WO2017081944A1 - 偏光板、偏光板の製造方法及び液晶表示装置 - Google Patents

偏光板、偏光板の製造方法及び液晶表示装置 Download PDF

Info

Publication number
WO2017081944A1
WO2017081944A1 PCT/JP2016/077821 JP2016077821W WO2017081944A1 WO 2017081944 A1 WO2017081944 A1 WO 2017081944A1 JP 2016077821 W JP2016077821 W JP 2016077821W WO 2017081944 A1 WO2017081944 A1 WO 2017081944A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
acid
polarizing plate
protective film
group
Prior art date
Application number
PCT/JP2016/077821
Other languages
English (en)
French (fr)
Inventor
村上 隆
田中 博文
雅行 榑松
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017550022A priority Critical patent/JP6819604B2/ja
Priority to KR1020187011713A priority patent/KR102025030B1/ko
Priority to CN201680066142.5A priority patent/CN108351463B/zh
Publication of WO2017081944A1 publication Critical patent/WO2017081944A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Definitions

  • the present invention relates to a polarizing plate, a method for manufacturing a polarizing plate, and a liquid crystal display device, and more particularly to a polarizing plate having improved durability and production efficiency, a method for manufacturing the polarizing plate, and a liquid crystal display device including the same.
  • LCDs liquid crystal display devices
  • OLEDs organic electroluminescence display devices
  • the polarizing plate is usually provided with a protective film for protecting the polarizer and the polarizing plate itself, but a polarizing plate using a polyester film is known as a protective film on the viewing (observation) side of the display device. (For example, refer to Patent Document 1).
  • a polyester film used as a protective film on the viewing side is required to have high ultraviolet absorptivity as one of protective functions.
  • a method for imparting ultraviolet absorptivity to a polyester film produced by a melt casting method a method such as adding an ultraviolet absorber to the film itself or providing an ultraviolet absorbing layer is used.
  • bleed out refers to a phenomenon in which components such as an ultraviolet absorber contained in a film ooze out on the film surface in a high temperature and high humidity environment and cause precipitation or volatilization.
  • a method of providing an ultraviolet absorbing layer separately and a method of imparting ultraviolet absorbing properties in combination with a hard coat layer also include a relatively large amount of an ultraviolet absorber in the thin film layer. Due to the decline, production efficiency was reduced.
  • the glass plate of the liquid crystal cell used in the liquid crystal display device is thinned or the polarizer is thinned, it is used as a protective film on the viewing side (observation side) in a high temperature / high humidity environment.
  • Polyester films containing UV absorbers that have been used have a significant decline in productivity (yield) due to process contamination due to deterioration of flatness and bleeding out during the manufacture of UV absorbers as described above. It has been found by the inventor's examination that there is a problem that it is easy.
  • the present invention has been made in view of the above problems, and the problem to be solved is to provide a polarizing plate with improved durability and production efficiency (yield), a manufacturing method thereof, and a liquid crystal display device including the polarizing plate. It is.
  • the present inventor is configured in the order of a first protective film, a polarizer, and a second protective film from the viewing side, and the first protective film is in-plane.
  • the polyester film has super birefringence and has a light transmittance of 50% or more at 380 nm in the ultraviolet region, and the second protective film has a light transmittance of less than 50% at 380 nm in the ultraviolet region. It has been found that a polarizing plate having improved durability and production efficiency (yield) can be obtained by a polarizing plate characterized by being a certain light-transmitting film.
  • the polarizing plate comprised in order of the 1st protective film, the polarizer, and the 2nd protective film, Comprising: Said 1st protective film has super birefringence in a surface, and it is 380 nm A polarizing plate, wherein the second protective film is a light transmissive film having a light transmittance of less than 50% at 380 nm.
  • the in-plane retardation value Ro (nm) defined by the following formula (i) satisfies the condition defined by the following formula (iii) and is defined by the following formula (ii).
  • n x is the refractive index in a slow axis direction of the film plane.
  • n y is a refractive index in a direction perpendicular to the slow axis direction of the film plane.
  • nz is the refractive index in the direction perpendicular to the film surface.
  • d is the thickness (nm) of the film.
  • the said 2nd protective film contains the at least 1 sort (s) of ultraviolet absorber selected from a benzotriazole type compound and a triazine type compound,
  • a liquid crystal display device comprising the polarizing plate according to any one of items 1 to 7 on a viewing side (front side) surface of a liquid crystal cell.
  • the polarizing plate according to any one of Items 1 to 7 is provided on each of a viewing side (front side) surface and a non-viewing side (rear side) surface of the liquid crystal cell.
  • a characteristic liquid crystal display device is provided on each of a viewing side (front side) surface and a non-viewing side (rear side) surface of the liquid crystal cell.
  • Item 12 The liquid crystal display device according to item 10 or 11, wherein a film thickness of the glass substrate of the liquid crystal cell is in a range of 0.3 to 0.7 mm.
  • the polarizing plate has a high UV absorption as a protective function in a polyester film used as a first protective film, for example, a polyethylene terephthalate (hereinafter abbreviated as PET) film.
  • PET polyethylene terephthalate
  • the amount of the ultraviolet absorber added to the polyester film is reduced, or preferably the ultraviolet absorber is contained in the polyester film.
  • the light transmittance at 380 nm in the ultraviolet region 50% or more, it was possible to prevent the yield from being reduced due to the above cause due to the addition of a large amount of the ultraviolet absorber.
  • the other protective film (second protective film) is added with various functional compounds including an ultraviolet absorber for imparting ultraviolet absorptivity, and has a light transmittance at 380 nm which is an ultraviolet region.
  • a polarizing plate with a composition of less than 50% achieves the necessary UV durability for the liquid crystal cell constituting the liquid crystal display device, and provides a polarizing plate with excellent yield, thereby reducing the manufacturing cost of the display device. It is a thing.
  • the film thickness of the glass substrate used in the liquid crystal cell is reduced, the quality requirement for the polarizing plate is further increased and the yield is reduced, but the protective film is defined in the present invention. It was possible to remarkably improve.
  • the polarizing plate of the present invention is a polarizing plate composed of a first protective film, a polarizer, and a second protective film in this order from the viewing side, and the first protective film is super birefringent in the plane.
  • This feature is a technical feature common to or corresponding to the claimed invention.
  • the second protective film is composed of a cellulose resin or a cycloolefin resin from the viewpoint that the effects intended by the present invention can be further expressed. Is preferable in that it can be contained in a stable state and a high-quality protective film can be formed.
  • the retardation value Ro (nm) in the film plane defined by the formula (i) of the second protective film satisfies the condition defined by the formula (iii) and is defined by the formula (ii). It is preferable that the retardation value Rt (nm) in the film thickness direction to be satisfied satisfies the condition defined by the above formula (iv) from the viewpoint that a protective film having excellent retardation characteristics can be obtained.
  • the second protective film contains at least one ester selected from sugar esters and polyesters from the viewpoint of imparting high flexibility to the film.
  • the second protective film contains at least one ultraviolet absorber selected from a benzotriazole-based compound and a triazine-based compound from the viewpoint that the objective effect of the present invention can be further expressed.
  • the retardation value hardly rises even if it contains an ultraviolet absorber, so that it satisfies the ultraviolet absorptivity and the desired retardation value.
  • a thin film can be provided.
  • the ultraviolet absorber is preferably a benzotriazole-based compound, and among them, “2- (2H-Benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3)” -Tetramethylbutyl) phenol "is particularly preferably used because it can provide a film having a thin film thickness while providing both the necessary UV absorption and a desired retardation value.
  • the first protective film further has an ultraviolet curable resin layer in that excellent scratch resistance can be obtained.
  • the second protective film according to the present invention is preferably formed by a melt casting method or a solution casting method.
  • the solution casting method is more preferable in that it can provide a manufacturing method that can solve a plurality of problems at the same time with less manufacturing restrictions when a plurality of different additives are contained simultaneously.
  • the polarizing plate of the present invention is provided on each of the viewing side (front side) surface of the liquid crystal cell, or the viewing side (front side) surface and the non-viewing side (rear side) surface of the liquid crystal cell. It is characterized by being a liquid crystal display device. Furthermore, it is preferable that the thickness of the glass substrate applied to the liquid crystal cell be in the range of 0.3 to 0.7 mm because a thinner liquid crystal display device can be obtained.
  • Polyizer 1A and 1B are schematic cross-sectional views showing an example of the configuration of the polarizing plate of the present invention.
  • the polarizing plate (51) of the present invention has a first protective film (52), a polarizer (53), and a second protective film (54) in this order from the viewing side.
  • the first protective film (52) is a polyester film having a super-birefringence property in the plane, a light transmittance at 380 nm in the ultraviolet region of 50% or more, and a second protection
  • the film (54) is a light transmissive film having a light transmittance of less than 50% at 380 nm in the ultraviolet region.
  • the first protective film (52) constituting the polarizing plate of the present invention has a super birefringence in the plane, and has a polyester film (hereinafter referred to as "light transmittance" in the ultraviolet region of 380 nm of 50% or more). It is also called a polyester film.)
  • having in-plane super birefringence means that the in-plane retardation value Ro is in the range of 3000 to 30000 nm.
  • the in-plane retardation value Ro is defined by the following formula (i).
  • n x is the refractive index in a slow axis direction of the film plane.
  • n y is a refractive index in a direction perpendicular to the slow axis direction of the film plane.
  • nz is the refractive index in the direction perpendicular to the film surface.
  • d is the thickness (nm) of the film.
  • the retardation value Ro in the in-plane direction and the retardation value Rt in the film thickness direction are 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics).
  • Axo Scan Mueller Polarimeter manufactured by Axometrics.
  • the light transmittance in the ultraviolet region of 380 nm is 50% or more. That is, it is characterized by a low ultraviolet absorbing ability in the ultraviolet region.
  • the light transmittance at a wavelength of 380 nm of the polyester film according to the present invention can be determined by measuring using, for example, an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name: V7100).
  • the light transmittance at 380 nm is characterized by being 50% or more, preferably 60 to 95%, more preferably 70 to 95%, and particularly preferably 80 to 95%. It is in the range of 95%.
  • the first protective film according to the present invention as a method for setting the light transmittance at 380 nm to 50% or more, it is effective to remove the additive having light absorption at 380 nm in the film, and it is particularly strong in the ultraviolet region. It is preferable to adopt a configuration in which an ultraviolet absorber having absorption is not added.
  • the retardation value Ro of the polyester film according to the present invention is preferably in the range of 3000 to 30000 nm from the viewpoint of developing super birefringence.
  • the lower limit of the retardation value of the stretched polyester film is preferably 4500 nm or more, more preferably 6000 nm or more, still more preferably 8000 nm or more, and particularly preferably 10,000 nm or more.
  • the upper limit of the retardation value Ro of the stretched polyester film is a film having a retardation value Ro higher than that, a further improvement effect of visibility cannot be obtained substantially. Since the thickness of the film also tends to increase depending on the height, it is preferably set to 30000 nm or less from the viewpoint that it may be contrary to the demand for thinning and the handling property as an industrial material is lowered.
  • the transmitted light has an interference color peculiar to the retardation value Ro which is the product of super birefringence and thickness in the plane of the first protective film. For this reason, it becomes possible to approximate the envelope shape of the spectrum of the transmitted light showing the interference color to the emission spectrum of the light source by controlling the first protective film within the range of the specific retardation value Ro. .
  • the first protective film used in the present invention preferably has a retardation value Ro of 3000 to 30000 nm.
  • the lower limit of the preferable retardation value is 4500 nm, the more preferable lower limit is 6000 nm, the still more preferable lower limit is 8000 nm, and the particularly preferable lower limit is 10000 nm.
  • the polyester film which is the first protective film contains an ultraviolet absorber
  • the expression of birefringence decreases, and in order to maintain the super birefringence, the draw ratio when producing the polyester film It is necessary to adjust the stretching temperature and the like, but this has the problem of increasing haze and lowering the contrast of the display device.
  • the thick polyester film may cause manufacturing troubles and failures due to differences in handling properties when manufacturing polarizing plates and display devices. By adopting the constitution, it is not necessary to contain the ultraviolet absorber in the polyester film that is the first protective film, and thus the occurrence of such a problem could be prevented.
  • the stretched polyester film preferably has a ratio (Ro / Rt) of the retardation value Ro in the in-plane direction and the retardation value Rt in the thickness direction of 0.2 or more, more preferably 0.5 or more, and further Preferably it is 0.6 or more.
  • Ro / Rt the more the birefringence action is more isotropic, which is preferable in that the occurrence of color spots on the screen can be more effectively suppressed.
  • the maximum value of Ro / Rt is 2.0 (that is, a perfect uniaxial symmetry film), but the mechanical strength in the direction orthogonal to the orientation direction decreases as the perfect uniaxial symmetry film is approached. Tend. Therefore, the upper limit of the Ro / Rt value of the polyester film is preferably 1.2 or less, more preferably 1.0 or less.
  • the retardation value of the stretched polyester film can be measured according to a known method. Specifically, it can be determined by measuring the refractive index and thickness in the biaxial direction. It can also be determined using a commercially available automatic birefringence measuring apparatus (for example, Axo Scan Mueller Polarimeter: manufactured by Axometrics).
  • Polyester which is a raw material resin for a stretched polyester film, is excellent in transparency, thermal properties and mechanical properties, and the retardation value can be easily controlled by stretching.
  • polyethylene terephthalate or polyethylene naphthalate is preferable.
  • Polyesters typified by polyethylene terephthalate and polyethylene naphthalate are preferable because they have a large intrinsic birefringence and can relatively easily obtain a high retardation value even if the thickness of the film is reduced.
  • polyethylene naphthalate has a large intrinsic birefringence among polyesters, and therefore is suitable for a case where a retardation value is particularly desired to be increased, or a case where a film thickness is desired to be reduced while keeping the retardation value high.
  • the polyester film can be obtained by condensing an arbitrary dicarboxylic acid and a diol.
  • dicarboxylic acid examples include terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, and diphenylcarboxylic acid.
  • Acid diphenoxyethanedicarboxylic acid, diphenylsulfonecarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid Acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2-dimethylglutaric acid, adipic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, azelaic acid, Dimer , It may be mentioned sebacic acid, suberic acid, dodecamethylene dicarboxylic acid.
  • diol examples include ethylene glycol, propylene glycol, hexamethylene glycol, neopentyl glycol, 1,2-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, decamethylene glycol, 1,3-propanediol, 1,4 -Butanediol, 1,5-pentanediol, 1,6-hexadiol, 2,2-bis (4-hydroxyphenyl) propane, bis (4-hydroxyphenyl) sulfone and the like.
  • the dicarboxylic acid component and the diol component constituting the polyester film may each be used alone or in combination of two or more.
  • Specific polyester resins constituting the polyester film include, as described above, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc., preferably polyethylene terephthalate and polyethylene naphthalate, preferably polyethylene terephthalate. It is.
  • the polyester resin may contain other copolymer components. From the viewpoint of mechanical strength, the proportion of the copolymer components is preferably 3 mol% or less, preferably 2 mol% or less, more preferably 1.5 mol% or less. . These resins are excellent in transparency and excellent in thermal and mechanical properties. Further, these resins can easily control the retardation value by stretching.
  • the polyester film can be obtained according to a general production method. Specifically, after the polyester resin is melted and extruded into a sheet to form a non-oriented polyester film at a temperature equal to or higher than the glass transition temperature of the film, the film is stretched in the longitudinal direction using the difference in roller speed.
  • a stretched polyester film can be mentioned by stretching in the transverse direction with a tenter and subjecting to heat treatment and, if necessary, relaxation treatment.
  • the stretched polyester film may be a uniaxially stretched film or a biaxially stretched film.
  • the production conditions for obtaining the polyester film can be appropriately set according to a known method.
  • the longitudinal stretching temperature and the transverse stretching temperature are usually 80 to 130 ° C., preferably 90 to 120 ° C.
  • the longitudinal draw ratio is usually 1.0 to 3.5 times, preferably 1.0 to 3.0 times.
  • the transverse draw ratio is usually 2.5 to 6.0 times, preferably 3.0 to 5.5 times.
  • the retardation value can be controlled within a specific range by appropriately setting the stretching ratio, stretching temperature, and film thickness. For example, it becomes easier to obtain a higher retardation value as the stretching ratio difference between the longitudinal stretching and the lateral stretching is higher, the stretching temperature is lower, and the film is thicker. Conversely, the lower the stretching ratio difference between the longitudinal stretching and the lateral stretching, the higher the stretching temperature, and the thinner the film, the easier it is to obtain a lower retardation value. Moreover, the higher the stretching temperature and the lower the total stretching ratio, the easier it is to obtain a film having a lower ratio of retardation value to thickness direction retardation value (Ro / Rt).
  • the heat treatment temperature is usually preferably in the range of 140 to 240 ° C, more preferably in the range of 170 to 240 ° C.
  • the relaxation treatment temperature is usually in the range of 100 to 230 ° C., more preferably in the range of 110 to 210 ° C., and still more preferably in the range of 120 to 180 ° C.
  • the relaxation amount is usually in the range of 0.1 to 20%, preferably in the range of 1 to 10%, and more preferably in the range of 2 to 5%.
  • the temperature and amount of relaxation treatment are preferably set such that the amount of relaxation and the temperature during relaxation treatment are such that the thermal shrinkage rate at 150 ° C. of the polyester film after relaxation treatment is 2% or less.
  • the orientation main axis means a molecular orientation direction at an arbitrary point on the stretched polyester film.
  • stretching direction of an orientation main axis means the angle difference of an orientation main axis
  • the maximum value is the maximum value in the direction perpendicular to the long direction.
  • the orientation main axis can be measured using, for example, a retardation film / optical material inspection apparatus RETS (manufactured by Otsuka Electronics Co., Ltd.) or a molecular orientation meter MOA (manufactured by Oji Scientific Instruments Co., Ltd.).
  • the thickness unevenness of the film is small. If the longitudinal draw ratio is lowered to provide a retardation value difference, the value of longitudinal thickness spots (hereinafter also referred to as “thickness spots”) may be increased. Since there is a region in which the value of the vertical thickness unevenness becomes very high in a specific range of the draw ratio, it is preferable to set the film forming conditions so as to exclude such a range.
  • the thickness unevenness of the stretched polyester film is preferably 5.0% or less, more preferably 4.5% or less, still more preferably 4.0% or less, and 3.0% or less. It is particularly preferred.
  • the thickness unevenness of the film referred to in the present invention can be measured by any means. For example, a tape-like sample (length 3 m) continuous in the film flow direction is collected, and 100 cm at a 1 cm pitch using a commercially available measuring instrument (for example, an electronic micrometer manufactured by Seiko EM Co., Ltd., Millitron 1240). The thickness of the point is measured, the maximum value (dmax), the minimum value (dmin), and the average value (d) of the thickness are obtained, and the thickness unevenness (%) can be calculated by the following formula.
  • Thickness unevenness (%) ((dmax ⁇ dmin) / d) ⁇ 100
  • the thickness of the stretched polyester film is arbitrary, and can be appropriately set, for example, within a range of 15 to 300 ⁇ m, preferably within a range of 30 to 200 ⁇ m, and particularly preferably within a range of 60 to 80 ⁇ m. Since visibility can be compatible, it is preferable.
  • the functional layer having various characteristics may be provided on at least one surface of the stretched polyester film.
  • a functional layer include a hard coat layer, an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, an antireflection antiglare layer, an antistatic layer, a silicone layer, an adhesive layer, and an antifouling layer.
  • One or more selected from the group consisting of a layer, a fingerprint-resistant layer, a water-repellent layer, a blue cut layer, and the like can be used.
  • providing an antiglare layer, an antireflection layer, a low reflection layer, a low reflection antiglare layer, or an antireflection antiglare layer has the effect of further improving color spots when observed from an oblique direction. From the viewpoint of
  • the refractive index of the easy-adhesion layer can be adjusted by a known method.
  • the refractive index of the easy-adhesion layer can be easily adjusted by adding titanium, zirconium, or other metal species to the binder resin.
  • the coating solution used for forming the easy-adhesion layer is preferably an aqueous coating solution containing at least one of a water-soluble or water-dispersible copolymerized polyester resin, an acrylic resin, and a polyurethane resin.
  • these coating solutions include Japanese Patent Publication No. 6-81714, Japanese Patent No. 3300909, Japanese Patent No. 3632044, Japanese Patent No. 4547644, Japanese Patent No. 4770971, Japanese Patent No. 3567927, and Japanese Patent No. 3589232.
  • the first protective film preferably has a configuration having an ultraviolet curable resin layer.
  • the first protective film (52) on the viewing side in the polarizing plate (51) having the configuration of the first protective film (52), the polarizer (53), and the second protective film (54), the first protective film (52) on the viewing side.
  • An example of a configuration in which an ultraviolet curable resin layer (55) is further provided on the upper portion is shown.
  • the hard coat layer is a layer intended to ensure the hard coat properties of the surface of the first protective film according to the present invention.
  • an ultraviolet curable resin and a photopolymerization initiator that are resins cured by irradiation with ultraviolet rays. It is preferably formed by coating and curing using a composition for a hard coat layer containing
  • Examples of the ultraviolet curable resin applicable to the present invention include compounds having one or more unsaturated bonds such as a compound having an acrylate functional group.
  • Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • EO polyfunctional compound modified with
  • (meth) acrylate for example, poly (meth) acrylate ester of polyhydric alcohol)
  • (meth) acrylate” refers to methacrylate and acrylate.
  • polyester resins In addition to the above compounds, polyester resins, polyether resins, acrylic resins, epoxy resins, urethane resins, alkyds having a relatively low molecular weight (number average molecular weight of 300 to 80,000, preferably 400 to 5000) having an unsaturated double bond.
  • Resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used as the ultraviolet curable resin.
  • the resin in this case includes all dimers, oligomers, and polymers other than monomers.
  • Preferred compounds in the present invention include compounds having 3 or more unsaturated bonds. When such a compound is used, the crosslink density of the hard coat layer to be formed can be increased, and the coating film hardness can be improved.
  • pentaerythritol triacrylate, pentaerythritol tetraacrylate, polyester polyfunctional acrylate oligomer (3 to 15 functional), urethane polyfunctional acrylate oligomer (3 to 15 functional), etc. are used in appropriate combination. Is preferred.
  • UV curable resins should be used in combination with solvent-drying resins (such as thermoplastic resins that have a property that allows them to form a coating simply by drying the solvent added to adjust the solid content during coating). You can also. By using the solvent-drying resin in combination, coating defects on the coated surface can be effectively prevented.
  • solvent-drying resin that can be used in combination with the ultraviolet curable resin is not particularly limited, and in general, a thermoplastic resin can be used.
  • the photopolymerization initiator is not particularly limited and known ones can be used. Specific examples include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, thioxanthones, propiophenones. , Benzyls, benzoins, acylphosphine oxides. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the ultraviolet curable resin when the ultraviolet curable resin is a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. may be used alone or in combination. preferable.
  • examples of the photopolymerization initiator include aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, metallocene compounds, benzoin sulfonate esters, and the like. Are preferably used alone or as a mixture.
  • the photopolymerization initiator used in the present invention in the case of an ultraviolet curable resin having a radically polymerizable unsaturated group, 1-hydroxy-cyclohexyl-phenyl-ketone is compatible with the ultraviolet curable resin and yellowing occurs. It is preferable for the reason that there are few.
  • the content of the photopolymerization initiator in the hard coat layer composition is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin. If it is less than 1 part by mass, the hardness of the hard coat layer may not be a desired condition. If it exceeds 10 parts by mass, ionizing radiation does not reach the deep part of the coated film and internal hardening is promoted. This is because the desired pencil hardness of the target hard coat layer surface may not be obtained.
  • the more preferable lower limit of the content of the photopolymerization initiator is 2 parts by mass, and the more preferable upper limit is 8 parts by mass.
  • the content of the photopolymerization initiator is in this range, a hardness distribution does not occur in the film thickness direction, and uniform hardness is likely to occur.
  • composition for hard coat layer may contain a solvent.
  • the solvent can be selected and used according to the type and solubility of the resin component used.
  • ketones for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol, etc.
  • ethers Eg, dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.
  • aliphatic hydrocarbons eg, hexane, etc.
  • alicyclic hydrocarbons eg, cyclohexane, etc.
  • aromatic hydrocarbons Eg, toluene, xylene, etc.
  • halogenated carbons eg, methylene chloride, dichloroethane, etc.
  • esters eg, methyl acetate, ethyl acetate, butyl acetate, etc.
  • water alcohols (eg, ethanol,
  • Examples thereof may be a mixed solvent thereof.
  • the composition for the coat layer increases the hardness of the hard coat layer, suppresses curing shrinkage, prevents blocking, controls the refractive index, imparts antiglare properties, and has properties of particles and the surface of the hard coat layer.
  • a foaming agent, a leveling agent, a flame retardant, an ultraviolet absorber, an adhesion-imparting agent, a polymerization inhibitor, an antioxidant, a surface modifier, and the like may be added.
  • the hard coat layer composition may be used by mixing with a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the method for preparing the composition for a hard coat layer is not particularly limited as long as each component can be uniformly mixed.
  • the composition can be performed using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
  • the method for applying the hard coat layer composition onto the first protective film according to the present invention is not particularly limited.
  • the spin coat method, the dip method, the spray method, the die coat method, and the bar coat method are examples of the spin coat method, the dip method, the spray method, the die coat method, and the bar coat method.
  • a known wet method such as a roller coater method, a meniscus coater method, a flexographic printing method, a screen printing method, and a speed coater method.
  • the second protective film according to the present invention is a light transmissive film having a light transmittance at 380 nm of less than 50%. That is, it has a characteristic of having a high ultraviolet absorption ability in the ultraviolet region.
  • the second protective film is preferably formed of a cellulose resin or a cycloolefin resin.
  • the retardation value Ro (nm) in the film surface defined by the following formula (i) of the second protective film satisfies the condition defined by the following formula (iii), and is defined by the following formula (ii). It is preferable that the retardation value Rt (nm) in the film thickness direction to be satisfied satisfies the condition defined by the following formula (iv).
  • n x is the refractive index in a slow axis direction of the film plane.
  • n y is a refractive index in a direction perpendicular to the slow axis direction of the film plane.
  • nz is the refractive index in the direction perpendicular to the film surface.
  • d is the thickness (nm) of the film.
  • the retardation value of the second protective film can be measured according to a known method. Specifically, the retardation value Ro in the film plane and the retardation value Rt in the film thickness direction are determined using an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). It can be calculated from the obtained refractive indexes nx, ny, and nz by performing a three-dimensional refractive index measurement at a wavelength of 590 nm in an environment of ° C and 55% RH.
  • Axoscan Alignitometer
  • the range of the retardation value represented by the above formulas (iii) and (iv) is defined by the in-plane retardation value Ro (nm) defined by the above formula (i) and the above formula (ii).
  • the retardation value Rt (nm) in the film thickness direction is a protective film having almost zero.
  • “substantially zero” is a range of 0 ⁇ Ro ⁇ 20 in Ro, more preferably 0 ⁇ Ro ⁇ 15, and still more preferably 0 ⁇ Ro ⁇ 10.
  • almost zero in Rt is in a range of
  • the polarizing plate When the polarizing plate is bonded to the liquid crystal cell on the second protective film side by setting the retardation value Ro in the film plane of the second protective film and the retardation value Rt in the film thickness direction to substantially zero. Thus, it is possible to effectively prevent light leakage during black display in the obtained liquid crystal display device.
  • the thickness of the second protective film can be reduced, the polarizing plate and the liquid crystal display device can be further reduced in thickness and weight, which is preferable.
  • One feature of the second protective film is that it is a light-transmitting film having a light transmittance at 380 nm of less than 50%.
  • the light transmittance at a wavelength of 380 nm of the second protective film according to the present invention can be determined by measuring using, for example, an ultraviolet-visible spectrophotometer (product name: V7100, manufactured by JASCO Corporation).
  • the light transmittance at 380 nm is characterized by being less than 50%, preferably less than 25%, more preferably less than 10%.
  • an additive having light absorption at 380 nm is added to the film, and particularly strong absorption in the ultraviolet region. It is effective to add an ultraviolet absorber having
  • Cellulose resin film One of the preferable forms of the second protective film according to the present invention is a cellulose resin film containing a cellulose resin.
  • Examples of the cellulose resin used for the second protective film of the polarizing plate include a cellulose ester resin, a cellulose ether resin, and a cellulose ether ester resin.
  • the cellulose ester used for the second protective film is not particularly limited, but the cellulose ester is a carboxylic acid ester having about 2 to 22 carbon atoms, and may be an aromatic carboxylic acid ester, particularly a lower fatty acid ester of cellulose. It is preferable that
  • the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
  • the acyl group bonded to the hydroxy group may be linear or branched, and may form a ring. Furthermore, another substituent may be substituted. In the case of the same degree of substitution, birefringence decreases when the number of carbon atoms is large. Therefore, the number of carbon atoms is preferably selected from acyl groups having 2 to 6 carbon atoms.
  • the cellulose ester preferably has 2 to 4 carbon atoms, more preferably 2 to 3 carbon atoms.
  • the cellulose ester may be an acyl group derived from a mixed acid, and particularly preferably an acyl group having 2 and 3 carbon atoms or 2 and 4 carbon atoms.
  • the cellulose ester used in the present invention includes cellulose acetate propionate, cellulose acetate butyrate, or a mixed fatty acid of cellulose to which a propionate group or butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate butyrate Esters can be used.
  • the butyryl group that forms butyrate may be linear or branched.
  • Cellulose esters preferably used in this embodiment are cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, and cellulose acetate phthalate.
  • the retardation value can be appropriately controlled by the kind of the acyl group of the cellulose ester and the substitution degree of the acyl group to the pyranose ring of the cellulose resin skeleton.
  • Preferred cellulose esters in the present invention are those that simultaneously satisfy the following formulas (A) and (B).
  • X is the substitution degree of the acetyl group
  • Y is the substitution degree of the propionyl group or butyryl group.
  • triacetyl cellulose and cellulose acetate propionate are particularly preferably used.
  • triacetyl cellulose satisfying 2.8 ⁇ X ⁇ 3.0 is used.
  • cellulose acetate propionate and cellulose acetate butyrate 1.5 ⁇ X ⁇ 2.9, and preferably 0.1 ⁇ Y ⁇ 1.5, 2.8 ⁇ X + Y ⁇ 3.0.
  • the method for measuring the substitution degree of the acyl group can be measured according to ASTM-D817-96.
  • the substitution degree of the acyl group is too low, the unreacted portion increases with respect to the hydroxy group of the pyranose ring constituting the skeleton of the cellulose resin.
  • the ability to protect a polarizer as a protective film for a plate may be lowered, which is not preferable.
  • the number average molecular weight of the cellulose ester used in the present invention is preferably in the range of 60,000 to 300,000, since the mechanical strength of the resulting film is high. Further, those within the range of 70,000 to 200,000 are preferably used.
  • the number average molecular weight of cellulose ester can be determined by measuring under the following conditions using high performance liquid chromatography.
  • cellulose as a raw material for the cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively.
  • the acylating agent of the cellulose raw material is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
  • the cellulose ester uses an organic acid such as acetic acid or a solvent such as methylene chloride
  • the reaction is carried out using a protic catalyst.
  • the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl)
  • the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the average substitution degree of the acyl group at the 6-position of the glucose unit is preferably in the range of 0.5 to 0.9.
  • the hydroxy group at the 6-position is protected and esterified.
  • the average substitution degree at the 2nd and 3rd positions can be increased from the 6th position of the glucose unit.
  • a cellulose ester produced by the method described in JP-A No. 2005-281645 can also be preferably used.
  • acetylcellulose In the case of acetylcellulose, it is necessary to extend the time for the acetylation reaction in order to increase the acetylation rate. However, if the reaction time is too long, the decomposition of acetyl cellulose proceeds simultaneously, and the polymer chain is broken and the acetyl group is decomposed, resulting in undesirable results. Therefore, in order to increase the degree of acetylation and suppress degradation to some extent, it is necessary to set the reaction time within a certain range of conditions. Defining the reaction time is not an appropriate means because the reaction conditions vary and varies greatly depending on the reaction apparatus, equipment and other conditions.
  • the degree of degradation is the value of the ratio of weight average molecular weight (Mw) / number average molecular weight (Mn) that is usually used.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • cellulose esters having different degrees of substitution and Mw / Mn ratio values can be synthesized by adjusting the esterification conditions (for example, temperature, time, stirring) and hydrolysis conditions of the cellulose ester.
  • the ratio of Mw / Mn ratio of cellulose ester is preferably 1.4 to 5.0.
  • the synthesized cellulose ester is purified to remove a low molecular weight component, and an unacetylated or low acetylated component is removed by filtration.
  • the quality of the cellulose ester is affected by the trace metal components in the cellulose ester. These are considered to be related to the water quality used in the production process, but it is preferable that there are few components that can become insoluble nuclei, and metal ions such as iron, calcium, and magnesium contain organic acidic groups. Insoluble matter may be formed by forming a salt with a polymer degradation product or the like that may be present, and it is preferable that these are small.
  • the iron (Fe) component is preferably 1 ppm or less.
  • the calcium (Ca) component it is easy to form a complex which is a coordination compound with an acidic component such as carboxylic acid and sulfonic acid, and many ligands, and scum (insoluble In order to form a turbidity of the slag.
  • an acidic component such as carboxylic acid and sulfonic acid, and many ligands, and scum (insoluble In order to form a turbidity of the slag.
  • the calcium (Ca) component is 60 ppm or less, preferably 0 to 30 ppm.
  • the magnesium (Mg) component is preferably in the range of 0 to 70 ppm, and more preferably in the range of 0 to 20 ppm.
  • Metal components such as iron (Fe) content, calcium (Ca) content, magnesium (Mg) content, etc. are pre-treated with alkali melt by decomposing the dried cellulose ester with a micro digest wet cracking device. After performing, it can obtain
  • Examples of the cellulose resin applied to the second protective film include cellulose ether resins and cellulose ether ester resins in addition to the cellulose ester resins described above.
  • the cellulose ether resin is one in which part or all of the hydroxy groups of cellulose are substituted with alkoxy groups.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably in the range of 2 to 20. Examples of such an alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and the like, preferably a methoxy group and an ethoxy group, and more preferably an ethoxy group.
  • the alkoxy group contained in the cellulose ether resin may be one type or two or more types.
  • cellulose ether resin examples include methyl cellulose, ethyl cellulose and the like, and preferably ethyl cellulose.
  • the total substitution degree of the alkoxy group of the cellulose ether resin is not particularly limited, but may be 1.5 or more and less than 3.0, preferably 2.0 or more and less than 3.0, more preferably 2. 5 or more and 2.9 or less.
  • the degree of substitution of the alkoxy group can be measured by the method described in ASTM D4794-94.
  • the weight average molecular weight and molecular weight distribution of the cellulose ether resin can be adjusted in the same range as the cellulose ester resin.
  • cellulose ether resins and cellulose ether ester resins described in JP 2011-56787 A, JP 2007-99876 A, JP 2005-83997 A, and the like can be used in the same manner as the cellulose ester resin. Can do.
  • additives can be used for the cellulose resin film which comprises the 2nd protective film which concerns on this invention according to each objective.
  • the second protective film of the polarizing plate preferably includes a retardation reducing agent together with the cellulose ester.
  • a compound (A) having one furanose structure or pyranose structure, or an OH group in a compound (B) in which at least one furanose structure or pyranose structure is bonded by 2 or more and 12 or less A sugar ester or a sugar ester compound, which is a compound obtained by esterifying all or part of it with an aliphatic acyl group, may be contained.
  • Preferred examples of the compound (A) and the compound (B) include the following compounds, but the present invention is not limited to these.
  • Examples of the compound (A) include glucose, galactose, mannose, fructose, xylose, arabinose and the like.
  • the compound (A) also includes maltitol obtained by reducing maltose with hydrogenation at high pressure.
  • examples of the compound (B) include lactose, sucrose, cellobiose, maltose, cellotriose, maltotriose, raffinose, kestose and the like.
  • lactose sucrose
  • cellobiose maltose
  • cellotriose maltotriose
  • maltotriose maltotriose
  • raffinose kestose
  • examples of the compound (B) include lactose, sucrose, cellobiose, maltose, cellotriose, maltotriose, raffinose, kestose and the like.
  • sucrose lactose
  • sucrose cellobiose
  • maltose maltose
  • cellotriose maltotriose
  • raffinose raffinose
  • kestose lactose
  • sucrose lactose
  • cellobiose maltose
  • cellotriose mal
  • the monocarboxylic acid used for synthesizing the sugar ester is not particularly limited, and known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, and the like can be used.
  • the carboxylic acid used may be one type or a mixture of two or more types.
  • Preferred aliphatic monocarboxylic acids include, for example, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecyl acid, Saturation of lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, mellicic acid, and laxaric acid
  • unsaturated fatty acids such as fatty acids, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • oligosaccharide esterified compound in addition to the esterified compounds of the above compounds (A) and (B), as the oligosaccharide esterified compound, a compound in which 3 to 12 furanose structures or pyranose structures are bonded can also be applied.
  • Oligosaccharide is produced by causing an enzyme such as amylase to act on starch, sucrose, or the like.
  • examples of oligosaccharides applicable to the present invention include maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylo-oligosaccharides.
  • Oligosaccharides can also be acetylated in the same manner as the above compounds (A) and (B).
  • Acetic anhydride 200 ml is added dropwise to a solution of pyridine (100 ml) added to glucose (29.8 g, 166 mmol) and allowed to react for 24 hours. Thereafter, the solution is concentrated by evaporation and poured into ice water. After standing for 1 hour, the mixture is filtered through a glass filter to separate the solid and water. The solid on the glass filter is dissolved in chloroform and separated with cold water until it becomes neutral. The organic layer is separated and dried over anhydrous sodium sulfate.
  • glycolose pentaacetate (58.8 g, 150 mmol, 90.9%).
  • monocarboxylic acid can be used instead of the acetic anhydride.
  • the second protective film suppresses deterioration of the polarization function and stabilizes the display quality, so that the sugar ester compound is contained in the film in the range of 1 to 35% by mass, particularly in the range of 5 to 30% by mass. It is preferable to include within. If it exists in this range, while exhibiting the outstanding objective effect of this invention, when storing the raw material in the state laminated
  • Examples thereof include a mixture of sucrose octaacetate, sucrose heptaacetate, and sucrose hexaacetate.
  • the mixing ratio is not particularly limited. For example, 30:30:30, 40:30:30, 40:50:10, 50:30:20, 60:30:10, 80:10:10, 90: 7: 3, 95: 5: 0, and the like. These may be controlled by adjusting the reaction time or the amount of monocarboxylic acid added to react with the sugar during esterification of the sugar, or may be mixed.
  • the second protective film may contain an acrylic polymer having a number average molecular weight of 500 or more and 30000 or less as a second retardation reducing agent.
  • an acrylic polymer those described in paragraphs [0059] to [0093] of WO 2008/044463 are preferably used.
  • the second protective film may contain a polyester represented by the following general formula (B1) or general formula (B2) as a third retardation reducing agent. This is from divalent alcohol G having 2 to 12 carbon atoms and dibasic acid having 2 to 12 carbon atoms, monocarboxylic acid B 1 having 1 to 12 carbon atoms, or B 2 being a monoalcohol having 1 to 12 carbon atoms. There is a polyester obtained.
  • B 1 represents a monocarboxylic acid having 1 to 12 carbon atoms
  • G represents a divalent alcohol having 2 to 12 carbon atoms
  • A represents a dibasic acid having 2 to 12 carbon atoms.
  • B 1 , G, and A each have a small ratio or no aromatic ring ratio.
  • m represents the number of repetitions.
  • B2 B 2- (AG-) n AB 2
  • B 2 represents a monoalcohol having 1 to 12 carbon atoms
  • G represents a divalent alcohol having 2 to 12 carbon atoms
  • A represents a dibasic acid having 2 to 12 carbon atoms.
  • B 2 , G, and A have a small ratio of aromatic rings or do not contain them.
  • n represents the number of repetitions.
  • the monocarboxylic acid represented by B 1 may be preferably used known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid.
  • Examples of preferred monocarboxylic acids include the following, but the present invention is not limited thereto.
  • aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • acetic acid is contained, the compatibility with the cellulose ester is increased, and it is also preferable to use a mixture of acetic acid and another monocarboxylic acid.
  • Preferred aliphatic monocarboxylic acids include, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, laurin Saturated fatty acids such as acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid And unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidonic acid.
  • examples of the monoalcohol component represented by B 2 may be a known alcohol.
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1-20 carbon atoms, and particularly preferably has 1-12 carbon atoms.
  • examples of the divalent alcohol component represented by G include the following, but the present invention is not limited thereto.
  • the dibasic acid (dicarboxylic acid) component represented by A is preferably an aliphatic dibasic acid or an alicyclic dibasic acid.
  • acids include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like, and in particular, aliphatic dicarboxylic acid has 4 to 4 carbon atoms. Twelve or at least one selected from these are used. That is, two or more dibasic acids may be used in combination. In that case, aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid can be used in combination.
  • M and n each represents the number of repetitions, and preferably 1 or more and 170 or less.
  • the number average molecular weight of the polyester is preferably 20000 or less, and more preferably 10,000 or less.
  • polyesters having a number average molecular weight in the range of 500 to 10,000 are preferable because they have good compatibility with cellulose esters and are less likely to evaporate or volatilize during film formation.
  • Polyester polycondensation is performed by conventional methods. For example, a hot melt condensation method by a direct reaction between the dibasic acid and glycol, a diesterification or transesterification reaction between the dibasic acid or an alkyl ester thereof, for example, a methyl ester of a dibasic acid and a glycol.
  • a hot melt condensation method by a direct reaction between the dibasic acid and glycol, a diesterification or transesterification reaction between the dibasic acid or an alkyl ester thereof, for example, a methyl ester of a dibasic acid and a glycol.
  • it can be easily synthesized by any method of dehydrohalogenation reaction between acid chloride of these acids and glycol, but it is preferable that polyester having a number average molecular weight not so large is by direct reaction.
  • Polyester having a high distribution on the low molecular weight side has a very good compatibility with the cellulose ester, and after forming the film, a second protective film having
  • the conventional molecular weight adjustment method can be used without any particular limitation.
  • a monovalent acid monocarboxylic acid
  • monovalent alcohol monoalcohol
  • the amount of these monovalent compounds added can be controlled.
  • the molecular weight can be adjusted.
  • a monovalent acid is preferable from the viewpoint of the stability of the polymer.
  • acetic acid for example, as monovalent acids, acetic acid, propionic acid, butyric acid and the like can be mentioned as preferred examples.
  • they are not distilled out of the system, but are stopped and are removed from the reaction system. Those which are easily distilled off when the monovalent acid is removed from the system are selected, but these may be used in combination.
  • the number average molecular weight can also be adjusted by measuring the timing at which the reaction is stopped by the amount of water distilled off during the reaction.
  • it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged or by controlling the reaction temperature.
  • the polyester is preferably contained within a range of 1 to 40% by mass with respect to the total mass of the second protective film. Further, it is preferably contained within a range of 2 to 30% by mass. In particular, it is preferably contained within the range of 3 to 15% by mass.
  • a polarizing plate with little deterioration due to high temperature and high humidity can be obtained. Further, by using this polarizing plate, an IPS mode liquid crystal display device can be obtained in which the contrast and viewing angle stability are maintained for a long time and the surface flatness is excellent.
  • the 2nd protective film which comprises the polarizing plate of this invention can contain a plasticizer as needed.
  • the plasticizer is not particularly limited, but is preferably a polycarboxylic acid ester plasticizer, a glycolate plasticizer, a phthalate ester plasticizer, a fatty acid ester plasticizer, a polyhydric alcohol ester plasticizer, or a polyester plasticizer. Agent, acrylic plasticizer and the like. In addition, these plasticizers may act as a retardation reducing agent.
  • the glycolate plasticizer is not particularly limited, but alkylphthalylalkyl glycolates can be preferably used.
  • alkyl phthalyl alkyl glycolates include methyl phthalyl methyl glycolate, ethyl phthalyl ethyl glycolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl glycolate, octyl phthalyl octyl glycolate, methyl phthalyl Ethyl glycolate, ethyl phthalyl methyl glycolate, ethyl phthalyl propyl glycolate, methyl phthalyl butyl glycolate, ethyl phthalyl butyl glycolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl butyl Glycolate, butyl phthalyl propyl glycolate, methyl phthalyl octyl
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, and dicyclohexyl terephthalate.
  • citrate ester plasticizer examples include acetyl trimethyl citrate, acetyl triethyl citrate, and acetyl tributyl citrate.
  • fatty acid ester plasticizer examples include butyl oleate, methylacetyl ricinoleate, dibutyl sebacate and the like.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the polycarboxylic acid ester compound is composed of an ester of a polyvalent carboxylic acid and an alcohol having a valence of 2 or more, preferably in the range of 2 to 20 valences.
  • the aliphatic polyvalent carboxylic acid is preferably in the range of 2 to 20 valences, and in the case of aromatic polyvalent carboxylic acid and alicyclic polyvalent carboxylic acid, it is preferably in the range of 3 to 20 valences. preferable.
  • the polyvalent carboxylic acid is represented by the following general formula (C).
  • R 2 (COOH) m (OH) n
  • R 2 is an (m + n) -valent organic group
  • m is a positive integer of 2 or more
  • n is an integer of 0 or more
  • a COOH group is a carboxy group
  • an OH group is an alcoholic or phenolic hydroxy group Represents a group.
  • Preferred examples of the polyvalent carboxylic acid include the following, but the present invention is not limited to these.
  • Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydrophthal
  • An aliphatic polyvalent carboxylic acid such as an acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid and citric acid can be preferably used.
  • the retention property in the present invention refers to the property that the mass of the film is reduced by precipitation or volatilization of an additive such as a plasticizer outside the film in a hot and humid environment. , 23 ° C., 55% RH after standing for 1 day, and then left at 80 ° C., 90% RH for 2 weeks. The mass after standing for 1 day at% RH is measured, the mass change ratio is obtained, and this is used as a measure of retention.
  • alcohol used for polyhydric carboxylic acid ester there is no restriction
  • an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, it has 1 to 20 carbon atoms, and particularly preferably 1 to 10 carbon atoms.
  • alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can also be preferably used.
  • the alcoholic or phenolic hydroxy group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
  • monocarboxylic acids include the following, but the present invention is not limited thereto.
  • a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used, more preferably 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms. It is particularly preferred.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid, tridecylic acid , Saturated fatty acids such as myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, laccelic acid, undecylenic acid, Examples thereof include unsaturated fatty acids such as oleic acid, sorbic acid, linoleic acid, linolenic acid and arachidonic acid.
  • Examples of preferred alicyclic monocarboxylic acids include cyclopentane carboxylic acid, cyclohexane carboxylic acid, cyclooctane carboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and two or more benzene rings such as biphenyl carboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid. Aromatic monocarboxylic acids possessed by them, or derivatives thereof. In particular, acetic acid, propionic acid, and benzoic acid are preferable.
  • the molecular weight of the polyvalent carboxylic acid ester is not particularly limited, but the molecular weight is preferably in the range of 300 to 1000, and more preferably in the range of 350 to 750.
  • the larger one is preferable in terms of improving the retention, and the smaller one is preferable in terms of moisture permeability and compatibility with the cellulose ester.
  • the alcohol used for the polycarboxylic acid ester may be one kind or a mixture of two or more kinds.
  • the acid value of the polyvalent carboxylic acid ester is preferably 1 mgKOH / g or less, and more preferably 0.2 mgKOH / g or less. Setting the acid value in the above range is preferable because the environmental fluctuation of the retardation is also suppressed.
  • the acid value means the number of milligrams of potassium hydroxide necessary for neutralizing the acid (carboxy group present in the sample) contained in 1 g of the sample.
  • the acid value is measured according to JIS K0070.
  • Examples of particularly preferred polyvalent carboxylic acid ester compounds are shown below, but the present invention is not limited thereto.
  • Examples include diacetyldibutyl tartrate, tributyl trimellitic acid, and tetrabutyl pyromellitic acid.
  • the polyester plasticizer is not particularly limited, and a polyester plasticizer having an aromatic ring or a cycloalkyl ring in the molecule can be used. Although it does not specifically limit as a polyester plasticizer, for example, the aromatic terminal ester plasticizer represented by the following general formula (D) can be used.
  • B is a benzene monocarboxylic acid residue
  • G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene having 4 to 12 carbon atoms
  • A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
  • n represents an integer of 1 or more.
  • the compound represented by the general formula (D) includes a benzene monocarboxylic acid residue represented by B, an alkylene glycol residue, an oxyalkylene glycol residue or an aryl glycol residue represented by G, and an alkylene represented by A. It is composed of a dicarboxylic acid residue or an aryl dicarboxylic acid residue, and can be obtained by a reaction similar to that of a normal polyester plasticizer.
  • benzene monocarboxylic acid component of the polyester plasticizer examples include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, and aminobenzoic acid. And acetoxybenzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
  • alkylene glycol component having 2 to 12 carbon atoms of the polyester plasticizer examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2 , 2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl- 1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2- There are ty
  • Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal ester include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols include 1 It can be used as a seed or a mixture of two or more.
  • alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal ester examples include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are used as one kind or a mixture of two or more kinds.
  • arylene dicarboxylic acid component having 6 to 12 carbon atoms examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.
  • the number average molecular weight of the polyester plasticizer is preferably 300 to 1500, more preferably 400 to 1000.
  • the acid value is 0.5 mgKOH / g or less, the hydroxy group value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxy group value is 15 mgKOH / g or less.
  • Example No. 1 (Aromatic terminal ester sample)> A reaction vessel was charged with 410 parts of phthalic acid, 610 parts of benzoic acid, 737 parts of dipropylene glycol, and 0.40 part of tetraisopropyl titanate as a catalyst, stirred in a nitrogen stream, and equipped with a reflux condenser. Then, while refluxing excess monohydric alcohol, heating was continued in a temperature range of 130 to 250 ° C. until the acid value became 2.0 mgKOH / g or less, and water produced was continuously removed.
  • Viscosity 25 ° C., mPa ⁇ s); 43400 Acid value (mgKOH / g); 0.2 ⁇ Sample No. 2 (Aromatic terminal ester sample)> Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 341 parts of ethylene glycol, and 0.35 part of tetraisopropyl titanate as a catalyst were used in the reaction vessel. 1. Sample No. 1 which is an aromatic terminal ester having the following properties exactly as described above. 2 was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 31000 Acid value (mg KOH / g); 0.1 ⁇ Sample No. 3 (Aromatic terminal ester sample)>
  • Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 418 parts of 1,2-propanediol, and 0.35 part of tetraisopropyl titanate as a catalyst were used in the reaction vessel.
  • Sample No. 1 which is an aromatic terminal ester having the following properties exactly as in Example 1. 3 was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 38000 Acid value: 0.05 ⁇ Sample No. 4 (Aromatic terminal ester sample)> Sample No. 1 was used except that 410 parts of phthalic acid, 610 parts of benzoic acid, 418 parts of 1,3-propanediol, and 0.35 part of tetraisopropyl titanate as a catalyst were used in the reaction vessel. In the same manner as in No. 1, an aromatic terminal ester having the following properties was obtained.
  • Viscosity 25 ° C., mPa ⁇ s); 37000 Acid value (mgKOH / g); 0.05
  • mKOH / g 37000 Acid value
  • containing an ultraviolet absorber is the most effective means for making the light transmittance at 380 nm less than 50%.
  • the ultraviolet absorber is intended to improve durability by absorbing ultraviolet rays of 400 nm or less, and the transmittance at a wavelength of 380 nm is particularly preferably 25% or less, more preferably 10% or less, and further Preferably it is 5% or less.
  • the ultraviolet absorber to be used is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. Can be mentioned.
  • Examples of the ultraviolet absorber applicable to the present invention include 5-chloro-2- (3,5-di-sec-butyl-2-hydroxylphenyl) -2H-benzotriazole, (2-2H-benzotriazole- 2-yl) -6- (straight and side chain dodecyl) -4-methylphenol, 2-hydroxy-4-benzyloxybenzophenone, 2,4-benzyloxybenzophenone, etc., and tinuvin 109, tinuvin 171, There are tinuvins such as tinuvin 234, tinuvin 326, tinuvin 327, tinuvin 328, and tinuvin 928, all of which are commercially available products from BASF Japan and can be preferably used.
  • More preferably used ultraviolet absorbers are benzotriazole ultraviolet absorbers, benzophenone ultraviolet absorbers, and triazine ultraviolet absorbers, and particularly preferably benzotriazole ultraviolet absorbers and benzophenone ultraviolet absorbers.
  • benzotriazole ultraviolet absorber a compound represented by the following general formula (b) can be used.
  • R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different, and each is a hydrogen atom, halogen atom, nitro group, hydroxy group, alkyl group, alkenyl group, aryl A group, an alkoxy group, an acyloxy group, an aryloxy group, an alkylthio group, an arylthio group, a mono- or dialkylamino group, an acylamino group, or a 5- to 6-membered heterocyclic group, and R 4 and R 5 are closed to form 5-6 Member carbocycles may be formed. Moreover, these groups described above may have an arbitrary substituent.
  • benzotriazole-based ultraviolet absorber Specific examples of the benzotriazole-based ultraviolet absorber are given below, but the present invention is not limited to these.
  • UV-1 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
  • UV-2 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • UV-3 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole
  • UV-4 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole
  • UV-5 2- (2′-hydroxy-3 ′-(3 ′′, 4 ′′, 5 ′′, 6 ′′ -tetrahydrophthalimidomethyl) -5′-methylphenyl) benzotriazole
  • UV-6 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
  • UV-7 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-ch
  • Y represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an alkoxy group, or a phenyl group, and these alkyl group, alkenyl group, and phenyl group may have a substituent.
  • A represents a hydrogen atom, an alkyl group, an alkenyl group, a phenyl group, a cycloalkyl group, an alkylcarbonyl group, an alkylsulfonyl group or a CO (NH) n-1 -D group, and D represents an alkyl group, an alkenyl group or a substituent.
  • the phenyl group which may have is represented. m and n represent 1 or 2.
  • the alkyl group represents, for example, a linear or branched aliphatic group having up to 24 carbon atoms
  • the alkoxy group represents, for example, an alkoxy group having up to 18 carbon atoms
  • the alkenyl group includes, for example, An alkenyl group having up to 16 carbon atoms represents an allyl group, a 2-butenyl group, or the like.
  • a halogen atom for example, a chlorine atom, a bromine atom, a fluorine atom, etc., a hydroxy group, a phenyl group (this phenyl group includes an alkyl group, a halogen atom, etc. And may be substituted).
  • benzophenone ultraviolet absorber represented by the general formula (c) are shown below, but the present invention is not limited thereto.
  • UV-10 2,4-dihydroxybenzophenone
  • UV-11 2,2'-dihydroxy-4-methoxybenzophenone
  • UV-12 2-hydroxy-4-methoxy-5-sulfobenzophenone
  • UV-13 Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
  • a discotic compound such as a compound having a 1,3,5 triazine ring is also preferably used as the ultraviolet absorber.
  • UV absorber in particular, “2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1, “3,3-tetramethylbutyl) phenol” (trade name: TINUVIN 928, manufactured by BASF Japan Ltd.) is capable of providing a thin film while satisfying both the UV absorption and low retardation of the second protective film of the present invention. Since it can be used, it is preferably used.
  • the second protective film according to the present invention may contain two or more ultraviolet absorbers.
  • a polymeric ultraviolet absorber can also be preferably used, and in particular, a polymer type ultraviolet absorber described in JP-A-6-148430 is preferably used.
  • the method of adding the ultraviolet absorber may be added to the dope after dissolving the ultraviolet absorber in an alcohol such as methanol, ethanol, butanol, a solvent such as methylene chloride, methyl acetate, acetone, dioxolane, or a mixed solvent thereof. Or you may add directly in dope composition.
  • an organic solvent such as inorganic fine particles, a method of using a dissolver or a sand mill in an organic solvent and a cellulose ester and dispersing it in a dope is preferable.
  • the amount of UV absorber used is not uniform depending on the type of UV absorber, the operating conditions, etc., but if the dry film thickness of the second protective film is in the range of 10-100 ⁇ m, the second protection It is preferably in the range of 0.5 to 10% by mass, more preferably in the range of 0.6 to 4% by mass with respect to the total mass of the film.
  • the second protective film can contain fine particles.
  • examples of inorganic fine particles include, for example, silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Mention may be made of magnesium silicate and calcium phosphate.
  • Inorganic fine particles containing silicon are preferred from the viewpoint of low turbidity, and silicon dioxide is particularly preferred.
  • the fine particles as used in the present invention are particles having an average primary particle diameter in the range of 5 to 400 nm.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 100 to 400 nm. preferable.
  • the content of these fine particles in the second protective film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of the second protective film having a multilayer structure formed by the co-casting method, it is preferable that the surface contains this amount of fine particles.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (above, Nippon Aerosil Co., Ltd.). Can do.
  • Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.), and can be used.
  • Examples of polymers constituting organic fine particles include silicone resins, fluororesins and acrylic resins. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (above, manufactured by Toshiba Silicone Co., Ltd.) It is commercially available under the trade name and can be used.
  • the inorganic fine particles Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the turbidity of the second protective film low.
  • the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
  • additives may be added batchwise to the dope which is a cellulose ester-containing solution before film formation, or an additive solution may be separately prepared and added inline.
  • an additive solution may be separately prepared and added inline.
  • the amount of cellulose ester is preferably 1 to 10 parts by weight, more preferably 3 to 5 parts by weight with respect to 100 parts by weight of the solvent.
  • an in-line mixer such as a static mixer (manufactured by Toray Engineering), SWJ (Toray static type in-tube mixer Hi-Mixer), or the like is preferably used.
  • the cellulose resin film may be a film produced by a solution casting method or a film produced by a melt casting method, both of which can be preferably used. It is a film manufactured by the casting method.
  • the method of producing a film by the solution casting method includes a step of dissolving a cellulose ester and an additive in a solvent to prepare a dope, a step of casting the dope on an endless metal support that moves infinitely, and a cast dope Is performed by a step of drying as a web, a step of peeling from a metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film.
  • the concentration of cellulose ester in the dope is preferably higher because the drying load after casting on the metal support can be reduced. However, if the concentration of cellulose ester is too high, the pressure load during filtration increases and the filtration accuracy increases. Decreases.
  • the concentration that achieves both of these is preferably in the range of 10 to 35% by mass, and more preferably in the range of 15 to 25% by mass.
  • the solvent used for the preparation of the dope may be used alone or in combination of two or more. However, it is preferable in terms of production efficiency that a good solvent and a poor solvent of cellulose ester are mixed and used. It is preferable in terms of the solubility of the cellulose ester that the amount is large.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is that the good solvent is in the range of 70 to 98% by mass, and the poor solvent is in the range of 2 to 30% by mass.
  • the good solvent or the poor solvent here is defined as a good solvent if it dissolves the cellulose ester used alone, and a poor solvent if it swells or does not dissolve alone.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change depending on the average acetylation degree (acetyl group substitution degree) of the cellulose ester.
  • the good solvent and the poor solvent change.
  • the acetate ester of the cellulose ester acetyl group substitution degree: 2.4
  • Cellulose acetate propionate is a good solvent
  • cellulose acetate (acetyl group substitution degree: 2.8) is a poor solvent.
  • the good solvent that can be used is not particularly limited, and examples thereof include organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, and methyl acetoacetate. Particularly preferred is methylene chloride or methyl acetate.
  • the poor solvent that can be used is not particularly limited, but for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone, and the like are preferably used.
  • the dope preferably contains 0.01 to 2% by mass of water.
  • the recovered solvent may contain trace amounts of additives added to the cellulose ester, such as plasticizers, UV absorbers, polymers, and monomer components. It can be used and can be purified and reused if necessary.
  • a general method can be used as a method of dissolving the cellulose ester when preparing the dope described above.
  • the dope when the heating means and the pressurizing means are combined, the dope can be heated to the boiling point or higher at normal pressure. It is preferable to stir and dissolve while heating at a temperature that is equal to or higher than the boiling point of the solvent at normal pressure and does not boil under pressure, in order to prevent the formation of massive undissolved materials called gels and macos.
  • dissolving is also used preferably.
  • the pressurization may be performed by a method of injecting an inert gas such as nitrogen gas into the dissolution vessel or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside. For example, a jacket type is preferable because temperature control is easy.
  • the heating temperature with the addition of the solvent is preferably higher from the viewpoint of the solubility of the cellulose ester, but if the heating temperature is too high, the required pressure increases and the productivity deteriorates.
  • a preferable heating temperature is in the range of 45 to 120 ° C, more preferably in the range of 60 to 110 ° C, and still more preferably in the range of 70 ° C to 105 ° C. The pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate.
  • the cellulose ester solution is filtered using an appropriate filter medium such as filter paper.
  • an appropriate filter medium such as filter paper.
  • the filter medium in order to remove insoluble matters, it is preferable that the absolute filtration accuracy is small. However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged. Therefore, a filter medium having an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium in the range of 0.001 to 0.008 mm is more preferable, and a filter medium in the range of 0.003 to 0.006 mm is more preferable.
  • the material of the filter medium is not particularly limited, and a normal filter medium can be used. However, a plastic filter medium such as polypropylene or Teflon (registered trademark), or a metal filter medium such as stainless steel is used as the fiber. This is preferable because there is no omission. It is preferable to remove and reduce impurities, particularly bright spot foreign matter, contained in the raw material cellulose ester by filtration.
  • Bright spot foreign matter is arranged with two polarizing plates placed in a crossed Nicols state, a second protective film is placed between them, light is applied from the side of one polarizing plate, and observation is performed from the side of the other polarizing plate. It is a point (foreign matter) where light from the opposite side appears to leak, and the number of bright spots having a diameter of 0.01 mm or more is preferably 200 / cm 2 or less. More preferably, it is 100 pieces / cm 2 or less, still more preferably 50 pieces / cm 2 or less, and still more preferably in the range of 0 to 10 pieces / cm 2 . Further, it is preferable that the number of bright spots having a diameter of 0.01 mm or less is small.
  • the dope can be filtered by a normal method, but the method of filtering while heating at a temperature not lower than the boiling point of the solvent at normal pressure and in a range where the solvent does not boil under pressure is the filtration pressure before and after filtration.
  • the increase in the difference (referred to as differential pressure) is small and preferable.
  • a preferred temperature is in the range of 45 to 120 ° C, more preferably in the range of 45 to 70 ° C, and still more preferably in the range of 45 to 55 ° C.
  • the filtration pressure is small.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and further preferably 1.0 MPa or less.
  • the metal support in the casting (casting) step preferably has a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be 1 to 4 m.
  • the surface temperature of the metal support in the casting step is in the range of ⁇ 50 ° C. to less than the boiling point of the solvent, and a higher temperature is preferable because the web can be dried faster.
  • the support temperature is preferably in the range of 0 to 40 ° C, more preferably in the range of 5 to 30 ° C.
  • the method of peeling from a drum in the state which gelatinized the web by cooling and contained many residual solvents is also preferable.
  • the method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of bringing hot water into contact with the back side of the metal support.
  • the method using warm water is preferable because the heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • wind at a temperature higher than the target temperature may be used.
  • the amount of residual solvent when peeling the web from the metal support is preferably within the range of 10 to 150% by weight, more preferably 10 to 40% by weight or 60 to 130%. It is in the range of mass%, particularly preferably in the range of 10 to 30 mass% or 70 to 120 mass%.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample collected at any time during or after the production of the web or film
  • N is the mass after heating a mass of M at 115 ° C. for 1 hour.
  • the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, Particularly preferably, it is in the range of 0 to 0.01% by mass.
  • a roller drying method (a method in which webs are alternately passed through a plurality of upper and lower rollers) and a tenter method are used while drying the web.
  • a tenter method is used in which the web is stretched in the conveying direction (longitudinal direction) immediately after peeling from the metal support and where the web has a large amount of residual solvent, and both ends of the web are gripped with clips or the like. It is preferable to perform stretching in the width direction (lateral direction). Furthermore, the method of extending
  • peeling is preferably performed at a peeling tension of 210 N / m or more, and particularly preferably in the range of 220 to 300 N / m.
  • the means for drying the web is not particularly limited, and can be generally performed with hot air, infrared rays, a heating roller, microwave, or the like, but it is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the web drying step is preferably increased stepwise within a range of 40 to 200 ° C., and more preferably within a range of 50 to 140 ° C. in order to improve dimensional stability.
  • the film thickness of the cellulose resin film is not particularly limited, but is preferably in the range of 10 to 200 ⁇ m.
  • the film thickness is more preferably in the range of 10 to 60 ⁇ m, particularly preferably in the range of 10 to 40 ⁇ m.
  • a cellulose resin film having a width in the range of 1 to 4 m is used.
  • those having a width in the range of 1.4 to 4 m are preferably used, and particularly preferably in the range of 1.6 to 3 m. If it exceeds 4 m, conveyance becomes difficult.
  • the cellulose resin film preferably has a retardation value Ro represented by the following formula of 0 to 20 nm and an Rt (absolute value) of 25 nm or less.
  • n x is the refractive index in a slow axis direction of the film plane.
  • n y is a refractive index in a direction perpendicular to the slow axis direction of the film plane.
  • nz is the refractive index in the direction perpendicular to the film surface.
  • d is the thickness (nm) of the film.
  • the refractive index can be obtained at a measurement wavelength of 590 nm under an environment of 23 ° C. and 55% RH using, for example, Axoscan (Axo Mueller Matrix Polarimeter: manufactured by Axometrics).
  • the second protective film has the configuration of the present invention, and further the refractive index is controlled by a stretching operation.
  • the film can be stretched sequentially or simultaneously in the longitudinal direction (film forming direction) of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction.
  • the draw ratios in the biaxial directions perpendicular to each other are preferably in the range of 1.0 to 2.0 times in the casting direction and 1.01 to 2.5 times in the width direction, respectively. It is preferable to carry out within a range of 1.01 to 1.5 times in the extending direction and 1.05 to 2.0 times in the width direction.
  • the method of stretching the web For example, a method in which a difference in peripheral speed is applied to a plurality of rollers, and the rollers are stretched in the longitudinal direction using the difference in peripheral speed between the rollers, and both ends of the web are fixed with clips and pins, and the interval between the clips and pins is widened in the traveling direction. And a method of stretching in the vertical direction, a method of stretching in the horizontal direction and stretching in the horizontal direction, a method of stretching in the vertical and horizontal directions and stretching in both the vertical and horizontal directions, and the like. Of course, these methods may be used in combination. In the case of the so-called tenter method, driving the clip portion by the linear drive method is preferable because smooth stretching can be performed and the risk of breakage and the like can be reduced.
  • a tenter it may be a pin tenter or a clip tenter.
  • ⁇ 1 is preferably ⁇ 1 ° or more and + 1 ° or less, and ⁇ 0.5 ° or more It is more preferable that the angle is + 0.5 ° or less.
  • This ⁇ 1 can be defined as an orientation angle, and the measurement of ⁇ 1 can be performed using an automatic birefringence meter KOBRA-21ADH (Oji Scientific Instruments).
  • Cycloolefin film Another preferable embodiment of the second protective film according to the present invention is a cycloolefin film containing a cycloolefin resin.
  • the cycloolefin resin is a hydrophobic resin, it is not preferable from the viewpoint of transparency because it is easily separated when water is formed.
  • at least one cycloolefin resin is used as the cycloolefin resin. It is a preferred embodiment that it is formed from a resin composition containing a hydrogen bond-accepting group, and is capable of hydrogen bonding with a hydroxy group of an alcohol or a hydroxy group of a hindered phenol-based compound.
  • “Hydrogen bond accepting group” refers to a functional group that accepts a hydrogen atom when forming a hydrogen bond.
  • the cycloolefin resin according to the present invention is preferably formed from a resin composition containing at least one hydrogen bond accepting group.
  • Examples of the hydrogen bond accepting group include an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an allyloxycarbonyl group, a cyano group, and an amide.
  • polar groups such as a group, an imide ring-containing group, a triorganosiloxy group, a triorganosilyl group, an acyl group, an alkoxysilyl group having 1 to 10 carbon atoms, a sulfonyl-containing group, and a carboxy group.
  • examples of the alkoxy group include a methoxy group and an ethoxy group
  • examples of the acyloxy group include an alkylcarbonyloxy group such as an acetoxy group and a propionyloxy group
  • arylcarbonyloxy groups such as benzoyloxy group
  • examples of the alkoxycarbonyl group include methoxycarbonyl group and ethoxycarbonyl group
  • examples of the allyloxycarbonyl group include, for example, phenoxycarbonyl group and naphthyloxycarbonyl.
  • triorganosiloxy group examples include trimethylsiloxy group and triethylsiloxy group; Trimethylsilyl group, triethylsilyl group and the like; the alkoxysilyl group, for example, trimethoxysilyl groups, triethoxysilyl group, and the like.
  • the amount of the cycloolefin-based resin containing the hydrogen bond-accepting group contained in the resin component is not particularly limited, but preferably, the content is based on the total mass of the second protective film, 10 to 100% by mass.
  • the obtained ring-opening copolymer is preferable because it easily exhibits solubility in a solvent such as toluene or methylene chloride. From the viewpoint of solubility, film strength, and transparency, 30 to 30% is preferable. More preferably in the range of 100% by weight.
  • Examples of the cycloolefin resin according to the present invention include (co) polymers represented by the following general formula (I).
  • R 1 to R 4 each independently represents a hydrogen atom, a hydrocarbon group, a halogen atom, or a hydrogen bond accepting group.
  • two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, a monocycle or a polycycle, and this monocycle or polycycle has a double bond.
  • an aromatic ring may be formed.
  • the cycloolefin-based resin has a preferred hydrogen bond accepting group retention ratio of 1 to 2 of R 1 to R 4 having the hydrogen bond accepting group in the general formula (I).
  • the possession ratio of the hydrogen bond accepting group of the cycloolefin resin can be identified by using, for example, carbon-13 nuclear magnetic resonance ( 13 CNMR) spectrum method.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • hydrocarbon group having 1 to 30 carbon atoms examples include alkyl groups such as methyl group, ethyl group and propyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; alkenyl groups such as vinyl group, allyl group and propenyl group.
  • Aromade groups such as phenyl, biphenyl, naphthyl, and anthracenyl groups; These hydrocarbon groups may be substituted, and examples of the substituent include halogen atoms such as fluorine atom, chlorine atom and bromine atom, phenylsulfonyl group and the like.
  • the preferred molecular weight of the cycloolefin resin according to the present invention is in the range of 0.2 to 5 cm 3 / g, more preferably in the range of 0.3 to 3 cm 3 / g in terms of intrinsic viscosity [ ⁇ ] inh. Particularly preferably, it is within the range of 0.4 to 1.5 cm 3 / g.
  • the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and particularly preferably 12,000 to 50,000. Is within the range.
  • the weight average molecular weight (Mw) is preferably in the range of 20000 to 300000, more preferably in the range of 30000 to 250,000, and particularly preferably in the range of 40000 to 200000.
  • the intrinsic viscosity [ ⁇ ] inh, number average molecular weight and weight average molecular weight are in the above ranges, so that the cycloolefin resin has heat resistance, water resistance, chemical resistance, mechanical properties, and the cycloolefin resin film according to the present invention. As a result, the moldability becomes better.
  • the glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., particularly Preferably, it is within the range of 120 to 220 ° C.
  • a Tg of 110 ° C. or higher is preferable because deformation under secondary processing such as use under high temperature conditions, coating, printing, or the like is suppressed.
  • Tg is 350 degrees C or less, since resin deterioration by the heat
  • the second protective film is used as a protective film for the polarizing plate while preventing damage and deterioration of transportability.
  • the silica particle which has specific hydrophobicity.
  • the degree of hydrophobicity measured by the methanol wettability method is 20% when the first solution having a volume ratio of methanol and pure water of 3: 7 is used.
  • Silica particles having a hydrophobization degree of 80% or more when methanol and pure water are used in a second solution having a volume ratio of 6: 4 are preferable.
  • the degree of hydrophobicity is measured by the MW method described above.
  • Silica particles are particles mainly composed of silicon dioxide.
  • the main component means to contain 50% or more of the components constituting the particles, preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the hydrophobization treatment for the silica particles is preferably an alkylation treatment.
  • the surface of the alkylated fine particles has an alkyl group, and the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and particularly preferably. Is in the range of 1 to 8 carbon atoms.
  • the silica particles having an alkyl group having 1 to 20 carbon atoms on the surface can be obtained, for example, by treating the silicon dioxide particles with octylsilane.
  • octylsilane As an example which has an octyl group on the surface, it is marketed by the brand name of Aerosil R805 (made by Nippon Aerosil Co., Ltd.), and is used preferably.
  • the average particle size of the primary particles of the silica particles is preferably within the range of 5 to 400 nm, and more preferably within the range of 10 to 300 nm.
  • the average particle size of the secondary particles of the silica particles is preferably in the range of 100 to 400 nm. If the average particle size of the primary particles is in the range of 100 to 400 nm, it is included as the primary particles without agglomeration. It is also preferable.
  • phenolic compounds are known compounds, and are described in, for example, columns 12 to 14 of US Pat. No. 4,839,405, and include 2,6-dialkylphenol derivative compounds. Of these compounds, preferred compounds are those represented by the following general formula (II).
  • R 51 to R 56 each represents a hydrogen atom or a substituent.
  • substituents include a halogen atom (eg, fluorine atom, chlorine atom), an alkyl group (eg, methyl group, ethyl group, isopropyl group, hydroxyethyl group, methoxymethyl group, trifluoromethyl group, t-butyl group, etc.
  • Cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • aralkyl group eg, benzyl group, 2-phenethyl group, etc.
  • aryl group eg, phenyl group, naphthyl group, p-tolyl group, p-chlorophenyl
  • alkoxy group eg methoxy group, ethoxy group, isopropoxy group, butoxy group etc.
  • aryloxy group eg phenoxy group etc.
  • cyano group acylamino group (eg acetylamino group, propionylamino group) Etc.)
  • alkylthio group for example, methylthio group, ethylthio group, butylthio group) Group
  • arylthio group eg, phenylthio group, etc.
  • sulfonylamino group eg, methan
  • a phenol compound in which R 51 is a hydrogen atom and R 52 and R 56 are each a t-butyl group is preferable.
  • the hindered phenolic compound according to the present invention is not particularly limited, but the following specific examples can be given.
  • the compound examples include n-octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate, n-octadecyl 3- (3,5-di-t-butyl-4- Hydroxyphenyl) -acetate, n-octadecyl 3,5-di-t-butyl-4-hydroxybenzoate, n-hexyl 3,5-di-t-butyl-4-hydroxyphenylbenzoate, n-dodecyl 3,5- Di-t-butyl-4-hydroxyphenylbenzoate, neo-dodecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, dodecyl ⁇ (3,5-di-t-butyl-4- Hydroxyphenyl) propionate, ethyl ⁇ - (4-hydroxy-3,5-di-t-butylphenyl
  • phenolic compounds are commercially available from BASF Japan, Inc. under the trade names “Irganox 1035”, “Irganox 1076”, and “Irganox 1010”, for example.
  • the amount of the phenol compound added to 100 parts by mass of the cycloolefin resin can be appropriately designed, but is preferably in the range of 0.1 to 1.0 part by mass, and in the range of 0.3 to 0.5 part by mass More preferably, it is within.
  • additives include polyester compounds, polyhydric alcohol ester compounds, polyvalent carboxylic acid ester compounds (including phthalic acid ester compounds), glycolate compounds, and ester compounds (fatty acid ester compounds and Including phosphoric acid ester compounds), ultraviolet absorbers and the like can be similarly applied.
  • the production method of the cycloolefin film as the second protective film according to the present invention can employ the solution casting film forming method or the melt casting film forming method. Is preferred.
  • the cycloolefin film according to the present invention is formed by a solution casting film forming method, and the cycloolefin resin having the at least one hydrogen bond accepting group, silica particles satisfying the hydrophobicity, the hindered It is preferable to prepare a dope containing an organic solvent including a phenol compound and an alcohol solvent within a range of a dissolution temperature of 15 to 50 ° C.
  • the melting temperature is 15 ° C. or higher, the resin and additives can be sufficiently dissolved, so that a film with few foreign matters can be obtained. Moreover, if it is 50 degrees C or less, it is preferable from a viewpoint which can suppress the dope by reaction of alcohol and a hindered phenol compound, and the coloring of the film obtained, The effect which suppresses coloring also by adding a silica particle with good affinity with alcohol. There is.
  • the second protective film according to the present invention includes a step of preparing a dope containing an organic solvent containing at least a cycloolefin resin, silica particles, a hindered phenol compound, and an alcohol solvent (dope preparation step), and the dope Are cast on a support to form a web (also referred to as a cast film) (casting process), a solvent is evaporated from the web on the support (solvent evaporation process), and the web is supported on the support.
  • FIG. 2 is a process flow diagram schematically showing an example of a dope preparation process, a casting process, a drying process, and a winding process in a solution casting film forming method preferable for the present invention.
  • the fine particle dispersion in which silica particles are dispersed in a solvent by a disperser in advance passes through the filter (44) from the charging pot (41) and is stored in the stock pot (42).
  • the cycloolefin-based resin that is the main dope is dissolved in the dissolution vessel (1) together with the solvent, and the fine particle dispersion stored in the stock vessel (42) is appropriately added and mixed to form the main dope.
  • the obtained main dope is fed to the filter (3) and the stock kettle (4), filtered by the filter (6), and the additive is added by the junction pipe (20), and the mixer (21). And are fed to the pressure die (30).
  • additives hindered phenol compounds applicable to the present invention, ultraviolet absorbers, retardation increasing agents, etc.
  • a solvent dissolved in a solvent and passed through the filter (12) from the additive charging vessel (10). Then, it is stored in the stock pot (13). Thereafter, it passes through the filter (15) and is mixed with the main dope via the conduit (16) by the junction pipe (20) and the mixer (21).
  • the main dope fed to the pressure die (30) is cast on an endless metal belt-like support (31) to form a web (32), and at a predetermined post-drying peeling position (33). Peel to obtain a film.
  • the peeled web (32) is dried until it reaches a predetermined residual solvent amount while passing through a large number of conveying rollers, and then stretched in the longitudinal direction or the width direction by a stretching device (34). After stretching, the film is dried while being passed through the transport roller (36) until the amount of the residual solvent reaches a predetermined residual solvent amount by the drying device (35), and wound into a roll by the winding device (37).
  • Dope preparation step In an organic solvent mainly composed of a good solvent for a cycloolefin resin, the cycloolefin resin and a hindered phenol compound in a dissolving kettle, and in some cases, a phase difference increasing agent, silica particles, or others
  • a phase difference increasing agent, silica particles, or others In the step of preparing the dope by dissolving the above compound with stirring, or the cycloolefin resin solution, the hindered phenol compound, and in some cases, the phase difference increasing agent, silica particles, or other compound solutions are mixed. This is a step of preparing a dope that is a main solution.
  • the organic solvent useful for forming the dope is a cycloolefin resin, a hindered phenol compound, or a retardation reducing agent and other agents. It is preferable that the compound dissolves simultaneously.
  • the organic solvent to be used the following solvents are preferably used.
  • Examples of the solvent used in the solution casting method include chlorinated solvents such as chloroform and methylene chloride; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, and n-butanol.
  • alcohol solvents such as 2-butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; These solvents may be used alone or in combination of two or more.
  • 2-butanol methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethylformamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether;
  • MEK methyl ethyl ketone
  • the solvent according to the present invention is a mixed solvent of a good solvent and a poor solvent
  • the good solvent is, for example, methylene chloride as a chlorinated organic solvent, methyl acetate, ethyl acetate, acetic acid as a non-chlorine organic solvent, for example.
  • the poor solvent is mainly an alcohol solvent, and is preferably contained in the second protective film in an amount of 10 to 1000 ppm from the viewpoint of manifesting the effects of the present invention.
  • the content of the alcohol-based solvent contained in the cycloolefin film according to the present invention is a so-called residual solvent amount, which is a content contained in the film after film production.
  • the amount of the solvent can be quantified by headspace gas chromatography, which will be described later, and the measurement is a value when measured during a period from film production to film processing.
  • headspace gas chromatography which will be described later
  • the amount of residual solvent can be controlled by appropriately adjusting the solvent composition ratio, drying temperature during film formation, drying conditions such as drying time, film thickness, and the like.
  • the content of the alcohol solvent contained in the cycloolefin film according to the present invention is preferably within the range of 10 to 1000 ppm, and more preferably within the range of 20 to 500 ppm.
  • the effect of the present invention is exhibited at 10 ppm or more, and the peelability from the metal support in the solution casting film formation is also improved. If it is 1000 ppm or less, it is preferable from a viewpoint of haze and environmental safety.
  • the alcohol solvent according to the present invention is preferably selected from methanol, ethanol and butanol from the viewpoints of improving the peelability and enabling high-speed casting with the effects of the present invention. Of these, ethanol is preferred from the above viewpoint.
  • the good solvent is preferably used in an amount of 55% by mass or more, more preferably 70% by mass or more, and still more preferably 80% by mass or more based on the total mass of the solvent.
  • the cycloolefin film according to the present invention is more preferably used in combination with water together with an alcohol solvent having a hydroxy group from the viewpoint of productivity improvement.
  • Water is added to the dope, and water is added as a residual solvent amount. It is preferably contained in the film within the range of 50 to 500 ppm.
  • water Since water has a plurality of hydrogen-bonding donor groups in one molecule, it can be preferably used to increase the strength of the film. Water is preferably contained within a range of 0.1 to 1.0% by mass with respect to the total amount of solvent. If it is 0.1% by mass or more, it is preferable because it easily interacts with other alcohol solvents or cycloolefin-based resins containing hydrogen bond accepting groups or silica particles. Gelling of a strong cycloolefin resin can be suppressed, and the generation of foreign matters can be suppressed.
  • ⁇ Residual solvent amount> The residual amount in the film of the alcohol and water used as the solvent component is measured by the following measuring method.
  • a film cut into a fixed shape was put into a 20 ml sealed glass container, treated at 120 ° C. for 20 minutes, and then subjected to gas chromatography (instrument: HP 5890SERIES II, column: J & W DB-WAX (inner diameter 0.32 mm, long 30 m), detection: FID), the GC temperature rising condition was maintained at 40 ° C. for 5 minutes, and then the temperature was raised to 100 ° C. at 80 ° C./min.
  • a method performed at normal pressure a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, Various methods such as a method using a cooling dissolution method as described in JP-A-95544, JP-A-9-95557, or JP-A-9-95538, a method using a high pressure as described in JP-A-11-21379, etc.
  • a dissolution method can be used, it is preferable to carry out in a pressure range of 0.8 to 4 MPa from the viewpoint of solubility.
  • the concentration of the cycloolefin resin in the dope is preferably in the range of 10 to 40% by mass.
  • the cycloolefin-based resin-containing dope is dissolved and dispersed by adding a compound to the dope being dissolved or after, and then filtered through a filter medium, defoamed, and sent to the next step with a liquid feed pump.
  • the dope is, for example, 90% collected particle size is in the range of 10 to 100 times the average particle size of the fine particles. It is preferable to filter with a filter medium.
  • the filter medium used for filtration preferably has a low absolute filtration accuracy.
  • the absolute filtration accuracy is too small, the filter medium is likely to be clogged, and the filter medium must be frequently replaced. There is a problem of lowering productivity.
  • the filter medium used in the cycloolefin resin-containing dope preferably has an absolute filtration accuracy of 0.008 mm or less, more preferably in the range of 0.001 to 0.008 mm.
  • a filter medium in the range of 003 to 0.006 mm is more preferable.
  • filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter media can be used.
  • filter fibers made of plastic fibers such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel fibers may drop off the fibers. Etc. are preferred.
  • the flow rate of the dope during filtration is preferably in the range of 10 to 80 kg / (h ⁇ m 2 ), preferably in the range of 20 to 60 kg / (h ⁇ m 2 ).
  • the dope flow rate during filtration is 10 kg / (h ⁇ m 2 ) or more, efficient productivity can be obtained, and the dope flow rate during filtration is 80 kg / (h ⁇ m 2). If it is within 2 ), the pressure applied to the filter medium becomes appropriate, and the filter medium is not damaged, which is preferable.
  • the filtration pressure is preferably 3500 kPa or less, more preferably 3000 kPa or less, and even more preferably 2500 kPa or less.
  • the filtration pressure can be controlled by appropriately selecting the filtration flow rate and the filtration area.
  • the recycled material can be used in the range of 10 to 50% by mass for the main dope.
  • Recycled material is, for example, a piece of finely pulverized cycloolefin film that exceeds the specified value of the film due to cut off both sides of the film or scratches that occur when the cycloolefin film is formed.
  • a cycloolefin film raw material is used.
  • a pellet obtained by pelletizing a cycloolefin resin and other compounds in advance can be preferably used as a raw material for the resin used for preparing the dope.
  • the metal support in the casting process is preferably a mirror-finished surface, and a stainless steel belt or a drum whose surface is plated with a casting is preferably used as the metal support.
  • the cast width can be in the range of 1 to 4 m, preferably in the range of 1.3 to 3 m, and more preferably in the range of 1.5 to 2.8 m.
  • the surface temperature of the metal support in the casting step is set in the range of ⁇ 50 ° C. to the temperature at which the solvent boils and does not foam, more preferably in the range of ⁇ 30 to 0 ° C. A higher temperature is preferable because the web (the dope is cast on a casting metal support and the formed dope film is called a web) can be dried at a higher speed.
  • the flatness may deteriorate.
  • the preferred support temperature is appropriately determined within the range of 0 to 100 ° C, and more preferably within the range of 5 to 30 ° C.
  • the method for controlling the temperature of the metal support is not particularly limited, but there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short.
  • warm air considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. .
  • the die is preferably a pressure die that can adjust the slit shape of the die base and can easily make the film thickness uniform.
  • Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and laminated.
  • Solvent evaporation process It is the process of heating a web on the metal support body for casting, and evaporating a solvent, It is a process of controlling the residual solvent amount at the time of peeling mentioned later.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 30 to 100 ° C. In order to maintain the atmosphere at 30 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • the peeling temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C., more preferably in the range of 11 to 30 ° C.
  • the solvent in the web is evaporated in the solvent evaporation step, but the residual solvent amount of the web on the metal support at the time of peeling is preferably in the range of 15 to 100% by mass.
  • the residual solvent amount is preferably controlled by the drying temperature and drying time in the solvent evaporation step.
  • the amount of the residual solvent is 15% by mass or more because silica particles do not have distribution in the thickness direction and are uniformly dispersed in the film in the drying process on the support.
  • the film has self-supporting property, can prevent poor peeling of the film, and can maintain the mechanical strength of the web, thereby improving the flatness at the time of peeling, Generation of slippage and vertical stripes due to peeling tension can be suppressed.
  • the residual solvent amount of the web or film is defined by the following formula (Z).
  • Residual solvent amount (%) (mass before heat treatment of web or film ⁇ mass after heat treatment of web or film) / (mass after heat treatment of web or film) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peel tension when peeling the web from the metal support to form a film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, the peel tension is 190 N / m or less. It is preferable to do.
  • the temperature at the peeling position on the metal support is preferably in the range of ⁇ 50 to 40 ° C., more preferably in the range of 10 to 40 ° C., and in the range of 15 to 30 ° C. Is most preferred.
  • the drying step can be performed by dividing it into a preliminary drying step and a main drying step.
  • Pre-drying step The film obtained by peeling the web from the metal support is pre-dried. Preliminary drying of the film may be performed while the film is being transported by a number of rollers arranged above and below, or may be dried while being transported by fixing both ends of the film with clips like a tenter dryer. Good.
  • the means for drying the web is not particularly limited and can be generally performed with hot air, infrared rays, a heating roller, microwaves, or the like, but it is preferably performed with hot air in terms of simplicity.
  • the drying temperature in the pre-drying step of the web is preferably not more than the (glass transition temperature (Tg) ⁇ 5 ° C.) of the film, and the heat treatment is performed at a temperature of 30 ° C. or more and within a range of 1 minute or more and 30 minutes or less. It is effective to do. Drying is carried out at a drying temperature in the range of 40 to 150 ° C, more preferably in the range of 50 to 100 ° C.
  • the second protective film according to the present invention can be obtained by uniformly stretching the silica particles in the resin in the film by performing a stretching treatment under a residual solvent amount with a stretching device (34).
  • the desired retardation values Ro and Rt can be obtained by improving the flatness of the film or controlling the orientation of molecules in the film.
  • the amount of residual solvent at the start of stretching is preferably 1.0% by mass or more and less than 15% by mass. More preferably, it is in the range of 2.0 to 10% by mass, and if it is in the range of the residual solvent amount, it can be avoided that non-uniform stress is applied to the film during stretching.
  • the cycloolefin film according to the present invention is preferably stretched in the longitudinal direction (also referred to as MD direction or casting direction), the lateral direction (also referred to as TD direction), or the oblique direction. It is preferable to produce by stretching in the hand direction.
  • the stretching operation may be performed in multiple stages. Moreover, when performing biaxial stretching, simultaneous biaxial stretching may be performed and you may implement in steps.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
  • stretching steps can be applied: -Stretch in the longitudinal direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the width direction-> Stretch in the width direction-Stretch in the width direction-> Stretch in the width direction-> Stretch in the longitudinal direction-> Stretch in the longitudinal direction-Stretch in the width direction ⁇ Stretching in the oblique direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the cycloolefin film according to the present invention has a glass transition temperature of Tg as the glass transition temperature in the longitudinal direction and / or the width direction, preferably the width direction so that the film thickness after stretching is in a desired range, It is preferable to stretch in a temperature range of (Tg + 5) to (Tg + 50) ° C.
  • Tg + 5 glass transition temperature
  • Tg + 50 glass transition temperature
  • the stretching temperature is preferably in the range of (Tg + 10) to (Tg + 40) ° C.
  • the glass transition temperature Tg referred to here is a midpoint glass transition temperature (Tmg) measured at a rate of temperature increase of 20 ° C./min using a commercially available differential scanning calorimeter and determined according to JIS K7121 (1987). It is. A specific method for measuring the glass transition temperature Tg of the film is measured using a differential scanning calorimeter DSC220 manufactured by Seiko Instruments Inc. according to JIS K7121 (1987).
  • the film is preferably stretched at least in the width direction at a stretching ratio in the range of 1 to 40% with respect to the original width, and further in the longitudinal direction and the width direction of the film, More preferably, the film is stretched at a stretching ratio in the range of 5 to 40%. In particular, the range of the stretching ratio is more preferably 10 to 30% with respect to the original width.
  • the stretching ratio in the present invention refers to the ratio (%) of the length or width of the film after stretching to the length or width of the film before stretching.
  • the method for stretching in the longitudinal direction is not particularly limited.
  • these methods may be used in combination.
  • the entire drying process or a part of the process as shown in JP-A-62-46625 is performed in the width direction, and the width ends of the web are held with clips or pins.
  • a method of drying while drying referred to as a tenter method
  • a tenter method using a clip and a pin tenter method using a pin are preferably used.
  • the stretching speed is 250% / min or more in particular, the planarity is improved and the film can be processed at a high speed, which is preferable from the viewpoint of production aptitude. It can be processed without breaking, which is preferable.
  • a preferred stretching speed is in the range of 300 to 400% / min, which is effective when stretching at a low magnification.
  • the stretching speed is defined by the following formula (E).
  • the cycloolefin film according to the present invention can be provided with a desired retardation value by stretching.
  • the film thickness of the cycloolefin film according to the present invention is preferably in the range of 5 to 40 ⁇ m, particularly preferably in the range of 5 to 25 ⁇ m.
  • the in-plane retardation Ro and the thickness direction retardation Rt at a measurement wavelength of 590 nm are (iii) 0 ⁇ Ro ⁇ 20 and (iv)
  • a light and thin polarizing plate can be provided, and that an optimum retardation can be imparted as a polarizing plate for an IPS mode type liquid crystal display device. More preferably, (iii) 0 ⁇ Ro ⁇ 10 and (iv)
  • the stretching step usually, after stretching, holding and relaxation are performed. That is, in this step, it is preferable to perform a stretching step for stretching the film, a holding step for holding the film in a stretched state, and a relaxation step for relaxing the film in the stretched direction in this order.
  • the drawing at the drawing rate achieved in the drawing step is held at the drawing temperature in the drawing step.
  • the relaxation stage the stretching in the stretching stage is held in the holding stage, and then the stretching is relaxed by releasing the tension for stretching.
  • the relaxation step may be performed at a temperature lower than the stretching temperature in the stretching step.
  • a means for preventing the mixing of used hot air by installing a nozzle that can exhaust used hot air is also preferably used.
  • the hot air temperature is more preferably within the range of 40 to 350 ° C.
  • the drying time is preferably in the range of 5 seconds to 60 minutes, and more preferably in the range of 10 seconds to 30 minutes.
  • the heating and drying means is not limited to hot air, and for example, infrared rays, heating rollers, microwaves, and the like can be used. From the viewpoint of simplicity, it is preferable to dry with hot air or the like while transporting the film with the transport rollers 36 arranged in a staggered manner.
  • the drying temperature is more preferably in the range of 40 to 350 ° C. in consideration of the residual solvent amount, the stretching ratio during conveyance, and the like.
  • the drying step it is preferable to dry the film until the amount of residual solvent is generally 0.5% by mass or less.
  • Winding step (4.1) Knurling processing It is preferable to provide a slitter after the predetermined heat treatment or cooling treatment and cut off the end portion before winding to obtain a good winding shape. Furthermore, it is preferable to knurling both ends of the width.
  • the knurling process can be formed by pressing a heated embossing roller against the film width end.
  • the embossing roller has a fine concavo-convex structure that is pressed to form a concavo-convex structure on the film, and the edges are made bulky to block the front and back surfaces when the film is laminated into a roll. Can be prevented.
  • the height of the knurling at both ends of the width of the second protective film according to the present invention is preferably within the range of 4 to 20 ⁇ m and within the range of 5 to 20 mm.
  • a masking film (also called a protective film) may be overlapped and wound at the same time or stretched for the purpose of preventing blocking between films before winding into a roll.
  • the film may be wound up with a tape or the like attached to at least one, preferably both ends of the film.
  • the masking film is not particularly limited as long as it can protect the film, and examples thereof include a polyethylene terephthalate film, a polyethylene film, and a polypropylene film.
  • the knurling process is preferably provided in the film-forming process in the process after the drying and before the winding.
  • (4.3) Winding step This is a step of winding the film after the residual solvent amount in the film is 2.0% by mass or less, and the residual solvent amount is preferably 1.0% by mass or less.
  • the film having good dimensional stability can be obtained by winding.
  • a winding method As a winding method, a commonly used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the cycloolefin film according to the present invention can also be produced by a melt casting film forming method (hereinafter also referred to as a melt extrusion method), an example of which is shown below.
  • a melt casting film forming method hereinafter also referred to as a melt extrusion method
  • the process for producing a cycloolefin film using the melt extrusion method is a process of forming a cycloolefin film by extruding a cycloolefin resin heated and melted to a temperature equal to or higher than the glass transition temperature (Tg) from a die into a film (A). And the step (B) of receiving the cycloolefin film with a film-forming support and cooling the film.
  • the cycloolefin resin heated to a temperature equal to or higher than the glass transition temperature is melted, but the cycloolefin resin is cooled to below the glass transition temperature and cured. Therefore, a cycloolefin film having a desired shape can be obtained by forming a soft cycloolefin resin having a glass transition temperature or higher into a film and then cooling and curing the resin.
  • a first extension region is provided between the central region of the resin film and the first fixing region. And it is preferable to provide a 2nd extending
  • the method for producing a cycloolefin film can produce a cycloolefin film having a retardation Rt in the thickness direction close to zero in the central region.
  • the retardation value may increase when an ultraviolet absorber is added to the cycloolefin film, the selection and content of the ultraviolet absorber, or the setting of the film thickness is important.
  • the ultraviolet absorber a benzotriazole-based compound is preferable.
  • FIG. 4 is a diagram schematically showing an example of a dope preparation process, a casting process, and a drying process of the melt casting method applicable to the present invention.
  • the cycloolefin film (410) manufacturing apparatus (400) includes a die (510), a cast roller (520) as a support, and an electrostatic pinning apparatus (531 and 532) as a contact device. ), A peeling roller (540) as a peeling device, a trimming device (550), and a winding shaft (560) as a winding device.
  • Die (510) a single resin having a glass transition temperature or higher from the resin supply device, not shown, are provided so as to supply as indicated by arrow A 110.
  • the die (510) is provided so that the resin thus supplied is extruded into a film shape through the lip (516) to obtain a cycloolefin film (420) made of a molten cycloolefin resin. Yes.
  • the cast roller (520) is a roller having an outer peripheral surface (521) which is a support surface for holding the cycloolefin film (420) extruded from the die (510).
  • the cast roller (520) is provided at a position facing the die (510).
  • the cast roller (520) is provided so as to rotate in a direction indicated by an arrow A 120 by a driving force applied from a driving device (not shown). Therefore, the cast roller (520) has the structure which conveys the cycloolefin film (420) received by the outer peripheral surface (521) by rotation of the said cast roller (520).
  • the cast roller (520) is provided with temperature adjusting means (not shown). By this temperature adjusting means, the cast roller (520) can cool the cycloolefin film (420) received on the outer peripheral surface (521) to a desired temperature.
  • the temperature of the cast roller (520) depends on the cycloolefin film (420) during the period from when the cycloolefin film (420) is held by the peripheral surface (521) of the cast roller (520) until it is peeled off by the peeling roller (540).
  • 420) is set so that the cycloolefin film (420) can be cooled below the glass transition temperature of the cycloolefin resin contained in 420).
  • the peeling roller (540) is provided to rotate in the direction indicated by the arrow A 140 in parallel with the cast roller (520). Moreover, this peeling roller (540) is the outer periphery of the cast roller (520), the cycloolefin film (420) cooled to below the glass transition temperature of the resin contained in the cycloolefin film (420) by the cast roller (520). It is provided so that it can be peeled off from the surface (521). Furthermore, the peeling roller (540) is provided so that the peeled cycloolefin film (420) can be sent to the trimming device (550).
  • the trimming device (550) is a device for cutting off at least the end from the cycloolefin film (420) peeled off by the peeling roller (540).
  • This trimming device (550) includes trimming knives (551 and 552) provided in pairs with blades on the outer periphery.
  • the trimming device (550) is provided to feed the cycloolefin film (410) including the central region remaining after cutting the end film (428) from the cycloolefin film (420) to the winding shaft (560). ing.
  • the winding shaft (560) is provided so as to rotate in a direction indicated by an arrow A 160 by a driving device (not shown). Therefore, the winding device (560) has a configuration in which the cycloolefin film (410) sent from the trimming device (550) is wound to obtain a film roll (430).
  • a cycloolefin film (410) is obtained.
  • This cycloolefin film (410) has a retardation Rt in the thickness direction close to zero.
  • the retardation Ro of the in-plane direction of a cycloolefin film (410) becomes a value close
  • the cycloolefin film (410) produced by such a method usually has high transparency from the viewpoint of use as the second protective film.
  • the total light transmittance in terms of 1 mm thickness of the cycloolefin film (410) is preferably 80% or more, and more preferably 90% or more.
  • the haze in terms of 1 mm thickness of the cycloolefin film is preferably 0.3% or less, and particularly preferably 0.2% or less.
  • the total light transmittance can be measured according to JIS K7361-1997.
  • the haze can be measured according to JIS K7136-1997.
  • the polarizing plate of this invention is the structure by which the 1st protective film and 2nd protective film which concern on this invention are bonded on both surfaces of the polarizer.
  • it is the structure by which the 1st protective film and the 2nd protective film are bonded on both surfaces of the polarizer using the ultraviolet curing adhesive or the water-system adhesive.
  • the protective film for the polarizing plate includes an antiglare layer or a clear hard coat layer, an antireflection layer, an antistatic layer, an antifouling layer, etc. It is preferable to provide it.
  • the polarizer which is the main component of the polarizing plate of the present invention, is an element that passes only light having a plane of polarization in a certain direction, and a typical known polarizer is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • polarizer a polarizer obtained by forming a polyvinyl alcohol aqueous solution into a film and dyeing it by uniaxial stretching or dyeing and then uniaxially stretching and then preferably performing a durability treatment with a boron compound may be used.
  • the thickness of the polarizer is preferably in the range of 2 to 30 ⁇ m, particularly preferably in the range of 2 to 15 ⁇ m.
  • the ethylene unit content described in JP-A-2003-248123, JP-A-2003-342322, etc. is within the range of 1 to 4 mol%, the polymerization degree is 2000 to 4000, and the saponification degree is 99.
  • Ethylene-modified polyvinyl alcohol in the range of 0 to 99.99 mol% is also preferably used.
  • an ethylene-modified polyvinyl alcohol film having a hot water cutting temperature in the range of 66 to 73 ° C. is preferably used.
  • a polarizer using this ethylene-modified polyvinyl alcohol film is excellent in polarization performance and durability, and has little color unevenness, and is particularly preferably used for a large liquid crystal display device.
  • the polarizing plate of the present invention can be produced by a general method.
  • the surface side facing the polarizer of the first protective film according to the present invention is appropriately surface-treated, and an ultraviolet curable adhesive described later is applied to at least one surface of the polarizer produced by immersion and stretching in an iodine solution. Affix with water based adhesive.
  • a second protective film is similarly bonded to the other surface of the polarizer.
  • the direction of bonding with the polarizer is preferably, for example, a method of bonding so that the absorption axis of the polarizer and the slow axis of each protective film are orthogonal to each other.
  • UV curable adhesive In the polarizing plate of this invention, it is preferable that the protective film and polarizer which concern on this invention are adhere
  • a polarizing plate having high strength and excellent flatness can be obtained even in a thin film.
  • UV curable adhesive composition for polarizing plates a photo radical polymerization composition using photo radical polymerization, a photo cation polymerization composition using photo cation polymerization, and photo radical polymerization and photo cation polymerization are used in combination.
  • Hybrid type compositions are known.
  • the radical photopolymerizable composition includes a radically polymerizable compound containing a polar group such as a hydroxy group and a carboxy group described in JP-A-2008-009329 and a radically polymerizable compound not containing a polar group at a specific ratio.
  • Composition) and the like are known.
  • the radical polymerizable compound is preferably a compound having a radical polymerizable ethylenically unsaturated bond.
  • the compound having an ethylenically unsaturated bond capable of radical polymerization include a compound having a (meth) acryloyl group.
  • Examples of the compound having a (meth) acryloyl group include an N-substituted (meth) acrylamide compound and a (meth) acrylate compound.
  • (Meth) acrylamide means acrylamide or methacrylamide.
  • cationic photopolymerization type composition as disclosed in JP2011-08234A, ( ⁇ ) a cationic polymerizable compound, ( ⁇ ) a cationic photopolymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm.
  • an ultraviolet curable adhesive composition containing each component of a photosensitizer exhibiting maximum absorption in the light of ( ⁇ ) and a naphthalene-based photosensitization aid.
  • other ultraviolet curable adhesives may be used.
  • Pre-processing process is a process of performing an easily bonding process to the adhesive surface with the polarizer of a protective film.
  • Examples of the easy adhesion treatment include corona treatment and plasma treatment.
  • the ultraviolet curable adhesive is applied to at least one of the adhesive surfaces of the polarizer and the protective film for the polarizing plate.
  • the UV curable adhesive is applied directly to the surface of the polarizer or the protective film, there is no particular limitation on the application method, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, etc.
  • a wet coating method can be used.
  • coating a ultraviolet curable adhesive between a polarizer and each protective film the method of pressurizing with a roller etc. and spreading it uniformly can also be utilized.
  • the applied ultraviolet curable adhesive is irradiated with ultraviolet rays, and a cationic polymerizable compound (for example, an epoxy compound or an oxetane compound) or a radical polymerizable compound (for example, an acrylate compound or an acrylamide compound).
  • the ultraviolet curable adhesive layer containing the compound or the like is cured, and the polarizer and the protective film according to the present invention are bonded together via the ultraviolet curable adhesive.
  • ultraviolet rays are irradiated with a protective film that is light transmissive on each side of the polarizer via an ultraviolet curable adhesive.
  • a method of simultaneously curing the ultraviolet curable adhesive on both sides is advantageous.
  • the dose of ultraviolet rays is preferably in accumulated light amount is within the range of 50 ⁇ 1500mJ / cm 2, even more preferably in the range of 100 ⁇ 500mJ / cm 2. In the present invention, it is preferable to irradiate ultraviolet rays from the first protective film side also in terms of yield improvement.
  • the line speed depends on the curing time of the adhesive, but is preferably in the range of 1 to 500 m / min, more preferably in the range of 5 to 300 m / min, and still more preferably. It is within the range of 10 to 100 m / min. If the line speed is 1 m / min or more, productivity can be ensured, or damage to the protective film according to the present invention can be suppressed, and a polarizing plate having excellent durability can be produced. . Further, when the line speed is 500 m / min or less, the ultraviolet curable adhesive is sufficiently cured, and an ultraviolet curable adhesive layer and a polarizing plate having a desired hardness and excellent adhesion can be formed. it can.
  • the polarizing plate of the present invention can be used for liquid crystal display devices of various driving systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB.
  • An IPS liquid crystal display device is preferable.
  • the polarizing plate of the present invention is used, but it is also preferable to use the polarizing plate of the present invention as both polarizing plates. It is also preferable to use as.
  • the direction of bonding of the polarizing plate in the IPS liquid crystal display device can be performed with reference to JP-A-2005-234431.
  • the liquid crystal cell used in the present invention is a glass substrate including a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, and the pair of substrates has a thickness in the range of 0.3 to 0.7 mm. From the viewpoint of reducing the thickness and weight of the liquid crystal display device, it is preferable.
  • FIG. 3 is a schematic cross-sectional view showing an example of the configuration of the liquid crystal display device (100) in which the polarizing plates (101A and 101B) of the present invention described above are arranged on both surfaces of the liquid crystal cell (101C).
  • both surfaces of the liquid crystal layer (107) are sandwiched between glass substrates (108A and 108B) as transparent substrates to form a liquid crystal cell (101C), and the respective surfaces of the respective glass substrates (108A and 108B).
  • the polarizing plates (101A and 101B) having the configuration shown in FIG. 2 are arranged via the adhesive layer (106) to constitute the liquid crystal display device (100).
  • the first protective film is bonded to the positions of 102A and 102B, and the second protective film is bonded to the positions of 105A and 105B.
  • the protective films according to the present invention are bonded to the polarizers (104A and 104B) by ultraviolet curable adhesives (103A to 103D), respectively.
  • an IPS liquid crystal display device is preferable.
  • the liquid crystal cell (101C) is configured by arranging alignment films, transparent electrodes, and glass substrates (108A and 108B) on both surfaces of a liquid crystal substance.
  • liquid crystal display device (100) With the polarizing plate of the present invention that has excellent durability, flatness, etc. and improved yield, panel bending is less likely to occur even if the glass substrate constituting the liquid crystal cell is made thin. As a result, a liquid crystal display device in which thinning is achieved can be obtained.
  • Examples of the material constituting the glass substrate (108A and 108B) that can be used for the liquid crystal cell (101C) include soda lime glass and silicate glass, and silicate glass is preferable. Specifically, silica glass or borosilicate glass is more preferable.
  • the glass constituting the glass substrate is preferably a non-alkali glass that does not substantially contain an alkali component, specifically, a glass having an alkali component content of 1000 ppm or less.
  • the content of the alkali component in the glass substrate is preferably 500 ppm or less, and more preferably 300 ppm or less.
  • substitution of cations occurs on the film surface, and soda blowing phenomenon tends to occur. Thereby, the density of the film surface layer is likely to decrease, and the glass substrate is easily damaged.
  • the thickness of the glass substrate (108A and 108B) of the liquid crystal cell constituting the liquid crystal display device (100) is preferably in the range of 0.3 to 0.7 mm. Such a thickness is preferable in that it can contribute to the thinning of the liquid crystal display device.
  • the glass substrate can be formed by a known method such as a float method, a down draw method, an overflow down draw method or the like. Of these, the overflow downdraw method is preferred because the surface of the glass substrate does not come into contact with the molded member during molding and the surface of the resulting glass substrate is hardly damaged.
  • Such a glass substrate can also be obtained as a commercial product.
  • non-alkali glass AN100 (thickness 500 ⁇ m) manufactured by Asahi Glass Co., Ltd.
  • glass substrate EAGLE XG (r) Slim (thickness manufactured by Corning) 300 ⁇ m, 400 ⁇ m, etc.
  • a glass substrate (thickness 100 to 200 ⁇ m) manufactured by Nippon Electric Glass Co., Ltd., and the like.
  • the polarizing plates (101A, 101B) as shown in FIG. 3 and the glass base materials (108A, 108B) constituting the liquid crystal cell (101C) are bonded via an adhesive layer (106).
  • a double-sided tape for example, a double-sided tape with a thickness of 25 ⁇ m (baseless tape MO-3005C) manufactured by Lintec Corporation, or the composition used for forming the actinic ray curable resin layer is applied. Can do.
  • the liquid crystal display device using the polarizing plate of the present invention has advantages such as excellent adhesion between layers, fading resistance, and egg unevenness resistance of a display image.
  • Bonding between the surface of the polarizing plate on the side of the retardation film and at least one surface of the liquid crystal cell is performed by a known method. Depending on the case, it may be bonded through an adhesive layer.
  • polarizing plate of the present invention By using the polarizing plate of the present invention, panel bend is suppressed even in a large-screen liquid crystal display device having a screen size of 30 type or more, and visibility such as display unevenness and front contrast is excellent. A liquid crystal display device can be obtained.
  • Example 1 Production of first protective film >> According to the following method, first protective films PET1 to PET4, which are polyester films, were produced.
  • the esterification reaction vessel was returned to normal pressure, and 0.014 parts by mass of phosphoric acid was added. Furthermore, it heated up to 260 degreeC in 15 minutes, and 0.012 mass part of trimethyl phosphate was added. Then, after 15 minutes, dispersion treatment was performed with a high-pressure disperser, and further 15 minutes later, the obtained esterification reaction product was transferred to a polycondensation reaction can and subjected to polycondensation reaction at 280 ° C. under reduced pressure.
  • polyester resin A polyethylene terephthalate resin A
  • the obtained polyester resin A had an intrinsic viscosity of 0.62 cm 3 / g and contained substantially no inert particles and internally precipitated particles.
  • the transesterification and polycondensation reactions are carried out by conventional methods.
  • the dicarboxylic acid component (based on the total dicarboxylic acid component), 46 mol% of terephthalic acid, 46 mol% of isophthalic acid, and 8 mol% of sodium 5-sulfonatoisophthalate was used to prepare a water-dispersible sulfonic acid metal base-containing copolymer polyester resin having a composition of 50 mol% ethylene glycol and 50 mol% neopentyl glycol as the glycol component (relative to the entire glycol component).
  • polyester film PET1 (Preparation of polyester film PET1)
  • the prepared polyester resin A is dried by a conventional method, supplied to an extruder, melted at 285 ° C., and this polymer is filtered with a filter material of stainless sintered body (nominal filtration accuracy of 10 ⁇ m particles 95% cut). After extruding in a sheet form, it was wound around a casting drum having a surface temperature of 30 ° C. using an electrostatic application casting method and cooled and solidified to produce an unstretched polyester film (PET film).
  • PET film unstretched polyester film
  • the unstretched film on which this adhesion improving layer was formed was guided to a tenter stretching machine, and stretched 4.0 times in the width direction in a heating zone at a temperature of 125 ° C. while holding the end of the film with a clip.
  • the film was treated at a temperature of 225 ° C. for 30 seconds and further subjected to a relaxation treatment of 3% in the width direction to obtain a uniaxially oriented polyethylene terephthalate having a film thickness of 60 ⁇ m.
  • a first protective film PET1 as a film was produced.
  • a first protective film PET2 was produced in the same manner except that the thickness of the unstretched film was appropriately adjusted and the thickness after stretching was set to 80 ⁇ m.
  • First Protective Film PET3 10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one) and a polyester film (inherent viscosity is 0.62 cm) 3 / g) was mixed, and a first protective film PET3, which is a polyester film having a thickness of 110 ⁇ m, containing an ultraviolet absorber was prepared using a kneading first extruder.
  • a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one) and a polyester film (inherent viscosity is 0.62 cm) 3 / g)
  • a first protective film PET3 which is a polyester film having a thickness of 110 ⁇ m, containing an ultraviolet absorber was prepared using a kneading first extruder.
  • First protective film PET4 Using the first protective film PET1 produced above, a cured resin layer (hard coat layer) was formed on one side according to the following method, and this was used as the first protective film PET4.
  • the following curable resin composition 1-1 is applied on the first protective film PET1 having an adhesive modification layer and dried in a heat oven at a temperature of 70 ° C. for 60 seconds to evaporate the solvent in the coating film. After that, ultraviolet light was irradiated with an integrated light amount of 50 mJ / cm 2 and half-cured to form a covalent bond layer.
  • the following curable resin composition 2-1 was applied as a second curable resin composition on the half-cured covalent bond layer, and dried in a hot oven at a temperature of 70 ° C.
  • Binder component 1 6-functional dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product name: DPHA) 100 parts by mass Polymerization initiator: Irgacure 184 (manufactured by BASF Japan) 4 parts by mass Methyl isobutyl ketone 150 masses Part (Preparation of Curable Resin Composition 2-1) Reactive irregular fine silica particles: Silica fine particles having an average primary particle size of 20 nm and an average of 3.5 fine particles formed by bonding with an inorganic chemical bond.
  • the irregular fine silica particles having a major axis length of 60 nm (solid content 40%, dispersion medium IPA solvent ) 150 parts by mass (solid content 60 parts by mass)
  • Binder component 1 6-functional dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product name: DPHA) 20 parts by mass
  • Binder component 2 Polymer acrylate having a weight average molecular weight of 40,000 or more and a weight average molecular weight of 40000 (Arakawa Chemical Industries, Ltd.
  • the ultraviolet light transmittance at 380 nm of the first protective films PET1 to PET4 produced above is referred to as the light transmittance at 380 nm (product name: V7100) by using an ultraviolet-visible spectrophotometer (product name: V7100). ) Was measured
  • the retardation value Ro in the film plane was measured at an wavelength of 590 nm under an environment of 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (Axo Scan Mueller Polarimeter: manufactured by Axometrics).
  • a three-dimensional refractive index measurement was performed and calculated from the obtained refractive indexes nx, ny, and nz.
  • Second protective films 1 to 34 using a cellulose resin were produced.
  • polyester compound A Preparation of polyester compound A> 251 g of 1,2-propanediol, 278 g of phthalic anhydride, 91 g of adipic acid, 610 g of benzoic acid, 0.191 g of tetraisopropyl titanate as an esterification catalyst, 2 L four-neck equipped with thermometer, stirrer, and quick cooling tube The flask was charged and gradually heated with stirring until it reached 230 ° C. in a nitrogen stream. After dehydration condensation reaction for 15 hours, unreacted 1,2-propanediol was distilled off under reduced pressure at 200 ° C. after completion of the reaction to obtain polyester compound A. The acid value was 0.10 mg KOH / g, and the number average molecular weight was 450.
  • Polyester compound B (number average molecular weight 2000) was prepared in the same manner as in the preparation of polyester compound A, except that adipic acid was used as the dicarboxylic acid, ethylene glycol was used as the diol, and the terminal was sealed with acetic acid as the monocarboxylic acid.
  • adipic acid was used as the dicarboxylic acid
  • ethylene glycol was used as the diol
  • acetic acid as the monocarboxylic acid.
  • Polyester compounds C to O were prepared in the same manner as in the preparation of the polyester compound A except that the types of dicarboxylic acid, diol, and monocarboxylic acid were changed to those shown in Table 2.
  • Benzotriazole compound UV absorber 1
  • Benzotriazole compound A Tinuvin 928 (manufactured by BASF Japan)
  • Benzotriazole compound B Tinuvin 109 (manufactured by BASF Japan)
  • Benzotriazole compound C Tinuvin 171 (manufactured by BASF Japan)
  • Benzotriazole compound D Tinuvin 326 (manufactured by BASF Japan)
  • Triazine compound Triazine Compound A: Tinuvin 466 (manufactured by BASF Japan)
  • Triazine compound B Tinuvin 477 (manufacture
  • methylene chloride and ethanol were added as solvents to the pressure dissolution tank.
  • the cellulose resin A and each additive were sequentially added to the pressurized dissolution tank containing the solvent while stirring, and this was heated and completely dissolved while stirring.
  • the fine particles A were put into a pressure dissolution tank as a 10% dispersion using a part of ethanol to be added.
  • the prepared main dope 1 was uniformly cast on a stainless steel belt at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. The solvent was evaporated on the stainless steel belt until the residual solvent amount was less than 100%, and the dope film (web) was peeled off from the stainless steel belt with a peeling tension of 160 N / m.
  • the peeled web was evaporated at 35 ° C., and the solvent was slit to a width of 1.6 m. Thereafter, using a tenter stretching machine, the width of the peeled web (TD direction) was 1 with respect to the original width at 160 ° C. . 1-fold stretching. At this time, the residual solvent amount at the start of stretching by the tenter was 3 to 15% by mass.
  • drying was completed while transporting the drying zone of 120 ° C. and 140 ° C. with a large number of rollers, slitting to 1.3 m width, and knurling with a width of 10 mm and a height of 2.5 ⁇ m on both ends of the film,
  • the core was wound up to produce a second protective film 1.
  • the film thickness of the second protective film 1 was 50 ⁇ m, and the winding length was 3900 m.
  • second protective films 2 to 34 In preparation of the said 2nd protective film 1, except having changed the kind of cellulose resin which main dope contains, the kind and addition amount of each additive, and a film thickness into the structure described in Table 3 and Table 4, it is the same. Thus, second protective films 2 to 34 were produced.
  • UV transmittance Evaluation of characteristic values of second protective film
  • UV transmittance is less than 10%
  • UV transmittance is 80% or more and less than 95% (measurement of retardation values Ro and Rt)
  • Axoscan Axo Scan Mueller Matrix Polarimeter: made by Axometrics
  • the film thickness of the second protective film was measured according to a conventional method.
  • Table 5 shows the results obtained as described above.
  • polarizing plates 1 to 82 were produced according to the following method.
  • Polarizing Plate 1 1) Production of Polarizer A continuous polyvinyl alcohol film having a thickness of 60 ⁇ m is immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide while being continuously conveyed through a guide roller. After the double-stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide are added, a total of five-fold stretching treatment and cross-linking treatment were performed. The PVA polarizer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer having a moisture content of 4.9%.
  • the second protective film 1 was immersed in a saponification treatment solution (60 ° C. sodium hydroxide aqueous solution, concentration 10% by mass) for 30 seconds. Furthermore, it was immersed in a water bath twice for 5 seconds, then washed for 5 seconds with a water shower and then dried. The drying conditions were 70 ° C. and 2 minutes.
  • a saponification treatment solution 60 ° C. sodium hydroxide aqueous solution, concentration 10% by mass
  • liquid crystal display devices 1 to 82 were produced according to the following method.
  • an IPS liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the above-prepared polarizing plates 1 to 82 were bonded to each other through the adhesive layer so that the second protective film was on the liquid crystal cell side to obtain liquid crystal display devices 1 to 82. In the bonding, the absorption axis of the polarizer of the polarizing plate on the viewing side (101A shown in FIG. 3) and the absorption axis of the polarizer of the polarizing plate on the backlight side (101B shown in FIG. 3) are orthogonal to each other. did.
  • the polarizing plate of the present invention is superior in productivity and has a higher yield than conventional products. Furthermore, by incorporating the polarizing plate of the present invention into a liquid crystal display device, the deterioration of the liquid crystal cell due to the external environment is extremely effectively prevented even after being stored for a long time in a light irradiation (high temperature and high humidity) environment. I understand that.
  • Example 2 Production of second protective film: cycloolefin film >> [Production of Second Protective Film 101] (Synthesis of cycloolefin resin 1) 8-methyl-8-methoxycarbonyltetracyclo [4.4.0.12,5.17,10] -3-dodecene (DNM) 75% by mass, dicyclopentadiene (DCP) 24% by mass, 2- The reaction vessel was purged with nitrogen, 1 part by mass of norbornene, 9 parts of 1-hexene as a molecular weight regulator and 200 parts of toluene, and heated to 110 ° C.
  • DCM dicyclopentadiene
  • Mw weight average molecular weight
  • Mw / Mn 3.3
  • Tg glass transition temperature
  • the methoxycarbonyl group addition rate of the cycloolefin resin 1 was calculated
  • Fine particle additive solution 1 Methylene chloride was put into the dissolution tank, and the fine particle dispersion prepared above was slowly added to 50% by mass while sufficiently stirring the methylene chloride. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1.
  • Cycloolefin resin 1 100% by mass Tinuvin 928 3% by mass 290% by mass of methylene chloride Fine particle additive solution 27% by mass 1% by weight of distilled water Hindered phenol compound (Aggregation inhibitor A, IRGANOX 1076 (manufactured by BASF Japan)) 0.1% by mass (Film formation)
  • the prepared dope A was cast on a casting support (support temperature 22 ° C.) which is a stainless steel belt.
  • the dope A is peeled off in a state where the residual solvent amount is about 20% by mass or less, and the both ends in the width direction of the film are gripped by a tenter, and the residual solvent amount is 10% by mass or more, and the width is 126 ° C.
  • the film was dried while stretching 1.01 times (1%) in the direction. Thereafter, the film was further dried by being conveyed between rollers of a heat treatment apparatus at 95 ° C. over 30 to 40 minutes, thereby producing a second protective film 101 which is a cycloolefin film.
  • the thickness was 20 ⁇ m.
  • Second Protective Film 102 In the production of the second protective film 101, a second protective film 102 was produced in the same manner except that the amount of tinuvin 928 added was 0% by mass.
  • the second protective film 103 was formed in the same manner except that the film thickness was changed to 13 ⁇ m using Arton G7810 manufactured by JSR Co., Ltd. instead of the cycloolefin resin 1. Produced.
  • a second protective film 104 was produced in the same manner as in the production of the second protective film 103 except that the amount of tinuvin 928 added was 0% by mass.
  • a second protective film 105 was produced according to the following method.
  • resin composition 2 100 parts of a polymer resin having a dried alicyclic structure (manufactured by Nippon Zeon Co., Ltd., glass transition temperature: 123 ° C.), 5.5 parts of a benzotriazole-based ultraviolet absorber (“LA-31”, manufactured by ADEKA), Were mixed by a twin screw extruder, and then the mixture was put into a hopper connected to the extruder, supplied to a single screw extruder, and melt extruded to obtain a resin composition 2. Content of the ultraviolet absorber in the resin composition 2 is 5.2 mass%.
  • the molten resin was supplied to a multi-manifold die having a die slip surface roughness Ra of 0.1 ⁇ m at an extruder outlet temperature of 280 ° C. and an extruder gear pump speed of 10 rpm.
  • the molten resin was fed to the multi-manifold die at an extruder outlet temperature of 285 ° C. and an extruder gear pump rotation speed of 4 rpm.
  • a polymer resin having a molten alicyclic structure, a molten resin composition, and a polymer resin having a molten alicyclic structure are each discharged from a multi-manifold die at 280 ° C.
  • a second protective film 106 was produced according to the following method.
  • An alicyclic olefin resin (“ZEONOR” manufactured by Nippon Zeon Co., Ltd., glass transition temperature: 136 ° C.) was extruded from a die through a lip to prepare a resin film. At this time, the die temperature was 260 ° C., the die lip length was 1250 mm, and the die slip lip clearance was 0.8 mm.
  • the obtained resin film was received by the outer peripheral surface of a cast roller (diameter 400 mm, temperature 110 ° C.) and conveyed by rotation of the cast roller.
  • An electrostatic charge was applied to both ends of the resin film immediately after being received on the outer peripheral surface of the cast roller by an electrostatic pinning device, and was brought into close contact with the outer peripheral surface of the cast roller.
  • the resin film was cooled and cured during the period of being conveyed by the cast roller.
  • the cured resin film was peeled off from the outer peripheral surface of the cast roller, and both ends of the trimming apparatus were cut off.
  • the resin film which consists of a center area was wound up and collected in roll shape.
  • the collected resin film having a thickness of 25 ⁇ m was prepared.
  • polarizing plates 101 to 114 were produced according to the following method.
  • UV curable adhesive B The following components were mixed to prepare a liquid UV curable adhesive.
  • 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate 40 parts by mass Bisphenol A type epoxy resin 60 parts by mass Diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate (cationic polymerization initiator) 4.0 Mass part 3) Bonding and polarizing plate preparation
  • the prepared UV curable adhesive B is thickened by a coating apparatus equipped with a chamber doctor. The thickness was 3 ⁇ m.
  • the ultraviolet curable adhesive B was similarly apply
  • the first protective film PET4 is applied to one side of the polarizer prepared above, and the second protective film is applied to the other side.
  • the films 101 were each bonded by a bonding roll through the application surface of the ultraviolet curable adhesive B.
  • the metal halide lamp is irradiated from the first protective film side so that the integrated light quantity at a wavelength of 280 to 320 nm is 320 mJ / cm 2, and the adhesive on both sides is cured, A polarizing plate 101 was obtained.
  • Polarizers 102 to 114 were produced in the same manner as in the production of the polarizing plate 101 except that the first protective film and the second protective film were changed to the combinations shown in Table 9.
  • a liquid crystal display device was produced according to the following method using the produced polarizing plate.
  • an IPS liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the above-prepared polarizing plate 101 was bonded through the adhesive layer so that the second protective film was on the liquid crystal cell side, and liquid crystal display devices 101 to 114 were obtained. In the bonding, the absorption axis of the polarizer of the polarizing plate on the viewing side (101A shown in FIG. 3) and the absorption axis of the polarizer of the polarizing plate on the backlight side (101B shown in FIG. 3) are orthogonal to each other. did.
  • the polarizing plate of the present invention has higher productivity and higher yield than conventional products. Furthermore, by incorporating the polarizing plate of the present invention into a liquid crystal display device, the deterioration of the liquid crystal cell due to the external environment is extremely effectively prevented even after being stored for a long time in a light irradiation (high temperature and high humidity) environment. I understand that.
  • the polarizing plate of the present invention can be suitably used for liquid crystal display devices of various drive systems such as STN, TN, OCB, HAN, VA (MVA, PVA), IPS, OCB, etc., preferably IPS liquid crystal display devices, and has a screen. Even a 30-inch or larger large-screen liquid crystal display device can realize a liquid crystal display device that is suppressed in panel bend, has excellent visibility such as display unevenness and front contrast, and is thin and lightweight.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Toxicology (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明の課題は、耐久性及び生産効率が向上した偏光板及びその製造方法と、それを具備した液晶表示装置を提供する。 本発明の偏光板は、視認側から、第1の保護フィルム、偏光子、第2の保護フィルムの順で構成された偏光板であって、前記第1の保護フィルムが面内に超複屈折性を有し、380nmでの光透過率が50%以上であるポリエステルフィルムであり、かつ前記第2の保護フィルムの380nmでの光透過率が、50%未満である光透過性フィルムであることを特徴とする。

Description

偏光板、偏光板の製造方法及び液晶表示装置
 本発明は、偏光板、偏光板の製造方法及び液晶表示装置に関し、詳しくは、耐久性及び生産効率が向上した偏光板及びその製造方法と、それを具備した液晶表示装置に関する。
 液晶表示装置(以下、LCDともいう。)、有機エレクトロルミネッセンス表示装置(以下、OLEDともいう。)等の表示装置においては、近年、装置の薄型化が進展している。それに伴い、前記表示装置に適用される偏光板についても、薄型化の要望が増している。
 偏光板は、通常、偏光子や偏光板自体を保護するための保護フィルム等が具備されているが、表示装置の視認(観察)側の保護フィルムとして、ポリエステルフィルムを用いた偏光板が知られている(例えば、特許文献1参照。)。
 従来、視認側の保護フィルムとして用いられているポリエステルフィルムには、保護機能の一つとして高い紫外線吸収性が求められている。
 溶融流延法で製造するポリエステルフィルムに紫外線吸収性を付与する方法としては、フィルム自身に紫外線吸収剤を添加するか、紫外線吸収層を設けるなどの方法が用いられている。
 しかしながら、ポリエステルフィルム自身に紫外線吸収剤を添加すると、ブリードアウトなどにより、フィルム製造工程や偏光板製造工程で汚染が生じ、この汚染により歩留りの低下を引き起こすという問題があった。そのため、ブリードアウトを抑制するため、積層構成にしてブリードアウトを抑制するという方法も提案されているが、これも表示装置の表面に使用される光学フィルムについての高い品質レベルの要求の高まりに対して、ますます歩留りを低下させることになり、生産効率を低下させその改善が求められている。ここでいう「ブリードアウト」とは、高温高湿の環境下で、フィルム中に含まれている紫外線吸収剤等の成分がフィルム表面に浸み出して、析出や揮発を起こす現象をいう。
 また、紫外線吸収層を別に設ける方法や、ハードコート層と兼ねて紫外線吸収性を付与する方法も、薄膜の層に比較的多量の紫外線吸収剤を含有させるため、やはり工程汚染やそれによる歩留りの低下により、生産効率を低下させていた。
 一方、前述のように、液晶表示装置に用いる液晶セルのガラス板の薄膜化や偏光子の薄膜化を行った場合、高温・高湿環境下では、視認側(観察側)の保護フィルムとして用いられている紫外線吸収剤を含有しているポリエステルフィルムは、その平面性の劣化や、上記のような紫外線吸収剤の製造時のブリードアウト等により工程汚染により生産性(歩留り)の低下が大きくなりやすいという問題があることが、本発明者の検討により、分かってきた。
特許第5167814号公報
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、耐久性及び生産効率(歩留り)が向上した偏光板及びその製造方法と、それを具備した液晶表示装置を提供することである。
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、視認側から、第1の保護フィルム、偏光子、第2の保護フィルムの順で構成され、前記第1の保護フィルムが面内に超複屈折性を有し、紫外領域である380nmにおける光透過率が50%以上のポリエステルフィルムであり、かつ前記第2の保護フィルムが、紫外領域である380nmにおける光透過率が50%未満である光透過性フィルムであることを特徴とする偏光板により、耐久性及び生産効率(歩留り)が向上した偏光板を得ることができることを見出した。
 すなわち、本発明の上記課題は、下記の手段により解決される。
 1.視認側から、第1の保護フィルム、偏光子、第2の保護フィルムの順で構成された偏光板であって、前記第1の保護フィルムが面内に超複屈折性を有し、380nmでの光透過率が50%以上であるポリエステルフィルムであり、かつ前記第2の保護フィルムが、380nmでの光透過率が50%未満である光透過性フィルムであることを特徴とする偏光板。
 2.前記第2の保護フィルムが、セルロース樹脂を含有していることを特徴とする第1項に記載の偏光板。
 3.前記第2の保護フィルムが、シクロオレフィン樹脂を含有していることを特徴とする第1項に記載の偏光板。
 4.前記第2の保護フィルムにおいて、下記式(i)で定義されるフィルム面内のリターデーション値Ro(nm)が下記式(iii)で規定する条件を満たし、かつ下記式(ii)で定義されるフィルム膜厚方向のリターデーション値Rt(nm)が下記式(iv)で規定する条件を満たすことを特徴とする第1項から第3項までのいずれか一項に記載の偏光板。
 (i)Ro=(n-n)×d
 (ii)Rt=((n+n)/2-n)×d
 (iii)0≦Ro≦20
 (iv)|Rt|≦25
〔式中、nは、フィルム平面内の遅相軸方向の屈折率である。nは、フィルム平面内の遅相軸方向に垂直な方向の屈折率である。nは、フィルム面に垂直な方向の屈折率である。dは、フィルムの厚さ(nm)である。〕
 5.前記第2の保護フィルムが、糖エステル及びポリエステルから選択される少なくとも1種のエステルを含有することを特徴とする第1項から第4項までのいずれか一項に記載の偏光板。
 6.前記第2の保護フィルムが、ベンゾトリアゾール系化合物及びトリアジン系化合物から選択される少なくとも1種の紫外線吸収剤を含有することを特徴とする第1項から第5項までのいずれか一項に記載の偏光板。
 7.前記第1の保護フィルムが、紫外線硬化樹脂層を有することを特徴とする第1項から第6項までのいずれか一項に記載の偏光板。
 8.第1項から第7項までのいずれか一項に記載の偏光板を製造する偏光板の製造方法であって、380nmでの光透過率が50%未満である光透過性を有する前記第2の保護フィルムを、溶融流延法により製膜することを特徴とする偏光板の製造方法。
 9.第1項から第7項までのいずれか一項に記載の偏光板を製造する偏光板の製造方法であって、380nmでの光透過率が50%未満である光透過性を有する前記第2の保護フィルムを、溶液流延法により製膜することを特徴とする偏光板の製造方法。
 10.第1項から第7項までのいずれか一項に記載の偏光板が、液晶セルの視認側(フロント側)の面に具備されていることを特徴とする液晶表示装置。
 11.第1項から第7項までのいずれか一項に記載の偏光板が、液晶セルの視認側(フロント側)の面及び非視認側(リア側)の面のそれぞれに具備されていることを特徴とする液晶表示装置。
 12.前記液晶セルのガラス基板の膜厚が、0.3~0.7mmの範囲内であることを特徴とする第10項又は第11項に記載の液晶表示装置。
 本発明の上記手段により、耐久性及び生産効率(歩留り)が向上した偏光板及びその製造方法と、それを具備した液晶表示装置を提供することができる。
 本発明で規定する構成により、上記問題を解決することができたのは、以下の理由によるものと推測している。
 前述のように、従来、偏光板の構成としては、第1の保護フィルムとして用いられているポリエステルフィルム、例えば、ポリエチレンテレフタレート(以下、PETと略記する。)フィルムには、保護機能として高い紫外線吸収性が求められており、紫外線吸収剤等が添加されていた。
 しかしながら、溶融流延法で製造するポリエステルフィルムに紫外線吸収性を付与するためには、ポリエステルフィルム自身に紫外線吸収剤を添加するか、紫外線吸収層を別途設ける方法などが挙げられる。しかしながら、ポリエステルフィルムに紫外線吸収剤を直接添加すると、ブリードアウトなどの発生により、工程汚染が生じ、フィルム製造工程や偏光板製造工程での汚染を引き起こし、歩留りの低下を招くという問題があった。このブリードアウトを抑制するためには、積層構成にしてブリードアウトを抑制するという方法も提案されているが、これも液晶表示装置の表面に使用される光学フィルムに対し、薄膜化等の品質要求の高まりに対して、ますます歩留りを低下させることになり、生産効率を低下させる要因となっていた。また、紫外線吸収層を含む構成層を新たに設ける場合、あるいはハードコート層と兼ねて紫外線吸収性を付与する場合でも、薄膜の層に比較的多量の紫外線吸収剤を含有させることとなるため、上記のような工程汚染やそれによる歩留りを低下させることにより生産効率を低下させていた。
 本発明は、視認側の保護フィルム(第1の保護フィルム)としてポリエステルフィルムを使用する場合に、ポリエステルフィルムへの紫外線吸収剤の添加量を低減するか、好ましくはポリエステルフィルムへ紫外線吸収剤を含有しない形態で、紫外領域である380nmでの光透過率を50%以上とすることにより、上記紫外線吸収剤の多量の添加による上記原因で発生している歩留りの低下を防止することができた。この構成により、その下に配置する偏光子への耐光性が懸念されたが、その影響は予想外に小さいことが判明した。一方で、他方の保護フィルム(第2の保護フィルム)には、紫外線吸収性を付与するための紫外線吸収剤をはじめ、各種機能性化合物を添加し、紫外領域である380nmでの光透過率を50%未満とする構成の偏光板により、液晶表示装置を構成する液晶セルに対する必要な紫外線耐久性を達成するとともに、歩留りに優れる偏光板を提供し、表示装置の製造コストを低減することができたものである。
 特に、液晶セルに用いられているガラス基板の膜厚が薄くなることで、偏光板に対する品質要求が一層高くなって、歩留りを低下させていたが、本発明の規定する保護フィルムの構成とすることにより、著しく改善させることができた。
本発明の偏光板の構成の一例を示す概略断面図 本発明の偏光板の構成の他の一例を示す概略断面図 本発明に適用可能な溶液流延法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図 本発明の液晶表示装置の構成の一例を示す模式図 本発明に適用可能な溶融流延法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図
 本発明の偏光板は、視認側から、第1の保護フィルム、偏光子、第2の保護フィルムの順で構成された偏光板であって、前記第1の保護フィルムが面内に超複屈折性を有し、380nmにおける光透過率が50%以上であるポリエステルフィルムであり、かつ前記第2の保護フィルムが、380nmにおける光透過率が50%未満である光透過性フィルムであることを特徴とする。この特徴は、各請求項に係る発明に共通する又は対応する技術的特徴である。
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、第2の保護フィルムが、セルロース樹脂やシクロオレフィン樹脂を含有して構成されていることが、紫外線吸収剤等を安定した状態で含有でき、高品位の保護フィルムを形成することができる点で好ましい。
 また、第2の保護フィルムの、前記式(i)で定義されるフィルム面内のリターデーション値Ro(nm)が前記式(iii)で規定する条件を満たし、かつ前記式(ii)で定義されるフィルム膜厚方向のリターデーション値Rt(nm)が前記式(iv)で規定する条件を満たすことが、優れた位相差特性を備えた保護フィルムとすることができる観点で好ましい。
 また、第2の保護フィルムが、糖エステル及びポリエステルから選択される少なくとも1種のエステルを含有することが、フィルムに高いフレキシブル性を付与することができる観点から好ましい。
 また、第2の保護フィルムが、ベンゾトリアゾール系化合物及びトリアジン系化合物から選択される少なくとも1種の紫外線吸収剤を含有することが、本発明の目的効果をより発現させることができる点で好ましい。
 第2の保護フィルムに、必要な紫外線吸収性を付与するためには、紫外線吸収剤の含有量を増加させるか、フィルム全体の膜厚を厚くすることが必要であるが、紫外線吸収剤は添加量を増加させるとブリードアウトを起こし、相分離によりヘイズを増大させるという問題があった。また、膜厚を厚くするとリターデーション値が増加することとなってしまうため、その両立が課題であった。
 本発明では、第2の保護フィルムが、糖エステル又はポリエステルを含有している場合、紫外線吸収剤を含有してもリターデーション値が上昇しにくいため、紫外線吸収性と所望のリターデーション値を満足した上で、膜厚が薄いフィルムを提供することができる。紫外線吸収剤としては、ベンゾトリアゾール系化合物が好ましく、その中でも「2-(2H-Benzotriazol-2-yl)-6-(1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol」が必要な紫外線吸収性と所望のリターデーション値を両立した上で、膜厚が薄いフィルムを提供することができるため、特に好ましく用いられる。
 また、第1の保護フィルムが、更に紫外線硬化樹脂層を有することが、優れた耐傷性を得ることができる点で好ましい。
 本発明に係る第2の保護フィルムは、溶融流延法又は溶液流延法により製膜することが好ましい形態である。
 その中でも、溶液流延法は、異なる複数の添加剤を同時に含有させる際の製造上の制約が少なく、結果として複数の課題を同時に解決できる製造方法を提供することができる点でより好ましい。
 また、本発明の偏光板を、液晶セルの視認側(フロント側)の面、又は液晶セルの視認側(フロント側)の面及び非視認側(リア側)の面のそれぞれに具備した構成の液晶表示装置とすることが特徴である。更には、液晶セルに適用するガラス基板の膜厚を、0.3~0.7mmの範囲内とすることが、より薄型化された液晶表示装置を得ることができる点で好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本発明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。また、各図の説明で、構成要素の後の括弧内に記載の数字は、各図に記載している符号を示してある。
 《偏光板》
 図1A及び図1Bは、本発明の偏光板の構成の一例を示す概略断面図である。
 図1A及び図1Bに示すように、本発明の偏光板(51)は、視認側から、第1の保護フィルム(52)、偏光子(53)、第2の保護フィルム(54)の順で構成され、当該第1の保護フィルム(52)が面内に超複屈折性を有し、紫外領域である380nmでの光透過率が50%以上であるポリエステルフィルムであり、かつ第2の保護フィルム(54)が、紫外領域である380nmでの光透過率が50%未満である光透過性フィルムであることを特徴とする。
 以下、本発明の偏光板の各構成要素の詳細について説明する。
 [第1の保護フィルム]
 本発明の偏光板を構成する第1の保護フィルム(52)は、面内に超複屈折性を有し、紫外領域である380nmでの光透過率が50%以上であるポリエステルフィルム(以下、ポリエステルフィルムともいう。)であることを特徴とする。
 本発明でいう面内に超複屈折性を有するとは、面内方向のリターデーション値Roが、3000~30000nmの範囲内であることをいう。ここでいう、面内方向のリターデーション値Roとは、下記式(i)で定義される。
 式(i)
   Ro=(n-n)×d
 また、フィルム膜厚方向のリターデーションRtは、下記式(ii)で定義される。
 式(ii)
   Rt=((n+n)/2-n)×d
 式(i)、(ii)において、nは、フィルム平面内の遅相軸方向の屈折率である。nは、フィルム平面内の遅相軸方向に垂直な方向の屈折率である。nは、フィルム面に垂直な方向の屈折率である。dは、フィルムの厚さ(nm)である。
 面内方向のリターデーション値Ro、及びフィルム膜厚方向のリターデーション値Rtは自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
 また、第1の保護フィルムの特徴の一つは、上述のように、紫外領域である380nmにおける光透過率が50%以上である。すなわち、紫外領域のおける紫外線吸収能が低いことが特徴である。
 本発明に係るポリエステルフィルムの波長380nmにおける光透過率は、例えば、紫外可視分光光度計(日本分光社製、製品名:V7100)を用いて測定して求めることができる。380nmでの光透過率は、50%以上であることを特徴とするが、好ましくは60~95%の範囲内であり、更に好ましくは70~95%の範囲内であり、特に好ましくは80~95%の範囲内である。
 本発明に係る第1の保護フィルムにおいて、380nmにおける光透過率を50%以上とする方法としては、フィルムに380nmにおける光吸収を有する添加剤を除くことが有効であり、特に、紫外領域に強い吸収を有する紫外線吸収剤を添加しない構成とすることが好ましい。
 本発明に係るポリエステルフィルム、更に詳しくは、延伸ポリエステルフィルムのリターデーション値Roは、超複屈折性を発現させる観点から、3000~30000nmの範囲内であることが好ましい。延伸ポリエステルフィルムのリターデーション値の下限値は、好ましくは4500nm以上、より好ましくは6000nm以上、更に好ましくは8000nm以上、特に好ましくは10000nm以上である。一方、延伸ポリエステルフィルムのリターデーション値Roの上限は、それ以上のリターデーション値Roを有するフィルムを用いたとしても更なる視認性の改善効果は実質的に得られず、またリターデーション値Roの高さに応じてはフィルムの厚さも上昇する傾向があるため、薄型化への要請に反し兼ねないという観点、及び工業材料として取り扱い性が低下する観点から、30000nm以下に設定することが好ましい。
 また、他方の視点として、直交する2つの偏光板の間に複屈折性を有する第1の保護フィルムを設けることにより、偏光板から出射した直線偏光が第1の保護フィルムを通過するときに乱れが生じる。透過した光は、第1の保護フィルムの面内に超複屈折性と厚さの積であるリターデーション値Roに特有の干渉色を示すことにある。このため、第1の保護フィルムにより、特定のリターデーション値Roの範囲内に制御することにより、干渉色を示す透過光のスペクトルの包絡線形状が光源の発光スペクトルに近似させることが可能となる。
 上記効果を奏するために、本発明に用いられる第1の保護フィルムは、3000~30000nmのリターデーション値Roを有していることが好ましい。リターデーション値Roが3000nm以上であれば、サングラスなどの偏光板を通して画面を観察した時、強い干渉色を呈するため、包絡線形状が光源の発光スペクトルと近似し、良好な視認性を確保することができる。好ましいリターデーション値の下限値は4500nm、より好ましい下限値は6000nm、更に好ましい下限値は8000nm、特に好ましい下限値は10000nmである。
 なお、第1の保護フィルムであるポリエステルフィルムに紫外線吸収剤を含有させると、複屈折性の発現が低下してしまい、超複屈折性を保つためには、ポリエステルフィルムを製造する際の延伸倍率をあげることや、延伸温度を調整するなどが必要になるが、これは、ヘイズの増大を招き表示装置のコントラストを低下させるという問題があった。あるいは、ポリエステルフィルムの膜厚を増やして、複屈折値を満たすという手段もあるが、表示装置の大型化に伴って軽量化、薄膜化が求められている中で、重量と厚さが増加してしまうことになるとともに、ポリエステルフィルムが厚くなることによって、偏光板や表示装置を製造する際の取り扱い性の違いに起因する製造トラブルや故障等の原因となることもあったが、本発明の構成とすることで、第1の保護フィルムであるポリエステルフィルムに紫外線吸収剤を含有させる必要がなくなるため、そのような問題の発生を防ぐことができた。
 延伸ポリエステルフィルムは、面内方向のリターデーション値Roと厚さ方向リターデーション値Rtの比(Ro/Rt)の値が、好ましくは0.2以上であり、より好ましくは0.5以上、更に好ましくは0.6以上である。Ro/Rtが大きいほど、複屈折の作用は等方性を増し、画面への色斑の発生をより効果的に抑制することができる点で好ましい。
 Ro/Rtの値の最大値は2.0(即ち、完全な1軸対称性フィルム)であるが、完全な1軸対称性フィルムに近づくにつれて配向方向と直交する方向の機械的強度が低下する傾向がある。よって、ポリエステルフィルムのRo/Rtの値の上限は、好ましくは1.2以下、より好ましくは1.0以下である。
 延伸ポリエステルフィルムのリターデーション値は、公知の手法に従って測定することができる。具体的には、2軸方向の屈折率と厚さを測定して求めることができる。また、商業的に入手可能な自動複屈折測定装置(例えば、アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて求めることもできる。
 延伸ポリエステルフィルムの原料樹脂であるポリエステルは、透明性に優れるとともに、熱的特性及び機械的特性にも優れており、延伸加工によって容易にリターデーション値を制御することができる。ポリエステルのなかでも、ポリエチレンテレフタレート又はポリエチレンナフタレートが好ましい。ポリエチレンテレフタレート及びポリエチレンナフタレートに代表されるポリエステルは固有複屈折が大きく、フィルムの厚さを薄くしても比較的容易に高いリターデーション値が得られるので好ましい。特に、ポリエチレンナフタレートは、ポリエステルの中でも固有複屈折率が大きいことから、リターデーション値を特に高くしたい場合や、リターデーション値を高く保ちながらフィルム厚さを薄くしたい場合に好適である。
 (延伸ポリエステルフィルムの製造方法)
 以下に、延伸ポリエステルフィルムフィルムの製造方法を説明する。
 ポリエステルフィルムは、任意のジカルボン酸とジオールとを縮合させて得ることができる。ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルトフタル酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、ジフェニルカルボン酸、ジフェノキシエタンジカルボン酸、ジフェニルスルホンカルボン酸、アントラセンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、マロン酸、ジメチルマロン酸、コハク酸、3,3-ジエチルコハク酸、グルタル酸、2,2-ジメチルグルタル酸、アジピン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、アゼライン酸、ダイマー酸、セバシン酸、スベリン酸、ドデカジカルボン酸等を挙げることができる。
 ジオールとしては、例えば、エチレングリコール、プロピレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,2-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、デカメチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサジオール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等を挙げることができる。
 ポリエステルフィルムを構成するジカルボン酸成分とジオール成分は、それぞれ1種又は2種以上を用いても良い。ポリエステルフィルムを構成する具体的なポリエステル樹脂としては、前述のとおり、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等が挙げられ、好ましくはポリエチレンテレフタレート及びポリエチレンナフタレートであり、好ましくはポリエチレンテレフタレートである。ポリエステル樹脂は他の共重合成分を含んでも良く、機械強度の点からは共重合成分の割合は3モル%以下が好ましく、好ましくは2モル%以下、更に好ましくは1.5モル%以下である。これらの樹脂は透明性に優れるとともに、熱的、機械的特性にも優れる。また、これらの樹脂は、延伸加工によって容易にリターデーション値を制御することができる。
 ポリエステルフィルムは、一般的な製造方法に従って得ることができる。具体的には、ポリエステル樹脂を溶融し、シート状に押出し成膜された無配向ポリエステルフィルムを、当該フィルムのガラス転移温度以上の温度で、ローラーの速度差を利用して縦方向に延伸した後、テンターにより横方向に延伸し、熱処理及び必要に応じて弛緩処理を施すことにより延伸ポリエステルフィルムが挙げられる。延伸ポリエステルフィルムは、一軸延伸フィルムであっても、二軸延伸フィルムであっても良い。
 ポリエステルフィルムを得るための製造条件は、公知の手法に従って適宜設定することができる。例えば、縦延伸温度及び横延伸温度は、通常80~130℃であり、好ましくは90~120℃である。縦延伸倍率は、通常1.0~3.5倍であり、好ましくは1.0倍~3.0倍である。また、横延伸倍率は、通常2.5~6.0倍であり、好ましくは3.0~5.5倍である。
 リターデーション値を特定範囲に制御することは、延伸倍率や延伸温度、フィルムの厚さを適宜設定することにより行うことができる。例えば、縦延伸と横延伸の延伸倍率差が高いほど、延伸温度が低いほど、フィルムの厚さが厚いほど高いリターデーション値を得やすくなる。逆に、縦延伸と横延伸の延伸倍率差が低いほど、延伸温度が高いほど、フィルムの厚さが薄いほど低いリターデーション値を得やすくなる。また、延伸温度が高いほど、トータル延伸倍率が低いほど、リターデーション値と厚さ方向リターデーション値の比(Ro/Rt)の値が低いフィルムが得やすくなる。逆に、延伸温度が低いほど、トータル延伸倍率が高いほど、リターデーション値と厚さ方向リターデーション値の比(Ro/Rt)の値が高いフィルムが得られる。更に、熱処理温度は、通常140~240℃の範囲内が好ましく、より好ましくは170~240℃の範囲内である。
 弛緩処理の温度は、通常、100~230℃の範囲内であり、110~210℃の範囲内であることがより好ましく、120~180℃の範囲内が更に好ましい。また、弛緩量は、通常、0.1~20%の範囲内であり、1~10%の範囲内であることが好ましく、2~5%の範囲内であることがより好ましい。この弛緩処理の温度及び弛緩量は、弛緩処理後のポリエステルフィルムの150℃における熱収縮率が2%以下になるように、その弛緩量及び弛緩処理時の温度を設定することが好ましい。
 また、一軸延伸処理及び二軸延伸処理においては、横延伸の後、ボーイングに代表されるような配向主軸の歪みを緩和させるために、再度、熱処理を行なったり、延伸処理を行なったりすることができる。ボーイングによる配向主軸の延伸方向に対する歪みの最大値は、好ましくは30°以内、より好ましくは15°以内、さらにより好ましくは8°以内である。配向主軸の歪みの最大値が30゜を超えると、後の工程で偏光板を構成して枚葉化されたとき、この枚葉間で光学特性の不均一が生じる場合がある。ここで配向主軸とは、延伸ポリエステルフィルム上の任意の点における分子配向方向をいう。また、配向主軸の延伸方向に対する歪みとは、配向主軸と延伸方向との角度差をいう。さらに、その最大値とは、長尺方向に対して垂直方向上における値の最大値をいう。前記配向主軸は、例えば、位相差フィルム・光学材料検査装置RETS(大塚電子株式会社製)又は分子配向計MOA(王子計測機器株式会社製)を用いて測定できる。
 ポリエステルフィルムにおけるリターデーション値の変動を抑制する為には、フィルムの厚さ斑が小さいことが好ましい。リターデーション値差をつけるために縦延伸倍率を低くすると、縦厚さ斑(以下、「厚さ斑」ともいう。)の値が高くなる場合がある。縦厚さ斑の値は、延伸倍率のある特定の範囲で非常に高くなる領域があるため、そのような範囲を外すように製膜条件を設定することが好ましい。
 延伸ポリエステルフィルムの厚さ斑は5.0%以下であることが好ましく、4.5%以下であることがさらに好ましく、4.0%以下であることがよりさらに好ましく、3.0%以下であることが特に好ましい。
 本発明でいうフィルムの厚さ斑は、任意の手段で測定することができる。例えば、フィルムの流れ方向に連続したテープ状サンプル(長さ3m)を採取し、市販される測定器(例えば、(株)セイコー・イーエム製電子マイクロメータ ミリトロン1240)を用いて、1cmピッチで100点の厚さを測定し、厚さの最大値(dmax)、最小値(dmin)、平均値(d)を求め、下記式にて厚さ斑(%)を算出することができる。
   厚さ斑(%)=((dmax-dmin)/d)×100
 延伸ポリエステルフィルムの厚さは任意であり、例えば、15~300μmの範囲内、好ましくは30~200μmの範囲内で適宜設定でき、特に好ましくは60~80μmの範囲であると、薄膜化と良好な視認性が両立することができるため好ましい。
 延伸ポリエステルフィルムの少なくとも一方の面には、様々な特性を備える機能層を有していても良い。そのような機能層としては、例えば、ハードコート層、防眩層、反射防止層、低反射層、低反射防眩層、反射防止防眩層、帯電防止層、シリコーン層、粘着層、防汚層、耐指紋層、撥水層、及びブルーカット層等からなる群より選択される1種以上を用いることができる。更には、防眩層、反射防止層、低反射層、低反射防眩層、又は反射防止防眩層を設けることが、斜め方向から観察したときの色斑がより改善されるという効果が得られる観点から好ましい。
 様々な機能層を設けるに際して、延伸ポリエステルフィルムの表面に易接着層を設けることが好ましい。その際、反射光による干渉を抑える観点から、易接着層の屈折率を、機能層の屈折率と延伸ポリエステルフィルムの屈折率の相乗平均近傍になるように調整することが好ましい。易接着層の屈折率の調整は、公知の方法を採用することができ、例えば、バインダー樹脂に、チタンやジルコニウム、その他の金属種を含有させることで容易に調整することができる。易接着層の形成に用いる塗布液は、水溶性又は水分散性の共重合ポリエステル樹脂、アクリル樹脂及びポリウレタン樹脂のうち、少なくとも1種を含む水性塗布液が好ましい。これらの塗布液としては、例えば、特公平6-81714号公報、特許第3200929号公報、特許第3632044号公報、特許第4547644号公報、特許第4770971号公報、特許第3567927号公報、特許第3589232号公報、特許第3589233号公報、特許第3900191号公報、特許第4150982号公報等に記載されている水溶性又は水分散性共重合ポリエステル樹脂溶液、アクリル樹脂溶液、ポリウレタン樹脂溶液等が挙げられる。
 (紫外線硬化樹脂層)
 本発明においては、第1の保護フィルムが、紫外線硬化樹脂層を有する構成であることが好ましい。
 図1Bに、第1の保護フィルム(52)、偏光子(53)及び第2の保護フィルム(54)の構成の偏光板(51)において、視認側にある第1の保護フィルム(52)の上部に、更に、紫外線硬化樹脂層(55)を設けた構成の一例を示してある。
 以下、本発明に係る紫外線硬化樹脂層(以下、ハードコート層ともいう。)の詳細について説明する。
 ハードコート層は、本発明に係る第1の保護フィルム表面のハードコート性を担保することを目的とする層であり、例えば、紫外線の照射により硬化する樹脂である紫外線硬化樹脂と光重合開始剤とを含有するハードコート層用組成物を用いて塗設及び硬化して形成されたものであることが好ましい。
 本発明に適用可能な紫外線硬化樹脂としては、例えば、アクリレート系の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物を挙げることができる。1つの不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。2つ以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等及びこれらをエチレンオキサイド(略称:EО)等で変性した多官能化合物、又は、上記多官能化合物と(メタ)アクリレート等の反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル等)等を挙げることができる。なお、本発明でいう「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指すものである。
 上記化合物のほかに、不飽和二重結合を有する比較的低分子量(数平均分子量300~8万、好ましくは400~5000)のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記紫外線硬化樹脂として使用することができる。なお、この場合の樹脂とは、モノマー以外のダイマー、オリゴマー、ポリマー全てを含む。
 本発明における好ましい化合物としては、3つ以上の不飽和結合を有する化合物が挙げられる。このような化合物を用いると形成するハードコート層の架橋密度を高めることができ、塗膜硬度を良好にすることができる。
 具体的には、本発明においては、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ポリエステル多官能アクリレートオリゴマー(3~15官能)、ウレタン多官能アクリレートオリゴマー(3~15官能)等を適宜組み合わせて用いることが好ましい。
 紫外線硬化樹脂は、溶媒乾燥型樹脂(熱可塑性樹脂等、塗布時に固形分を調整するために添加した溶媒を乾燥させるだけで、被膜となるような特性を有する樹脂)と併用して使用することもできる。溶媒乾燥型樹脂を併用することによって、塗布面の被膜欠陥を有効に防止することができる。紫外線硬化樹脂と併用して使用することができる溶媒乾燥型樹脂としては、特に限定されず、一般には、熱可塑性樹脂を使用することができる。
 光重合開始剤としては、特に限定されず、公知のものを用いることができ、具体例には、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
 光重合開始剤としては、紫外線硬化樹脂がラジカル重合性不飽和基を有する樹脂系の場合には、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、紫外線硬化樹脂がカチオン重合性官能基を有する樹脂系の場合には、光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
 本発明において用いる光重合開始剤としては、ラジカル重合性不飽和基を有する紫外線硬化樹脂の場合は、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンが、紫外線硬化樹脂との相溶性、及び、黄変も少ないという理由から好ましい。
 ハードコート層用組成物にける光重合開始剤の含有量は、紫外線硬化樹脂100質量部に対して、1~10質量部であることが好ましい。1質量部未満であると、ハードコート層の硬度を所望の条件とすることができないことがあり、10質量部を超えると、塗設した膜の深部まで電離放射線が届かなくなり内部硬化が促進されず、目標であるハードコート層表面の所望の鉛筆硬度が得られないおそれがあるためである。
 光重合開始剤の含有量のより好ましい下限は2質量部であり、より好ましい上限は8質量部である。上記光重合開始剤の含有量がこの範囲にあることで、膜厚方向に硬度分布が発生せず、均一な硬度になりやすくなる。
 上記ハードコート層用組成物は、溶媒を含有していてもよい。
 溶媒としては、使用する樹脂成分の種類及び溶解性に応じて選択して使用することができ、例えば、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール等)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等)、脂肪族炭化水素類(例えば、ヘキサン等)、脂環式炭化水素類(例えば、シクロヘキサン等)、芳香族炭化水素類(例えば、トルエン、キシレン等)、ハロゲン化炭素類(例えば、メチレンクロライド、ジクロロエタン等)、エステル類(例えば、酢酸メチル、酢酸エチル、酢酸ブチル等)、水、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシド等)、アミド類(例えば、ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合溶媒であってもよい。特に、本発明においては、ケトン系の溶媒でメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンのいずれか、又は、これらの混合物を少なくとも含むことが、樹脂との相溶性、塗布性に優れるという理由から好ましい。
 又はドコート層用組成物には、ハードコート層の硬度を高くする、硬化収縮を抑える、ブロッキングを防止する、屈折率を制御する、防眩性を付与する、粒子やハードコート層表面の性質を変える等の目的に応じて、従来公知の有機微粒子、無機微粒子、分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤等を添加していてもよい。また、上記ハードコート層用組成物は、光増感剤を混合して用いてもよく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等が挙げられる。
 上記ハードコート層用組成物の調製方法としては、各成分を均一に混合できれば特に限定されず、例えば、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を使用して行うことができる。
 また、上記ハードコート層用組成物を、本発明に係る第1の保護フィルム上に塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ローラーコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の公知の湿式方法を挙げることができる。
 [第2の保護フィルム]
 本発明に係る第2の保護フィルムは、380nmでの光透過率が、50%未満である光透過性フィルムであることを特徴とする。すなわち、紫外領域において、高い紫外線吸収能を有している特性を備えている。
 さらに好ましくは、第2の保護フィルムが、セルロース樹脂より構成されている形態、あるいはシクロオレフィン樹脂により構成されている形態が好ましい。
 また、第2の保護フィルムの、下記式(i)で定義されるフィルム面内のリターデーション値Ro(nm)が下記式(iii)で規定する条件を満たし、かつ下記式(ii)で定義されるフィルム膜厚方向のリターデーション値Rt(nm)が下記式(iv)で規定する条件を満たすことが好ましい。
 (i)Ro=(n-n)×d
 (ii)Rt=((n+n)/2-n)×d
 (iii)0≦Ro≦20
 (iv)|Rt|≦25
 上記各式中、nは、フィルム平面内の遅相軸方向の屈折率である。nは、フィルム平面内の遅相軸方向に垂直な方向の屈折率である。nは、フィルム面に垂直な方向の屈折率である。dは、フィルムの厚さ(nm)である。
 第2の保護フィルムのリターデーション値は、公知の方法に従って測定することができる。具体的には、フィルム面内のリターデーション値Ro、及びフィルム膜厚方向のリターデーション値Rtは、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出することができる。
 上記式(iii)及び(iv)で表されるリターデーション値の範囲は、上記式(i)で定義されるフィルム面内のリターデーション値Ro(nm)及び上記式(ii)で定義されるフィルム膜厚方向のリターデーション値Rt(nm)が、いずれもほぼゼロの保護フィルムとすることである。ここで、ほぼゼロとは、Roにおいては0≦Ro≦20の範囲であり、0≦Ro≦15であることがより好ましく、0≦Ro≦10であることがさらに好ましい。また、Rtにおいてほぼゼロとは、|Rt|≦25の範囲であり、|Rt|≦15であることがより好ましく、|Rt|≦20であることがさらに好ましい。
 第2の保護フィルムのフィルム面内のリターデーション値Ro及びフィルム膜厚方向のリターデーション値Rtをほぼゼロとすることにより、偏光板をその第2の保護フィルム側で液晶セルに貼合したとき、得られる液晶表示装置における黒表示時の光漏れを効果的に防止することができる。また、第2の保護フィルムの厚さを低減することができるため、偏光板及び液晶表示装置の更なる薄型軽量化を図ることが可能となるため好ましい。
 第2の保護フィルムにおいては、380nmでの光透過率が50%未満である光透過性フィルムであることを特徴の一つとする。
 本発明に係る第2の保護フィルムの波長380nmにおける光透過率は、例えば、紫外可視分光光度計(日本分光社製、製品名:V7100)を用いて測定して求めることができる。380nmでの光透過率は、50%未満であることを特徴とするが、好ましくは25%未満であり、更に好ましくは10%未満である。
 本発明に係る第2の保護フィルムにおいて、380nmにおける光透過率を50%未満とする方法としては、フィルムに380nmにおける光吸収を有する添加剤を添加することであり、特に、紫外領域に強い吸収を有する紫外線吸収剤を添加することが有効である。
 以下、本発明に係る第2の保護フィルムの詳細について、更に説明する。
 〔セルロース樹脂フィルム〕
 本発明に係る第2の保護フィルムの好ましい形態の一つは、セルロース樹脂を含有しているセルロース樹脂フィルムである。
 偏光板の第2の保護フィルムに用いるセルロース樹脂として、セルロースエステル樹脂、セルロースエーテル樹脂、セルロースエーテルエステル樹脂などが挙げられる。
 第2の保護フィルムに用いるセルロースエステルには特に限定はないが、セルロースエステルとしては、炭素数2~22程度のカルボン酸エステルであり、芳香族カルボン酸のエステルでもよく、特にセルロースの低級脂肪酸エステルであることが好ましい。
 セルロースの低級脂肪酸エステルにおける低級脂肪酸とは、炭素原子数が6以下の脂肪酸を意味している。ヒドロキシ基に結合するアシル基は、直鎖であっても分岐してもよく、また環を形成してもよい。更に別の置換基が置換してもよい。同じ置換度である場合、前記炭素数が多いと複屈折性が低下するため、炭素数としては炭素数2~6のアシル基の中で選択することが好ましい。前記セルロースエステルとしての炭素数が2~4であることが好ましく、炭素数が2~3であることがより好ましい。
 前記セルロースエステルは、混合酸由来のアシル基を用いることもでき、特に好ましくは炭素数が2と3、又は炭素数が2と4のアシル基を用いることができる。本発明で用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、又は、セルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルを用いることができる。なお、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。本実施形態において好ましく用いられるセルロースエステルとしては、特にセルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、セルロースアセテートフタレートである。
 また、リターデーション値は、セルロースエステルの前記アシル基の種類とセルロース樹脂骨格のピラノース環へのアシル基の置換度等によって、適宜制御することができる。
 本発明において好ましいセルロースエステルとしては、下記式(A)及び(B)を同時に満足するものが好ましい。
 式(A)
   2.0≦X+Y≦3.0
 式(B)
   0≦Y≦2.0
 上記式(A)及び式(B)において、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度である。上記2つの式を満足するものは、優れた光学特性を示す偏光板用の保護フィルムを製造するのに適している。
 この中でも、特に、トリアセチルセルロース、セルロースアセテートプロピオネートが好ましく用いられる。
 更に好ましくは、2.8≦X≦3.0のトリアセチルセルロースが用いられる。
 セルロースアセテートプロピオネート、セルロースアセテートブチレートでは、1.5≦X≦2.9であり、0.1≦Y≦1.5、2.8≦X+Y≦3.0であることが好ましい。アシル基の置換度の測定方法は、ASTM-D817-96に準じて測定することができる。
 前記アシル基の置換度が低過ぎると、セルロース樹脂の骨格を構成するピラノース環のヒドロキシ基に対して未反応部分が多くなり、該ヒドロキシ基が多く残存することにより、リターデーションの湿度変化や偏光板用の保護フィルムとして偏光子を保護する能力が低下してしまうことがあり、好ましくない。
 本発明で用いられるセルロースエステルの数平均分子量は、60000~300000の範囲内であることが、得られるフィルムの機械的強度が高く好ましい。更に70000~200000の範囲内であるものが好ましく用いられる。
 セルロースエステルの数平均分子量は、高速液体クロマトグラフィーを用い、下記条件で測定することで求めることができる。
 溶媒:アセトン
 カラム:MPW×1(東ソー(株)製)
 試料濃度:0.2(質量/容量)%
 流量:1.0ml/分
 試料注入量:300μl
 標準試料:標準ポリスチレン
 温度:23℃
 セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ、ケナフなどを挙げることができる。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することができる。
 セルロースエステルは、セルロース原料のアシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の溶媒を用い、硫酸のようなプロトン性触媒を用いて反応が行われる。アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。
 セルロースエステルにおいて、グルコース単位の6位のアシル基の平均置換度が0.5~0.9の範囲内であることが好ましい。
 セルロースエステルを構成するグルコース単位の6位には、2位及び3位と異なり、反応性の高い一級ヒドロキシ基が存在する。この一級ヒドロキシ基は、硫酸を触媒とするセルロースエステルの製造過程で硫酸エステルを優先的に形成する。そのため、セルロースのエステル化反応において、触媒硫酸量を増加させることにより、通常のセルロースエステルに比べて、グルコース単位の6位よりも2位及び3位の平均置換度を高めることができる。更に、必要に応じて、セルロースをトリチル化すると、グルコース単位の6位のヒドロキシ基を選択的に保護できるため、トリチル化により6位のヒドロキシ基を保護し、エステル化した後、トリチル基(保護基)を脱離することにより、グルコース単位の6位よりも2位及び3位の平均置換度を高めることができる。具体的には、特開2005-281645号記載の方法で製造されたセルロースエステルも好ましく用いることができる。
 アセチルセルロースの場合、酢化率を上げようとすれば、酢化反応の時間を延長する必要がある。但し、反応時間を余り長くとると、アセチルセルロースの分解も同時に進行し、ポリマー鎖の切断やアセチル基の分解などが起こり、好ましくない結果をもたらす。従って、酢化度を上げ、分解をある程度抑えるためには、反応時間はある条件範囲内で設定することが必要である。反応時間を規定することは、反応条件が様々であり、反応装置や設備その他の条件で大きく変化するため、適切な手段ではない。ポリマーの分解は進行するにつれ、分子量分布が広くなってゆくので、セルロースエステルの場合にも、分解の度合いは、通常用いられる重量平均分子量(Mw)/数平均分子量(Mn)の比の値で規定することができる。即ち、セルローストリアセテートの酢化の工程で、長過ぎて分解が進み過ぎることがなく、かつ酢化に十分な時間酢化反応を行せるため、反応度合いの一つの指標である重量平均分子量(Mw)/数平均分子量(Mn)の比の値を用いることができる。
 本発明に適用が可能なセルロースエステルの製造方法の一例を以下に示す。
 はじめに、セルロース原料として綿化リンター100質量部を解砕して、40質量部の酢酸を添加し、36℃で20分間の前処理を施して活性化する。その後、硫酸を8質量部、無水酢酸を260質量部、酢酸を350質量部添加し、36℃で120分間エステル化を行う。次いで、24%酢酸マグネシウム水溶液の11質量部で中和した後、63℃で35分間のケン化熟成を行い、アセチルセルロースを得る。得られたアセチルセルロースを10倍の酢酸水溶液(酢酸:水=1:1(質量比))を用いて、室温で160分間攪拌した後、濾過、乾燥させて、アセチル置換度が2.75の精製アセチルセルロースを調製する。このアセチルセルロースは、Mnが92000、Mwが156000、Mw/Mnの比の値は1.7である。同様に、セルロースエステルのエステル化条件(例えば、温度、時間、攪拌)、加水分解条件を調整することによって、置換度、Mw/Mnの比の値の異なるセルロースエステルを合成することができる。セルロースエステルのMw/Mnの比の値は1.4~5.0が好ましく用いられる。
 なお、合成されたセルロースエステルは、精製して低分子量成分を除去すること、未酢化又は低酢化度の成分を濾過で取り除くことが、高品質のセルロースエステル得る観点から好ましい。
 また、混酸セルロースエステルの場合には、特開平10-45804号公報に記載の方法で得ることができる。
 また、セルロースエステルの品質は、セルロースエステル中の微量金属成分によっても影響を受ける。これらは、製造工程で使用する水質に関係していると考えられるが、不溶性の核となり得るような成分は少ないほうが好ましく、鉄、カルシウム、マグネシウム等の金属イオンは、有機の酸性基を含んでいる可能性のあるポリマー分解物等と塩形成することにより、不溶物を形成する場合があり、これらは少ないことが好ましい。鉄(Fe)成分については、1ppm以下であることが好ましい。カルシウム(Ca)成分については、カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子との配位化合物である錯体を形成しやすく、多くの不溶なカルシウムに由来するスカム(不溶性の澱、濁り)を形成するため、除去することが好ましい。
 カルシウム(Ca)成分は60ppm以下、好ましくは0~30ppmである。マグネシウム(Mg)成分については、やはり多過ぎると不溶分を生ずるため、0~70ppmであることが好ましく、特に0~20ppmであることが好ましい。鉄(Fe)分の含量、カルシウム(Ca)分含量、マグネシウム(Mg)分含量等の金属成分は、乾燥したセルロースエステルをマイクロダイジェスト湿式分解装置にて硫硝酸分解し、アルカリ溶融で前処理を行った後、ICP-AES(誘導結合プラズマ発光分光分析装置)を用いて分析することにより求めることができる。
 第2の保護フィルムに適用するセルロース樹脂としては、上記説明したセルロースエステル樹脂の他に、セルロースエーテル樹脂、セルロースエーテルエステル樹脂などが挙げられる。
 セルロースエーテル樹脂は、セルロースのヒドロキシ基の一部又は全部がアルコキシ基に置換されたものである。アルコキシ基の炭素数は、特に制限されないが、2~20の範囲内とすることが好ましい。そのようなアルコキシ基の例には、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが含まれ、好ましくはメトキシ基、エトキシ基であり、より好ましくはエトキシ基である。セルロースエーテル樹脂に含まれるアルコキシ基は、1種類であっても、2種類以上であってもよい。
 セルロースエーテル樹脂の具体例には、メチルセルロース、エチルセルロース等が含まれ、好ましくはエチルセルロースである。
 セルロースエーテル樹脂のアルコキシ基の総置換度は、特に制限されないが、1.5以上、3.0未満であってよく、好ましくは2.0以上、3.0未満であり、より好ましくは2.5以上、2.9以下である。アルコキシ基の置換度は、ASTM D4794-94に記載の方法にて測定することができる。
 セルロースエーテル樹脂の重量平均分子量や分子量分布などは、セルロースエステル樹脂と同様の範囲に調整することができる。
 そのほかには、例えば、特開2011-56787号公報、特開2007-99876号公報、特開2005-83997号公報等に記載のセルロースエーテル樹脂、セルロースエーテルエステル樹脂もセルロースエステル樹脂と同様に用いることができる。
 (セルロース樹脂フィルムの添加剤)
 本発明に係る第2の保護フィルムを構成するセルロース樹脂フィルムには、それぞれの目的に応じて、各種添加剤を用いることができる。
 〈リターデーション低下剤1:糖エステル〉
 偏光板の第2の保護フィルムには、セルロースエステルと共に、リターデーション低下剤を含む構成が好ましい。
 リターデーション低下剤として、フラノース構造もしくはピラノース構造を1個有する化合物(A)、あるいはフラノース構造もしくはピラノース構造の少なくとも1種を2個以上、12個以下で結合した化合物(B)中のOH基の全てもしくは一部を脂肪族アシル基によりエステル化した化合物である糖エステル又は糖エステル化合物を含んでいてもよい。
 好ましい化合物(A)及び化合物(B)の例としては、以下に示す化合物を挙げることができるが、本発明はこれらに限定されるものではない。
 化合物(A)の例としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース等が挙げられる。なお、化合物(A)には、マルトースを高圧で水素添加して還元して得られるマルチトールも含まれる。
 また、化合物(B)の例としては、ラクトース、スクロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース、ケストースなどが挙げられる。これらの化合物(A)及び化合物(B)の中で、特にフラノース構造とピラノース構造とを両方有するものが好ましい。例としてはスクロースが挙げられる。
 糖エステルを合成する際に用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を用いることができる。用いられるカルボン酸は1種類でもよいし、2種以上の混合であってもよい。
 好ましい脂肪族モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 これら化合物の製造方法の詳細は、例えば、特開平8-245678号公報に記載されている。
 上記化合物(A)及び化合物(B)のエステル化化合物に加えて、オリゴ糖のエステル化化合物として、フラノース構造もしくはピラノース構造の少なくとも1種を3~12個結合した化合物も適用できる。
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるものである。本発明に適用できるオリゴ糖としては、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。オリゴ糖も上記化合物(A)及び化合物(B)と同様な方法でアセチル化できる。
 次に、糖エステルの製造例の一例を示す。グルコース(29.8g、166mmol)にピリジン(100ml)を加えた溶液に無水酢酸(200ml)を滴下し、24時間反応させる。その後、エバポレートで溶液を濃縮して氷水へ投入する。1時間放置した後、ガラスフィルターにてろ過し、固体と水を分離し、ガラスフィルター上の固体をクロロホルムに溶かし、これが中性になるまで冷水で分液する。有機層を分離後、無水硫酸ナトリウムにより乾燥する。無水硫酸ナトリウムをろ過により除去した後、クロロホルムをエバポレートにより除き、更に減圧乾燥することによりグリコースペンタアセテート(58.8g、150mmol、90.9%)を得ることができる。なお、上記無水酢酸の替わりに、上述のモノカルボン酸を使用することができる。
 以下に、本発明に適用可能な糖エステル化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 第2の保護フィルムは、偏光機能の劣化を抑え、表示品位の安定化を図るため、上記の糖エステル化合物を、フィルム中に1~35質量%の範囲内、特に5~30質量%の範囲内で含むことが好ましい。この範囲内であれば、本発明の優れた目的効果を呈すると共に、ロール状に積層した状態で原反を保管している際、ブリードアウトなどもなく好ましい。また、OH基を全てエステル化した糖エステル化合物とOH基が1つ以上残存している糖エステル化合物とを併用してもよい。例えば、スクロースオクタアセテート、スクロースヘプタアセテート、スクロースヘキサアセテートの混合物等が挙げられる。混合の比率は特に限定はないが、例えば、30:30:30、40:30:30、40:50:10、50:30:20、60:30:10、80:10:10、90:7:3、95:5:0、などの組み合わせが挙げられる。これらは、糖のエステル化の際に反応時間あるいは糖と反応させるモノカルボン酸の添加量を調整することで制御してもよいし、それぞれを混合してもよい。
 〈リターデーション低下剤2:アクリルポリマー〉
 第2の保護フィルムには、第2のリターデーション低下剤として、数平均分子量が500以上、30000以下であるアクリルポリマーを含有してもよい。このようなアクリルポリマーとしては、国際公開第2008/044463号の段落〔0059〕~〔0093〕に記載のものが好ましく用いられる。
 〈リターデーション低下剤3:ポリエステル〉
 第2の保護フィルムは、第3のリターデーション低下剤として、下記一般式(B1)又は一般式(B2)で表されるポリエステルを含有してもよい。これは炭素数2~12の2価のアルコールGと炭素数2~12の2塩基酸、炭素数1~12のモノカルボン酸B1、もしくは炭素数1~12のモノアルコールであるB2から得られたポリエステルある。
 一般式(B1)
   B-(G-A-)G-B
 上記一般式(B1)において、Bは炭素数1~12のモノカルボン酸を表し、Gは炭素数2~12の2価のアルコールを表し、Aは炭素数2~12の2塩基酸を表す。B、G、Aはいずれも芳香環の比率が少ないか、含まないことが特に好ましい。mは繰り返し数を表す。
 一般式(B2)
   B-(A-G-)A-B
 上記一般式(B2)において、Bは炭素数1~12のモノアルコールを表し、Gは炭素数2~12の2価のアルコールを表し、Aは炭素数2~12の2塩基酸を表す。B、G、Aはいずれも芳香環の比率が少ないか、含まないことが特に好ましい。nは繰り返し数を表す。
 一般式(B1)において、Bで表されるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸等を好ましく用いることができる。
 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を持った脂肪酸を好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~12であることが特に好ましい。酢酸を含有させるとセルロースエステルとの相溶性が増すため好ましく、酢酸と他のモノカルボン酸を混合して用いることも好ましい。
 好ましい脂肪族モノカルボン酸としては、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸や、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸を挙げることができる。
 一般式(B2)において、Bで表されるモノアルコール成分としては、特に制限はなく、公知のアルコール類を用いることができる。例えば、炭素数1~32の直鎖又は側鎖を持った脂肪族飽和アルコール又は脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~12であることが特に好ましい。
 一般式(B1)及び一般式(B2)において、Gで表される2価のアルコール成分としては、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。例えば、エチレングリコール、ジエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,5-ペンチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等を挙げることができるが、これらのうちエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコールが好ましく、更に、1,3-プロピレングリコール、1,4-ブチレングリコール1,6-ヘキサンジオール、ジエチレングリコールを好ましく用いられる。
 一般式(B1)及び一般式(B2)において、Aで表される2塩基酸(ジカルボン酸)成分としては、脂肪族2塩基酸、脂環式2塩基酸が好ましく、例えば、脂肪族2塩基酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等、特に、脂肪族ジカルボン酸としては炭素原子数4~12もの、これらから選ばれる少なくとも一つのものを使用する。つまり、2種以上の2塩基酸を組み合わせて使用してよい。その際には、フタル酸、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸を併用することもできる。
 m、nは、それぞれ繰り返し数を表し、1以上で170以下が好ましい。
 ポリエステルの数平均分子量は20000以下が好ましく、10000以下であることが更に好ましい。特に、数平均分子量が500~10000の範囲内のポリエステルは、セルロースエステルとの相溶性が良好で、製膜中において蒸発も揮発も起こりにくく好ましい。
 ポリエステルの重縮合は常法によって行われる。例えば、上記2塩基酸とグリコールとの直接反応、上記の2塩基酸又はこれらのアルキルエステル類、例えば、2塩基酸のメチルエステルとグリコール類とのポリエステル化反応又はエステル交換反応により熱溶融縮合法か、あるいはこれら酸の酸クロライドとグリコールとの脱ハロゲン化水素反応の何れかの方法により容易に合成し得るが、数平均分子量がさほど大きくないポリエステルは直接反応によるのが好ましい。低分子量側に分布が高くあるポリエステルはセルロースエステルとの相溶性が非常によく、フィルム形成後、透湿度も小さく、しかも透明性に優れる第2の保護フィルムを得ることができる。
 分子量の調整方法は、特に制限なく従来の方法を使用できる。例えば、重合条件にもよるが、1価の酸(モノカルボン酸)又は1価のアルコール(モノアルコール)で分子末端を封鎖する方法においては、これら1価の化合物の添加量をコントロールすることで、分子量を調整することができる。この場合、1価の酸がポリマーの安定性の点からから好ましい。
 例えば、1価の酸としては、酢酸、プロピオン酸、酪酸等が好ましい例として挙げることができるが、重縮合反応中には系外に溜去せず、停止して反応系外にこのような1価の酸を系外に除去するときに溜去し易いものが選ばれるが、これらを混合使用してもよい。また、直接反応の場合には、反応中に溜去してくる水の量により反応を停止するタイミングを計ることによっても、数平均分子量を調節できる。その他、仕込むグリコール又は2塩基酸のモル数を偏らせることによってもできるし、反応温度をコントロールしても調節できる。
 本発明において、ポリエステルは、第2の保護フィルム全質量に対し1~40質量%の範囲内で含有することが好ましい。更に、2~30質量%の範囲内で含有することが好ましい。特に3~15質量%の範囲内で含有することが好ましい。
 前記アクリルポリマー、又はポリエステルが添加されたフィルムを用いることにより、高温高湿による劣化の少ない偏光板が得られる。また、この偏光板を用いることにより、コントラストや視野角安定性が長時間維持され、表面の平面性に優れるIPSモード型液晶表示装置が得られる。
 〈可塑剤〉
 本発明の偏光板を構成する第2の保護フィルムには、必要に応じて可塑剤を含有することができる。可塑剤は特に限定されないが、好ましくは、多価カルボン酸エステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤及び多価アルコールエステル系可塑剤、ポリエステル系可塑剤、アクリル系可塑剤等から選択される。なお、これらの可塑剤がリターデーション低下剤として作用する場合もある。
 グリコレート系可塑剤は、特に限定されないが、アルキルフタリルアルキルグリコレート類が好ましく用いることができる。アルキルフタリルアルキルグリコレート類としては、例えば、メチルフタリルメチルグリコレート、エチルフタリルエチルグリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチルグリコレート、オクチルフタリルオクチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルメチルグリコレート、エチルフタリルプロピルグリコレート、メチルフタリルブチルグリコレート、エチルフタリルブチルグリコレート、ブチルフタリルメチルグリコレート、ブチルフタリルエチルグリコレート、プロピルフタリルブチルグリコレート、ブチルフタリルプロピルグリコレート、メチルフタリルオクチルグリコレート、エチルフタリルオクチルグリコレート、オクチルフタリルメチルグリコレート、オクチルフタリルエチルグリコレート等が挙げられる。
 フタル酸エステル系可塑剤としては、例えば、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が挙げられる。
 クエン酸エステル系可塑剤としては、例えば、クエン酸アセチルトリメチル、クエン酸アセチルトリエチル、クエン酸アセチルトリブチル等が挙げられる。
 脂肪酸エステル系可塑剤として、例えば、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル等が挙げられる。
 リン酸エステル系可塑剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等が挙げられる。
 多価カルボン酸エステル化合物としては、2価以上、好ましくは2~20価の範囲内の多価カルボン酸とアルコールのエステルよりなる。また、脂肪族多価カルボン酸は2~20価の範囲内であることが好ましく、芳香族多価カルボン酸、脂環式多価カルボン酸の場合は3~20価の範囲内であることが好ましい。
 多価カルボン酸は、下記一般式(C)で表される。
 一般式(C)
   R(COOH)(OH)
 上記一般式(C)において、Rは(m+n)価の有機基、mは2以上の正の整数、nは0以上の整数、COOH基はカルボキシ基、OH基はアルコール性又はフェノール性ヒドロキシ基を表す。
 好ましい多価カルボン酸の例としては、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。トリメリット酸、トリメシン酸、ピロメリット酸のような3価以上の芳香族多価カルボン酸又はその誘導体、コハク酸、アジピン酸、アゼライン酸、セバシン酸、シュウ酸、フマル酸、マレイン酸、テトラヒドロフタル酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クエン酸のようなオキシ多価カルボン酸などを好ましく用いることができる。特にオキシ多価カルボン酸を用いることが、保留性向上などの点で好ましい。
 本発明でいう保留性とは、高温多湿の環境下で、可塑剤等の添加剤がフィルム外に析出や揮発すること等によりフィルムの質量が減量する性質をいい、具体的には、サンプルを、23℃、55%RHの環境下で1日放置後の質量を測定し、次いで、80℃、90%RHの環境下で2週間放置し、さらに2週間放置後のサンプルを23℃、55%RHで1日放置後の質量を測定し、その質量変化比率を求め、これを保留性の尺度とする。
 多価カルボン酸エステルに用いられるアルコールとしては、特に制限はなく、公知のアルコール、フェノール類を用いることができる。例えば、炭素数1~32の直鎖又は側鎖を持った脂肪族飽和アルコール又は脂肪族不飽和アルコールを好ましく用いることができる。炭素数1~20であることが更に好ましく、炭素数1~10であることが特に好ましい。また、シクロペンタノール、シクロヘキサノールなどの脂環式アルコール又はその誘導体、ベンジルアルコール、シンナミルアルコールなどの芳香族アルコール又はその誘導体なども好ましく用いることができる。
 多価カルボン酸としてオキシ多価カルボン酸を用いる場合は、オキシ多価カルボン酸のアルコール性又はフェノール性のヒドロキシ基を、モノカルボン酸を用いてエステル化しても良い。好ましいモノカルボン酸の例としては以下のようなものを挙げることができるが、本発明はこれに限定されるものではない。
 脂肪族モノカルボン酸としては、炭素数1~32の直鎖又は側鎖を持った脂肪酸を好ましく用いることができ、更には炭素数1~20であることが好ましく、炭素数1~10であることが特に好ましい。
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸などの飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸などを挙げることができる。
 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸などの安息香酸のベンゼン環にアルキル基を導入したもの、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸などのベンゼン環を2個以上もつ芳香族モノカルボン酸、又はそれらの誘導体を挙げることができる。特に、酢酸、プロピオン酸、安息香酸であることが好ましい。
 多価カルボン酸エステルの分子量は、特に制限はないが、分子量が300~1000の範囲内であることが好ましく、350~750の範囲内であることが更に好ましい。保留性向上の点では大きい方が好ましく、透湿性、セルロースエステルとの相溶性の点では小さいほうが好ましい。
 多価カルボン酸エステルに用いられるアルコール類は、1種類でも良いし、2種以上の混合であっても良い。
 多価カルボン酸エステルの酸価は、1mgKOH/g以下であることが好ましく、0.2mgKOH/g以下であることが更に好ましい。酸価を上記範囲にすることによって、リターデーションの環境変動も抑制されるため好ましい。
 酸価とは、試料1g中に含まれる酸(試料中に存在するカルボキシ基)を中和するために必要な水酸化カリウムのミリグラム数をいう。酸価はJIS K0070に準拠して測定したものである。
 特に好ましい多価カルボン酸エステル化合物の例を以下に示すが、本発明はこれに限定されるものではない。例えば、トリエチルシトレート、トリブチルシトレート、アセチルトリエチルシトレート(略称:ATEC)、アセチルトリブチルシトレート(略称:ATBC)、ベンゾイルトリブチルシトレート、アセチルトリフェニルシトレート、アセチルトリベンジルシトレート、酒石酸ジブチル、酒石酸ジアセチルジブチル、トリメリット酸トリブチル、ピロメリット酸テトラブチル等が挙げられる。
 ポリエステル系可塑剤は特に限定されないが、分子内に芳香環又はシクロアルキル環を有するポリエステル系可塑剤を用いることができる。ポリエステル系可塑剤としては、特に限定されないが、例えば、下記一般式(D)で表される芳香族末端エステル系可塑剤を用いることができる。
 一般式(D)
   B-(G-A)-G-B
 上記一般式(D)において、Bはベンゼンモノカルボン酸残基、Gは炭素数2~12のアルキレングリコール残基又は炭素数6~12のアリールグリコール残基又は炭素数が4~12のオキシアルキレングリコール残基、Aは炭素数4~12のアルキレンジカルボン酸残基又は炭素数6~12のアリールジカルボン酸残基を表し、nは1以上の整数を表す。
 一般式(D)で表される化合物は、Bで示されるベンゼンモノカルボン酸残基と、Gで示されるアルキレングリコール残基、オキシアルキレングリコール残基又はアリールグリコール残基と、Aで示されるアルキレンジカルボン酸残基又はアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系可塑剤と同様の反応により得られる。
 ポリエステル系可塑剤のベンゼンモノカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種又は2種以上の混合物として使用することができる。
 ポリエステル系可塑剤の炭素数2~12のアルキレングリコール成分としては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール1,6-ヘキサンジオール、2,2,4-トリメチル1,3-ペンタンジオール、2-エチル1,3-ヘキサンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等があり、これらのグリコールは、1種又は2種以上の混合物として使用される。特に炭素数2~12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。
 また、上記芳香族末端エステルの炭素数4~12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種又は2種以上の混合物として使用できる。
 芳香族末端エステルの炭素数4~12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマル酸、グルタル酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種又は2種以上の混合物として使用される。炭素数6~12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。
 ポリエステル系可塑剤は、数平均分子量が、好ましくは300~1500、より好ましくは400~1000の範囲である。また、その酸価は、0.5mgKOH/g以下、ヒドロキシ基価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、ヒドロキシ基価は15mgKOH/g以下のものである。
 以下、本発明において用いることのできる芳香族末端エステル系可塑剤の合成例を示す。
 〈サンプルNo.1(芳香族末端エステルサンプル)〉
 反応容器にフタル酸を410部、安息香酸を610部、ジプロピレングリコールを737部、及び触媒としてテトライソプロピルチタネートを0.40部一括して仕込み、窒素気流中で攪拌し、還流凝縮器を付して過剰の1価アルコールを還流させながら、酸価が2.0mgKOH/g以下になるまで130~250℃の温度範囲で加熱を続け、生成する水を連続的に除去した。次いで、200~230℃の温度範囲で1.33×104Pa~最終的に4×102Pa以下の減圧下、留出分を除去し、この後、濾過して下記の性状を有する芳香族末端エステルであるサンプルNo.1を得た。
 粘度(25℃、mPa・s);43400
 酸価(mgKOH/g);0.2
 〈サンプルNo.2(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸を410部、安息香酸を610部、エチレングリコールを341部、及び触媒としてテトライソプロピルチタネートを0.35部用いた以外はサンプルNo.1と全く同様にして、下記の性状を有する芳香族末端エステルであるサンプルNo.2を得た。
 粘度(25℃、mPa・s);31000
 酸価(mgKOH/g);0.1
 〈サンプルNo.3(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸を410部、安息香酸を610部、1,2-プロパンジオールを418部、及び触媒としてテトライソプロピルチタネートを0.35部用いた以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルであるサンプルNo.3を得た。
 粘度(25℃、mPa・s);38000
 酸価           ;0.05
 〈サンプルNo.4(芳香族末端エステルサンプル)〉
 反応容器に、フタル酸410部、安息香酸610部、1,3-プロパンジオール418部、及び触媒としてテトライソプロピルチタネート0.35部を用いる以外はサンプルNo.1と全く同様にして次の性状を有する芳香族末端エステルを得た。
 粘度(25℃、mPa・s);37000
 酸価(mgKOH/g);0.05
 以下に、本実施形態で用いることのできる芳香族末端エステル系可塑剤の具体的化合物を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 〈紫外線吸収剤〉
 本発明に係る第2の保護フィルムには、紫外線吸収剤を含有することが、380nmでの光透過率を50%未満とするための最も有効な手段である。
 紫外線吸収剤は400nm以下の紫外線を吸収することで、耐久性を向上させることを目的としており、特に波長380nmでの透過率が25%以下であることが好ましく、より好ましくは10%以下、更に好ましくは5%以下である。
 用いる紫外線吸収剤は特に限定されないが、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。
 本発明に適用可能な紫外線吸収剤としては、例えば、5-クロロ-2-(3,5-ジ-sec-ブチル-2-ヒドロキシルフェニル)-2H-ベンゾトリアゾール、(2-2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2,4-ベンジルオキシベンゾフェノン等があり、また、チヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビン類があり、これらはいずれもBASFジャパン社製の市販品であり、好ましく使用できる。
 より好ましく用いられる紫外線吸収剤は、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤であり、特に好ましくはベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤である。
 例えば、ベンゾトリアゾール系紫外線吸収剤としては、下記一般式(b)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000008
 上記一般式(b)において、R、R、R、R及びRは同一でも異なってもよく、それぞれ水素原子、ハロゲン原子、ニトロ基、ヒドロキシ基、アルキル基、アルケニル基、アリール基、アルコキシ基、アシルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、モノもしくはジアルキルアミノ基、アシルアミノ基又は5~6員の複素環基を表し、RとRは閉環して5~6員の炭素環を形成してもよい。また、上記記載のこれらの基は、任意の置換基を有していてよい。
 以下に、ベンゾトリアゾール系紫外線吸収剤の具体例を挙げるが、本発明はこれらに限定されない。
 UV-1:2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール
 UV-2:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール
 UV-3:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)ベンゾトリアゾール
 UV-4:2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール
 UV-5:2-(2′-ヒドロキシ-3′-(3″,4″,5″,6″-テトラヒドロフタルイミドメチル)-5′-メチルフェニル)ベンゾトリアゾール
 UV-6:2,2-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)
 UV-7:2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール
 UV-8:2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール(商品名:TINUVIN171、BASFジャパン社製)
 UV-9:オクチル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートと2-エチルヘキシル-3-〔3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル〕プロピオネートの混合物(商品名:TINUVIN109、BASFジャパン社製)
 更に、ベンゾフェノン系紫外線吸収剤としては、下記一般式(c)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(c)において、Yは水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシ基、又はフェニル基を表し、これらのアルキル基、アルケニル基及びフェニル基は置換基を有していてもよい。Aは水素原子、アルキル基、アルケニル基、フェニル基、シクロアルキル基、アルキルカルボニル基、アルキルスルホニル基又はCO(NH)n-1-D基を表し、Dはアルキル基、アルケニル基又は置換基を有していてもよいフェニル基を表す。m及びnは1又は2を表す。
 上記において、アルキル基としては、例えば、炭素数24までの直鎖又は分岐の脂肪族基を表し、アルコキシ基としては、例えば、炭素数18までのアルコキシ基を表し、アルケニル基としては、例えば、炭素数16までのアルケニル基でアリル基、2-ブテニル基等を表す。また、アルキル基、アルケニル基、フェニル基への置換基としてはハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシ基、フェニル基(このフェニル基には、アルキル基又はハロゲン原子等を置換していてもよい)等が挙げられる。
 以下に一般式(c)で表されるベンゾフェノン系紫外線吸収剤の具体例を示すが、本発明はこれらに限定されない。
 UV-10:2,4-ジヒドロキシベンゾフェノン
 UV-11:2,2′-ジヒドロキシ-4-メトキシベンゾフェノン
 UV-12:2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン
 UV-13:ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)
 この他、1,3,5トリアジン環を有する化合物等の円盤状化合物も紫外線吸収剤として好ましく用いられる。
 本発明においては、紫外線吸収剤としては、特に、下記で示す「2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール」(商品名:TINUVIN928、BASFジャパン社製)が本発明の第2の保護フィルムの紫外線吸収性と低リターデーションを両立した上で薄いフィルムを提供することができるため、好ましく用いられる。
Figure JPOXMLDOC01-appb-C000010
 本発明に係る第2の保護フィルムは、紫外線吸収剤を2種以上含有することもできる。
 また、紫外線吸収剤としては高分子紫外線吸収剤も好ましく用いることができ、特に特開平6-148430号公報に記載のポリマータイプの紫外線吸収剤が好ましく用いられる。
 紫外線吸収剤の添加方法は、メタノール、エタノール、ブタノール等のアルコールや、メチレンクロライド、酢酸メチル、アセトン、ジオキソラン等の溶媒又はこれらの混合溶媒に紫外線吸収剤を溶解してからドープに添加するか、又は直接ドープ組成中に添加してもよい。無機微粒子のような有機溶媒に溶解しないものは、有機溶媒とセルロースエステル中にディゾルバーやサンドミルを使用し、分散してからドープに添加する方法が好ましい。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、第2の保護フィルムの乾燥膜厚が10~100μmの範囲内にある場合には、第2の保護フィルム全質量に対して0.5~10質量%の範囲内が好ましく、0.6~4質量%の範囲内が更に好ましい。
 〈微粒子〉
 第2の保護フィルムは、微粒子を含有することができる。微粒子としては、無機微粒子の例としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。無機微粒子はケイ素を含むものが、濁度が低くなる点で好ましく、特に、二酸化ケイ素が好ましい。本発明でいう微粒子とは、一次粒子の平均粒径が5~400nmの範囲内にある粒子をいう。
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの二次凝集体として含有されていてもよく、平均粒径100~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。第2の保護フィルムにおけるこれらの微粒子の含有量は、0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の第2の保護フィルムの場合は、表面にこの添加量の微粒子を含有することが好ましい。
 二酸化ケイ素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上、日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上、日本アエロジル(株)製)の商品名で市販されており、使用することができる。
 有機微粒子を構成するポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上、東芝シリコーン(株)製)の商品名で市販されており、使用することができる。
 これらの中でも、無機微粒子であるアエロジル200V、アエロジルR972Vが第2の保護フィルムの濁度を低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明に係る第2の保護フィルムにおいては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。
 各種添加剤は、製膜前のセルロースエステル含有溶液であるドープに対し、バッチ添加してもよいし、添加剤溶解液を別途用意してインライン添加してもよい。特に、微粒子は濾過材への負荷を減らすために、一部又は全量をインライン添加することが好ましい。
 添加剤溶解液をインライン添加する場合は、ドープとの混合性をよくするため、少量のセルロースエステルを添加して溶解させておくことが好ましい。好ましいセルロースエステルの量は、溶媒100質量部に対して1~10質量部で、より好ましくは、3~5質量部の範囲内である。
 本発明において、インライン添加、混合を行うためには、例えば、スタチックミキサー(東レエンジニアリング製)、SWJ(東レ静止型管内混合器 Hi-Mixer)等のインラインミキサー等が好ましく用いられる。
 (セルロース樹脂フィルムの製造方法)
 次に、第2の保護フィルムの一例であるセルロース樹脂フィルムの製造方法について説明する。
 セルロース樹脂フィルムは、溶液流延法で製造されたフィルムであってもよいし、溶融流延法で製造されたフィルムであってもよく、どちらも好ましく用いることができるが、特に好ましくは、溶液流延法で製造されたフィルムである。
 溶液流延法によるフィルムの製造方法は、セルロースエステル及び添加剤を溶媒に溶解させてドープを調製する工程、ドープを無限に移行する無端の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸又は幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻取る工程により行われる。
 はじめに、ドープを調製する工程について述べる。ドープ中のセルロースエステルの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、セルロースエステルの濃度が高すぎると、濾過時の圧力負荷が増えて、濾過精度が低下する。これらを両立する濃度としては、10~35質量%の範囲内が好ましく、更に好ましくは、15~25質量%の範囲内である。
 ドープの調製に用いられる溶媒は、単独で用いても2種以上を併用してもよいが、セルロースエステルの良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がセルロースエステルの溶解性の点で好ましい。良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%の範囲内であり、貧溶媒が2~30質量%の範囲内である。ここでいう良溶媒あるいは貧溶媒とは、使用するセルロースエステルを単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。そのため、セルロースエステルの平均酢化度(アセチル基置換度)によっては、良溶媒、貧溶媒が変わり、例えば、アセトンを例にすると、セルロースエステルの酢酸エステル(アセチル基置換度:2.4)、セルロースアセテートプロピオネートでは良溶媒になり、セルロースの酢酸エステル(アセチル基置換度:2.8)では貧溶媒となる。
 用いることができる良溶媒は、特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 一方、用いることができる貧溶媒は、特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。また、セルロースエステルの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いることができる。回収溶媒中には、セルロースエステルに添加されている添加剤、例えば、可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 上記記載のドープを調製するときの、セルロースエステルの溶解方法としては、一般的な方法を用いることができる。例えば、加熱手段と加圧手段を組み合わせると、ドープを常圧における沸点以上に加熱できる。溶媒の常圧での沸点以上でかつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解すると、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。また、セルロースエステルを貧溶媒と混合して湿潤又は膨潤させた後、更に良溶媒を添加して溶解する方法も好ましく用いられる。
 加圧は、溶解容器内に窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えば、ジャケットタイプのものは温度コントロールが容易で好ましい。
 溶媒を添加しての加熱温度は、高い方がセルロースエステルの溶解性の観点からは好ましいが、加熱温度が高過ぎると必要とされる圧力が高くなり生産性が悪くなる。好ましい加熱温度は45~120℃の範囲内であり、60~110℃の範囲内がより好ましく、70℃~105℃の範囲内が更に好ましい。また、圧力は設定温度で溶媒が沸騰しないように調整する。
 更には、冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にセルロースエステルを溶解させることができる。
 次に、このセルロースエステル溶液を濾紙等の適当な濾過材を用いて濾過する。濾過材としては、不溶物等を除去するため、絶対濾過精度としては小さいほうが好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため絶対濾過精度0.008mm以下の濾過材が好ましく、0.001~0.008mmの範囲内の濾過材がより好ましく、0.003~0.006mmの範囲内の濾過材が更に好ましい。
 濾過材の材質は、特に制限はなく、通常の濾過材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾過材や、ステンレススチール等の金属製の濾過材が繊維の脱落等がなく好ましい。濾過により、原料のセルロースエステルに含まれている不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間に第2の保護フィルムを置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察したときに反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm2以下であることが好ましい。より好ましくは100個/cm2以下であり、更に好ましくは50個/cm2以下であり、更に好ましくは0~10個/cm2の範囲内である。また、径が0.01mm以下の輝点も少ないほうが好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。好ましい温度は45~120℃の範囲内であり、45~70℃の範囲内がより好ましく、45~55℃の範囲内であることが更に好ましい。
 濾圧は小さいほうが好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 ここで、ドープの流延について説明する。流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススチールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mとすることができる。
 流延工程の金属支持体の表面温度は、-50℃~溶媒の沸点未満の温度の範囲内で、温度が高いほうがウェブの乾燥速度が速くできるので好ましいが、過度に高過ぎるとウェブが発泡し、平面性が劣化する場合がある。好ましい支持体温度は0~40℃の範囲内であり、5~30℃の範囲内が更に好ましい。また、冷却することによってウェブをゲル化させ、残留溶媒を多く含んだ状態でドラムから剥離する方法も好ましい。
 金属支持体の温度を制御する方法は、特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方法が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 保護フィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10~150質量%の範囲内が好ましく、更に好ましくは10~40質量%又は60~130質量%の範囲内であり、特に好ましくは、10~30質量%又は70~120質量%の範囲内である。ここで、残留溶媒量は下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 式中、Mは、ウェブ又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、Nは、質量Mのものを115℃で1時間加熱した後の質量である。
 また、セルロース樹脂フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0~0.01質量%の範囲内である。
 フィルム乾燥工程では、一般にローラー乾燥方式(上下に配置した多数のローラーに、ウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。
 セルロース樹脂フィルムを作製するためには、金属支持体より剥離した直後で、ウェブの残留溶媒量の多いところで搬送方向(縦方向)に延伸し、更にウェブの両端をクリップ等で把持するテンター方式で幅方向(横方向)に延伸を行うことが好ましい。更には、搬送方向(縦方向)と幅方向(横方向)に、同時延伸する方法であってもよい。
 剥離直後に縦方向に延伸するために、剥離張力を210N/m以上で剥離することが好ましく、特に好ましくは220~300N/mの範囲内である。
 ウェブを乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの乾燥工程における乾燥温度は40~200℃の範囲内で段階的に高くしていくことが好ましく、50~140℃の範囲内で行うことが寸法安定性を良くするため更に好ましい。
 セルロース樹脂フィルムの膜厚は、特に限定はされないが、10~200μmの範囲内であることが好ましい。膜厚は10~60μmの範囲内であることがさらに好ましく、特に好ましくは10~40μmの範囲内である。
 セルロース樹脂フィルムは、幅1~4mの範囲内のものが用いられる。特に幅1.4~4mの範囲内のものが好ましく用いられ、特に好ましくは1.6~3mの範囲内である。4mを超えると搬送が困難となる。
 〈延伸操作、屈折率制御〉
 セルロース樹脂フィルムは、先述のとおり、下記式で表されるリターデーション値Roが0~20nm、Rt(絶対値)が25nm以下であることが好ましい。
 式(i):Ro=(n-n)×d
 式(ii):Rt=((n+n)/2-n)×d
 式中、nは、フィルム平面内の遅相軸方向の屈折率である。nは、フィルム平面内の遅相軸方向に垂直な方向の屈折率である。nは、フィルム面に垂直な方向の屈折率である。dは、フィルムの厚さ(nm)である。
 上記屈折率は、例えば、アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃、55%RHの環境下で、測定波長590nmで求めることができる。
 上記リターデーション値Ro、Rtを得るには、第2の保護フィルムが本発明の構成をとり、更に延伸操作により屈折率制御を行うことが好ましい。
 例えば、フィルムの長手方向(製膜方向)及びそれとフィルム面内で直交する方向、即ち幅手方向に対して、逐次又は同時に延伸することができる。
 互いに直交する2軸方向の延伸倍率は、それぞれ最終的には流延方向に1.0~2.0倍、幅方向に1.01~2.5倍の範囲内とすることが好ましく、流延方向に1.01~1.5倍、幅方向に1.05~2.0倍に範囲内で行うことが好ましい。
 ウェブを延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、同様に横方向に広げて横方向に延伸する方法、或いは縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれらの方法は、組み合わせて用いてもよい。また、所謂テンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸を行うことができ、破断等の危険性が減少できるので好ましい。
 製膜工程のこれらの幅保持又は横方向の延伸は、テンターによって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 保護フィルムの遅相軸又は進相軸がフィルム面内に存在し、製膜方向とのなす角をθ1とするとθ1は-1°以上+1°以下であることが好ましく、-0.5°以上+0.5°以下であることがより好ましい。このθ1は配向角として定義でき、θ1の測定は、自動複屈折計KOBRA-21ADH(王子計測機器)を用いて行うことができる。θ1が各々上記関係を満たすことは、表示画像において高い輝度を得ること、光漏れを抑制又は防止することに寄与でき、カラー液晶表示装置においては忠実な色再現を得ることに寄与できる。
 なお、より詳細な溶液流延法の具体的な工程フローについては、後述するシクロオレフィン樹脂を含有しているシクロオレフィンフィルムの製造方法と合わせて、図2を用いて説明する。
 〔シクロオレフィンフィルム〕
 本発明に係る第2の保護フィルムの好ましい他の形態は、シクロオレフィン系樹脂を含有しているシクロオレフィンフィルムである。
 一般的にシクロオレフィン系樹脂は疎水性樹脂であるため、フィルム化した際に水分があると分離しやすく透明性の観点から好ましくないが、本発明においては、シクロオレフィン系樹脂として、少なくとも一つの水素結合受容性基を含む樹脂組成物から形成されていることが好ましい態様であり、アルコールのヒドロキシ基やヒンダードフェノール系化合物のヒドロキシ基と水素結合できることから、水分を多少含んだ状態であっても、透明性も維持でき、逆に水素結合によりフィルム強度が向上するという特徴がある。「水素結合受容性基」とは、水素結合を形成する際に水素原子を受容する官能基をいう。
 本発明に係るシクロオレフィン系樹脂は、少なくとも一つの水素結合受容性基を含む樹脂組成物から形成されることが好ましい態様である。
 水素結合受容性基としては、例えば、炭素原子数1~10のアルコキシ基、炭素原子数1~10のアシルオキシ基、炭素原子数2~10のアルコキシカルボニル基、アリルオキシカルボニル基、シアノ基、アミド基、イミド環含有基、トリオルガノシロキシ基、トリオルガノシリル基、アシル基、炭素原子数1~10のアルコキシシリル基、スルホニル含有基、及びカルボキシ基などの極性基が挙げられる。これらの極性基についてさらに具体的に説明すると、上記アルコキシ基としては、例えば、メトキシ基、エトキシ基等が挙げられ;アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基等のアルキルカルボニルオキシ基、及びベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられ;アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基等が挙げられ;アリルオキシカルボニル基としては、例えば、フェノキシカルボニル基、ナフチルオキシカルボニル基、フルオレニルオキシカルボニル基、ビフェニリルオキシカルボニル基等が挙げられ;トリオルガノシロキシ基としては、例えば、トリメチルシロキシ基、トリエチルシロキシ基等が挙げられ;トリオルガノシリル基としてはトリメチルシリル基、トリエチルシリル基等が挙げられ;アルコキシシリル基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。
 樹脂成分中に含まれる上記水素結合受容性基を含むシクロオレフィン系樹脂の量は、特に限定されるものではないが、好ましくは、含有割合としては、第2の保護フィルムの全質量に対し、10~100質量%である。10質量%以上であると、得られる開環共重合体がトルエンやメチレンクロライドなどの溶媒への溶解性を示しやすくなるため好ましく、更に溶解性やフィルムの強度、透明性の観点から、30~100質量%の範囲にあると更に好ましい。
 本発明に係るシクロオレフィン系樹脂としては、例えば、下記一般式(I)で示す(共)重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記一般式(I)において、pは0又は1であり、mは0又は1以上の整数である。R~Rは、それぞれ独立に、水素原子、炭化水素基、ハロゲン原子、又は水素結合受容性基を表す。また、R~Rは、二つ以上が互いに結合して、不飽和結合、単環又は多環を形成していてもよく、この単環又は多環は、二重結合を有していても、芳香環を形成してもよい。
 本発明において、シクロオレフィン系樹脂の好ましい水素結合受容性基の保有比率は、上記一般式(I)でR~Rのうち1~2個が水素結合受容性基を有することが好ましい。
 また、シクロオレフィン系樹脂の水素結合受容性基の保有比率は、例えば、カーボン-13核磁気共鳴(13CNMR)スペクトル法を用いて同定することができる。
 また、一般式(I)において、R及びRが水素原子又は炭素数1~10、さらに好ましくは1~4、特に好ましくは1~2の範囲内である炭化水素基であり、R及びRの少なくとも一つは水素原子及び炭化水素基以外の極性を有する水素結合受容性基を示し、pとmは、ガラス転移温度が高く、かつ機械的強度が優れるという観点から、m=1、p=0であるものが好ましい。
 ハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられる。炭素原子数1~30の炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基等のアルケニル基;フェニル基、ビフェニル基、ナフチル基、アントラセニル基等の芳香族基等が挙げられる。これらの炭化水素基は置換されていてもよく、置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子、フェニルスルホニル基等が挙げられる。
 本発明に係るシクロオレフィン系樹脂の好ましい分子量は、固有粘度〔η〕inhで0.2~5cm/gの範囲内であり、さらに好ましくは0.3~3cm/gの範囲内であり、特に好ましくは0.4~1.5cm/gの範囲内である。また、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は8000~100000の範囲内が好ましく、さらに好ましくは10000~80000の範囲内であり、特に好ましくは12000~50000の範囲内である。重量平均分子量(Mw)は20000~300000の範囲内であることが好ましく、さらに好ましくは30000~250000の範囲内であり、特に好ましくは40000~200000の範囲内のものが好適である。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあることによって、シクロオレフィン樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明に係るシクロオレフィン系樹脂フィルムとしての成形加工性が良好となる。
 本発明に係るシクロオレフィン系樹脂のガラス転移温度(Tg)としては、通常、110℃以上、好ましくは110~350℃の範囲内であり、さらに好ましくは120~250℃の範囲内であり、特に好ましくは120~220℃の範囲内である。Tgが110℃以上の場合は、高温条件下での使用、又はコーティング、印刷などの二次加工による変形が抑制されるため好ましい。また、Tgが350℃以下であると、成形加工や成形加工時の熱による樹脂劣化が抑制されるため好ましい。
 以上説明したシクロオレフィン系樹脂は、市販品を好ましく用いることができ、市販品の例としては、JSR(株)からアートン(Arton)G、アートンF、アートンR、及びアートンRXという商品名で発売されており、これらを使用することができる。
 (シクロオレフィンフィルムの添加剤)
 〈シリカ粒子〉
 本発明に係るシクロオレフィンフィルムには、製造されたフィルムがハンドリングされる際に、傷が付くことや搬送性が悪化すること等を防止するとともに、第2の保護フィルムを偏光板の保護フィルムとして用いた際に、偏光板の打ち抜き時のクラックや切り粉の発生を低減した第2の保護フィルムを得るために、特定の疎水化度を有するシリカ粒子を含有することが好ましい。
 本発明に好適なシリカ粒子としては、メタノールウエッタビリティ法で測定される疎水化度が、メタノールと純水が体積比で3:7の第1溶液を用いたときの当該疎水化度が20%以下であり、メタノールと純水が体積比で6:4の第2溶液を用いたときの当該疎水化度80%以上であるシリカ粒子が好ましい。疎水化度は前述のMW法によって測定する。
 シリカ粒子とは、二酸化ケイ素を主成分とする粒子である。主成分とは、粒子を構成する成分の50%以上を含有することをいい、好ましくは70%以上、より好ましくは80%以上、特に好ましくは90%以上含まれることをいう。
 また、二酸化ケイ素系の粒子で、かつ表面がアルキル化処理により疎水化処理された微粒子を添加すると、溶媒に対しての分散性がよく、異物の発生を抑制できることから、好ましい。
 シリカ粒子に対する上記疎水化処理は、アルキル化処理であることが好ましい。アルキル化処理された微粒子の表面はアルキル基を有し、そのアルキル基の炭素数は1~20の範囲内であることが好ましく、より好ましくは炭素数1~12の範囲内であり、特に好ましくは、炭素数1~8の範囲内である。
 前記シリカ粒子において、表面に炭素数1~20の範囲内のアルキル基を有するものは、例えば、前記の二酸化ケイ素の粒子をオクチルシランで処理することにより得ることができる。また、表面にオクチル基を有するものの一例としては、アエロジルR805(日本アエロジル(株)製)の商品名で市販されており、好ましく用いられる。
 シリカ粒子の一次粒子の平均粒径は、5~400nmの範囲内が好ましく、さらに好ましいのは10~300nmの範囲内である。
 シリカ粒子の二次粒子の平均粒径は、100~400nmの範囲内であることが、好ましく、一次粒子の平均粒径が100~400nmの範囲内であれば、凝集せずに一次粒子として含まれていることも好ましい。
 〈ヒンダードフェノール系化合物〉
 フェノール系化合物は既知の化合物であり、例えば、米国特許第4839405号明細書の第12~14欄に記載されており、2,6-ジアルキルフェノール誘導体化合物が含まれる。このような化合物のうち好ましい化合物として、下記一般式(II)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記一般式(II)において、R51~R56は各々水素原子又は置換基を表す。置換基としては、ハロゲン原子(例えば、フッ素原子、塩素原子等)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、ヒドロキシエチル基、メトキシメチル基、トリフルオロメチル基、t-ブチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アラルキル基(例えば、ベンジル基、2-フェネチル基等)、アリール基(例えば、フェニル基、ナフチル基、p-トリル基、p-クロロフェニル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基等)、アリールオキシ基(例えば、フェノキシ基等)、シアノ基、アシルアミノ基(例えば、アセチルアミノ基、プロピオニルアミノ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、ブチルチオ基等)、アリールチオ基(例えば、フェニルチオ基等)、スルホニルアミノ基(例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等)、ウレイド基(例えば、3-メチルウレイド基、3,3-ジメチルウレイド基、1,3-ジメチルウレイド基等)、スルファモイルアミノ基(ジメチルスルファモイルアミノ基等)、カルバモイル基(例えば、メチルカルバモイル基、エチルカルバモイル基、ジメチルカルバモイル基等)、スルファモイル基(例えば、エチルスルファモイル基、ジメチルスルファモイル基等)、アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェノキシカルボニル基等)、スルホニル基(例えば、メタンスルホニル基、ブタンスルホニル基、フェニルスルホニル基等)、アシル基(例えば、アセチル基、プロパノイル基、ブチロイル基等)、アミノ基(メチルアミノ基、エチルアミノ基、ジメチルアミノ基等)、シアノ基、ヒドロキシ基、ニトロ基、ニトロソ基、アミンオキシド基(例えば、ピリジン-オキシド基)、イミド基(例えば、フタルイミド基等)、ジスルフィド基(例えば、ベンゼンジスルフィド基、ベンゾチアゾリル-2-ジスルフィド基等)、カルボキシ基、スルホ基、ヘテロ環基(例えば、ピロール基、ピロリジル基、ピラゾリル基、イミダゾリル基、ピリジル基、ベンズイミダゾリル基、ベンズチアゾリル基、ベンズオキサゾリル基等)等が挙げられる。これらの置換基は更に置換されてもよい。
 また、R51が水素原子、R52及びR56がそれぞれt-ブチル基であるフェノール系化合物が好ましい。
 本発明に係るヒンダードフェノール系化合物は、特に限定されるものではないが、以下の具体例を挙げることができる。
 当該化合物の具体例としては、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、n-オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-アセテート、n-オクタデシル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、n-ヘキシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、n-ドデシル3,5-ジ-t-ブチル-4-ヒドロキシフェニルベンゾエート、ネオ-ドデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ドデシルβ(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、エチルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)イソブチレート、オクタデシルα-(4-ヒドロキシ-3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(n-オクチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-フェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート、2-(n-オクタデシルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシ-ベンゾエート、2-(2-ヒドロキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、ジエチルグリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシ-フェニル)プロピオネート、2-(n-オクタデシルチオ)エチル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ステアルアミドN,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、n-ブチルイミノN,N-ビス-[エチレン3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-(2-ステアロイルオキシエチルチオ)エチル3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート、2-(2-ステアロイルオキシエチルチオ)エチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,2-プロピレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ネオペンチルグリコールビス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、エチレングリコールビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、グリセリン-l-n-オクタデカノエート-2,3-ビス-(3,5-ジ-t-ブチル-4-ヒドロキシフェニルアセテート)、ペンタエリスリトール-テトラキス-[3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]、1,1,1-トリメチロールエタン-トリス-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ソルビトールヘキサ-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2-ヒドロキシエチル7-(3-メチル-5-tブチル-4-ヒドロキシフェニル)プロピオネート、2-ステアロイルオキシエチル7-(3-メチル-5-t-ブチル-4-ヒドロキシフェニル)ヘプタノエート、1,6-n-ヘキサンジオール-ビス[(3′,5′-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリトリトール-テトラキス(3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナメート)等が挙げられる。
 中でも有用なヒンダードフェノール系酸化防止剤の具体例として、下記の例示化合物を示すが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 また、上記タイプのフェノール化合物は、例えば、BASFジャパン株式会社から、「Irganox1035」、「Irganox1076」及び「Irganox1010」という商品名で市販されている。
 シクロオレフィン系樹脂100質量部に対する前記フェノール系化合物の添加量は適宜設計できるが、0.1~1.0質量部の範囲内であることが好ましく、0.3~0.5質量部の範囲内であることがより好ましい。
 〈その他の添加剤〉
 その他の添加剤としては、前記セルロース樹脂フィルムに記載したポリエステル化合物、多価アルコールエステル化合物、多価カルボン酸エステル化合物(フタル酸エステル化合物を含む)、グリコレート化合物、及びエステル化合物(脂肪酸エステル化合物やリン酸エステル化合物などを含む)、紫外線吸収剤等を同様に適用することができる。
 〔シクロオレフィンフィルムの製造方法〕
 本発明に係る第2の保護フィルムであるシクロオレフィンフィルムの製造方法は、溶液流延製膜法又は溶融流延製膜法を採用することができるが、溶液流延製膜法によって製造することが好ましい。
 (A.溶液流延成膜法)
 本発明に係るシクロオレフィンフィルムは、溶液流延製膜法によって製膜し、かつ、前記少なくとも一つの水素結合受容性基を有するシクロオレフィン系樹脂、前記疎水化度を満たすシリカ粒子、前記ヒンダードフェノール系化合物、及びアルコール系溶媒を含む有機溶媒を含有するドープを、溶解温度15~50℃の範囲内で調製することが好ましい。
 溶解温度が、15℃以上であれば十分に樹脂や添加剤を溶解できるため、異物の少ないフィルムが得られる。また50℃以下であれば、アルコールとヒンダードフェノール化合物の反応によるドープ及び、得られるフィルムの着色を抑制できる観点から好ましく、アルコールと親和性が良いシリカ粒子を添加することでも着色を抑制する効果がある。
 本発明に係る第2の保護フィルムは、少なくともシクロオレフィン系樹脂、シリカ粒子、ヒンダードフェノール系化合物及びアルコール系溶媒を含む有機溶媒を含有するドープを調製する工程(ドープ調製工程)と、前記ドープを支持体上に流延してウェブ(流延膜ともいう。)を形成する工程(流延工程)と、支持体上でウェブから溶媒を蒸発させる工程(溶媒蒸発工程)、ウェブを支持体から剥離する工程(剥離工程)、得られたフィルムを乾燥させる工程(予備乾燥工程)、フィルムを延伸する工程(延伸工程)、延伸後のフィルムを更に乾燥させる工程(乾燥工程)、得られた第2の保護フィルムを巻取る工程(巻取り工程)によって製造されることが好ましい。
 以上の工程を、図を用いて説明する。
 図2は、本発明に好ましい溶液流延製膜法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した工程フロー図である。
 予め分散機によって溶媒中にシリカ粒子を分散させた微粒子分散液は、仕込み釜(41)から濾過器(44)を通過しストック釜(42)に貯留される。一方、主ドープであるシクロオレフィン系樹脂は、溶媒とともに溶解釜(1)にて溶解され、適宜、ストック釜(42)に保管されている微粒子分散液が添加・混合され、主ドープを形成する。得られた主ドープは、濾過器(3)、ストック釜(4)と送液され、濾過器(6)で濾過され、合流管(20)によって添加剤が添加されて、混合機(21)で混合されて加圧ダイ(30)に液送される。
 一方、添加剤(本発明に適用可能なヒンダードフェノール系化合物や、紫外線吸収剤、位相差上昇剤など)は、溶媒に溶解され、添加剤仕込み釜(10)から濾過器(12)を通過して、ストック釜(13)に貯留される。その後、濾過器(15)を通過し、導管(16)を経由して合流管(20)及び混合機(21)によって主ドープと混合される。
 加圧ダイ(30)に液送された主ドープは、無端の金属ベルト状の支持体(31)上に流延されてウェブ(32)を形成し、所定の乾燥後剥離位置(33)で剥離されフィルムを得る。剥離されたウェブ(32)は、多数の搬送ローラーに通しながら、所定の残留溶媒量になるまで乾燥された後、延伸装置(34)によって長手方向又は幅手方向に延伸される。延伸後、乾燥装置(35)によって所定の残留溶媒量になるまで、搬送ローラー(36)に通しながら乾燥し、巻取り装置(37)によって、ロール状に巻取られる。
 以下、各工程について説明する。
 (1)ドープ調製工程
 シクロオレフィン系樹脂に対する良溶媒を主成分とする有機溶媒に、溶解釜中で当該シクロオレフィン系樹脂及びヒンダードフェノール系化合物、場合によって、位相差上昇剤、シリカ粒子又はその他の化合物を撹拌しながら溶解し、ドープを調製する工程、又は当該シクロオレフィン系樹脂溶液に、前記ヒンダードフェノール系化合物、場合によっては位相差上昇剤、シリカ粒子又はその他の化合物溶液を混合して主溶解液であるドープを調製する工程である。
 本発明に係る第2の保護フィルムを溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、シクロオレフィン系樹脂、ヒンダードフェノール系化合物、又は位相差低減剤及びその他の化合物を同時に溶解するものであることが好ましい。
 用いられる有機溶媒として、以下の溶媒が好ましく用いられる。
 溶液流延法に用いられる溶媒としては、例えば、クロロホルム、メチレンクロライドなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。
 本発明に係る溶媒が良溶媒と貧溶媒の混合溶媒である場合、当該良溶媒は、例えば、塩素系有機溶媒としては、メチレンクロライド、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等が挙げられ、中でもメチレンクロライドであることが好ましい。
 貧溶媒は、主にはアルコール系溶媒であり、第2の保護フィルム中に10~1000ppm含有されることが、本発明の効果を発現する上で好ましい。
 本発明に係るシクロオレフィンフィルム中に含有される上記アルコール系溶媒の含有量は、いわゆる残留溶媒量であって、フィルム製造後にフィルム中に含有される含有量をいう。当該溶媒量は、後述するヘッドスペースガスクロマトグラフィーにより定量することができるが、その測定はフィルム製造後からフィルム加工前までの期間に測定されたときの値をいう。通常、フィルムは、製造されてロール状に巻き取られた後、保護シート等で包装されて準密閉状態で保管され、加工されるまではその状態が保持されるため、残留溶媒量の変動は小さい。
 残留溶媒量の制御は、溶媒の構成比率、製膜中における乾燥温度、乾燥時間等の乾燥条件、膜厚等を適宜調整して行うことができる。
 本発明に係るシクロオレフィンフィルム中に含有されるアルコール系溶媒の含有量は、10~1000ppmの範囲内であることが好ましく、20~500ppmの範囲であることがより好ましい。10ppm以上で本発明の効果を発現し、また溶液流延製膜における金属支持体からの剥離性も向上する。1000ppm以下では、ヘイズと環境安全性の観点から好ましい。
 本発明に係るアルコール系溶媒は、メタノール、エタノール及びブタノールから選択されることが、本発明の効果とともに、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもエタノールが上記観点から好ましい。
 本発明では、混合溶媒であれば、前記良溶媒を溶媒全質量に対して55質量%以上を用いることが好ましく、より好ましくは70質量%以上、更に好ましくは80質量%以上用いることである。
 また、本発明に係るシクロオレフィンフィルムは、生産性向上の観点からヒドロキシ基を有するアルコール系溶媒と共に、水を組み合わせて用いることがより好ましく、前記ドープに水を加えて、残留溶媒量として水を50~500ppmの範囲内でフィルム中に含有することが好ましい。
 水は一分子中に水素結合性供与基を複数持つため、フィルムの強度を上げるために好ましく用いることができる。水は全溶媒量に対して0.1~1.0質量%の範囲内で含むことが好ましい。0.1質量%以上であれば、他のアルコール系溶媒や水素結合受容性基を含むシクロオレフィン系樹脂やシリカ粒子と相互作用しやすくなるため好ましく、1.0質量%以下であれば疎水性の強いシクロオレフィン系樹脂のゲル化を抑制し、異物の発生を抑えることができる。
 〈残留溶媒量〉
 溶媒成分として用いた前記アルコール及び水のフィルム中における残留量は、以下の測定方法によって行う。
 一定の形状に切り取ったフィルムを20mlの密閉ガラス容器に入れ、120℃で20分間処理したあと、ガスクロマトグラフィー(機器:HP社 5890SERIES II、カラム:J&W社 DB-WAX(内径0.32mm、長さ30m)、検出:FID)でGC昇温条件を40℃で5分間保持したあと、80℃/分で100℃まで昇温して求めた。
 シクロオレフィン系樹脂及びヒンダードフェノール系化合物、その他の化合物の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、0.8~4MPaの圧力範囲で行うことが、溶解性の観点から好ましい。
 ドープ中のシクロオレフィン系樹脂の濃度は、10~40質量%の範囲内であることが好ましい。シクロオレフィン系樹脂含有ドープは、溶解中又は後のドープに化合物を加えて溶解及び分散した後、濾材で濾過し、脱泡して送液ポンプで次工程に送る。
 ドープの濾過については、好ましくはリーフディスクフィルターを具備する主な濾過器(3)で、ドープを、例えば、90%捕集粒子径が微粒子の平均粒子径の10~100倍の範囲内にある濾材で濾過することが好ましい。
 本発明において、濾過に使用する濾材は、絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さすぎると、濾過材の目詰まりが発生しやすく、濾材の交換を頻繁に行わなければならず、生産性を低下させるという問題点ある。
 このため、本発明において、シクロオレフィン系樹脂含有ドープに使用する濾材は、絶対濾過精度が0.008mm以下のものが好ましく、0.001~0.008mmの範囲内のものがより好ましく、0.003~0.006mmの範囲内の濾材がさらに好ましい。
 濾材の材質には、特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック繊維製の濾材やステンレス繊維等の金属製の濾材が、繊維の脱落等がなく好ましい。
 本発明において、濾過の際のドープの流量が、10~80kg/(h・m)の範囲内、好ましくは20~60kg/(h・m)の範囲内であることが好ましい。ここで、濾過の際のドープの流量が、10kg/(h・m)以上であれば、効率的な生産性を得ることができ、濾過の際のドープの流量が80kg/(h・m)以内であれば、濾材にかかる圧力が適正となり、濾材を破損させることがなく、好ましい。
 濾圧は、3500kPa以下であることが好ましく、3000kPa以下がより好ましく、2500kPa以下であることがさらに好ましい。なお、濾圧は、濾過流量と濾過面積を適宜選択することで、コントロールできる。
 多くの場合、主ドープには、返材を10~50質量%の範囲内で使用することができる。
 返材とは、例えば、シクロオレフィンフィルムを細かく粉砕したフィルム片で、シクロオレフィンフィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでフィルムの規定値を越えたシクロオレフィンフィルム原反が使用される。
 また、ドープ調製に用いられる樹脂の原料としては、あらかじめシクロオレフィン系樹脂及びその他の化合物などをペレット化したものもを好ましく用いることができる。
 (2)流延工程
 (2.1)ドープの流延
 以上のようにして調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイ(30)に送液し、無限に移送する無端の金属支持体(31)、例えば、ステンレススチールベルト、又は回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイ(30)のスリットからドープを流延する工程である。
 流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススチールベルト又は鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1~4mの範囲内、好ましくは1.3~3mの範囲内、さらに好ましくは1.5~2.8mの範囲内とすることができる。流延工程の金属支持体の表面温度は-50℃~溶媒が沸騰して発泡しない温度以下、さらに好ましくは-30~0℃の範囲内に設定される。温度が高い方がウェブ(流延用金属支持体上にドープを流延し、形成されたドープ膜をウェブという。)の乾燥速度が速くできるので好ましいが、余り高すぎるとウェブの発泡等により平面性が劣化する場合がある。好ましい支持体温度としては0~100℃の範囲内で適宜決定され、5~30℃の範囲内が更に好ましい。又は、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。
 金属支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。
 ダイは、ダイの口金部分のスリット形状を調整でき、膜厚を均一にしやすい加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して積層してもよい。
 (2.2)溶媒蒸発工程
 ウェブを流延用金属支持体上で加熱し、溶媒を蒸発させる工程であり、後述する剥離時の残留溶媒量を制御する工程である。
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを30~100℃の雰囲気下、支持体上で乾燥させることが好ましい。30~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。
 面品質、透湿性、剥離性の観点から、30~180秒の範囲内で当該ウェブを支持体から剥離することが好ましい。
 (2.3)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは、フィルムとして次工程に送られる。
 金属支持体上の剥離位置における剥離温度は、好ましくは10~40℃の範囲内であり、さらに好ましくは11~30℃の範囲内である。
 本発明では、前記溶媒蒸発工程でウェブ中の溶媒を蒸発するが、剥離する時点での金属支持体上でのウェブの残留溶媒量は、15~100質量%の範囲内とすることが好ましい。残留溶媒量の制御は、前記溶媒蒸発工程における乾燥温度及び乾燥時間で行うことが好ましい。
 前記残留溶媒量が15質量%以上であると、支持体上での乾燥過程において、シリカ粒子が厚さ方向に分布を持たずフィルム中に均一に分散した状態になるため、好ましい。
 また、前記残留溶媒量が100質量%以下であれば、フィルムが自己支持性を有し、フィルムの剥離不良を回避でき、ウェブの機械的強度も保持できることから剥離時の平面性が向上し、剥離張力によるツレや縦スジの発生を抑制できる。
 ウェブ又はフィルムの残留溶媒量は、下記式(Z)で定義される。
 式(Z)
   残留溶媒量(%)=(ウェブ又はフィルムの加熱処理前質量-ウェブ又はフィルムの加熱処理後質量)/(ウェブ又はフィルムの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
 金属支持体からウェブを剥離してフィルムとする際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
 (3)乾燥及び延伸工程
 乾燥工程は、予備乾燥工程と本乾燥工程に分けて行うこともできる。
 (3.1)予備乾燥工程
 金属支持体からウェブを剥離して得られたフィルムは、予備乾燥させる。フィルムの予備乾燥は、フィルムを、上下に配置した多数のローラーにより搬送しながら乾燥させてもよいし、テンター乾燥機のようにフィルムの両端部をクリップで固定して搬送しながら乾燥させてもよい。
 ウェブを乾燥させる手段は、特に制限なく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等で行うことができるが、簡便さの点で、熱風で行うことが好ましい。
 ウェブの予備乾燥工程における乾燥温度は、好ましくはフィルムの(ガラス転移温度(Tg)-5℃)以下であって、30℃以上の温度で、1分以上、30分以下の範囲内で熱処理を行うことが効果的である。乾燥温度は40~150℃の範囲内、更に好ましくは50~100℃の範囲内で乾燥が行われる。
 (3.2)延伸工程
 本発明に係る第2の保護フィルムは、延伸装置(34)にて残留溶媒量下で延伸処理を行うことで、フィルム中の樹脂にシリカ粒子を均一に分散させたり、フィルムの平面性を向上したり、フィルム内の分子の配向を制御することで、所望の位相差値Ro及びRtを得ることができる。
 本発明に係るシクロオレフィンフィルムの製造方法では、当該フィルムを延伸する工程において、延伸開始時の残留溶媒量を1.0質量%以上、15質量%未満とすることが好ましい。より好ましくは2.0~10質量%の範囲内であり、前記残留溶媒量の範囲であると、延伸時に不均一な応力がフィルムにかかることを回避することができる。
 本発明に係るシクロオレフィンフィルムは、長手方向(MD方向、流延方向ともいう。)、幅手方向(TD方向ともいう。)、又は斜め方向に延伸することが好ましく、少なくとも延伸装置によって、幅手方向に延伸して製造することが好ましい。
 延伸操作は、多段階に分割して実施してもよい。また、二軸延伸を行う場合には、同時二軸延伸を行ってもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 すなわち、例えば、次のような延伸ステップを適用することが可能である:
 ・長手方向に延伸→幅手方向に延伸→長手方向に延伸→幅手方向に延伸
 ・幅手方向に延伸→幅手方向に延伸→長手方向に延伸→長手方向に延伸
 ・幅手方向に延伸→斜め方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。
 本発明に係るシクロオレフィンフィルムは、延伸後の膜厚が所望の範囲になるように長手方向及び/又は幅手方向、好ましくは幅手方向に、フィルムのガラス転移温度をTgとしたときに、(Tg+5)~(Tg+50)℃の温度範囲で延伸することが好ましい。上記温度範囲で延伸すると、位相差の調整がしやすく、また延伸応力を低下できるのでヘイズが低くなる。また、破断の発生を抑制し、平面性、フィルム自身の着色性に優れた第2の保護フィルムが得られる。延伸温度は、(Tg+10)~(Tg+40)℃の範囲で行うことが好ましい。
 なお、ここでいうガラス転移温度Tgとは、市販の示差走査熱量測定器を用いて、昇温速度20℃/分で測定し、JIS K7121(1987)に従い求めた中間点ガラス転移温度(Tmg)である。具体的なフィルムのガラス転移温度Tgの測定方法は、JIS K7121(1987)に従って、セイコーインスツル(株)製の示差走査熱量計DSC220を用いて測定する。
 本発明に係るシクロオレフィンフィルムは、フィルムを少なくとも幅手方向に、元幅に対して1~40%の範囲内の延伸率で延伸することが好ましく、さらにフィルムの長手方向及び幅手方向において、それぞれ5~40%の範囲内の延伸率で延伸することがより好ましい。特に当該延伸率の範囲は、元幅に対して10~30%の範囲内で延伸することがさらに好ましい。本発明でいう延伸率とは、延伸前のフィルムの長手又は幅手の長さに対して、延伸後のフィルムの長手又は幅手の長さの比率(%)をいう。
 長手方向に延伸する方法には特に限定はない。例えば、複数のローラーに周速差をつけ、その間でローラー周速差を利用して縦方向に延伸する方法、ウェブの両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げて縦方向に延伸する方法、又は縦横同時に広げて縦横両方向に延伸する方法などが挙げられる。もちろんこれ等の方法は、組み合わせて用いてもよい。
 幅手方向に延伸するには、例えば、特開昭62-46625号公報に示されているような乾燥全工程又は一部の工程を幅方向に、クリップ又はピンでウェブの幅両端を幅保持しつつ乾燥させる方法(テンター方式と呼ばれる)、中でもクリップを用いるテンター方式、ピンを用いるピンテンター方式が好ましく用いられる。
 幅手方向への延伸に際し、フィルム幅手方向に100~500%/minの範囲内の延伸速度で延伸することが、好ましい。
 延伸速度は、特に250%/min以上であれば、平面性が向上し、またフィルムを高速で処理することができるため、生産適性の観点で好ましく、500%/min以下であれば、フィルムが破断することなく処理することができ、好ましい。
 好ましい延伸速度は、300~400%/minの範囲内であり、低倍率の延伸時に有効である。延伸速度は下記式(E)によって定義されるものである。
 式(E)
   延伸速度(%/min)=[(d/d)-1]×100(%)/t
 式(E)において、dは延伸後の本発明に係る第2の保護フィルムの前記延伸方向の幅寸法であり、dは延伸前の第2の保護フィルムの前記延伸方向の幅寸法であり、tは延伸に要する時間(min)である。
 本発明に係るシクロオレフィンフィルムは、延伸することにより所望の位相差値を付与することができる。
 本発明に係るシクロオレフィンフィルムの膜厚は、5~40μmの範囲内であることが好ましく、特に好ましくは5~25μmの範囲内である。測定波長590nmにおける面内位相差Roと厚さ方向の位相差Rtが、それぞれ(iii)0≦Ro≦20、(iv)|Rt|≦25であることが、第2の保護フィルムとして用いる際に、軽量で薄膜な偏光板を提供することができ、またIPSモード型液晶表示装置用の偏光板として最適な位相差を付与できる観点から、好ましい。更に好ましくは、(iii)0≦Ro≦10、(iv)|Rt|≦15である。
 延伸工程では、通常、延伸した後、保持・緩和が行われる。すなわち、本工程は、フィルムを延伸する延伸段階、フィルムを延伸状態で保持する保持段階及びフィルムを延伸した方向に緩和する緩和段階をこれらの順序で行うことが好ましい。保持段階では、延伸段階で達成された延伸率での延伸を、延伸段階における延伸温度で保持する。緩和段階では、延伸段階における延伸を保持段階で保持した後、延伸のための張力を解除することによって、延伸を緩和する。緩和段階は、延伸段階における延伸温度以下で行えば良い。
 (3.3)乾燥工程
 乾燥工程では、乾燥装置(35)によって延伸後のフィルムを加熱して乾燥させる。
 フィルム中に含有する有機溶媒量を調整するのに、乾燥工程の条件を適宜調整して行うことが好ましい。
 熱風等によりフィルムを加熱する場合、使用済みの熱風(溶媒を含んだエアーや濡れ込みエアー)を排気できるノズルを設置して、使用済み熱風の混入を防ぐ手段も好ましく用いられる。熱風温度は、40~350℃の範囲内がより好ましい。また、乾燥時間は5秒~60分の範囲内が好ましく、10秒~30分の範囲内がより好ましい。
 また、加熱乾燥手段は、熱風に制限されず、例えば、赤外線、加熱ローラー、マイクロ波等を用いることができる。簡便さの観点からは、千鳥状に配置した搬送ローラー36でフィルムを搬送しながら、熱風等で乾燥を行うことが好ましい。乾燥温度は残留溶媒量、搬送における伸縮率等を考慮して、40~350℃の範囲がより好ましい。
 乾燥工程においては、残留溶媒量が一般的には0.5質量%以下になるまで、フィルムを乾燥することが好ましい。
 (4)巻取り工程
 (4.1)ナーリング加工
 所定の熱処理又は冷却処理の後、巻取り前にスリッターを設けて端部を切り落とすことが良好な巻姿を得るため好ましい。更に、幅手両端部にはナーリング加工をすることが好ましい。
 ナーリング加工は、加熱されたエンボスローラーをフィルム幅手端部に押し当てることにより形成することができる。エンボスローラーには細かな凹凸構造が形成されており、これを押し当てることでフィルムに凹凸構造を形成し、端部を嵩高くすることにより、フィルムをロール状に積層した際の表裏面のブロッキングを防止することができる。
 本発明に係る第2の保護フィルムの幅手両端部のナーリングの高さは4~20μmの範囲内、幅5~20mmの範囲内が好ましい。
 (4.2)
 良好な巻姿を得る別の手段として、ロール状に巻き取る前に、フィルム同士のブロッキングを防止する目的で、マスキングフィルム(プロテクトフィルムともいう。)を重ねて同時に巻き取ってもよいし、延伸フィルムの少なくとも一方、好ましくは両方の端にテープ等を張り合わせながら巻き取ってもよい。マスキングフィルムとしては、上記フィルムを保護することができるものであれば特に制限されず、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルムなどが挙げられる。
 また、本発明においては、上記のナーリング加工は、フィルムの製膜工程において、乾燥終了後、巻取りの前に工程で設けることが好ましい。
 (4.3)巻取り工程
 フィルム中の残留溶媒量が2.0質量%以下となってから、フィルムを巻取る工程であり、残留溶媒量として好ましくは1.0質量%以下となってから巻き取ることが、寸法安定性の良好なフィルムを得ることができる。
 巻取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
 (B.溶融流延製膜法)
 本発明に係るシクロオレフィンフィルムは、溶融流延成膜法(以下、溶融押出法ともいう。)によっても製造することができ、その一例を以下に示す。
 溶融押出法を用いてシクロオレフィンフィルムを製造する方法は、ガラス転移温度(Tg)以上の温度に加熱溶融したシクロオレフィン樹脂を、ダイスからフィルム状に押し出してシクロオレフィンフィルムを形成する工程(A)と、前記シクロオレフィンフィルムを、製膜用支持体で受けて、フィルムを冷却する工程(B)を有する。ガラス転移温度以上の温度に加熱しているシクロオレフィン樹脂は溶融しているが、そのシクロオレフィン樹脂は、冷却されてガラス転移温度未満になり、硬化する。そのため、ガラス転移温度以上の柔らかいシクロオレフィン樹脂をフィルム状に製膜し、その後、冷却して硬化させることにより、所望の形状のシクロオレフィンフィルムを得ることができる。
 シクロオレフィンフィルムの製造方法に係る、前記工程(A)及び工程(B)のうち、少なくとも工程(B)においては、樹脂フィルムの中央領域と第一固定領域との間に第一伸張領域を設け、かつ樹脂フィルムの中央領域と第二伸張領域との間に第二伸張領域を設けることが好ましい。したがって、工程(B)において、シクロオレフィンフィルムは、その幅方向において、第一固定領域、第一伸張領域、中央領域、第二伸張領域及び第二固定領域をこの順に備える。また、前記の第一伸張領域及び第二伸張領域は、同一張力を与えられた場合、第一伸張領域及び第二伸張領域の伸び量が、中央領域の伸び量より大きくなるように設けられている。
 このような構成を有することにより、シクロオレフィンフィルムの製造方法は、その中央領域においてゼロに近い厚さ方向のリターデーションRtを有するシクロオレフィンフィルムを製造できる。
 なお、シクロオレフィンフィルムに紫外線吸収剤を添加すると、リターデーション値が上昇する場合があるため、紫外線吸収剤の選択や含有量、あるいはフィルム膜厚の設定が重要となる。紫外線吸収剤としては、ベンゾトリアゾール系化合物が好ましい。
 次いで、図を交えて、溶融流延法によるシクロオレフィンフィルムの製造方法について説明する。
 図4は、本発明に適用可能な溶融流延法のドープ調製工程、流延工程及び乾燥工程の一例を模式的に示した図である。
 図4に示すように、シクロオレフィンフィルム(410)の製造装置(400)は、ダイス(510)と、支持体としてのキャストローラー(520)と、密着装置としての静電ピニング装置(531及び532)と、剥離装置としての剥離ローラー(540)と、トリミング装置(550)と、巻取り装置としての巻取り軸(560)とを備える。
 ダイス(510)は、図示しない樹脂供給装置からガラス転移温度以上の温度を有する単一の樹脂を、矢印A110で示すように供給することができるように設けられている。また、ダイス(510)は、このように供給された樹脂を、リップ(516)を通じてフィルム状に押し出して、溶融状態のシクロオレフィン樹脂からなるシクロオレフィンフィルム(420)を得られるように設けられている。
 図4に示すように、キャストローラー(520)は、ダイス(510)から押し出されたシクロオレフィンフィルム(420)を保持する支持面である外周面(521)を有するローラーである。このキャストローラー(520)は、ダイス(510)に対向する位置に設けられている。
 また、キャストローラー(520)は、図示しない駆動装置から与えられる駆動力によって、矢印A120で示す方向に回転するように設けられている。そのため、キャストローラー(520)は、外周面(521)で受けたシクロオレフィンフィルム(420)を、当該キャストローラー(520)の回転によって搬送する構成を有している。
 さらに、キャストローラー(520)には、温度調整手段(不図示)が設けられている。この温度調整手段により、キャストローラー(520)は、外周面(521)で受けたシクロオレフィンフィルム(420)を、所望の温度に冷却することができる。キャストローラー(520)の温度は、シクロオレフィンフィルム(420)がキャストローラー(520)の周面(521)で保持されてから剥離ローラー(540)によって剥離されるまでの期間において、シクロオレフィンフィルム(420)に含まれるシクロオレフィン樹脂のガラス転移温度未満にシクロオレフィンフィルム(420)を冷却できるように設定されている。
 剥離ローラー(540)は、キャストローラー(520)と平行に、矢印A140で示す方向に回転するように設けられている。また、この剥離ローラー(540)は、キャストローラー(520)によってシクロオレフィンフィルム(420)に含まれる樹脂のガラス転移温度未満まで冷却されたシクロオレフィンフィルム(420)を、キャストローラー(520)の外周面(521)から剥離できるように設けられている。さらに、剥離ローラー(540)は、剥離したシクロオレフィンフィルム(420)を、トリミング装置(550)に送り出しうるように設けられている。
 トリミング装置(550)は、剥離ローラー(540)によって剥離されたシクロオレフィンフィルム(420)から、少なくとも端部を切り除くための装置である。
 このトリミング装置(550)は、外周に刃を備えて対に設けられたトリミングナイフ(551及び552)を備える。トリミング装置(550)は、シクロオレフィンフィルム(420)から端部フィルム(428)を切り除いて残った中央領域を含むシクロオレフィンフィルム(410)を、巻取り軸(560)に送り出すように設けられている。
 巻取り軸(560)は、図示しない駆動装置によって、矢印A160で示す方向に回転するように設けられている。そのため、巻取り装置(560)は、トリミング装置(550)から送られてきたシクロオレフィンフィルム(410)を巻き取って、フィルムロール(430)が得られる構成を有する。
 以上のようにして、シクロオレフィンフィルム(410)が得られる。このシクロオレフィンフィルム(410)は、ゼロに近い厚さ方向のリターデーションRtを有する。また、シクロオレフィンフィルム(410)の面内方向のリターデーションRoは、通常、ゼロに近い値となる。
 さらに、このような方法で作製されたシクロオレフィンフィルム(410)は、第2の保護フィルムとして用いる観点から、通常、高い透明性を有する。具体的には、シクロオレフィンフィルム(410)の1mm厚換算での全光線透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。また、シクロオレフィンフィルムの1mm厚換算でのヘイズは、0.3%以下であることが好ましく、0.2%以下であることが特に好ましい。ここで、全光線透過率は、JIS K7361-1997に準拠して測定しうる。また、ヘイズは、JIS K7136-1997に準拠して測定することができる。
 溶融流延法を用いたシクロオレフィンフィルムの製造方法及びそれに適用することができるシクロオレフィン樹脂の詳細に関しては、例えば、特開2015-187629号公報に記載されている内容を参照することができる。
 《偏光板》
 本発明の偏光板は、本発明に係る第1の保護フィルム及び第2の保護フィルムが、偏光子の両面に貼合されている構成である。好ましくは、紫外線硬化型接着剤又は水系接着剤を用いて、偏光子の両面に、第1の保護フィルム及び第2の保護フィルムが貼合されている構成である。
 また、本発明の偏光板が視認側の偏光板として用いられる場合は、偏光板用の保護フィルムには、防眩層あるいはクリアハードコート層、反射防止層、帯電防止層、防汚層等を設けることが好ましい。
 〔偏光子〕
 本発明の偏光板の主たる構成要素である偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
 偏光子としては、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸し、次いで好ましくはホウ素化合物で耐久性処理を行った偏光子が用いられ得る。偏光子の膜厚は2~30μmの範囲内が好ましく、特に2~15μmの範囲内であることが好ましい。
 また、特開2003-248123号公報、特開2003-342322号公報等に記載のエチレン単位の含有量が1~4モル%の範囲内で、重合度が2000~4000、ケン化度が99.0~99.99モル%の範囲内にあるエチレン変性ポリビニルアルコールも好ましく用いられる。中でも、熱水切断温度が66~73℃の範囲内にあるエチレン変性ポリビニルアルコールフィルムが好ましく用いられる。このエチレン変性ポリビニルアルコールフィルムを用いた偏光子は、偏光性能及び耐久性能に優れている上に、色ムラが少なく、大型液晶表示装置に特に好ましく用いられる。
 〔偏光板の作製〕
 本発明の偏光板は、一般的な方法で作製することができる。本発明に係る第1の保護フィルムの偏光子に対向する面側を適宜表面処理し、ヨウ素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、後述する紫外線硬化型接着剤又は水系接着剤を用いて貼り合わせる。偏光子のもう一方の面にも、同様にして第2の保護フィルムを貼合する。
 偏光子との貼合の向きは、例えば、偏光子の吸収軸と各保護フィルムの遅相軸が直交するように貼合する方法が好ましい。
 (紫外線硬化型接着剤)
 本発明の偏光板においては、本発明に係る保護フィルムと偏光子とを、紫外線硬化型接着剤を介して接着されていることが好ましい。
 本発明においては、保護フィルムと偏光子との貼合に紫外線硬化型接着剤を適用することにより、薄膜でも強度が高く、平面性に優れた偏光板を得ることができる。
 〈紫外線硬化型接着剤の組成〉
 偏光板用の紫外線硬化型接着剤組成物としては、光ラジカル重合を利用した光ラジカル重合型組成物、光カチオン重合を利用した光カチオン重合型組成物、並びに光ラジカル重合及び光カチオン重合を併用したハイブリッド型組成物が知られている。
 光ラジカル重合型組成物としては、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基等の極性基を含有するラジカル重合性化合物及び極性基を含有しないラジカル重合性化合物を特定割合で含む組成物)等が知られている。特に、ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物などが含まれる。(メタ)アクリルアミドは、アクリアミド又はメタクリアミドを意味する。
 また、光カチオン重合型組成物としては、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤の各成分を含有する紫外線硬化型接着剤組成物が挙げられる。ただし、これ以外の紫外線硬化型接着剤が用いられてもよい。
 (1)前処理工程
 前処理工程は、保護フィルムの偏光子との接着面に易接着処理を行う工程である。易接着処理としては、コロナ処理、プラズマ処理等が挙げられる。
 (紫外線硬化型接着剤の塗布工程)
 紫外線硬化型接着剤の塗布工程としては、偏光子と偏光板用の保護フィルムとの接着面のうち少なくとも一方に、上記紫外線硬化型接着剤を塗布する。偏光子又は保護フィルムの表面に直接、紫外線硬化型接着剤を塗布する場合、その塗布方法に特段の限定はなく、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーター等、種々の湿式塗布方式が利用できる。また、偏光子と各保護フィルムの間に、紫外線硬化型接着剤を塗布したのち、ローラー等で加圧して均一に押し広げる方法も利用できる。
 (2)貼合工程
 上記の方法により紫外線硬化型接着剤を塗布した後は、貼合工程で処理される。この貼合工程では、例えば、先の塗布工程で偏光子の表面に紫外線硬化型接着剤を塗布した場合、そこにセルロース樹脂フィルムが重ね合わされる。また、第1又は第2の保護フィルムの表面に紫外線硬化型接着剤を塗布する方式の場合には、そこに偏光子が重ね合わされる。また、偏光子と保護フィルムの間に紫外線硬化型接着剤を流延させた場合は、その状態で偏光子と保護フィルムとが重ね合わされる。そして、通常は、この状態で両面の保護フィルム側から加圧ローラー等で挟んで加圧することになる。加圧ローラーの材質は、金属やゴム等を用いることが可能である。両面に配置される加圧ローラーは、同じ材質であってもよいし、異なる材質であってもよい。
 (3)硬化工程
 硬化工程では、付与した紫外線硬化型接着剤に紫外線を照射して、カチオン重合性化合物(例えば、エポキシ化合物やオキセタン化合物)やラジカル重合性化合物(例えば、アクリレート系化合物、アクリルアミド系化合物等)を含む紫外線硬化型接着剤層を硬化させ、紫外線硬化型接着剤を介して重ね合わせた偏光子と本発明に係る保護フィルムを接着させる。偏光子の両面に保護フィルムを貼合する本発明の構成においては、偏光子の両面にそれぞれ紫外線硬化型接着剤を介して、光透過性である保護フィルムを重ね合わせた状態で、紫外線を照射し、両面の紫外線硬化型接着剤を同時に硬化させる方法が有利である。
 紫外線の照射条件は、本発明に適用する紫外線硬化型接着剤を硬化することができる条件であれば、任意の適切な条件を採用できる。紫外線の照射量は、積算光量で50~1500mJ/cmの範囲内であることが好ましく、100~500mJ/cmの範囲内であるのがさらに好ましい。本発明では、第1の保護フィルム側から紫外線を照射することが、歩留り向上の点でも好ましい。
 偏光板の製造工程を連続ラインで行う場合、ライン速度は、接着剤の硬化時間によるが、好ましくは1~500m/minの範囲内、より好ましくは5~300m/minの範囲内、さらに好ましくは10~100m/minの範囲内である。ライン速度が1m/min以上であれば、生産性を確保することができ、又は本発明に係る保護フィルムへのダメージを抑制することができ、耐久性に優れた偏光板を作製することができる。また、ライン速度が500m/min以下であれば、紫外線硬化型接着剤の硬化が十分となり、目的とする硬度を備え、接着性に優れた紫外線硬化型接着剤層及び偏光板を形成することができる。
 《液晶表示装置》
 上記本発明に係る保護フィルムを貼合した本発明の偏光板を液晶表示装置に用いることによって、種々の視認性に優れた本発明の液晶表示装置を作製することができる。
 本発明の偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置に用いることができる。好ましくはIPS型液晶表示装置である。
 液晶表示装置には、通常視認側の偏光板とバックライト側の偏光板の2枚の偏光板が用いられるが、本発明の偏光板を両方の偏光板として用いることも好ましく、片側の偏光板として用いることも好ましい。
 IPS型液晶表示装置における上記偏光板の貼合の向きは、特開2005-234431号公報を参照して行うことができる。
 本発明に用いる液晶セルは、液晶層と、前記液晶層を挟持する一対の基板とを含み、前記一対の基板の厚さが0.3~0.7mmの範囲内のガラス基板であることが、液晶表示装置の薄型化、軽量化の観点から好ましい。
 図3は、上記説明した本発明の偏光板(101A及び101B)を液晶セル(101C)の両面に配置した液晶表示装置(100)の構成の一例を示す概略断面図である。
 図3において、液晶層(107)の両面を、透明基材としてガラス基板(108A及び108B)で挟持して液晶セル(101C)を構成し、それぞれのガラス基板(108A及び108B)のそれぞれの表面に、粘着層(106)を介して、図2に示す構成の偏光板(101A及び101B)が配置されて、液晶表示装置(100)を構成している。
 当該偏光板(101A及び101B)において、本発明では、少なくとも第1の保護フィルムが、102A及び102Bの位置に、第2の保護フィルムが105A及び105Bの位置に貼合されている。本発明に係る保護フィルムは、それぞれ紫外線硬化型接着剤(103A~103D)によって偏光子(104A及び104B)に貼合されている。特に、IPS型液晶表示装置であることが好ましい。
 液晶セル(101C)は、液晶物質の両面に配向膜、透明電極及びガラス基板(108A及び108B)が配置されて構成している。
 耐久性、平面性等に優れ、歩留りも改善した本発明の偏光板を液晶表示装置(100)に具備することにより、液晶セルを構成するガラス基材を薄膜化してもパネルベンドが生じにくくすることができ、その結果、薄膜化が達成された液晶表示装置を得ることができる。
 液晶セル(101C)に用いることのできるガラス基板(108A及び108B)を構成する材質としては、例えば、ソーダライムガラス、ケイ酸塩ガラスなどが挙げられ、ケイ酸塩ガラスであることが好ましく、具体的には、シリカガラス又はホウケイ酸ガラスであることがより好ましい。
 ガラス基板を構成するガラスは、アルカリ成分を実質的に含有していない無アルカリガラスであること、具体的には、アルカリ成分の含有量が1000ppm以下であるガラスであることが好ましい。ガラス基板中のアルカリ成分の含有量は、500ppm以下であることが好ましく、300ppm以下であることがより好ましい。アルカリ成分を含有するガラス基材は、フィルム表面で陽イオンの置換が発生し、ソーダ吹きの現象が生じやすい。それにより、フィルム表層の密度が低下しやすく、ガラス基板が破損しやすいからである。
 液晶表示装置(100)を構成する液晶セルのガラス基板(108A及び108B)の厚さは、0.3~0.7mmの範囲内であることが好ましい。このような厚さとすることは、液晶表示装置の薄型化形成に寄与することができる点で好ましい。
 ガラス基板は、公知の方法、例えばフロート法、ダウンドロー法、オーバーフローダウンドロー法などにより成形されうる。なかでも、成形時にガラス基材の表面が成形部材と接触せず、得られるガラス基材の表面に傷がつきにくいことなどから、オーバーフローダウンドロー法が好ましい。
 また、このようなガラス基板は、市販品としても入手することができ、例えば、旭硝子社製の無アルカリガラス AN100(厚さ500μm)、コーニング社製のガラス基板 EAGLE XG(r) Slim(厚さ300μm、400μm等)、日本電気硝子社製のガラス基材(厚さ100~200μm)等を挙げることができる。
 また、図3に示すような偏光板(101A、101B)と、液晶セル(101C)を構成するガラス基材(108A、108B)とは、粘着層(106)を介して接着されている。
 粘着層としては、両面テープ、例えば、リンテック社製の厚さ25μmの両面テープ(基材レステープ MO-3005C)等や、あるいは前記活性光線硬化型樹脂層の形成に用いる組成物を適用することができる。
 本発明の偏光板が用いられた液晶表示装置は、本発明の効果以外にも、層間の密着性に優れ、退色耐性、表示画像のエッグムラ耐性等に優れる利点を有する。
 偏光板の位相差フィルム側の表面と、液晶セルの少なくとも一方の表面との貼合は、公知の手法により行われる。場合によっては、接着層を介して貼合されてもよい。
 本発明の偏光板を用いることで、特に画面が30型以上の大画面の液晶表示装置であっても、パネルベンドが抑制され、表示ムラ、正面コントラストなど視認性に優れ、薄膜で軽量化された液晶表示装置を得ることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 実施例1
 《第1の保護フィルムの作製》
 下記の方法に従って、ポリエステルフィルムである第1の保護フィルムPET1~PET4を作製した。
 〔第1の保護フィルムPET1の作製〕
 (ポリエステル樹脂Aの調製)
 エステル化反応容器に、テレフタル酸を86.4質量部及びエチレングリコールを64.6質量部投入し、昇温して、200℃で加熱撹拌しながら、触媒として三酸化アンチモンを0.017質量部、酢酸マグネシウム4水和物を0.064質量部、トリエチルアミン0.16質量部を投入した。ゲージ圧が0.34MPa、温度が240℃の条件下で加圧エステル化反応を行った。
 次いで、エステル化反応容器を常圧に戻して、リン酸を0.014質量部添加した。更に、15分で260℃まで昇温し、リン酸トリメチルを0.012質量部添加した。次いで15分後に、高圧分散機で分散処理を行い、更に15分後、得られたエステル化反応生成物を重縮合反応缶に移送して、280℃で減圧下重縮合反応を行った。
 重縮合反応終了後、日本精線社製のナスロンフィルターNF-05Sで濾過処理を行い、ノズルからストランド状に押出し、予め濾過処理(孔径:1μm以下)を行った後、冷却水を用いて冷却、固化させて、樹脂をペレット状にカットした。得られたポリエステル樹脂A(ポリエチレンテレフタレート樹脂A)の固有粘度は0.62cm/gであり、不活性粒子及び内部析出粒子は実質上含有していなかった。
 (接着性改質層形成用塗布液の調製)
 常法によりエステル交換反応及び重縮合反応を行い、ジカルボン酸成分として(ジカルボン酸成分全体に対して)テレフタル酸を46モル%、イソフタル酸を46モル%及び5-スルホナトイソフタル酸ナトリウム8モル%を用い、グリコール成分として(グリコール成分全体に対して)エチレングリコールを50モル%及びネオペンチルグリコールを50モル%の組成の水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を調製した。
 次いで、水51.4質量部、イソプロピルアルコール38質量部、n-ブチルセルソルブ5質量部、ノニオン系界面活性剤0.06質量部を混合した後、加熱撹拌し、77℃に到達した後、上記水分散性スルホン酸金属塩基含有共重合ポリエステル樹脂を5質量部加えて、樹脂の固まりが無くなるまで加熱撹拌し続けた後、樹脂水分散液を常温まで冷却して、固形分濃度が5.0質量%の均一な水分散性共重合ポリエステル樹脂液を得た。
 更に、凝集体シリカ粒子(富士シリシア(株)社製、サイリシア310)3質量部を水50質量部に分散させた。上記水分散性共重合ポリエステル樹脂液99.5質量部にサイリシア310の水分散液0.54質量部を加えて、撹拌しながら水20質量部を加えて、接着性改質層形成用塗布液を調製した。
 (ポリエステルフィルムPET1の作製)
 上記調製したポリエステル樹脂Aを常法により乾燥して押出機に供給し、285℃で溶融し、このポリマーをステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過して、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに巻きつけて冷却固化して、未延伸のポリエステルフィルム(PETフィルム)を作製した。
 次いで、リバースローラー法によりこの未延伸のPETフィルムの両面に乾燥後の塗布量が0.08g/mになるように、上記調製した接着性改質層形成用塗布液を塗布した後、80℃で20秒間乾燥した。
 この接着性改良層を形成した未延伸フィルムをテンター延伸機に導き、フィルムの端部をクリップで把持しながら、温度125℃の加熱ゾーンで、幅方向に4.0倍に延伸した。次に、幅方向に延伸された幅を維持した保ったまま、温度225℃、30秒間で処理し、さらに幅方向に3%の緩和処理をして、フィルム厚さが60μmの一軸配向ポリエチレンテレフタレートフィルムである第1の保護フィルムPET1を作製した。
 〔第1の保護フィルムPET2の作製〕
 上記第1の保護フィルムPET1の作製において、未延伸フィルムの厚さを適宜調整し、延伸後の厚さを80μmとした以外は同様にして、第1の保護フィルムPET2を作製した。
 〔第1の保護フィルムPET3の作製〕
 乾燥させた紫外線吸収剤(2,2′-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)を10質量部と、ポリエステルフィルム(固有粘度が0.62cm/g)を90質量部混合し、混練第1の押出機を用い、紫外線吸収剤を含有する厚さが110μmのポリエステルフィルである第1の保護フィルムPET3を作製した。
 〔第1の保護フィルムPET4の作製〕
 上記作製した第1の保護フィルムPET1を用い、一方の面側に、下記の方法に従って硬化樹脂層(ハードコート層)を形成し、これを第1の保護フィルムPET4とした。
 (硬化樹脂層(ハードコート層)の形成)
 下記硬化性樹脂組成物1-1を、接着性改質層を有する第1の保護フィルムPET1上に塗布し、温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させた後、紫外線を積算光量50mJ/cmで光照射して、ハーフキュアーして共有結合層を形成した。次いで、ハーフキュアーした共有結合層上に、第2の硬化性樹脂組成物として、下記硬化性樹脂組成物2-1を塗布し、温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量200mJ/cmで光照射してフルキュアーし、乾燥膜厚2μmの共有結合層(下層)上に、乾燥膜厚が13μmのハードコート層(上層)を積層した硬化樹脂層を形成した。
 (硬化性樹脂組成物1-1の調製)
 バインダー成分1:6官能のジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、製品名:DPHA)         100質量部
 重合開始剤:イルガキュアー184(BASFジャパン社製) 4質量部
 メチルイソブチルケトン                150質量部
 (硬化性樹脂組成物2-1の調製)
 反応性異形シリカ微粒子:平均一次粒径が20nmのシリカ微粒子が、平均3.5個無機の化学結合により結合した長軸の長さが60nmの異形シリカ微粒子(固形分40%、分散媒IPA溶剤)
                  150質量部(固形分60質量部)
 バインダー成分1:6官能のジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、製品名:DPHA)          20質量部
 バインダー成分2:30官能以上、重量平均分子量40000のポリマーアクリレート(荒川化学工業(株)製、製品名:BS371)
                   31質量部(固形分20質量部)
 重合開始剤:イルガキュアー184(BASFジャパン社製) 4質量部
 レベリング剤:メガファックMCF350-5(DIC(株)製)
                   4質量部(固形分0.2質量部)
 メチルイソブチルケトン                 54質量部
 上記作製したPET1~PET4の特性値は、以下のとおりである。
 PET1:膜厚=60μm、380nmにおける紫外線透過率=50%以上、ハードコート層=なし、リターデーション値Ro=6×10nm
 PET2:膜厚=80μm、380nmにおける紫外線透過率=50%以上、ハードコート層=なし、リターデーション値Ro=8×10nm
 PET3:膜厚=100μm、380nmにおける紫外線透過率=50%未満、ハードコート層=なし、リターデーション値Ro=3×10nm
 PET4:膜厚=80μm、380nmにおける紫外線透過率=50%以上、ハードコート層=あり、リターデーション値Ro=8×10nm
 上記作製した第1の保護フィルムPET1~PET4の380nmにおける紫外線透過率は、紫外可視分光光度計(日本分光社製、製品名:V7100)を用いて、380nmにおける光透過率(紫外線透過率と称す。)を測定した。
 また、フィルム面内のリターデーション値Roは、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出して求めた。
 《第2の保護フィルムの作製》
 下記の記載の方法に従って、セルロース樹脂を用いた第2の保護フィルム1~34を作製した。
 〔セルロース樹脂、添加剤〕
 はじめに、第2の保護フィルム1~34の作製に用いた、セルロース樹脂及び各種添加剤の詳細について、下記に示す。
 (セルロース樹脂)
 セルロース樹脂A:トリアセチルセルロース(アセチル基置換度=2.9)
 セルロース樹脂B:セルロースアセテートプロピオネート(アセチル基置換度=2.0、プロピオニル基置換度=0.9)
 セルロース樹脂C:セルロースアセテートブチレート(アセチル基置換度=2.5、ブチリル基置換度=0.4)
 セルロース樹脂D:トリアセチルセルロース(アセチル基置換度=2.85)
 (糖エステル)
 使用した糖エステルA~Fの詳細を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000014
 (ポリエステル化合物)
 〈ポリエステル化合物Aの調製〉
 1,2-プロパンジオール251g、無水フタル酸278g、アジピン酸91g、安息香酸610g、エステル化触媒としてテトライソプロピルチタネート0.191gを、温度計、撹拌器、緩急冷却管を備えた2Lの四つ口フラスコに仕込み、窒素気流中で230℃になるまで、撹拌しながら徐々に昇温した。15時間脱水縮合反応させ、反応終了後200℃で未反応の1,2-プロパンジオールを減圧留去することにより、ポリエステル化合物Aを得た。酸価0.10mgKOH/g、数平均分子量450であった。
 〈ポリエステル化合物Bの調製〉
 上記ポリエステル化合物Aの調製において、ジカルボン酸としてアジピン酸、ジオールとしてエチレングリコールを用いて、末端をモノカルボン酸として酢酸を用いて封止した以外は同様にして、ポリエステル化合物B(数平均分子量2000)を調製した。
 〈ポリエステル化合物C~Oの調製〉
 上記ポリエステル化合物Aの調製において、ジカルボン酸、ジオール、モノカルボン酸の種類を表2に記載のものに変更した以外は同様にして、ポリエステル化合物C~Oを調製した。
 上記方法で調製したポリエステル化合物A~Oの詳細を、表2に示す。
Figure JPOXMLDOC01-appb-T000015
 (アクリル系化合物)
 〈アクリル系化合物Aの調製〉
 特開2000-128911号公報に記載の重合方法により塊状重合を行った。具体的には、撹拌機、窒素ガス導入管、温度計、投入口及び還流冷却管を備えたフラスコにモノマーとしてメチルアクリレート(MMA)を投入し、窒素ガスを導入してフラスコ内を窒素ガスで置換し、アクリル系化合物を得た。
 次いで、チオグリセロール添加後、4時間重合を行い、内容物を室温に戻し、それにベンゾキノンを5質量%含むテトラヒドロフラン溶液20質量部を添加し、重合を停止させた。内容物をエバポレーターに移し、80℃で減圧下、テトラヒドロフラン、残存モノマー及び残存チオグリセロールを除去し、GPCを用いて測定した数平均分子量が1000であるアクリル系化合物A(ポリメチルメタクリレート)を得た。
 〈アクリル系化合物B及びCの調製〉
 上記アクリル系化合物Aの調製方法に準拠して、下記アクリル系化合物B及びアクリル系化合物Cを調製した。
 アクリル系化合物A:ポリメチルメタクリレート(数平均分子量=1000)
 アクリル系化合物B:ポリブチルアリレート(数平均分子量=1300)
 アクリル系化合物C:ポリ(メチルメタクリレート/2-エチルヘキシルメタクリレート(モル比9/1)(数平均分子量=1600)
 (ベンゾトリアゾール化合物:紫外線吸収剤1)
 ベンゾトリアゾール化合物A:チヌビン928(BASFジャパン社製)
 ベンゾトリアゾール化合物B:チヌビン109(BASFジャパン社製)
 ベンゾトリアゾール化合物C:チヌビン171(BASFジャパン社製)
 ベンゾトリアゾール化合物D:チヌビン326(BASFジャパン社製)
 (トリアジン化合物)
 トリアジン化合物A:チヌビン466(BASFジャパン社製)
 トリアジン化合物B:チヌビン477(BASFジャパン社製)
 トリアジン化合物C:アデカスタブ LA-F70(ADEKA社製)
 (微粒子)
 微粒子A:アエロジル R972V(日本アエロジル社製)
 微粒子B:アエロジル 200V(日本アエロジル社製)
 微粒子C:アエロジル R812(日本アエロジル社製)
 〔第2の保護フィルム1の作製〕
 (主ドープ1の調製)
 下記組成の主ドープ1を調製した。
 はじめに、加圧溶解タンクに、溶媒としてメチレンクロライドとエタノールを添加した。そして、溶媒の入った加圧溶解タンクにセルロース樹脂A及び各添加剤を撹拌しながら順次投入し、これを加熱し、撹拌しながら完全に溶解した。なお、微粒子Aは添加するエタノールの一部を用いて10%分散液として加圧溶解タンクに投入した。
 セルロース樹脂A                   100質量部
 糖エステルA                      15質量部
 ポリエステルA                      2質量部
 ベンゾトリアゾール化合物A                2質量部
 微粒子A                       0.1質量部
 メチレンクロライド                  420質量部
 エタノール                       40質量部
 上記添加剤成分を密閉容器に投入し、撹拌しながら溶解して、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ1を調製した。
 (フィルム製膜)
 上記調製した主ドープ1を、ベルト流延装置を用い、温度22℃、2m幅でステンレススチールベルト上に均一に流延した。ステンレススチールベルト上で、残留溶媒量が100%未満になるまで溶媒を蒸発させ、剥離張力160N/mでステンレススチールベルト上からドープ膜(ウェブ)を剥離した。
 次いで、剥離したウェブを35℃で溶媒を蒸発させ、1.6m幅にスリットし、その後、テンター延伸機を用いて、160℃の温度で幅手方向(TD方向)に元幅に対して1.1倍延伸をした。このとき、テンターによる延伸を開始したときの残留溶媒量は、3~15質量%であった。
 その後、120℃、140℃の乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させ、1.3m幅にスリットし、フィルム両端に幅10mm、高さ2.5μmのナーリング加工を施した後、コアに巻取り、第2の保護フィルム1を作製した。第2の保護フィルム1の膜厚は50μm、巻きの長さは3900mとした。
 〔第2の保護フィルム2~34の作製〕
 上記第2の保護フィルム1の作製において、主ドープが含有するセルロース樹脂の種類、各添加剤の種類及び添加量、膜厚を、表3及び表4に記載した構成に変更した以外は同様にして、第2の保護フィルム2~34を作製した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 〔第2の保護フィルムの特性値の評価〕
 (UV透過率の評価)
 上記作製した第2の保護フィルムについて、紫外可視分光光度計(日本分光社製、製品名:V7100)を用いて、380nmにおける光透過率(UV透過率と称す。)を測定し、下記の基準に従って、UV透過率の評価を行った。
 A:UV透過率が、10%未満である
 B:UV透過率が、10%以上、25%未満である
 C:UV透過率が、25%以上、50%未満である
 D:UV透過率が、50%以上、80%未満である
 E:UV透過率が、80%以上、95%未満である
 (リターデーション値Ro、Rtの測定)
 上記作製した第2の保護フィルムについて、フィルム面内のリターデーション値Ro、及びフィルム膜厚方向のリターデーション値Rtを、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃・55%RHの環境下、590nmの波長において、三次元屈折率測定を行い、得られた屈折率nx、ny、nzから算出して求めた。
 (膜厚の測定)
 常法に従って、第2の保護フィルムの膜厚を測定した。
 以上により得られた結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000018
 《偏光板の作製》
 上記作製した第1の保護フィルムPET1~4及び第2の保護フィルム1~34を用い、下記の方法に従って、偏光板1~82を作製した。
 〔偏光板1の作製〕
 1)偏光子の作製
 厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドローラーを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子を乾燥機中で50℃・30分間乾燥させて、水分率が4.9%の偏光子を得た。
 2)水系接着剤Aの調製
 次の各成分を混合し、水系接着剤Aを調製した。
 純水                         100質量部
 カルボキシ基変性ポリビニルアルコール(クラレポバールKL318、株式会社クラレ製)                    3.0質量部
 水溶性ポリアミドエポキシ樹脂(固形分濃度30%の水溶液、スミレーズレジン650 住化ケムテックス社製)          1.5質量部
 3)第2の保護フィルムの前処理
 第2の保護フィルム1を、ケン化処理液(60℃の水酸化ナトリウム水溶液、濃度10質量%)に30秒間浸漬させた。更に、水浴に5秒間の浸漬を2回行い、その後、水のシャワーで5秒間の洗浄を行った後、乾燥させた。乾燥条件は70℃、2分間とした。
 次いで、30℃の水中に10秒間浸漬して膨潤処理を行い、その後、40℃、53秒間の乾燥を施してから、以下の貼合を行った。
 4)貼合操作
 第1の保護フィルムPET2及び第2の保護フィルム1のそれぞれの偏光子との貼合面側にコロナ処理を施した後、上記水系接着剤Aを塗布し、偏光子の両面にそれぞれ貼合した。その後、直ちに80℃に設定した熱風循環式乾燥機で5分間乾燥して偏光板1を作製した。
 〔偏光板2~82の作製〕
 上記偏光板1の作製において、第1の保護フィルムの種類(含む、硬化樹脂層の有無)及び第2の保護フィルムの種類を、表6~表8の組み合わせに変更した以外は同様にして、偏光板2~82を作製した。
 《偏光板の評価》
 〔歩留り(生産性)の評価〕
 上記構成の各偏光板を10日間連続生産した際の生産工程の清掃状況と、偏光板の収率(良品の比率)を測定し、下記の基準に従って生産性(歩留り)の評価を行った。
 ◎ 連続生産10日目で、工程清掃を行わない状態での収率が95%である
 ○ 連続生産7日目で、工程清掃を行わない状態での収率が90%である
 △ 連続生産5日目で、工程清掃を行わない状態での収率が85%である
 × 連続生産3日目で、工程清掃を行わない状態での収率が80%である
 以上により得られた結果を、表6~表8に示す。
 《液晶表示装置の作製》
 上記作製した偏光板1~82を用い、下記の方法に従って、液晶表示装置1~82を作製した。
 液晶セルとして、厚さが0.5mmの二枚のガラス基板と、それらの間に配置された液晶層とを有するIPS方式の液晶セルを準備した。そして、粘着層を介して上記作製した偏光板1~82を、それぞれ第2の保護フィルムが液晶セル側になるように貼り合わせて、液晶表示装置1~82を得た。貼り合わせは、視認側の偏光板(図3に記載の101A)の偏光子の吸収軸とバックライト側の偏光板(図3に記載の101B)の偏光子の吸収軸とが直交するようにした。
 《液晶表示装置の評価》
 〔液晶表示装置の耐久性の評価〕
 上記作製した各液晶表示装置に対して、液晶表示装置の視認側から、スーパーキセノンウェザーメーター SX120(スガ試験機社製)を用い、光量が100W/mで、50℃・65%RHの環境下で、紫外線(キセノン光)を照射し、下記の基準に従って耐久性の評価を行った。
 ○ 30分以上の紫外線照射でも、液晶表示装置の劣化は認められない
 △ 10分以上、30分未満の紫外線照射時間内では、液晶表示装置の劣化は認められない
 × 紫外線照射時間が10分未満でも、液晶表示装置の劣化があり、視認が困難である
 以上により得られた結果を、表6~表8に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 上記表6~表8に記載の結果より明らかなように、本発明の偏光板は、従来品に対し、生産性に優れ、歩留りが高いことが分かる。更に、本発明の偏光板を、液晶表示装置に組み入れることにより、光照射(高温高湿)環境下で長時間にわたり保存した後でも、外部環境による液晶セルの劣化を、極めて有効に防止していることが分かる。
 実施例2
 《第2の保護フィルムの作製:シクロオレフィンフィルム》
 〔第2の保護フィルム101の作製〕
 (シクロオレフィン樹脂1の合成)
 8-メチル-8-メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン(DNM)を75質量%、ジシクロペンタジエン(DCP)を24質量%、2-ノルボルネンを1質量%と、分子量調節剤である1-ヘキセンを9部及びトルエンを200部、窒素置換した反応容器に仕込んで110℃に加熱した。これにトリエチルアルミニウムを0.005部、メタノール変性WCl6(無水メタノール:PhPOCl:WCl6=103:630:427質量比)を0.005部加え、1時間反応させることにより重合体を得た。得られた重合体の溶液をオートクレーブに入れ、さらにトルエンを200部加えた。次に、水素添加触媒であるRuHCl(CO)[P(C)]を0.006部添加し、90℃まで加熱した後、水素ガスを反応器へ投入し、圧力を10MPaとした。その後、圧力を10MPaに保ったまま、165℃、3時間の反応を行った。反応終了後、多量のメタノール溶液に沈殿させ、更に沈殿物をトルエン及びメタノールを用いて再沈殿精製して共重合体であるシクロオレフィン樹脂1を得た。
 シクロオレフィン樹脂1は、ゲルパーミエ-ションクロマトグラフィー(GPC)測定による重量平均分子量(Mw)=7.2×10、分子量分布(Mw/Mn)=3.3、固有粘度(ηinh)=0.59cm/g、ガラス転移温度(Tg)=143℃であった。なお、13CNMR測定によりシクロオレフィン樹脂1のメトキシカルボニル基添加率を求めたところ、メトキシカルボニル基を有する単量体が75質量%添加されていることが確認された。上記で得られたシクロオレフィン樹脂は、水素結合受容性基としてメトキシカルボニル基を有する単量体を75質量%保有するシクロオレフィン樹脂である。
 (微粒子分散液の調製)
 シリカ微粒子(アエロジルR812 日本アエロジル(株)製)
                             10質量%
 メチレンクロライド                   90質量%
 以上をディゾルバーで50分間撹拌混合した後、マントンゴーリン分散機を用いて分散を行い、微粒子分散液を調製した。
 (微粒子添加液1の調製)
 溶解タンクにメチレンクロライドを入れ、メチレンクロライドを十分に撹拌しながら上記調製した微粒子分散液を50質量%となるようにゆっくりと添加した。更に、二次粒子の粒径が、所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過して、微粒子添加液1を調製した。
 (ドープAの調製)
 メチレンクロライドの入った加圧溶解タンクに、上記合成したシクロオレフィン樹脂1を撹拌しながら投入した。次いで、微粒子添加液を表1に記載の添加量になるように添加し、次いで下記記載の各添加剤を添加した後、表1に記載の溶解温度で4時間加熱し、撹拌しながら、完全に溶解した。その後、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、ドープAを調製した。ドープAの組成を下記に示す。
 シクロオレフィン樹脂1                100質量%
 チヌビン928                      3質量%
 メチレンクロライド                  290質量%
 微粒子添加液                      27質量%
 蒸留水                          1質量%
 ヒンダードフェノール系化合物(凝集防止剤A、IRGANOX1076(BASFジャパン(株)製))             0.1質量%
 (製膜)
 ベルト流延装置を用い、前記調製したドープAをステンレススチールベルトである流延支持体(支持体温度22℃)上に流延した。ドープA中の残留溶媒量が略20質量%以下の状態で剥ぎ取り、フィルムの幅方向の両端をテンターで把持し、残留溶媒量が10質量%以上の状態で、126℃の温度下で幅方向に1.01倍(1%)延伸しつつ乾燥した。その後、95℃の熱処理装置のローラー間を30~40分かけて搬送することによりさらに乾燥させ、シクロオレフィンフィルムである第2の保護フィルム101を作製した。厚さは20μmであった。
 〔第2の保護フィルム102の作製〕
 上記第2の保護フィルム101の作製において、チヌビン928の添加量を0質量%とした以外は同様にして第2の保護フィルム102を作製した。
 〔第2の保護フィルム103の作製〕
 上記第2の保護フィルム101の作製において、シクロオレフィン樹脂1に代えて、JSR(株)製のアートンG7810を用いて、膜厚を13μmとした以外は同様にして、第2の保護フィルム103を作製した。
 〔第2の保護フィルム104の作製〕
 上記第2の保護フィルム103の作製において、チヌビン928の添加量を0質量%とした以外は同様にして、第2の保護フィルム104を作製した。
 〔第2の保護フィルム105の作製〕
 下記の方法に従って、第2の保護フィルム105を作製した。
 (樹脂組成物2の調製)
 乾燥させた脂環式構造を有する重合体樹脂(日本ゼオン社製、ガラス転移温度123℃)100部と、ベンゾトリアゾール系紫外線吸収剤(「LA-31」、ADEKA社製)5.5部とを、二軸押出機により混合し、次いで、その混合物を押出機に接続されたホッパーへ投入し、単軸押出機へ供給して溶融押出して樹脂組成物2を得た。樹脂組成物2における紫外線吸収剤の含有量は5.2質量%である。
 (延伸前積層体1の製造)
 上記調製した樹脂組成物2を、目開き3μmのリーフディスク形状のポリマーフィルターを設置したダブルフライト型50mm単軸押出機(スクリュー有効長さLとスクリュー径Dとの比L/D=32)に装填されたホッパーへ投入し、押出機出口温度280℃、押出機のギヤポンプの回転数10rpmで溶融樹脂をダイスリップの表面粗さRaが0.1μmであるマルチマニホールドダイに供給した。他方、樹脂組成物2で用いたものと同じ脂環式構造を有する重合体樹脂を目開き3μmのリーフディスク形状のポリマーフィルターを設置した50mmの単軸押出機(L/D=32)に装填されたホッパーへ投入し、押出機出口温度285℃、押出機のギヤポンプの回転数4rpmで溶融樹脂をマルチマニホールドダイに供給した。次いで、溶融状態の脂環式構造を有する重合体樹脂、溶融状態の樹脂組成物、及び溶融状態の脂環式構造を有する重合体樹脂をそれぞれマルチマニホールドダイから280℃で吐出させ、150℃に温度調整された冷却ロールにキャストし、脂環式構造を有する重合体樹脂からなる表面層(5μm)-樹脂組成物2からなる中間層(15μm)-脂環式構造を有する重合体樹脂からなる表面層(5μm)の2種3層からなる幅1400mm、厚さ25μmの延伸前積層体1を共押出成形により得た。また、エアギャップ量を50mmとし、溶融状態のフィルムを冷却ローラーにキャストする方法としてエッジピニングを採用した。この積層体の両端50mmずつをトリミングして、第2の保護フィルム105を作製した。
 〔第2の保護フィルム106の作製〕
 下記の方法に従って、第2の保護フィルム106を作製した。
 脂環式オレフィン樹脂(日本ゼオン社製「ゼオノア」、ガラス転移温度136℃)を、ダイスからリップを通して押し出して、樹脂フィルムを作製した。この際、ダイスの温度は、260℃、ダイスのリップの長さは、1250mm、ダイスリップのリップクリアランスは、0.8mmとした。
 得られた樹脂フィルムを、キャストローラー(直径400mm、温度110℃)の外周面で受け、当該キャストローラーの回転によって搬送した。キャストローラー外周面で受けられた直後の樹脂フィルムの両端に、静電ピニング装置よって静電荷を与え、キャストローラーの外周面に密着させた。
 その後、樹脂フィルムを、キャストローラーによって搬送される期間に冷却して、硬化させた。硬化した樹脂フィルムを、キャストローラーの外周面から剥離し、トリミング装置による両端部を切り除いた。その後、中央領域からなる樹脂フィルムをロール状に巻き取って回収した。回収された厚さ25μmの樹脂フィルムを作製した。
 《偏光板の作製》
 実施例1で作製した第1の保護フィルムPET1~PET4及び、上記作製した第2の保護フィルム101~106を用い、下記の方法に従って、偏光板101~114を作製した。
 〔偏光板101の作製〕
 1)偏光子の作製
 ポリビニルアルコールフィルムの厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドローラーを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子を、乾燥機中で50℃、30分間乾燥させて水分率4.9%の偏光子を得た。
 2)紫外線硬化型接着剤Bの調製
 下記の各成分を混合し、液状の紫外線硬化型接着剤を調製した。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート                    40質量部
 ビスフェノールA型エポキシ樹脂             60質量部
 ジフェニル[4-(フェニルチオ)フェニル]スルホニウム ヘキサフルオロアンチモネート(カチオン重合開始剤)         4.0質量部
 3)貼合及び偏光板作製
 第1の保護フィルムPET4を、その貼合面にコロナ処理を施した後、上記調製した紫外線硬化型接着剤Bを、チャンバードクターを備えた塗布装置によって厚さ3μmで塗布した。また、第2の保護フィルム101の貼合面にコロナ処理を施した後、同様に紫外線硬化型接着剤Bを厚さ3μmの厚さに塗布した。
 第1の保護フィルムPET4及び第2の保護フィルム101へ紫外線硬化型接着剤を塗布した後、直ちに、上記で準備した偏光子の片面に第1の保護フィルムPET4を、他面に第2の保護フィルム101を、各々紫外線硬化型接着剤Bの塗布面を介して貼合ロールによって貼合した。その後、ライン速度20m/分にて、メタルハライドランプを280~320nmの波長における積算光量が320mJ/cmとなるように第1の保護フィ
ルム側から照射して、両面の接着剤を硬化させて、偏光板101を得た。
 〔偏光板102~114の作製〕
 上記偏光板101の作製において、第1の保護フィルム及び第2の保護フィルムを、表9に記載の組み合わせに変更した以外は同様にして、偏光板102~114を作製した。
 《液晶表示装置の作製》
 上記作製した偏光板を用い、下記の方法に従って、液晶表示装置を作製した。
 液晶セルとして、厚さが0.5mmの二枚のガラス基板と、それらの間に配置された液晶層とを有するIPS方式の液晶セルを準備した。そして、粘着層を介して上記作製した偏光板101を、それぞれ第2の保護フィルムが液晶セル側になるように貼り合わせて、液晶表示装置101~114を得た。貼り合わせは、視認側の偏光板(図3に記載の101A)の偏光子の吸収軸とバックライト側の偏光板(図3に記載の101B)の偏光子の吸収軸とが直交するようにした。
 《液晶表示装置及び偏光板の評価》
 実施例1に記載の方法と同様にして、耐久性及び歩留りの評価を行い、得られた結果を、表9に示す。
Figure JPOXMLDOC01-appb-T000022
 上記表9の記載より明らかなように、本発明の偏光板は、従来品に対し、生産性に優れ、歩留りが高いことが分かる。更に、本発明の偏光板を、液晶表示装置に組み入れることにより、光照射(高温高湿)環境下で長時間にわたり保存した後でも、外部環境による液晶セルの劣化を、極めて有効に防止していることが分かる。
 本発明の偏光板は、STN、TN、OCB、HAN、VA(MVA、PVA)、IPS、OCBなどの各種駆動方式の液晶表示装置、好ましくはIPS型液晶表示装置に好適に利用でき、画面が30型以上の大画面の液晶表示装置であっても、パネルベンドが抑制され、表示ムラ、正面コントラストなど視認性に優れ、薄膜で軽量化された液晶表示装置を実現することができる。
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストック釜
 5、14 送液ポンプ
 8、16 導管
 10 紫外線吸収剤仕込釜
 20 合流管
 21 混合機
 30 加圧ダイ
 31 金属支持体
 32 ウェブ
 33 剥離位置
 34 テンター延伸装置
 35 乾燥装置
 41 仕込釜
 42 ストック釜
 43 ポンプ
 44 濾過器
 51 偏光板
 52、102A、102B 第1の保護フィルム
 53、104A、104B 偏光子
 54、105A、105B 第2の保護フィルム
 55 紫外線硬化樹脂層
 100 液晶表示装置
 101A、101B 偏光板
 101C 液晶セル
 103A、103B、103C、103D 紫外線硬化型接着剤
 106 粘着層
 107 液晶層
 400 製造装置
 410、420 シクロオレフィンフィルム
 430 フィルムロール
 510 ダイス
 516 リップ
 520 キャストローラー
 521 外周面
 531、532 静電ピニング装置
 540 剥離ローラー
 550 トリミング装置
 551、552 トリミングナイフ

Claims (12)

  1.  視認側から、第1の保護フィルム、偏光子、第2の保護フィルムの順で構成された偏光板であって、前記第1の保護フィルムが面内に超複屈折性を有し、380nmでの光透過率が50%以上であるポリエステルフィルムであり、かつ前記第2の保護フィルムが、380nmでの光透過率が50%未満である光透過性フィルムであることを特徴とする偏光板。
  2.  前記第2の保護フィルムが、セルロース樹脂を含有していることを特徴とする請求項1に記載の偏光板。
  3.  前記第2の保護フィルムが、シクロオレフィン樹脂を含有していることを特徴とする請求項1に記載の偏光板。
  4.  前記第2の保護フィルムの、下記式(i)で定義されるフィルム面内のリターデーション値Ro(nm)及び下記式(ii)で定義されるフィルム膜厚方向のリターデーション値Rt(nm)が、下記式(iii)及び(iv)で規定する条件を満たすことを特徴とする請
    求項1から請求項3までのいずれか一項に記載の偏光板。
     (i)Ro=(n-n)×d
     (ii)Rt=((n+n)/2-n)×d
     (iii)0≦Ro≦20
     (iv)|Rt|≦25
    〔式中、nは、フィルム平面内の遅相軸方向の屈折率である。nは、フィルム平面内の遅相軸方向に垂直な方向の屈折率である。nは、フィルム面に垂直な方向の屈折率である。dは、フィルムの厚さ(nm)である。〕
  5.  前記第2の保護フィルムが、糖エステル及びポリエステルから選択される少なくとも1種のエステルを含有することを特徴とする請求項1から請求項4までのいずれか一項に記載の偏光板。
  6.  前記第2の保護フィルムが、ベンゾトリアゾール系化合物及びトリアジン系化合物から選択される少なくとも1種の紫外線吸収剤を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の偏光板。
  7.  前記第1の保護フィルムが、紫外線硬化樹脂層を有することを特徴とする請求項1から請求項6までのいずれか一項に記載の偏光板。
  8.  請求項1から請求項7までのいずれか一項に記載の偏光板を製造する偏光板の製造方法であって、380nmでの光透過率が50%未満である光透過性を有する前記第2の保護フィルムを、溶融流延法により製膜することを特徴とする偏光板の製造方法。
  9.  請求項1から請求項7までのいずれか一項に記載の偏光板を製造する偏光板の製造方法であって、380nmでの光透過率が50%未満である光透過性を有する前記第2の保護フィルムを、溶液流延法により製膜することを特徴とする偏光板の製造方法。
  10.  請求項1から請求項7までのいずれか一項に記載の偏光板が、液晶セルの視認側(フロント側)の面に具備されていることを特徴とする液晶表示装置。
  11.  請求項1から請求項7までのいずれか一項に記載の偏光板が、液晶セルの視認側(フロント側)の面及び非視認側(リア側)の面のそれぞれに具備されていることを特徴とする液晶表示装置。
  12.  前記液晶セルのガラス基板の膜厚が、0.3~0.7mmの範囲内であることを特徴とする請求項10又は請求項11に記載の液晶表示装置。
PCT/JP2016/077821 2015-11-13 2016-09-21 偏光板、偏光板の製造方法及び液晶表示装置 WO2017081944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017550022A JP6819604B2 (ja) 2015-11-13 2016-09-21 偏光板、偏光板の製造方法及び液晶表示装置
KR1020187011713A KR102025030B1 (ko) 2015-11-13 2016-09-21 편광판, 편광판의 제조 방법 및 액정 표시 장치
CN201680066142.5A CN108351463B (zh) 2015-11-13 2016-09-21 偏振片、偏振片的制造方法及液晶显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015223354 2015-11-13
JP2015-223354 2015-11-13

Publications (1)

Publication Number Publication Date
WO2017081944A1 true WO2017081944A1 (ja) 2017-05-18

Family

ID=58695007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077821 WO2017081944A1 (ja) 2015-11-13 2016-09-21 偏光板、偏光板の製造方法及び液晶表示装置

Country Status (5)

Country Link
JP (2) JP6819604B2 (ja)
KR (1) KR102025030B1 (ja)
CN (1) CN108351463B (ja)
TW (1) TWI644131B (ja)
WO (1) WO2017081944A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508935A (zh) * 2022-11-02 2022-12-23 深圳市兆纪光电有限公司 一种高性能光学材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102094088B1 (ko) * 2018-12-12 2020-03-27 에스케이씨 주식회사 표시장치용 복합시트, 이를 포함하는 표시 장치 및 이의 제조방법
KR102472872B1 (ko) * 2020-10-20 2022-12-01 도레이첨단소재 주식회사 디스플레이 보호용 폴리에스테르 필름
CN112778929A (zh) * 2021-01-28 2021-05-11 深圳市康成泰实业有限公司 复合光固化保护膜及其贴膜方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177550A (ja) * 2002-11-26 2004-06-24 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
JP2007114768A (ja) * 2005-09-26 2007-05-10 Fujifilm Corp 偏光板及び液晶表示装置
JP2008257199A (ja) * 2007-03-15 2008-10-23 Sumitomo Chemical Co Ltd 光硬化性接着剤、該光硬化性接着剤を用いた偏光板およびその製造方法、光学部材および液晶表示装置
JP2012230154A (ja) * 2011-04-25 2012-11-22 Konica Minolta Advanced Layers Inc 偏光板、その製造方法及び垂直配向型液晶表示装置
JP2013142863A (ja) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd 光硬化性接着剤、それを用いた偏光板および積層光学部材
JP2015111208A (ja) * 2013-12-06 2015-06-18 東洋紡株式会社 偏光子保護フィルム、偏光板及び液晶表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3954356A (en) 1974-11-01 1976-05-04 General Motors Corporation Rotary engine rotor housing having coolant cooled bridged exhaust port
EP1929337A4 (en) * 2005-09-26 2010-03-31 Fujifilm Corp POLARIZING PLATE AND LIQUID CRYSTAL DISPLAY DEVICE
US7583440B2 (en) * 2006-06-05 2009-09-01 Skc Haas Display Films Co., Ltd. Diffusely-reflecting polarizer having nearly isotropic continuous phase
JP4806388B2 (ja) * 2007-03-16 2011-11-02 日東電工株式会社 複屈折性フィルム、コーティング液、及び画像表示装置
JP2009086604A (ja) * 2007-09-11 2009-04-23 Nitto Denko Corp 光学フィルム、およびその製造方法
JP2009139723A (ja) 2007-12-07 2009-06-25 Nitto Denko Corp 偏光板、その製造方法、光学フィルムおよび画像表示装置
WO2013100661A1 (ko) * 2011-12-29 2013-07-04 웅진케미칼 주식회사 중합체가 분산된 반사형 편광자
JP6414380B2 (ja) 2013-06-24 2018-10-31 東洋紡株式会社 偏光子保護フィルム及びこれを用いた偏光板、液晶表示装置
CN105575993B (zh) 2014-10-15 2018-07-24 上海和辉光电有限公司 有机发光显示装置及其制作方法
JP2015180968A (ja) * 2015-07-07 2015-10-15 住友化学株式会社 偏光板および液晶表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177550A (ja) * 2002-11-26 2004-06-24 Nitto Denko Corp 偏光板、光学フィルムおよび画像表示装置
JP2007114768A (ja) * 2005-09-26 2007-05-10 Fujifilm Corp 偏光板及び液晶表示装置
JP2008257199A (ja) * 2007-03-15 2008-10-23 Sumitomo Chemical Co Ltd 光硬化性接着剤、該光硬化性接着剤を用いた偏光板およびその製造方法、光学部材および液晶表示装置
JP2012230154A (ja) * 2011-04-25 2012-11-22 Konica Minolta Advanced Layers Inc 偏光板、その製造方法及び垂直配向型液晶表示装置
JP2013142863A (ja) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd 光硬化性接着剤、それを用いた偏光板および積層光学部材
JP2015111208A (ja) * 2013-12-06 2015-06-18 東洋紡株式会社 偏光子保護フィルム、偏光板及び液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508935A (zh) * 2022-11-02 2022-12-23 深圳市兆纪光电有限公司 一种高性能光学材料

Also Published As

Publication number Publication date
KR102025030B1 (ko) 2019-09-24
JP7088279B2 (ja) 2022-06-21
JPWO2017081944A1 (ja) 2018-10-04
CN108351463A (zh) 2018-07-31
KR20180061263A (ko) 2018-06-07
JP2021073488A (ja) 2021-05-13
JP6819604B2 (ja) 2021-01-27
TW201730596A (zh) 2017-09-01
CN108351463B (zh) 2020-10-20
TWI644131B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
JP7088279B2 (ja) 偏光板、偏光板の製造方法及び液晶表示装置
CN108603961B (zh) 偏振片、偏振片的制造方法和液晶显示装置
KR102226092B1 (ko) 편광판 및 액정 표시 장치
WO2015098491A1 (ja) セルロースエステルフィルム、その製造方法及び偏光板
JP6330808B2 (ja) 偏光板および液晶表示装置
KR102157451B1 (ko) 편광판 및 액정 표시 장치
JP6790358B2 (ja) 偏光板及び液晶表示装置
JP6710967B2 (ja) 光学フィルム、光学フィルムの製造方法及び偏光板
JP6676930B2 (ja) 光学フィルム
WO2012133169A1 (ja) 液晶表示装置
JP2017194620A (ja) 偏光板および液晶表示装置
JP5626133B2 (ja) Va型液晶表示装置
KR20170113041A (ko) 위상차 필름, 편광판 및 액정 표시 장치
JP5875338B2 (ja) 偏光板およびその製造方法ならびに液晶表示装置
JP2017090872A (ja) 光学フィルムの製造方法
JP2017191153A (ja) 偏光板および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187011713

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017550022

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863908

Country of ref document: EP

Kind code of ref document: A1