) is passed through the gas supply pipe 10.
  • the chamber 2 is supplied to purge the inside of the chamber 2 (step 2), and then the chamber 2 is opened to the atmosphere (step 3). That is, after the etching process is performed, before the atmosphere is released, the chamber 2 is purged with oxygen gas (O 2 gas) or dry air instead of the conventional cycle purge.
  • oxygen gas O 2 gas
  • D-Air dry air
  • the corrosion of the gas supply pipe 10 made of stainless steel (SUS) is caused by Cl 2 remaining on the inner surface of the pipe. If the atmosphere is opened with Cl 2 remaining on the surface, the moisture in the atmosphere and Cl 2 react with the passive film, so that corrosion progresses greatly and causes metal contamination. In contrast, in the present embodiment, moisture in the atmosphere is obtained by purging the chamber 2 by supplying oxygen gas (O 2 gas) or dry air to the chamber 2 via the gas supply pipe 10 prior to opening to the atmosphere.
  • O 2 gas oxygen gas
  • the Cl component adhering to the gas supply pipe 10 can be removed before contacting with the gas supply pipe 10 and the passive film can be reoxidized to return to the initial state.
  • oxygen gas (O 2 gas) When oxygen gas (O 2 gas) is used for the purge in Step 2, not only oxygen gas (O 2 gas) but also inert gas (rare gas such as N 2 gas or Ar gas) is mixed. May be. However, oxygen gas (O 2 gas) alone is more effective than using dry air or mixing an inert gas. Further, the purge in step 2 may be performed for several minutes to 30 minutes before being released to the atmosphere, and can be made shorter than the conventional cycle purge.
  • the oxygen gas used for the purge in Step 2 contains moisture, the effect of reoxidation by oxygen is hindered by the action of water and Cl. For this reason, it is preferable to use a gas (oxygen gas, dry air, etc.) used for purging that does not substantially contain moisture. That is, it is preferable to remove moisture in the purge gas as much as possible.
  • a gas oxygen gas, dry air, etc.
  • the moisture concentration of the halogen-based gas is set to 0.5 ppm or less. Even in this embodiment, if the moisture concentration is lower than the moisture concentration of the halogen-based gas, a certain effect is obtained. In order to obtain it, the moisture concentration in the purge gas is preferably 0.5 ppm or less.
  • the gas supply pipe 10 is made of stainless steel (SUS) and has a high corrosion resistance because a passive film is formed on the surface, but is a halogen-based gas in an environment containing moisture.
  • SUS stainless steel
  • the following reactions (1) and (2) occur between the Cl 2 gas, water (H 2 O), and the passive film (CrOx), and the passive film is corroded.
  • FIG. 3 is a schematic diagram showing a reaction model example of passive film corrosion of stainless steel by Cl 2 gas.
  • Cl 2 gas adheres to the passive film, it adheres to the surface of the passive film as a surface material.
  • FeClx produced by reaction of Fe and Cl, and CrClx produced by the reaction of a slight amount of moisture in the chamber with Cl 2 exist.
  • the corrosion inhibition model in this embodiment is as shown in FIG. That is, when a passive film (CrOx) is formed on the surface as shown in FIG. 4 (a) and Cl 2 gas adheres to the surface as shown in FIG. 4 (b), CrClx is partially formed. Arise. For this reason, before opening to the atmosphere, purging with oxygen gas (O 2 gas) or dry air as shown in FIG. 4C removes Cl components such as Cl 2 adhering to the surface. 4 (d), the passive film is reoxidized to return to the initial state. Thereby, corrosion of a passive film is suppressed.
  • O 2 gas oxygen gas
  • FIG. 4C dry air
  • chrome oxide has a larger value on the negative side than chrome chloride and is more stable. This also confirms that Cr tends to be an oxide rather than chloride in the presence of oxygen, and that halogen corrosion due to chlorine can be suppressed by reoxidation of CrCl 3 .
  • FIG. 5 is a flowchart showing a processing method according to the second embodiment of the present invention.
  • the plasma etching process as described above is performed once or a plurality of times by the processing apparatus 1 (step 11), and then the gas supply pipe 10 is used instead of purging with oxygen gas or the like.
  • the inner and the chamber is exposed to O 2 plasma perform the O 2 plasma treatment (step 12), then performs the air opening of the chamber 2 (step 13).
  • the O 2 plasma treatment can be performed by supplying high-frequency power from the high-frequency power source 7 to the mounting table 4 while supplying oxygen gas into the chamber 2 through the gas supply pipe 10.
  • the O 2 plasma may be a remote plasma is introduced into the chamber 2 through the gas supply pipe 10.
  • the corrosion inhibition model of this embodiment is as shown in FIG. That is, if a Cl 2 gas adheres to the surface as shown in FIG. 6B in a state where a passive film (CrOx) is generated as shown in FIG. 6A, CrClx is partially generated. For this reason, as shown in FIG. 6C, the inside of the chamber is exposed to O 2 plasma before being released to the atmosphere, and the Cl component on the surface is removed by O radicals (O * ), as shown in FIG. 6D. As described above, the passive film is reoxidized using the oxidation effect of O radicals to return to the initial state. Since O radicals are more reactive than O 2 , higher effects can be obtained in a short time, and reoxidation can be completed in a short time of 30 seconds or less.
  • FIG. 7 is a flowchart showing a processing method according to the third embodiment of the present invention.
  • the plasma etching process as described above is performed once or a plurality of times by the processing apparatus 1 (step 21), and then a plasma of an easily ionized gas such as Ar gas is generated.
  • Sputtering with Ar + ions is performed (step 22). Thereby, Cl on the surface of the gas supply pipe is removed.
  • oxygen gas oxygen gas
  • D-Air dry air
  • the corrosion inhibition model of this embodiment is as shown in FIG. That is, when Cl 2 gas adheres to the surface as shown in FIG. 8B in a state where a passive film (CrOx) is generated as shown in FIG. 8A, CrClx is partially generated. Therefore, before opening to the atmosphere, as shown in FIG. 8C, Ar gas plasma is generated in the chamber, and the surface of the gas supply pipe is sputtered with Ar + ions to remove the Cl component on the surface. At this time, since ions reach the inside of the passive film, the passive film is in an unstable Cr state. Therefore, as shown in FIG. 8D, the passive film is reoxidized with oxygen gas (O 2 gas) or dry air to return to the initial state. Since ions such as Ar + ions have a large effect of removing the Cl component, the Cl component can be more efficiently removed.
  • oxygen gas O 2 gas
  • step 22 and step 23 may be performed simultaneously by supplying oxygen gas (O 2 gas) or the like into the chamber during sputtering with ions such as Ar + ions.
  • oxygen gas O 2 gas
  • ions such as Ar + ions.
  • the passive film is slightly corroded by the Cl 2 gas, which is a halogen-based gas, during the plasma etching that is a vacuum process, but the conventional N 2 gas is used during idling during the plasma etching process.
  • Cl 2 gas which is a halogen-based gas
  • the conventional N 2 gas is used during idling during the plasma etching process.
  • oxygen gas or dry air that is substantially free of moisture for purging, and the moisture concentration at that time is preferably 0.5 ppm or less.
  • step 32 is replaced with O 2 gas by N 2 gas.
  • step 33 purging with O 2 gas in step 32 is performed for a predetermined period, and then purging with N 2 gas (for the remaining idling period) Step 33) may be performed.
  • a rare gas such as Ar gas may be used in place of N 2 gas as an inert gas mixed with oxygen gas (O 2 gas) during the purge in step 32.
  • O 2 gas oxygen gas
  • purging before opening to the atmosphere or plasma processing as in the first to third embodiments may be performed.
  • FIG. 11 shows the results for chromium / iron (Cr / Fe)
  • FIG. 12 shows the results for chromium chloride / chromium (CrCl 3 / Cr).
  • the ratio of Cr decreases in those stored in an N 2 gas atmosphere, whereas the ratio of Cr does not decrease in those stored in a D-Air atmosphere containing oxygen.
  • the ratio of chlorination of Cr is lower when stored in a D-Air atmosphere containing oxygen than when stored in an N 2 gas atmosphere. From this, it was confirmed that the corrosion of the passive film of Cr was suppressed in those stored in a D-Air atmosphere containing oxygen after exposure to Cl 2 .
  • the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the idea of the present invention.
  • the corrosion of the passive film of the stainless steel gas supply pipe is suppressed is shown.
  • the stainless steel screw that is a member in the chamber and the stainless steel spiral tube for ensuring conductivity are shown.
  • other oxide films such as aluminum oxide (Al 2 O 3 ) and yttrium oxide (Y 2 O 3 ) are not only applied to the surface of the pipe or the chamber.
  • the present invention is also applicable to the case where the film is formed, and the corrosion prevention effect can be obtained in that case as well.
  • plasma etching is exemplified as the process using a halogen-based gas.
  • the present invention is not limited to this, and it is needless to say that the process can be applied to a process using other halogen-based gas such as a film forming process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置において、チャンバ内で被処理体に対する所定の処理を1回または複数回行い、その後、チャンバに酸素ガスまたはドライエアを供給してチャンバをパージし、その後チャンバを大気開放する。

Description

ハロゲン系ガスを用いる処理装置における処理方法
 本発明は、エッチング装置等のハロゲン系ガスを用いる処理装置における処理方法に関する。
 半導体デバイスの製造プロセスにおいては、被処理体である半導体ウエハに形成された所定の層に所定のパターンを形成するために、レジストなどをマスクとしてプラズマによりエッチングするプラズマエッチング処理が存在する。
 このようなプラズマエッチング処理は、プラズマエッチング装置の真空に保持されたチャンバ内に腐食性のエッチングガスを導入し、エッチングガスをプラズマ化することにより行われる。このようなプラズマエッチング装置は、定期的にメンテナンスを行う必要があり、メンテナンスの際にチャンバの大気開放が行われる。しかし、そのまま大気開放すると、チャンバ内の反応生成物が空気中の水分と反応して有害な物質が発生するため、チャンバの大気開放前にチャンバ内をサイクルパージすることが行われている(例えば特許文献1の「従来の技術」の欄)。サイクルパージは、チャンバ内にNガスを導入して昇圧し、反応生成物と混合させた後、チャンバ内を真空引きし、再びNガスを導入するというサイクルを複数回行う処理である。
 一方、エッチングガスとしてClガスやHBr等のハロゲン系ガスを使用するプラズマエッチング装置では、メンテナンスのためにチャンバの大気開放を行った後、ウエハの処理を行うとウエハ上にクロムを主体とするメタル汚染が発生する。このため、チャンバを大気開放した後も、メタルの汚染が基準値以下になるまでNパージやサイクルパージを行い、その後ダミーウエハ処理などを実施している。
特開2004-111811号公報
 このようなチャンバを大気開放した後のウエハのメタル汚染は、大気開放によりステンレス鋼製の配管がハロゲン系ガスによって腐食されることにより発生していると考えられ、メタルの汚染が基準値以下になるまでNパージやサイクルパージを行い、その後ダミーウエハ処理を行っても、腐食が生じた後の対応となる。このため、パージに長時間かかるとともに、ダミーウエハ処理も数十から数百枚必要であり、トータルで半日から1日程度という長時間が必要となってしまう。
 したがって、本発明は、ハロゲン系ガスを用いる処理装置において生じるハロゲン系ガスによる腐食自体を抑制することができる処理方法を提供することを目的とする。
 本発明の第1の観点によれば、表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、前記チャンバ内で被処理体に対する前記所定の処理を1回または複数回行う工程と、その後、前記チャンバに酸素ガスまたはドライエアを供給して前記チャンバをパージする工程と、その後、前記チャンバを大気開放する工程と
を有する、ハロゲン系ガスを用いる処理装置における処理方法が提供される。
 上記第1の観点の処理方法において、前記パージする工程と同時に、または前記パージする工程に先立って、イオンスパッタ処理を行ってもよい。前記イオンスパッタ処理は、アルゴンガスのプラズマを生成して得られたアルゴンイオンを用いて行うことができる。
 本発明の第2の観点によれば、表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、前記チャンバ内で被処理体に対する前記所定の処理を1回または複数回行う工程と、その後、前記チャンバ内を酸素プラズマにより処理する工程と、その後、前記チャンバを大気開放する工程とを有する、ハロゲン系ガスを用いる処理装置における処理方法が提供される。
 本発明の第3の観点によれば、表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、前記チャンバ内で被処理体に対して前記所定の処理を、前記チャンバを真空に保持したまま複数回行う工程と、前記複数回の前記所定の処理の間にアイドリングを行う工程とを有し、前記アイドリングの際に、前記チャンバに酸素ガスまたはドライエアを供給し、前記チャンバをパージする、ハロゲン系ガスを用いる処理装置における処理方法が提供される。
 上記第3の観点の処理方法において、前記アイドリングの際の前記パージは、酸素ガスに窒素ガスを混合して行うことができる。また、前記アイドリングの際の前記パージを酸素ガスにより所定期間行った後、前記アイドリングの残りの期間に、前記チャンバ内を窒素ガスによりパージしてもよい。
 上記第1~第3の観点において、前記チャンバに接続された前記表面に酸化膜が形成された部材がステンレス鋼製のガス供給配管であり、前記酸化膜がクロムの不動態膜である例を典型例として挙げることができる。また、前記ハロゲン系ガスとして塩素ガスを典型例として挙げることができる。
 本発明によれば、酸素ガス、ドライエア、または酸素プラズマにより、酸化膜を再酸化することができるので、ハロゲン系ガスを用いる処理装置において生じるハロゲン系ガスによる腐食自体を抑制することができる。
本発明の実施形態の処理方法に用いることができる処理装置の一例の概略構成を示す断面図である。 本発明の第1の実施形態に係る処理方法を示すフロー図である。 Clガスによるステンレス鋼の不動態膜腐食の反応モデル例を示す模式図である。 本発明の第1の実施形態の場合の腐食抑制モデルを示す模式図である。 本発明の第2の実施形態に係る処理方法を示すフロー図である。 本発明の第2の実施形態の場合の腐食抑制モデルを示す模式図である。 本発明の第3の実施形態に係る処理方法を示すフロー図である。 本発明の第3の実施形態の場合の腐食抑制モデルを示す模式図である。 本発明の第4の実施形態に係る処理方法を示すフロー図である。 本発明の第4の実施形態の変形例に係る処理方法を示すフロー図である。 本発明の第4の実施形態の他の変形例に係る処理方法を示すフロー図である。 ステンレス鋼の試験片を塩素ガスに曝した後、それぞれ窒素ガス雰囲気およびドライエアに保管した際における、暴露前と暴露・保管後のクロム/鉄の値を示す図である。 ステンレス鋼の試験片を塩素ガスに曝した後、それぞれ窒素ガス雰囲気およびドライエアに保管した際における、暴露前と暴露・保管後の塩化クロム/クロムの値を示す図である。
 本発明者らは、上記課題を解決するため、ステンレス鋼の腐食のメカニズムに基づいて検討した。
 ステンレス鋼は、成分として含有するクロム(Cr)が空気中の酸素と結合することにより、表面に不動態膜(Cr)が形成されている。この不動態膜は安定な物質であり、ハロゲン系ガスに対しても高い耐食性を有している。しかし、水分が存在する環境下ではハロゲン系ガスと反応して腐食が生じることが判明した。例えば、ハロゲンとして塩素(Cl)を用いた場合、大気開放した際の水分が多い環境では、水と塩素が反応して生じた塩酸によって不動態膜が破壊され、塩化クロム(CrCl)が多く生成されて、ステンレス鋼の表面から剥離または揮発し、パーティクルやガス分子となってメタル汚染を引き起こす。
 また、ステンレス鋼の不動態膜は、破壊されても酸素が存在すると瞬時に再酸化するため、このように塩酸と不動態膜との反応の際も酸素を存在させて瞬時に再酸化させることにより塩化物が剥離または揮発してパーティクルやガス分子となることを防止できることが判明した。
 したがって、水分が存在する大気雰囲気に曝される前の段階で、ガス供給配管を介してチャンバに酸素ガスまたはドライエアを供給してチャンバをパージすることにより、配管内の塩素等のハロゲン系成分を除去することができるとともに、不動態膜を初期の健全な状態に戻すことができ、大気開放により水分に接触してもハロゲンによる腐食がほとんど生じないことを見出した。また、真空雰囲気におけるハロゲン系ガスによる処理中にもハロゲン系ガスによってわずかに不動態膜が腐食されるが、ハロゲン系ガスによる処理の間のアイドリング中にガス供給配管を介してチャンバに酸素ガスまたはドライエアを供給してチャンバ内をパージすることにより、不動態膜を初期の健全な状態に戻すことができ、ハロゲンによる腐食を抑制できることを見出した。
 そして、これらの効果は、配管に用いるステンレス鋼の不動態膜のみならず、配管やチャンバ内の表面等に酸化アルミニウム(Al)、酸化イットリウム(Y)等の他の酸化物の膜が形成されている場合にも同様に得られることも見出した。
 本発明は、このような知見に基づいてなされたものである。
 以下、添付図面を参照して、本発明の実施の形態について説明する。
 <処理装置>
 最初に、本発明の実施形態の処理方法に用いることができる処理装置の一例について説明する。図1はそのような処理装置の概略構成を示す断面図である。
 図1に示す処理装置1は、プラズマエッチング装置として構成されている。処理装置1は被処理体である半導体ウエハ(以下単にウエハと記す)Wを収容するチャンバ2を備えている。チャンバ2は、本体部2aと、その上に開閉可能に設けられた蓋部2bとを有しており接地されている。チャンバ2は、内面が陽極酸化処理(アルマイト処理)されたアルミニウムからなっている。
 チャンバ2の本体部2a内の底壁には、絶縁部材3を介して、ウエハWを載置するとともに、下部電極として機能する載置台4が設けられている。載置台4には給電線5が接続されており、給電線5には整合器6および高周波電源7が接続されている。高周波電源7からは所定の周波数の高周波電力が印加される。
 チャンバ2の蓋部2bの内側部分にはチャンバ2内にガスを導入するとともに上部電極として機能するシャワーヘッド8が、載置台4と対向するように設けられている。シャワーヘッド8は、内部に処理ガスを拡散させるガス拡散空間8aが形成されているとともに、下面に複数のガス吐出孔8bが形成されている。このシャワーヘッド8はチャンバ2を介して接地されており、載置台4とともに一対の平行平板電極を構成している。したがって、載置台4に高周波電源7から高周波電力が印加されることにより、載置台4とシャワーヘッド8との間に高周波電界が生じ、チャンバ2内にプラズマが生成されるようになっている。
 シャワーヘッド8の上面にはガス導入口9が設けられ、このガス導入口9には、ステンレス鋼からなるガス供給配管10が接続されている。ガス供給配管10は、ガス供給機構(図示せず)に接続されており、ガス供給機構からエッチングガスであるハロゲン系ガスとしてのClガス、およびパージガスとしてのOガスまたはドライエアをシャワーヘッド8に供給するようになっている。なお、ガス供給機構からは、その他エッチングガスの他の成分や希釈ガス等が供給されるようになっている。そして、上記高周波電界によりエッチングガスであるClガス等がプラズマ化され、ウエハWの所定の層がエッチングされる。
 チャンバ2の本体部2aの底部には排気管11が接続されており、この排気管11には排気装置12が接続されるとともに、図示しない圧力調整弁が設けられている。排気装置12はターボ分子ポンプなどの真空ポンプを備えており、これによりチャンバ2内を排気して所定の真空度まで真空引き可能なように構成されている。チャンバ2の本体部2aの側壁には、ウエハWを搬入出するための搬入出口13が形成されているとともに、この搬入出口13を開閉するゲートバルブ14が設けられており、搬入出口13の開放時に、図示しない搬送手段によって、ウエハWのチャンバ2に対する搬入出が行われるように構成されている。
 このように構成された処理装置1においては、ゲートバルブ14を開放して搬入出口13から図示しない搬送手段によってウエハWを搬入し、載置台4上にウエハWを載置する。搬送手段をチャンバ2から退避させた後、ゲートバルブ14を閉じる。
 この状態で、圧力調整弁によりチャンバ2内の圧力を所定の真空度に調整するとともに、ガス供給配管10を介してエッチングガスとしてClガスをシャワーヘッド8内に供給し、シャワーヘッド8からチャンバ2内にClガスを導入する。そして、載置台4に高周波電源7から高周波電力を印加することにより、載置台4とシャワーヘッド8との間に高周波電界を形成し、エッチングガスであるClガスのプラズマを生成する。これにより、ウエハWの所定の膜がエッチングされる。
 <本発明の第1の実施形態に係る処理方法>
 このようなプラズマエッチングを複数枚のウエハについて繰り返して行うと、チャンバ2内や排気装置12等には反応生成物が付着するため、定期的にチャンバ2を大気開放し蓋部2bを開けてチャンバ2内等をメンテナンスする。
 チャンバ内の反応生成物は、空気中の水分と反応して有害な物質となるため、従来、チャンバの大気開放前にチャンバ内をNガスによりサイクルパージすることが行われていた。しかし、大気開放の前にサイクルパージを行っても、その後のウエハのエッチング処理において、メタル汚染が生じることが判明した。そのため、エッチング処理開始に先立って、Nパージやサイクルパージを行い、さらにダミーウエハ処理を行うが、長時間行う必要があり、ダミーウエハ処理も数十から数百枚必要であり、トータルで半日から1日程度という長時間が必要となっていた。
 本実施形態に係る処理方法は、このような問題を解決するものである。
 図2は、本発明の第1の実施形態に係る処理方法を示すフロー図である。本例では、処理装置1により上記のようなプラズマエッチング処理を1回または複数回行い(ステップ1)、その後、酸素ガス(Oガス)またはドライエア(D-Air)をガス供給配管10を介してチャンバ2に供給してチャンバ2内をパージし(ステップ2)、その後、チャンバ2の大気開放を行う(ステップ3)。すなわち、エッチング処理を行った後、大気開放を行うに先立って、従来のサイクルパージの代わりに酸素ガス(Oガス)またはドライエアによりチャンバ2内のパージを行う。
 ステンレス鋼(SUS)製のガス供給配管10が腐食するのは、配管の内側表面にClが残存することが原因である。表面にClが残存した状態で大気開放を行うと大気中の水分およびClが不動態膜と反応することにより、腐食が大きく進行し、メタル汚染の原因となる。これに対して、本実施形態では、大気開放に先立ってガス供給配管10を介してチャンバ2に酸素ガス(Oガス)またはドライエアを供給してチャンバ2をパージすることにより、大気中の水分と接触する前にガス供給配管10に付着しているCl成分を除去することができるとともに、不動態膜を再酸化して初期の状態に戻すことができる。これにより、大気開放中の腐食反応を抑制することができ、さらにその後の処理においても不動態膜による保護効果を継続的に得ることができるので、ガス供給配管10の腐食(不動態膜中のCrの消耗)を抑制することが可能となる。このため、大気開放後の処理に際して、従来のような長時間のパージやダミーウエハ処理を行う必要がない。
 ステップ2のパージに酸素ガス(Oガス)を用いる場合は、酸素ガス(Oガス)単体に限らず、不活性ガス(NガスやArガス等の希ガス)を混合したものであってもよい。ただし、ドライエアを用いる場合や不活性ガスを混合する場合よりも、酸素ガス(Oガス)単体のほうが効果が大きい。また、ステップ2のパージは、大気開放前に数分から30分程度行えばよく、従来のサイクルパージよりも短時間とすることができる。
 ステップ2のパージに使用される酸素ガス等に水分が含まれていると、水とClとの作用により酸素による再酸化の効果を阻害する。そのため、パージに使用されるガス(酸素ガス、ドライエア等)は実質的に水分が含まれていないものを用いることが好ましい。すなわち、パージガス中の水分は可能な限り除くことが好ましい。国際半導体技術ロードマップ(International Technology Roadmap for Semiconductor;ITRS)では、ハロゲン系ガスの水分濃度は0.5ppm以下とされており、本実施形態においてもハロゲン系ガスの水分濃度より低ければ一定の効果が得られるため、パージガス中の水分濃度は0.5ppm以下とすることが好ましい。
 <腐食メカニズムおよび腐食抑制メカニズム>
 上述したように、ガス供給配管10はステンレス鋼(SUS)製であり、表面に不動態膜が形成されているため高い耐食性を有しているが、水分を含む環境下ではハロゲン系ガスであるClガスと水(HO)と不動態膜(CrOx)との間では、一例として以下の(1)式および(2)式の反応が生じ、不動態膜が腐食される。
 Cl+HO ⇔ HCl+HClO  ・・・(1)
 CrOx+HCl ⇔ CrClx+HO    ・・・(2)
 すなわち、塩素ガス(Cl)と水(HO)とが反応して塩酸(HCl)が生じ、塩酸が不動態膜(CrOx)と反応して塩化クロム(CrClx)を生成する。
 図3は、Clガスによるステンレス鋼の不動態膜腐食の反応モデル例を示す模式図である。図3の(a)に示すように、真空中のプロセスであるプラズマエッチングが行われているときには、不動態膜にClガスが付着すると、不動態膜の表面には、表面物質として、付着したClの他、FeとClが反応して生成されたFeClx、およびチャンバ内のわずかな水分とClとの反応により生成されたCrClxが存在する状態となる。
 この状態でチャンバが大気開放されると、図3の(b)に示すように、大気中の水分が不動態膜表面に付着する。そして、図3の(c)に示すように、付着した水分と表面に存在するClにより上記(1)式および(2)式に示すように不動態膜(CrOx)は腐食されてCrClx等となり、これらが剥離または揮発することによりパーティクルやガス分子となって飛散し、メタル汚染を引き起こすとともに、不動態膜の膜厚は減少する。そして、表面物質としてFeClxやFeOxが増加する。
 これに対して、本実施形態の場合の腐食抑制モデルは図4に示すようになる。すなわち、図4の(a)のように表面に不動態膜(CrOx)が生成されている状態で、図4の(b)のように表面にClガスが付着すると、一部にCrClxが生じる。このため、大気開放する前に図4の(c)のように酸素ガス(Oガス)やドライエアによりパージすることで、表面に付着しているCl等のCl成分を除去し、さらに図4の(d)に示すように、不動態膜を再酸化させて初期の状態に戻す。これにより、不動態膜の腐食が抑制される。
 標準生成エンタルピー(ΔH 0)によれば、表1に示すようにクロム塩化物よりもクロム酸化物のほうがエンタルピーが負側に大きな値を有しており、安定である。このことからも、酸素がある環境下ではCrは塩化物よりも酸化物になる傾向があり、CrClの再酸化により塩素によるハロゲン腐食が抑制できることが裏付けられている。
Figure JPOXMLDOC01-appb-T000001
 ただし、上述したように水分がハロゲンによる腐食を促進する要素であるため、塩酸水溶液中や、大気のような気中に水分が含まれている環境では、水分の影響が大きく、酸素を供給しただけでは効果が得難い。このため、パージは酸素ガスか、またはドライエアのように酸素ガスを含みかつ水分濃度が少ない雰囲気で行う必要がある。水分の影響をほぼ完全に排除するためには、上述したように、実質的に水分が含まない環境が好ましく、水分濃度を0.5ppm以下にすることが好ましい。
 <本発明の第2の実施形態に係る処理方法>
 次に、本発明の第2の実施形態に係る処理方法について説明する。
 図5は、本発明の第2の実施形態に係る処理方法を示すフロー図である。本実施形態では、第1の実施形態と同様、処理装置1により上記のようなプラズマエッチング処理を1回または複数回行い(ステップ11)、その後酸素ガス等でパージする代わりに、ガス供給配管10内およびチャンバ内をOプラズマに曝してOプラズマ処理を行い(ステップ12)、その後チャンバ2の大気開放を行う(ステップ13)。Oプラズマ処理は、ガス供給配管10を介してチャンバ2内に酸素ガスを供給しつつ、高周波電源7から載置台4に高周波電力を供給することにより行うことができる。他の機構でOプラズマを生成した後、Oプラズマをガス供給配管10を介してチャンバ2内に導入するリモートプラズマであってもよい。
 本実施形態の腐食抑制モデルは図6に示すようになる。すなわち、図6の(a)のように不動態膜(CrOx)が生成されている状態で、図6の(b)のように表面にClガスが付着すると、一部にCrClxが生じる。このため、大気開放する前に図6の(c)のようにチャンバ内をOプラズマに曝し、Oラジカル(O)により表面のCl成分を除去するとともに、図6の(d)に示すように、Oラジカルの酸化効果を利用して不動態膜を再酸化して初期の状態に戻す。OラジカルはOと比べると反応性が高いため、より高い効果を短時間で得ることができ、再酸化を30秒以内という短時間で終了することができる。
 <本発明の第3の実施形態に係る処理方法>
 次に、本発明の第3の実施形態に係る処理方法について説明する。
 図7は、本発明の第3の実施形態に係る処理方法を示すフロー図である。本実施形態では、第1の実施形態と同様、処理装置1により上記のようなプラズマエッチング処理を1回または複数回行い(ステップ21)、その後、イオン化しやすいガス例えばArガスのプラズマを生成し、Arイオンによるスパッタ処理を行う(ステップ22)。これによりガス供給配管表面のClを取り除く。この場合、Clを除去した後は不動態膜が不安定なCrの状態となるため、その後、酸素ガス(Oガス)またはドライエア(D-Air)をガス供給配管10を介してチャンバ2内に供給してチャンバ2内をパージする(ステップ23)。これにより不動態膜を再酸化させる。その後、チャンバ2の大気開放を行う(ステップ24)。
 本実施形態の腐食抑制モデルは図8に示すようになる。すなわち、図8の(a)のように不動態膜(CrOx)が生成されている状態で、図8の(b)のように表面にClガスが付着すると、一部にCrClxが生じる。このため、大気開放する前に図8の(c)のように、チャンバ内にArガスのプラズマを生成し、Arイオンによりガス供給配管表面をスパッタして表面のCl成分を除去する。このとき、イオンは不動態膜の内部まで達するため、不動態膜が不安定なCrの状態となる。このため、図8の(d)に示すように、酸素ガス(Oガス)またはドライエアにより不動態膜を再酸化して初期の状態に戻す。Arイオン等のイオンは、Cl成分を除去する作用が大きいので、より効率的にCl成分を除去することができる。
 なお、Arイオン等のイオンによるスパッタの際に、チャンバ内に酸素ガス(Oガス)等を供給してステップ22とステップ23を同時に行ってもよい。
 <本発明の第4の実施形態に係る処理方法>
 次に、本発明の第4の実施形態に係る処理方法について説明する。
 本実施形態においては、図9に示すように、チャンバ2内で上述したプラズマエッチング処理(ステップ31)を複数回繰り返し行うに際し、一回のプラズマエッチング処理が終了後、次のウエハのプラズマエッチングの間のアイドリングの際に、ガス供給配管10を介してチャンバ2内に酸素ガス(Oガス)またはドライエア(D-Air)を供給し、チャンバ内をパージする(ステップ32)。これを大気開放までの一連の処理の間、常時続ける。
 上述したように、真空処理であるプラズマエッチングの際にもハロゲン系ガスであるClガスによってわずかに不動態膜が腐食されるが、プラズマエッチング処理の間のアイドリング中に、従来のNガスによるパージに代えて、酸素ガスまたはドライエアによりパージを行うことにより、ガス供給配管の表面に付着したClを除去することができるとともに、ガス供給配管中を酸素含有雰囲気にしてその表面の不動態膜を再酸化し、初期の健全な状態に戻すことができる。これにより、ハロゲン系ガスによる不動態膜の腐食を効果的に抑制することができる。また、このようにアイドリング中のパージを酸素ガスまたはドライエアで行うことにより、チャンバを大気開放した際の不動態膜の腐食も抑制することができる。
 本実施形態においても、パージの際に用いる酸素ガスやドライエアは実質的に水分が含まれていないものを用い、その際の水分濃度は0.5ppm以下とすることが好ましい。
 パージガスとして酸素ガス(Oガス)を用いる場合には、高価な酸素ガス(Oガス)の使用量を減少させる観点から、図10Aに示すように、ステップ32をOガスにNガスを混合したガスで行ってもよいし、図10Bに示すように、アイドリングの際に、ステップ32のOガスによるパージを所定期間行った後、アイドリングの残りの期間にNガスによるパージ(ステップ33)を行ってもよい。
 なお、ステップ32のパージの際に、酸素ガス(Oガス)に混合する不活性ガスとしてNガスの代わりにArガス等の希ガスを用いてもよい。また、アイドリングの際に酸素ガス等によりパージを行うことに加え、第1~第3の実施形態のような大気開放前のパージやプラズマ処理を行ってもよい。
 <実験例>
 ここではステンレス鋼(SUS)の試験片を複数準備し、これらを塩素ガス(Clガス)に曝した後、一部を窒素ガス(Nガス)雰囲気で、残部を水分が0.5ppm以下の実質的に水分が存在しない状態に管理したドライエア(D-Air)雰囲気で72時間保管した。
 Cl暴露前とCl暴露・保管後の試験片についてTOF-SIMSで分析した。その結果を図11および図12に示す。図11はクロム/鉄(Cr/Fe)の結果を示し、図12は塩化クロム/クロム(CrCl/Cr)の結果を示す。
 図11に示すように、Nガス雰囲気で保管したものはCrの割合が減少しているのに対し、酸素を含むD-Air雰囲気で保管したものはCrの割合が減少していない。また、図12に示すように、酸素を含むD-Air雰囲気で保管したものは、Nガス雰囲気で保管したものよりもCrの塩化の割合が低い。このことから、Cl暴露後、酸素を含むD-Air雰囲気で保管したものは、Crの不動態膜の腐食が抑制されていることが確認された。
 <他の適用>
 なお、本発明は上記実施形態に限定されることなく本発明の思想の範囲内で種々変形可能である。例えば、上記実施形態では、ステンレス鋼製のガス供給配管の不動態膜の腐食を抑制する例を示したが、チャンバ内部材であるステンレス鋼製ネジや導電性確保のためのステンレス鋼製スパイラルチューブにも効果があり、さらにステンレス鋼の不動態膜のみならず、配管やチャンバ内の表面等に酸化アルミニウム(Al)、酸化イットリウム(Y)等の他の酸化物の膜が形成されている場合にも適用可能であり、その場合にも同様に腐食防止効果を得ることができる。
 また、上記実施形態では、ハロゲン系ガスとしてClガスを用いた場合を例にとって説明したが、HBrガス等のF、Cl、Br、Iといったハロゲン元素を含む他のガスを用いた場合にも同様の効果を得ることができる。
 さらに、上記実施形態ではハロゲン系ガスを用いる処理としてプラズマエッチングを例示したが、本発明はこれに限らず、成膜処理等、他のハロゲン系ガスを用いる処理に適用できることはいうまでもない。
 1;処理装置
 2;チャンバ
 2a;本体部
 2b;蓋部
 4;載置台
 7;高周波電源
 8;シャワーヘッド
 9;ガス導入口
 10;ガス供給配管
 11;排気管
 12;排気装置
 W;半導体ウエハ(被処理体)

Claims (13)

  1.  表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、
     前記チャンバ内で被処理体に対する前記所定の処理を1回または複数回行う工程と、
     その後、前記チャンバに酸素ガスまたはドライエアを供給して前記チャンバをパージする工程と、
     その後、前記チャンバを大気開放する工程と
    を有する、ハロゲン系ガスを用いる処理装置における処理方法。
  2.  前記パージする工程と同時に、または前記パージする工程に先立って、イオンスパッタ処理を行う、請求項1に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  3.  前記イオンスパッタ処理は、アルゴンガスのプラズマを生成して得られたアルゴンイオンを用いて行う、請求項2に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  4.  前記チャンバに接続された前記表面に酸化膜が形成された部材は、ステンレス鋼製のガス供給配管であり、前記酸化膜はクロムの不動態膜である、請求項1に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  5.  前記ハロゲン系ガスは、塩素ガスである、請求項1に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  6.  表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、
     前記チャンバ内で被処理体に対する前記所定の処理を1回または複数回行う工程と、
     その後、前記チャンバ内を酸素プラズマにより処理する工程と、
     その後、前記チャンバを大気開放する工程と
    を有する、ハロゲン系ガスを用いる処理装置における処理方法。
  7.  前記チャンバに接続された前記表面に酸化膜が形成された部材は、ステンレス鋼製のガス供給配管であり、前記酸化膜はクロムの不動態膜である、請求項6に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  8.  前記ハロゲン系ガスは、塩素ガスである、請求項6に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  9.  表面に酸化膜が形成された部材が接続され、または表面に酸化膜を有するチャンバ内を真空に保持しつつ、前記チャンバ内にハロゲン系ガスを供給して被処理体に所定の処理を行う処理装置における処理方法であって、
     前記チャンバ内で被処理体に対して前記所定の処理を、前記チャンバを真空に保持したまま複数回行う工程と、
     前記複数回の前記所定の処理の間にアイドリングを行う工程と
    を有し、
     前記アイドリングの際に、前記チャンバに酸素ガスまたはドライエアを供給し、前記チャンバをパージする、ハロゲン系ガスを用いる処理装置における処理方法。
  10.  前記アイドリングの際の前記パージは、酸素ガスに窒素ガスを混合して行う、請求項9に記載の、ハロゲン系ガスを用いる処理装置における処理方法
  11.  前記アイドリングの際の前記パージを酸素ガスにより所定期間行った後、前記アイドリングの残りの期間に、前記チャンバ内を窒素ガスによりパージする、請求項9に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  12.  前記チャンバに接続された前記表面に酸化膜が形成された部材は、ステンレス鋼製のガス供給配管であり、前記酸化膜はクロムの不動態膜である、請求項9に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
  13.  前記ハロゲン系ガスは、塩素ガスである、請求項9に記載の、ハロゲン系ガスを用いる処理装置における処理方法。
PCT/JP2016/079249 2015-11-12 2016-10-03 ハロゲン系ガスを用いる処理装置における処理方法 WO2017081953A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/775,606 US11158490B2 (en) 2015-11-12 2016-10-03 Processing method in processing apparatus using halogen-based gas
KR1020187016443A KR102205225B1 (ko) 2015-11-12 2016-10-03 할로겐계 가스를 이용하는 처리 장치에 있어서의 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-222244 2015-11-12
JP2015222244A JP6749090B2 (ja) 2015-11-12 2015-11-12 ハロゲン系ガスを用いる処理装置における処理方法

Publications (1)

Publication Number Publication Date
WO2017081953A1 true WO2017081953A1 (ja) 2017-05-18

Family

ID=58695005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079249 WO2017081953A1 (ja) 2015-11-12 2016-10-03 ハロゲン系ガスを用いる処理装置における処理方法

Country Status (5)

Country Link
US (1) US11158490B2 (ja)
JP (1) JP6749090B2 (ja)
KR (1) KR102205225B1 (ja)
TW (1) TWI727989B (ja)
WO (1) WO2017081953A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7090568B2 (ja) * 2019-01-30 2022-06-24 東京エレクトロン株式会社 成膜方法
JP2020155718A (ja) * 2019-03-22 2020-09-24 東京エレクトロン株式会社 基板処理装置の汚染処理方法、及び基板処理装置
US11512387B2 (en) 2020-04-13 2022-11-29 Applied Materials, Inc. Methods and apparatus for passivating a target
JP7378357B2 (ja) 2020-06-17 2023-11-13 東京エレクトロン株式会社 基板処理装置およびガス供給配管のパージ方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113867A (ja) * 1997-06-11 1999-01-06 Kokusai Electric Co Ltd 半導体製造装置
JP2005223011A (ja) * 2004-02-03 2005-08-18 Canon Inc 露光装置及び半導体デバイスの製造方法
JP2006012940A (ja) * 2004-06-23 2006-01-12 Tokyo Electron Ltd プラズマ処理方法、および後処理方法
JP2008208390A (ja) * 2007-02-23 2008-09-11 Tokyo Electron Ltd 処理容器の大気開放方法および記憶媒体
JP2008235830A (ja) * 2007-03-23 2008-10-02 Sumco Techxiv株式会社 気相成長装置
JP2009513330A (ja) * 2005-10-27 2009-04-02 エドワーズ リミテッド ガスの処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502945B1 (ko) * 1996-11-14 2005-11-23 동경 엘렉트론 주식회사 플라즈마처리장치의세정방법
US6003526A (en) * 1997-09-12 1999-12-21 Taiwan Semiconductor Manufacturing Company, Ltd In-sit chamber cleaning method
JP2004111811A (ja) 2002-09-20 2004-04-08 Seiko Epson Corp ドライエッチング装置、ドライエッチング装置のクリーニング方法、電気光学装置の製造装置及び電気光学装置の製造方法
WO2005074016A1 (ja) * 2004-01-28 2005-08-11 Tokyo Electron Limited 基板処理装置の処理室清浄化方法、基板処理装置、および基板処理方法
US20060011580A1 (en) 2004-06-23 2006-01-19 Tokyo Electron Limited Plasma processing method and post-processing method
KR101976212B1 (ko) * 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP2013153029A (ja) * 2012-01-25 2013-08-08 Hitachi High-Technologies Corp プラズマ処理装置及びプラズマ処理方法
KR102453149B1 (ko) * 2015-07-09 2022-10-12 삼성전자주식회사 퍼니스형 반도체 장치, 이의 세정 방법 및 이를 이용한 박막 형성 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113867A (ja) * 1997-06-11 1999-01-06 Kokusai Electric Co Ltd 半導体製造装置
JP2005223011A (ja) * 2004-02-03 2005-08-18 Canon Inc 露光装置及び半導体デバイスの製造方法
JP2006012940A (ja) * 2004-06-23 2006-01-12 Tokyo Electron Ltd プラズマ処理方法、および後処理方法
JP2009513330A (ja) * 2005-10-27 2009-04-02 エドワーズ リミテッド ガスの処理方法
JP2008208390A (ja) * 2007-02-23 2008-09-11 Tokyo Electron Ltd 処理容器の大気開放方法および記憶媒体
JP2008235830A (ja) * 2007-03-23 2008-10-02 Sumco Techxiv株式会社 気相成長装置

Also Published As

Publication number Publication date
KR20180082541A (ko) 2018-07-18
TW201732920A (zh) 2017-09-16
US11158490B2 (en) 2021-10-26
US20180323046A1 (en) 2018-11-08
JP6749090B2 (ja) 2020-09-02
JP2017092310A (ja) 2017-05-25
KR102205225B1 (ko) 2021-01-19
TWI727989B (zh) 2021-05-21

Similar Documents

Publication Publication Date Title
WO2017081953A1 (ja) ハロゲン系ガスを用いる処理装置における処理方法
JP4669605B2 (ja) 半導体製造装置のクリーニング方法
JP5705495B2 (ja) プラズマの処理方法及びプラズマ処理装置
TWI811367B (zh) 膜之蝕刻方法及電漿處理裝置
TWI750669B (zh) 電漿處理裝置及大氣開放方法
JP2006035213A (ja) 窒化チタンの除去方法
JP2011192872A5 (ja)
JP2009188257A (ja) プラズマエッチング方法及びプラズマエッチング装置並びに記憶媒体
US5861065A (en) Nitrogen trifluoride-oxygen thermal cleaning process
TW201721713A (zh) 被處理體之處理方法
JP6609535B2 (ja) プラズマ処理方法
JP2008060171A (ja) 半導体処理装置のクリーニング方法
US6852636B1 (en) Insitu post etch process to remove remaining photoresist and residual sidewall passivation
JP2000091327A (ja) プラズマ処理装置のクリーニング方法およびその装置
WO2020196061A1 (ja) 基板処理装置の汚染処理方法、及び基板処理装置
JP2004146837A (ja) プラズマ処理方法及びプラズマ処理装置
JP2544129B2 (ja) プラズマ処理装置
TWI532098B (zh) A plasma processing method and a vacuum processing apparatus
Lian et al. The Etching Morphology of Silver Study by Inductively Coupled Ar-Based Plasmas
JP3403595B2 (ja) 配線材料の加工方法
JP2005175139A (ja) フッ素洗浄装置及びフッ素エッチング装置
JPS60218847A (ja) プラズマ処理方法
JPH06224159A (ja) プラズマエッチング方法
JP2002110645A (ja) 半導体装置の製造装置の洗浄方法
JP2005064244A (ja) 半導体基板の酸化膜形成装置及び半導体基板の酸化膜形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15775606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187016443

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16863917

Country of ref document: EP

Kind code of ref document: A1