WO2017077964A1 - 往復動撹拌装置を用いた血小板の製造方法 - Google Patents

往復動撹拌装置を用いた血小板の製造方法 Download PDF

Info

Publication number
WO2017077964A1
WO2017077964A1 PCT/JP2016/082206 JP2016082206W WO2017077964A1 WO 2017077964 A1 WO2017077964 A1 WO 2017077964A1 JP 2016082206 W JP2016082206 W JP 2016082206W WO 2017077964 A1 WO2017077964 A1 WO 2017077964A1
Authority
WO
WIPO (PCT)
Prior art keywords
platelets
culture
stirring blade
platelet
cells
Prior art date
Application number
PCT/JP2016/082206
Other languages
English (en)
French (fr)
Inventor
智大 重盛
陽己 岡本
好一 加藤
Original Assignee
株式会社メガカリオン
佐竹化学機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガカリオン, 佐竹化学機械工業株式会社 filed Critical 株式会社メガカリオン
Priority to CA3003679A priority Critical patent/CA3003679A1/en
Priority to CN201680063249.4A priority patent/CN108473954A/zh
Priority to RU2018120143A priority patent/RU2741871C2/ru
Priority to AU2016350296A priority patent/AU2016350296B2/en
Priority to SG11201803591UA priority patent/SG11201803591UA/en
Priority to JP2017548743A priority patent/JP6856537B2/ja
Priority to KR1020187015256A priority patent/KR102664131B1/ko
Priority to ES16862024T priority patent/ES2833357T3/es
Priority to US15/773,099 priority patent/US20180318352A1/en
Priority to DK16862024.3T priority patent/DK3372674T3/da
Priority to EP16862024.3A priority patent/EP3372674B1/en
Publication of WO2017077964A1 publication Critical patent/WO2017077964A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/48Reproductive organs
    • A61K35/54Ovaries; Ova; Ovules; Embryos; Foetal cells; Germ cells
    • A61K35/545Embryonic stem cells; Pluripotent stem cells; Induced pluripotent stem cells; Uncharacterised stem cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/112Stirrers characterised by the configuration of the stirrers with arms, paddles, vanes or blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/91Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with propellers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/02Apparatus for enzymology or microbiology with agitation means; with heat exchange means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • C12M3/08Apparatus for tissue disaggregation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • C12N5/12Fused cells, e.g. hybridomas
    • C12N5/16Animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
    • C12N2015/8572Animal models for proliferative diseases, e.g. comprising an oncogene
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • C12N2501/734Proteases (EC 3.4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2527/00Culture process characterised by the use of mechanical forces, e.g. strain, vibration

Definitions

  • the present invention relates to a method for producing platelets using a stirring device in which a stirring blade reciprocates.
  • the platelet preparation is administered for the purpose of treatment and prevention of symptoms to a patient who exhibits massive bleeding at the time of surgery or injury, or a bleeding tendency associated with thrombocytopenia after anticancer drug treatment.
  • the production of platelet products relies on blood donation by healthy volunteers.
  • the number of blood donors is decreasing due to the population composition, and it is estimated that there will be insufficient blood donation for about 1 million people in 2027. Therefore, one of the objects in the technical field of the present invention is to stably supply platelets.
  • the present inventors have succeeded in producing platelets having high physiological activity by using a shaking culture system using a shaker flask, that is, a culture method in which the culture vessel itself is shaken.
  • a shaking culture system using a shaker flask
  • the production of platelets CD41a + CD42b +
  • the physiological activity of platelets PAC1 binding, P-selectin positive
  • an object of the present invention is to provide a method for producing high-quality platelets that can be transplanted into a living body in a large-scale amount.
  • the present inventors do not shake the culture vessel, but reciprocate the stirring blade disposed in the culture vessel to stir the culture solution while stirring the culture solution. It has been found that culturing cells can increase the production efficiency and physiological activity of platelets, suppress the deterioration of platelets, and reduce abnormal platelets. Furthermore, the present invention was completed by examining the cell density and other conditions during stirring culture using a reciprocating stirring device.
  • the present invention is a method for producing platelets, comprising a step of culturing megakaryocyte cells in a culture solution in a culture vessel, wherein the stirring blade is not reciprocated or reversed in one direction.
  • the culture solution is stirred using a steady stirring device.
  • the culture vessel is a sealed bioreactor.
  • the megakaryocyte cell is an undifferentiated cell than the megakaryocyte cell, and at least one gene selected from the group consisting of an oncogene, a polycomb gene, and an apoptosis inhibitor gene is used. It is also preferred that the cell is a cell from which the forced expression has been canceled after the forced expression.
  • the present invention also relates to a method for producing a platelet preparation, comprising the step of producing platelets in megakaryocytes by the method described above, collecting the platelets from the culture, and a blood cell component other than platelets from the platelets. And a removing step.
  • the present invention is a method for producing a blood product, which comprises a step of producing a platelet product by the method described above, and a step of obtaining the blood product by mixing the platelet product with other components. is there.
  • the present invention also relates to platelets produced by any of the above methods.
  • the present invention is a platelet preparation produced by any of the above methods, or a platelet preparation containing the above platelets.
  • the present invention also relates to a blood product produced by the above method or a blood product containing the above platelets.
  • the production efficiency of platelets can be improved as compared with the conventional shake culture. Furthermore, the produced platelets have a higher physiological activity than platelets produced by conventional shaking culture.
  • the method of the present invention it is possible to suppress the deterioration reaction of platelets (decrease in the CD42b positive rate) and to suppress the production of abnormal platelets (annexin V positive platelets).
  • FIG. 1 shows a bioreactor that is an embodiment of the present invention.
  • FIG. 2 shows an installation example of a seal, a drive shaft, and a stirring blade in a bioreactor that is an embodiment of the present invention.
  • FIG. 3 shows the structure of a stirring blade in a bioreactor that is an embodiment of the present invention.
  • FIG. 4 shows the structure of the VMF culture apparatus used in the examples of the present invention.
  • FIG. 5 shows the results of flow cytometry using platelets obtained by stirring or shaking culture of megakaryocytes using anti-CD42b antibody and anti-CD41a antibody.
  • FIG. 6 shows flow cytometry using anti-CD42b antibody and anti-PAC-1 antibody before and after PMA or ADP stimulation on platelets obtained by stirring or shaking culture of megakaryocytes.
  • FIG. 7 shows the results of flow cytometry using anti-CD42b antibody and anti-CD62p antibody on platelets obtained by stirring or shaking culture of megakaryocytes before and after stimulation with PMA or ADP.
  • FIG. 8 shows the results of measuring the ratio of annexin V binding by flow cytometry on platelets obtained by stirring or shaking culture of megakaryocytes. It is a figure which shows roughly the structural example of the bioreactor provided with the multistage stirring blade.
  • the method for producing platelets according to the present invention includes a step of culturing megakaryocyte cells in a culture solution in a culture vessel.
  • an unsteady stirring device in which a stirring blade reciprocates or reverses in one direction instead of one direction.
  • the culture medium is used and stirred.
  • the culture solution may be stirred by reciprocating the stirring blade so that the main surface receives resistance from the fluid on the main surface.
  • the stirring blade is reciprocated in the support shaft direction. More preferably, the culture vessel is allowed to stand still, the support shaft that supports the stirring blade is reciprocated in the axial extension direction, and the stirring blade is moved in the vertical direction.
  • the “culture vessel” is not particularly limited as long as it is a vessel capable of culturing megakaryocyte cells while stirring the culture solution with a reciprocating stirring device.
  • the culture container include an open culture dish, a closed flask with a screw cap, and a bioreactor (including a closed bioreactor).
  • the “stirring blade” may be any one that can be placed in the culture medium and can directly stir the culture liquid.
  • the stirring blade for example, a flat plate or a bent structure is used.
  • the bioreactor 10 of this embodiment includes a culture tank 11, a seal 12, a drive shaft (stirring shaft) 13, and a stirring blade 14.
  • the installation condition of the drive shaft 13 and the like with respect to the culture tank 11 may be a bottom attachment attached to the bottom of the culture tank 11 or a side attachment attached to the side of the culture tank 11.
  • the culture tank 11 has a three-dimensional body part obtained by extending a planar shape such as a circle or a corner in the vertical direction.
  • the seal 12 is made of a flexible material such as rubber that follows the movement of the drive shaft 13 or a bellows structure of a material such as metal or Teflon (registered trademark), and covers the upper end opening of the culture tank 11. And airtight.
  • the drive shaft 13 is connected to a vertical movement device such as a reciprocating drive motor 15 at an upper portion thereof, and penetrates the seal 12 at an intermediate portion of the drive shaft 13 and is airtightly fixed to the seal 12.
  • the stirring blade 14 has a flat plate shape or a bent structure, and the planar shape has a reduced area perpendicular to a circular shape (FIG. 3A) as shown in FIG. 3, for example, an ellipse (FIG. 3B). ), A rectangle (FIG.
  • FIG. 3C a hole structure
  • FIG. 3D a hole structure in which a hole 16 is provided in a disk, and one or more stirring blades 14 are fixed to the drive shaft 13. Is done.
  • the punching hole 16 may be configured with a large hole provided in the stirring blade 14 (FIG. 3D), or may be configured with a plurality of small holes provided in a predetermined region (FIG. 9). ).
  • the stirring blade 14 may have a plurality of stages.
  • the bioreactor 10 shown in FIG. 9 has a configuration of a two-stage blade including an upper stirring blade 14 attached to the drive shaft 13 and a lower stirring blade 14 provided with a hole 16. The shearing effect in the stirring blade 14 is further improved.
  • the stirring blades attached perpendicularly to the drive shaft (stirring shaft) 13 may be rotated, and the stirring blades may be rotated forward and backward by control by a servo motor.
  • the servo motor is controlled to rotate forward and backward by a driver to constitute a forward / reverse drive motor 15 to enable forward / reverse control (control of acceleration, waveform, speed, etc.) by the servo motor.
  • the bioreactor 10 is suitable for optimal cell growth, cell metabolism, megakaryocyte differentiation and maturation, megakaryocyte multinucleation, formation of propretlets, platelet production, maintenance of platelet bioactivity, and the like.
  • a ventilation device an exhaust device, a temperature control device, a pH control device, a dissolved oxygen pressure (DOT) control device, a baffle, a sparger, a port, and the like may be provided.
  • DOT dissolved oxygen pressure
  • the shape of the culture tank 11 of the bioreactor 10 is not particularly limited, but may be, for example, a vertically long tubular shape, and may have a flat surface at the top and bottom of the tank.
  • the volume of the culture tank 11 is at least 300 mL, preferably at least 1 L, 50 L, more preferably at least 200 L, more preferably at least 500 L, even more preferably at least 1000 L, even more preferably at least 2000 L.
  • the “megakaryocyte” is the largest cell present in the bone marrow in vivo and is characterized by releasing platelets.
  • the cell surface markers CD41a, CD42a, and CD42b are positively characterized, and in addition, a marker selected from the group consisting of CD9, CD61, CD62p, CD42c, CD42d, CD49f, CD51, CD110, CD123, CD131, and CD203c May be further expressed.
  • a “megakaryocyte” has a genome 16 to 32 times that of a normal cell when multinucleated (multiploidy). In the present specification, the term “megakaryocyte” has the above characteristics.
  • pre-multinucleated megakaryocyte includes both multinucleated megakaryocytes and pre-multinucleated megakaryocytes.
  • Pre-multinucleated megakaryocyte is also synonymous with “immature megakaryocyte” or “proliferative megakaryocyte”.
  • Megakaryocyte cells can be obtained by various known methods.
  • Non-limiting examples of the method for producing megakaryocyte cells include the method described in International Publication No. 2011/034073.
  • an immortalized megakaryocyte cell line that proliferates indefinitely can be obtained by forcibly expressing an oncogene and a polycomb gene in “an undifferentiated cell than a megakaryocyte”.
  • immortalized megakaryocyte cells can also be obtained by forcibly expressing an apoptosis-inhibiting gene in “cells that are undifferentiated from megakaryocyte cells” according to the method described in International Publication No. 2012/157586.
  • These immortalized megakaryocyte cells are polynucleated by releasing the forced expression of the gene and release platelets.
  • the methods described in the above documents may be combined.
  • the forced expression of the oncogene, polycomb gene, and apoptosis-suppressing gene may be performed simultaneously or sequentially.
  • a multinucleated megakaryocyte cell may be obtained by forcibly expressing an oncogene and a polycomb gene, suppressing the forced expression, then forcibly expressing an apoptosis suppressing gene, and suppressing the forced expression.
  • multinucleated megakaryocyte cells can be obtained by forcibly expressing an oncogene, a polycomb gene, and an apoptosis-suppressing gene at the same time and simultaneously suppressing the forced expression.
  • an oncogene and a polycomb gene are forcibly expressed, followed by forcibly expressing an apoptosis-inhibiting gene, and the forcible expression is simultaneously suppressed to obtain multinucleated megakaryocyte cells.
  • cells that are undifferentiated from megakaryocyte cells means cells that have the ability to differentiate into megakaryocytes and that have various differentiation stages ranging from hematopoietic stem cell lines to megakaryocyte cells.
  • Non-limiting examples of cells that are undifferentiated from megakaryocytes include hematopoietic stem cells, hematopoietic progenitor cells, CD34 positive cells, megakaryocytes / erythroid progenitor cells (MEP). These cells can be obtained by isolation from, for example, bone marrow, umbilical cord blood, and peripheral blood, and further obtained by inducing differentiation from pluripotent stem cells such as ES cells and iPS cells, which are more undifferentiated cells. You can also.
  • oncogene refers to a gene that induces canceration of a cell in a living body, such as a MYC family gene (eg, c-MYC, N-MYC, L-MYC), SRC family.
  • MYC family gene eg, c-MYC, N-MYC, L-MYC
  • protein kinase family genes such as genes, RAS family genes, RAF family genes, c-Kit, PDGFR, and Abl.
  • the “polycomb gene” is known as a gene that negatively regulates the CDKN2a (INK4a / ARF) gene and functions to avoid cell aging (Ogura et al., Regenerative Medicine vol.6, No .4, pp26-32; Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006; Proc. Natl. Acad. Sci. USA vol.100, pp211-216, 2003 ).
  • Non-limiting examples of polycomb genes include BMI1, Mel18, Ring1a / b, Phc1 / 2/3, Cbx2 / 4/6/7/8, Ezh2, Eed, Suz12, HADC, Dnmt1 / 3a / 3b .
  • apoptosis-suppressing gene refers to a gene having a function of suppressing cell apoptosis, and examples thereof include a BCL2 gene, a BCL-xL gene, a Survivin gene, and an MCL1 gene.
  • platelet is one of cell components in blood and is characterized by CD41a positive and CD42b positive. Platelets play an important role in thrombus formation and hemostasis, and are also involved in tissue regeneration after injury and pathophysiology of inflammation. When platelets are activated by bleeding or the like, receptors for cell adhesion factors such as IntegrinIntegr ⁇ IIB ⁇ 3 (glycoprotein IIb / IIIa; a complex of CD41a and CD61) are expressed on the membrane. As a result, platelets aggregate and fibrin is coagulated by various blood coagulation factors released from the platelets, thereby forming a thrombus and promoting hemostasis.
  • IntegrinIntegr ⁇ IIB ⁇ 3 glycoprotein IIb / IIIa; a complex of CD41a and CD61
  • Platelet function can be measured and evaluated by known methods. For example, the amount of activated platelets can be measured using an antibody against PAC-1 that specifically binds to Integrin ⁇ IIB ⁇ 3 on the activated platelet membrane.
  • CD62P P-selectin
  • flow cytometry can be used by gating with an antibody against the activation-independent platelet marker CD61 or CD41, and then detecting the binding of anti-PAC-1 antibody or anti-CD62P antibody. These steps may be performed in the presence of adenosine diphosphate (ADP).
  • ADP adenosine diphosphate
  • the evaluation of platelet function can be performed by checking whether or not it binds to fibrinogen in the presence of ADP. Binding of platelets to fibrinogen results in integrin activation required early in thrombus formation.
  • evaluation of platelet function can also be performed by visualizing and observing thrombus formation ability in vivo as shown in FIG. 6 of International Publication No. 2011/034073.
  • CD42b in platelets when the expression rate of CD42b in platelets is low or the annexin V positive rate is low, it is evaluated that the platelets are deteriorated or abnormal. These platelets do not have thrombus formation or hemostasis function and are not clinically useful.
  • degradation of platelets refers to a decrease in CD42b (GPIb ⁇ ) on the platelet surface. Therefore, degraded platelets include platelets with reduced expression of CD42b and platelets whose extracellular region of CD42b has been cleaved by a shedding reaction. When CD42b on the platelet surface is depleted, it cannot associate with von Willebrand factor (VWF), resulting in loss of platelet blood clotting function. Platelet degradation can be evaluated using the CD42b negative rate (or CD42b negative particle number) relative to the CD42b positive rate (or CD42b positive particle number) in the platelet fraction as an index.
  • VWF von Willebrand factor
  • CD42b positive rate means the proportion of platelets that can be bound by anti-CD42b antibody among platelets contained in the platelet fraction
  • CD42b negative rate means that anti-CD42b antibody binds among platelets contained in the platelet fraction. Means the proportion of not platelets.
  • abnormal platelets refers to platelets in which phosphatidylserine, which is a negatively charged phospholipid, is exposed from the inside to the outside of the lipid bilayer.
  • phosphatidylserine which is a negatively charged phospholipid
  • Abnormal platelets always have a lot of phosphatidylserine exposed on the surface, and when such platelets are administered to a patient, they cause an excessive blood clotting reaction and severe pathological conditions such as disseminated intravascular coagulation syndrome.
  • annexin V binds to phosphatidylserine
  • phosphatidylserine on the platelet surface can be detected using a flow cytometer with the binding amount of fluorescently labeled annexin V as an index. Therefore, the amount of abnormal platelets can be evaluated by the annexin V positive rate in the platelet fraction, that is, the ratio or number of platelets to which annexin binds. The higher the annexin V positive rate or the higher the number of annexin V particles, the more abnormal platelets.
  • the culture conditions for megakaryocyte cells in the present invention can be normal conditions.
  • the temperature can be about 35 ° C. to about 42 ° C., about 36 ° C. to about 40 ° C., or about 37 ° C. to about 39 ° C., and can be 5-15% CO 2 and / or 20% O 2. .
  • the medium for culturing megakaryocyte cells is not particularly limited, and a known medium suitable for producing platelets from megakaryocyte cells or a medium equivalent thereto can be appropriately used.
  • a medium used for animal cell culture can be prepared as a basal medium.
  • basal media include IMDM medium, MediumMedi199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI 1640 medium, Fischer Life's medium, Neurosal's medium ) And mixed media thereof.
  • the medium may contain serum or plasma, or may be serum-free. If necessary, the medium can be, for example, albumin, insulin, transferrin, selenium, fatty acids, trace elements, 2-mercaptoethanol, thiolglycerol, monothioglycerol (MTG), lipids, amino acids (eg L-glutamine), ascorbic acid It may also contain one or more substances such as heparin, non-essential amino acids, vitamins, growth factors, low molecular weight compounds, antibiotics, antioxidants, pyruvate, buffers, inorganic salts, cytokines and the like. Cytokines are proteins that promote blood cell differentiation.
  • VEGF vascular endothelial growth factor
  • TPO thrombopoietin
  • SCF Stem Cell Cell Factor
  • ITS insulin-transferrin-selenite Supplements
  • ADAM inhibitors etc.
  • a preferable medium in the present invention is an IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, and TPO.
  • SCF may be included, and heparin may also be included.
  • TPO can be about 10 ng / mL to about 200 ng / mL, or about 50 ng / mL to about 100 ng / mL
  • SCF is about 10 ng / mL to about 200 ng / mL
  • Heparin can be about 10 U / mL to about 100 U / mL, or about 25 U / mL.
  • Phorbol esters eg, phorbol-12-myristate-13-acetate; PMA may be added.
  • human serum When using serum, human serum is desirable. Further, human plasma or the like may be used instead of serum. According to the method of the present invention, even if these components are used, platelets equivalent to those obtained using serum can be obtained.
  • Tet-On® or Tet-Off® for forced gene expression and release
  • a drug-responsive gene expression induction system such as a system
  • the forced expression step the corresponding drug, for example, tetracycline or doxycycline is contained in the medium, and the forced expression is suppressed by removing them from the medium. May be.
  • the step of culturing megakaryocytes in the present invention is carried out by suspension culture, it can be carried out without feeder cells.
  • the present invention also includes platelets produced by the method according to the present invention.
  • the method for producing a platelet preparation according to the present invention comprises a step of culturing megakaryocyte cells by the method according to the present invention to produce platelets, recovering a fraction rich in platelets from the culture, and from the platelet fraction. Removing blood cell components other than platelets.
  • the step of removing blood cell components is performed by removing blood cell components other than platelets including megakaryocytes using a leukocyte removal filter (eg, Terumo, Asahi Kasei Medical). Can do.
  • a leukocyte removal filter eg, Terumo, Asahi Kasei Medical
  • the method for producing a blood product according to the present invention includes a step of producing a platelet product by the method according to the present invention, and a step of mixing the platelet product with other components.
  • other components include red blood cells.
  • TKDN SeV2 human fetal skin fibroblast-derived iPS cells established using Sendai virus
  • the gene transfer system utilized a lentiviral vector system.
  • the lentiviral vector is a Tetracycline-controlled Tet-On (registered trademark) gene expression induction system vector.
  • the mOKS cassette of LV-TRE-mOKS-Ubc-tTA-I2G was prepared by recombination with c-MYC, BMI1, and BCL-xL.
  • LV-TRE-c-Myc-Ubc-tTA-I2G LV-TRE-BMI1-Ubc-tTA-I2G
  • LV-TRE-BCL-xL-Ubc-tTA-I2G LV-TRE-BCL-xL-Ubc-tTA-I2G
  • the virus particles were prepared by gene transfer of the above lentiviral vector into 293T cells by any method.
  • BMI1, MYC, and BCL-xL genes are introduced into the genomic sequence of the target cell by infecting the target cell with such virus particles. These genes stably introduced into the genome sequence can be forcibly expressed by adding doxycycline (clontech # 631311) to the medium.
  • Medium is basal medium (15% Fetal Bovine Serum (GIBCO), 1% Penicillin-Streptomycin-Glutamine (GIBCO), 1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO), 0.45mM 1-Thioglycerol (Sigma -Aldrich), 50 ⁇ g / mL L-Ascorbic Acid (Sigma-Aldrich) containing IMDM (Iscove's Modified Dulbecco's Medium) (Sigma-Aldrich)) 50ng / mL Human thrombopoietin (TPO) (R & D SmL A medium (hereinafter referred to as differentiation medium) supplemented with Stem® Cell® Factor® (SCF) ® (R & D® SYSTEMS) and 2 ⁇ g / mL Doxycycline® (Dox) and further added Protamine at a final concentration of 10 ⁇ g / mL was used.
  • Infection day 12 to infection day 13 The same operation as on infection day 2 was performed. After counting the number of cells, the cells were seeded on C3H10T1 / 2 feeder cells in a 3 ⁇ 105 cells / 10 mL / 100 mm dish (100 mm dish).
  • BCL-xL virus infection of megakaryocyte self-propagating strain BCL-xL was introduced into the megakaryocyte self-propagating strain on day 14 of infection by the lentiviral method. Viral particles were added to the medium so as to have MOI of 10, and the cells were infected by spin infection (centrifugation at 32 ° C., 900 rpm, 60 minutes).
  • the forced expression of the BCL-xL gene was performed by adding 1 ⁇ g / mL of doxycycline (clontech # 631311) to the medium.
  • the obtained SeV2-MKCL was statically cultured in a 10 cm dish (10 mL / dish).
  • the medium used was IMDM as a basic medium, and the following components were added (the concentration was the final concentration).
  • FBS Sigma # 172012 lot.12E261) 15% L-Glutamin (Gibco # 25030-081) 2mM ITS (Gibco # 41400-045) 100 times diluted MTG (monothioglycerol, sigma # M6145-25ML) 450 ⁇ M Ascorbic acid (sigma # A4544) 50 ⁇ g / mL Puromycin (sigma # P8833-100MG) 2 ⁇ g / mL SCF (Wako Pure Chemical # 193-15513) 50ng / mL TPO-like active substance 200ng / mL
  • the culture conditions were 37 ° C. and 5% CO 2.
  • the immortalized megakaryocyte cell line (SeV2-MKCL) obtained by the above method was washed twice with PBS ( ⁇ ) and suspended in the following medium at a seeding density of 1.0 ⁇ 10 5 cells / mL.
  • the medium is IMDM containing the following components (concentration is final concentration).
  • the immortalized megakaryocyte cell line (SeV2-MKCL) obtained by the above method was suspended in the above medium to prepare a cell suspension.
  • 2.4 L of the cell suspension was added to the bioreactor 10 and 25 mL of the cell suspension was added to a 125 mL volume shaker flask.
  • the bioreactor 10 has at least one stirrer blade 14 and used a 3.0 L volume VMF culture apparatus (hereinafter referred to as VMF) capable of reciprocating the stirrer blade 14 in the vertical direction.
  • VMF 3.0 L volume VMF culture apparatus
  • VMF a 2.4 L immortalized megakaryocyte cell line suspension was cultured.
  • the culture environment was 37 ° C. and 5% CO 2.
  • the stirring speed was 1.6 Hz, and the stirring stroke length was 3 cm.
  • 3-1 Measurement of platelets
  • 900 mL of diluent was added to a 1.5 mL microtube, and 100 mL of culture supernatant was added thereto and mixed.
  • 200 mL of the diluted culture supernatant was dispensed into a FACS tube, and the following labeled antibody or protein was added for staining.
  • dispense 100 mL of the culture supernatant into a FACS tube add the following labeled antibody or protein, stain, and use annexin V binding buffer (BD) immediately before flow cytometer analysis. Diluted 5 times and analyzed.
  • BD annexin V binding buffer
  • the antibodies used are as follows. Measurement of normal and deteriorated platelets 0.5 ⁇ L Anti-CD41 antibody APC label (Bio Legend 303710) 0.5 ⁇ L anti-CD42a antibody PB labeling (eBioscience 48-0428-42) 0.5 ⁇ L anti-CD42b antibody PE label (eBioscience 12-0428-42) Measurement of physiological activity of platelets 0.5 ⁇ L Anti-CD42a antibody PB labeling (eBioscience 48-0428-42) 0.5 ⁇ L anti-CD42b antibody PE label (eBioscience 12-0428-42) 0.5 ⁇ L anti-CD62p antibody APC labeling (Bio Legend 304910) 10 ⁇ L anti-PAC-1 antibody FITC labeling (BD 303704) Measurement of abnormal platelet count 0.5 ⁇ L Anti-CD41 antibody APC label (Bio Legend 303710) 0.5 ⁇ L anti-CD42a antibody PB labeling (eBioscience 48-0428-42) 5 (L Annexin V FITC sign (BD, 556419)
  • FIG. 5B The measurement results of normal platelet production are shown in FIG. Normal platelet production was higher in VMF culture than in shaker flask culture (FIG. 5B). In addition, when the number of normal platelets per megakaryocyte number was calculated as the normal platelet production efficiency, the normal platelet production efficiency was about 6.0 to 7.7 times higher in the culture with VMF than in the culture with the shaker flask (FIG. 5). (C)). In other words, the production of normal platelets per megakaryocyte number could be increased by culturing with VMF, compared with culturing with a conventional shaker flask.
  • 3-3 Measurement of deteriorated platelets
  • 3-1 3-1.
  • each treated sample was analyzed using a flow cytometer, and the number of particles of CD41a positive CD42b positive and CD41a positive CD42b negative was measured.
  • the ratio of the number of deteriorated platelets to the number of normal platelets was calculated using the number of CD41a positive CD42b positive particles as the normal platelet number and the CD41a positive CD42b negative particle number as the deteriorated platelet number. The results are shown in FIG.
  • the ratio of the number of deteriorated platelets to the number of normal platelets in the culture with VMF decreased to about 0.31 to 0.39 times the ratio of the number of deteriorated platelets to the number of normal platelets in the culture with the shaker flask (FIG. 5 (A)).
  • the production of deteriorated platelets could be reduced by culturing with VMF as compared with the culturing with a conventional shaker flask.
  • Platelet stimulation was performed at room temperature with PMA 0.2 mM (Phorbol 12-myristate 13-acetate, sigma # P1585-1MG) or ADP 100 ⁇ M (sigma # A2754) and Thrombin 0.5 U / mL (sigma). I went there. Measurement was carried out 30 minutes after stimulation with FACSverce from BD. The PAC-1 positive rate and CD62p positive rate before and after stimulation in the CD42a positive platelet fraction were measured and evaluated. The results are shown in FIG. 6 and FIG.
  • the production of platelets with higher bioactivity could be increased by culturing with VMF than by culturing with conventional shaker flasks.
  • the present invention can obtain high-quality platelets that cannot be achieved by shaking culture in a shaker flask. Therefore, the present invention can contribute to the realization of industrial-scale mass production of platelets.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本発明は、血小板の製造方法であって、培養容器内の培養液中で巨核球細胞を培養する工程を含み、当該培養工程において、撹拌羽根が往復動して培養液を撹拌する方法を提供する。

Description

往復動撹拌装置を用いた血小板の製造方法
 本発明は、撹拌羽根が往復動する撹拌装置を用いた血小板の製造方法に関するものである。
 血小板製剤は、手術時や傷害時の大量出血、或いは、抗がん剤治療後の血小板減少に伴う出血傾向を呈する患者に対して、その症状の治療および予防を目的として投与される。現在、血小板製剤の製造は、健常ボランティアによる献血に依存している。しかし、日本では人口構成に起因して献血者数が減少しており、2027年には約100万人分の献血が不足すると推測されている。そこで、本発明の技術分野の目的の一つとして、血小板の安定供給が挙げられる。
 また、従来の血小板製剤は、細菌汚染によるリスクが高いため、血小板製剤の移植後に重篤な感染症を引き起こす可能性がある。そのため、臨床現場では、常に、より安全な血小板製剤が求められている。そのニーズに応えるべく、今日では、in vitroで培養した巨核球細胞から血小板を生産する方法が開発されている。
 従来、培養細胞からの血小板生産は、ディッシュを用いた静置培養系で行われていた(WO2014/100779A1、Qiang Feng, et al., Stem Cell Reports)。しかし、静置培養系は非常に手間がかかるものであり、大量培養には適さなかった。
国際公開第2014/1007791号パンフレット
Qiang Feng, et al., Stem Cell Reports 3 1-15 (2014)
 本発明者らは、シェーカーフラスコを用いた振とう培養系、すなわち培養容器自体を振とうする培養方法を用いることにより、高い生理活性を有する血小板を生産することに成功した。しかし、シェーカーフラスコ培養系では、培地量のスケールアップに従い、血小板(CD41a+CD42b+)生産量と血小板の生理活性(PAC1結合性、P-selectin陽性)の低下が起きることが判明した。
 更に、シェーカーフラスコ培養系では、シェディング反応などに起因すると考えられる血小板の劣化反応(CD42b陽性率の低下)が起きることが発見された。その上、生体への移植に適さない異常な血小板(アネキシンV陽性の血小板)がより多く含まれることもわかった。
 そこで、本発明は、生体へ移植可能な高品質の血小板を大規模な量で生産する方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために検討を重ねた結果、培養容器を振とうするのではなく、培養容器内に配置した撹拌羽根を往復動させて培養液を撹拌しながら巨核球細胞を培養することによって、血小板の生産効率および生理活性を高くすることができるとともに、血小板の劣化を低く抑えること、異常血小板を減少させることができることを見出した。更に、往復動撹拌装置を用いた撹拌培養時の細胞密度、その他の条件を検討して本発明を完成するに至った。
 すなわち、本発明は、血小板の製造方法であって、培養容器内の培養液中で巨核球細胞を培養する工程を含み、前記培養工程において、撹拌羽根が一方向ではなく往復動もしくは反転する非定常撹拌装置を用いて前記培養液を撹拌する、方法である。
 また本発明に係る血小板の製造方法では、前記培養容器が、密閉型バイオリアクターである、ことも好ましい。
 また本発明に係る血小板の製造方法では、前記巨核球細胞が、巨核球細胞より未分化な細胞において、癌遺伝子、ポリコーム遺伝子、及びアポトーシス抑制遺伝子からなる群より選択される遺伝子の少なくとも1つを強制発現した後、当該強制発現を解除した細胞である、ことも好ましい。
 また本発明は、血小板製剤の製造方法であって、以上に記載の方法で巨核球細胞に血小板を産生させ、培養物から血小板を回収する工程と、前記血小板から血小板以外の血球系細胞成分を除去する工程と、を含む方法である。
 また本発明は、血液製剤の製造方法であって、以上に記載の方法で血小板製剤を製造する工程と、前記血小板製剤を他の成分と混合して血液製剤を得る工程と、を含む方法である。
 また本発明は、上記いずれかの方法で製造された血小板である。
 また本発明は、上記いずれかの方法で製造された血小板製剤、又は上記血小板を含む、血小板製剤である。
 また本発明は、上記方法で製造された血液製剤、又は上記血小板を含む、血液製剤である。
 本発明の方法によれば、従来の振とう培養よりも血小板の生産効率を向上させることができる。さらに、生産された血小板は、従来の振とう培養で生産される血小板よりも高い生理活性を有する。
 また、本発明の方法によれば、血小板の劣化反応(CD42b陽性率の減少)を抑えることができるとともに、異常血小板(アネキシンV陽性血小板)の産生を抑制することもできる。
図1は、本発明の実施形態例であるバイオリアクターを示す。 図2は、本発明の実施形態例であるバイオリアクターにおける、シール、駆動軸、及び撹拌羽根の設置例を示す。 図3は、本発明の実施形態例であるバイオリアクターにおける、撹拌羽根の構造を示す。 図4は、本発明の実施例で用いたVMF培養装置の構造を示す。 図5は、巨核球細胞の撹拌培養又は振とう培養を行って得られた血小板について、抗CD42b抗体及び抗CD41a抗体を用いてフローサイトメトリーを行った結果を示す。 図6は、巨核球細胞の撹拌培養又は振とう培養を行って得られた血小板について、PMA又はADPの刺激の前後に、抗CD42b抗体及び抗PAC-1抗体を用いてフローサイトメトリーを行った結果を示す。 図7は、PMA又はADPの刺激の前後に、巨核球細胞の撹拌培養又は振とう培養を行って得られた血小板について、抗CD42b抗体及び抗CD62p抗体を用いてフローサイトメトリーを行った結果を示す。 図8は、巨核球細胞の撹拌培養又は振とう培養を行って得られた血小板について、アネキシンVが結合する割合をフローサイトメトリーで測定した結果を示す。 複数段の撹拌羽根が設けられたバイオリアクターの構成例を概略的に示す図である。
 本発明に係る血小板の製造方法は、培養容器内の培養液中で巨核球細胞を培養する工程を含み、当該培養工程において、撹拌羽根が一方向ではなく往復動もしくは反転する非定常撹拌装置を用いて培養液を撹拌することを特徴とする。例えば、撹拌羽根がその主面に流体から抵抗を受けるように、前記撹拌羽根を往復動させることで培養液を撹拌してもよい。好ましくは、撹拌羽根を支持軸方向に往復動させる。より好ましくは、培養容器を静置させ、撹拌羽根を支持する支持軸をその軸延在方向に往復動させ、撹拌羽根を上下方向に動かす。
 本明細書において、「培養容器」は、往復動撹拌装置で培養液を撹拌しながら巨核球細胞を培養できる容器であれば特に限定されない。培養容器は、例えば、開放系の培養ディッシュ、閉鎖系のスクリューキャップ付きフラスコ、バイオリアクター(密閉型バイオリアクターを含む)などが挙げられる。
 本明細書において、「撹拌羽根」は、培養液内に配置して培養液を直接撹拌できるものであればよい。撹拌羽根は、例えば、平板状、もしくは折り曲げ構造のものが用いられる。
 以下、本発明の一態様として、撹拌羽根を備えたバイオリアクター10を用いる例を説明する。
 本実施形態のバイオリアクター10は、図1に示す通り、培養槽11と、シール12と、駆動軸(撹拌軸)13と、撹拌羽根14と、を有する。培養槽11に対する駆動軸13等の設置条件は、図2に示す通り、培養槽11の底部に取り付けるボトム取付、若しくは培養槽11の側部に取り付けるサイド取付でもよい。培養槽11は、円若しくは角等の平面形を縦方向に伸ばした3次元の胴部を有している。シール12は、駆動軸13の動きに追従するゴム等のフレキシブルな材料の膜状体、又は、金属若しくはテフロン(登録商標)等の素材のベローズ構造からなり、培養槽11の上端開口部を覆って気密に設けられている。駆動軸13は、その上部において上下動装置例えば往復駆動式モータ15に連結されていて、尚かつ、駆動軸13の中間部でシール12を貫通すると共に、シール12に気密に固定されている。撹拌羽根14は、平板状、若しくは折り曲げ構造で、平面形状は、図3に示す通り、円形(図3(A))に対して直交する面積を減じた、例えば、楕円(図3(B))、矩形(図3(C))、若しくは円盤に抜き穴16が設けられた抜き穴構造(図3(D))を有しており、駆動軸13に1段以上の撹拌羽根14が固定される。撹拌羽根14を穴あきとすることで、該抜き穴16を通過する流体や細胞への剪断作用が強まる(図9参照)。抜き穴16は撹拌羽根14に大きく設けられた穴で構成されていてもよいし(図3(D))、所定の領域に設けられた複数の小さな穴で構成されていてもよい(図9)。
 撹拌羽根14は複数段であってもよい。例えば、図9に示すバイオリアクター10は、駆動軸13に取り付けられた上段の撹拌羽根14と、抜き穴16が設けられた下段の撹拌羽根14を備えた2段羽根の構成があり、特に下段の撹拌羽根14における剪断効果をより向上させている。
 また、本実施形態のバイオリアクター10では、駆動軸(撹拌軸)13に垂直に取り付けた撹拌羽根を回転させ、サーボモータによる制御で撹拌羽根を正逆回転としてもよい。また、このサーボモータをドライバで正逆回転制御して正逆駆動式モータ15を構成し、サーボモータによる正逆制御(加速度・波形・速度などの制御)を可能としている。
 バイオリアクター10は、至適な細胞増殖、細胞代謝、巨核球細胞の分化成熟、巨核球細胞の多核化、プロプレイトレットの形成、血小板生産、血小板の生理活性の維持、などに好適な物理化学的環境を提供する。そのため、通気装置、排気装置、温度調節装置、pH制御装置、溶存酸素圧(DOT)調節装置、バッフル、スパージャ、ポート等を備えていてもよい。
 バイオリアクター10の培養槽11の形状も特に限定されないが、例えば、縦長の管状の形態とすることができ、タンクの頂部と底部に平坦な面を有するものであってもよい。
 培養槽11の容積は、少なくとも300mL、好ましくは少なくとも1L、50L、より好ましくは少なくとも200L、より好ましくは少なくとも500L、さらにより好ましくは少なくとも1000L、さらにより好ましくは少なくとも2000Lである。
 本明細書において「巨核球細胞」とは、生体内においては骨髄中に存在する最大の細胞であり、血小板を放出することを特徴とする。また、細胞表面マーカーCD41a、CD42a、及びCD42b陽性で特徴づけられ、他に、CD9、CD61、CD62p、CD42c、CD42d、CD49f、CD51、CD110、CD123、CD131、及びCD203cからなる群より選択されるマーカーをさらに発現していることもある。「巨核球細胞」は、多核化(多倍体化)すると、通常の細胞の16~32倍のゲノムを有するが、本明細書において、単に「巨核球細胞」という場合、上記の特徴を備えている限り、多核化した巨核球細胞と多核化前の巨核球細胞の双方を含む。「多核化前の巨核球細胞」は、「未熟な巨核球細胞」、又は「増殖期の巨核球細胞」とも同義である。
 巨核球細胞は、公知の様々な方法で得ることができる。巨核球細胞の製造方法の非限定的な例として、国際公開第2011/034073号に記載された方法が挙げられる。同方法では、「巨核球細胞より未分化な細胞」において、癌遺伝子とポリコーム遺伝子を強制発現させることにより、無限に増殖する不死化巨核球細胞株を得ることができる。また、国際公開第2012/157586号に記載された方法に従って、「巨核球細胞より未分化な細胞」において、アポトーシス抑制遺伝子を強制発現させることによっても、不死化巨核球細胞を得ることができる。これらの不死化巨核球細胞は、遺伝子の強制発現を解除することにより、多核化が進み、血小板を放出するようになる。
 巨核球細胞を得るために、上記の文献に記載された方法を組み合わせてもよい。その場合、癌遺伝子、ポリコーム遺伝子、及びアポトーシス抑制遺伝子の強制発現は、同時に行ってもよく、順次行ってもよい。例えば、癌遺伝子とポリコーム遺伝子を強制発現させ、当該強制発現を抑制し、次にアポトーシス抑制遺伝子を強制発現させ、当該強制発現を抑制して、多核化巨核球細胞を得てもよい。また、癌遺伝子とポリコーム遺伝子とアポトーシス抑制遺伝子を同時に強制発現させ、当該強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。まず、癌遺伝子とポリコーム遺伝子を強制発現させ、続いてアポトーシス抑制遺伝子を強制発現させ、当該強制発現を同時に抑制して、多核化巨核球細胞を得ることもできる。
 本明細書において「巨核球細胞より未分化な細胞」とは、巨核球への分化能を有する細胞であって、造血幹細胞系から巨核球細胞に至る様々な分化段階の細胞を意味する。巨核球より未分化な細胞の非限定的な例としては、造血幹細胞、造血前駆細胞、CD34陽性細胞、巨核球・赤芽球系前駆細胞(MEP)が挙げられる。これらの細胞は、例えば、骨髄、臍帯血、末梢血から単離して得ることもできるし、さらにより未分化な細胞であるES細胞、iPS細胞等の多能性幹細胞から分化誘導して得ることもできる。
 本明細書において「癌遺伝子」とは、生体内において細胞の癌化を誘導する遺伝子のことをいい、例えば、MYCファミリー遺伝子(例えば、c-MYC、N-MYC、L-MYC)、SRCファミリー遺伝子、RASファミリー遺伝子、RAFファミリー遺伝子、c-Kit、PDGFR、Ablなどのプロテインキナーゼファミリー遺伝子が挙げられる。
 本明細書において「ポリコーム遺伝子」とは、CDKN2a(INK4a/ARF)遺伝子を負に制御し、細胞老化を回避するために機能する遺伝子として知られている(小倉ら, 再生医療 vol.6, No.4, pp26-32;Jseus et al., Jseus et al., Nature Reviews Molecular Cell Biology vol.7, pp667-677, 2006;Proc. Natl. Acad. Sci. USA vol.100, pp211-216, 2003)。ポリコーム遺伝子の非限定的な例として、BMI1、Mel18、Ring1a/b、Phc1/2/3、Cbx2/4/6/7/8、Ezh2、Eed、Suz12、HADC、Dnmt1/3a/3bが挙げられる。
 本明細書において「アポトーシス抑制遺伝子」とは、細胞のアポトーシスを抑制する機能を有する遺伝子をいい、例えば、BCL2遺伝子、BCL-xL遺伝子、Survivin遺伝子、MCL1遺伝子などが挙げられる。
 遺伝子の強制発現及び強制発現の解除は、国際公開第2011/034073号、国際公開第2012/157586号、国際公開第2014/123242またはNakamura S et al, Cell Stem Cell. 14, 535-548, 2014に記載された方法、その他の公知の方法又はそれに準ずる方法で行うことができる。
 本明細書において「血小板」は、血液中の細胞成分の一つであり、CD41a陽性及びCD42b陽性で特徴づけられる。血小板は、血栓形成と止血において重要な役割を果たすとともに、損傷後の組織再生や炎症の病態生理にも関与する。出血等により血小板が活性化されると、その膜上にIntegrin αIIBβ3(glycoprotein IIb/IIIa; CD41aとCD61の複合体)などの細胞接着因子の受容体が発現する。その結果、血小板同士が凝集し、血小板から放出される各種の血液凝固因子によってフィブリンが凝固することにより、血栓が形成され、止血が進む。
 血小板の機能は、公知の方法により測定し評価することができる。例えば、活性化した血小板膜上のIntegrin αIIBβ3に特異的に結合するPAC-1に対する抗体を用いて、活性化した血小板量を測定することができる。また、同様に血小板の活性化マーカーであるCD62P(P-selectin)を抗体で検出し、活性化した血小板量を測定してもよい。例えば、フローサイトメトリーを用い、活性化非依存性の血小板マーカーCD61又はCD41に対する抗体でゲーティングを行い、その後、抗PAC-1抗体や抗CD62P抗体の結合を検出することにより行うことができる。これらの工程は、アデノシン二リン酸(ADP)存在下で行ってもよい。
 また、血小板の機能の評価は、ADP存在下でフィブリノーゲンと結合するか否かを見て行うこともできる。血小板がフィブリノーゲンと結合することにより、血栓形成の初期に必要なインテグリンの活性化が生じる。
 さらに、血小板の機能の評価は、国際公開第2011/034073号の図6に示されるように、in vivoでの血栓形成能を可視化して観察する方法で行うこともできる。
 一方、血小板のCD42bの発現率が低い場合や、アネキシンV陽性率が低い場合は、血小板が劣化又は異常であると評価される。これらの血小板は、血栓形成や止血機能を十分に有さず、臨床的に有用でない。
 本明細書において「血小板の劣化」とは、血小板表面のCD42b(GPIbα)が減少することをいう。したがって、劣化した血小板には、CD42bの発現が低下した血小板や、シェディング反応によってCD42bの細胞外領域が切断された血小板が含まれる。血小板表面のCD42bがなくなると、フォン・ウィルブランド因子(von Willebrand factor:VWF)との会合ができなくなり、結果的に、血小板の血液凝固機能が失われる。血小板の劣化は、血小板分画中のCD42b陽性率(又はCD42b陽性粒子数)に対するCD42b陰性率(又はCD42b陰性粒子数)を指標として評価することができる。CD42b陽性率に対するCD42b陰性率が高いほど、又は、CD42b陽性粒子数に対するCD42b陰性粒子数が多いほど、血小板は劣化している。CD42b陽性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合できる血小板の割合を意味し、CD42b陰性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合しない血小板の割合を意味する。
 本明細書において「異常な血小板」とは、陰性電荷リン脂質であるホスファチジルセリンが脂質二重層の内側から外側に露出した血小板を言う。生体内においては、ホスファチジルセリンは血小板の活性化に伴って表面に露出し、そこに多くの血液凝固因子が結合することによって、血液凝固カスケード反応が増幅されることが知られている。一方、異常な血小板では、常に多くのホスファチジルセリンが表面に露出しており、かかる血小板が患者に投与されると、過剰な血液凝固反応を引き起こし、播種性血管内凝固症候群などの重篤な病態に繋がる可能性がある。ホスファチジルセリンにはアネキシンVが結合するので、血小板表面上のホスファチジルセリンは、蛍光標識したアネキシンVの結合量を指標にしてフローサイトメーターを用いて検出することができる。よって、異常な血小板の量は、血小板分画中のアネキシンV陽性率、すなわちアネキシンが結合する血小板の割合又は数で評価することができる。アネキシンV陽性率が高いほど、又はアネキシンV粒子数が多いほど、異常な血小板は多い。
 本発明における巨核球細胞の培養条件は、通常の条件とすることができる。例えば、温度は約35℃~約42℃、約36℃~約40℃、又は約37℃~約39℃とすることができ、5~15%CO2及び/又は20%O2としてもよい。
 巨核球細胞を培養する際の培地は特に限定されず、巨核球細胞から血小板が産生されるのに好適な公知の培地やそれに準ずる培地を適宜使用することができる。例えば、動物細胞の培養に用いられる培地を基礎培地として調製することができる。基礎培地としては、例えばIMDM培地、Medium 199培地、Eagle's Minimum Essential Medium (EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium (DMEM)培地、Ham's F12培地、RPMI 1640培地、Fischer's培地、Neurobasal Medium(ライフテクノロジーズ)およびこれらの混合培地が挙げられる。
 培地には、血清又は血漿が含有されていてもよいし、あるいは無血清でもよい。必要に応じて、培地は、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、モノチオグリセロール(MTG)、脂質、アミノ酸(例えばL-グルタミン)、アスコルビン酸、ヘパリン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカインなどの1つ以上の物質も含有し得る。サイトカインとは、血球系分化を促進するタンパク質であり、例えば、血管内皮細胞増殖因子(VEGF)、トロンボポエチン(TPO)、各種TPO様作用物質、Stem Cell Factor(SCF)、ITS(インスリン-トランスフェリン-セレナイト)サプリメント、ADAM阻害剤、などが例示される。本発明において好ましい培地は、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むIMDM培地である。さらにSCFを含んでいてもよく、さらにヘパリンを含んでいてもよい。それぞれの濃度も特に限定されないが、例えば、TPOは、約10ng/mL~約200ng/mL、又は約50ng/mL~約100ng/mLとすることができ、SCFは、約10ng/mL~約200ng/mL、又は約50ng/mLとすることができ、ヘパリンは、約10U/mL~約100U/mL、又は約25U/mLとすることができる。ホルボールエステル(例えば、ホルボール-12-ミリスタート-13-アセタート;PMA)を加えてもよい。
 血清を用いる場合はヒト血清が望ましい。また、血清に代えて、ヒト血漿等を用いてもよい。本発明に係る方法によれば、これらの成分を用いても、血清を用いたときと同等の血小板が得られうる。
 遺伝子の強制発現及びその解除のためにTet-On(登録商標)又はTet-Off(登録商標)
システムのような薬剤応答性の遺伝子発現誘導システムを用いる場合、強制発現する工程においては、対応する薬剤、例えば、テトラサイクリンまたはドキシサイクリンを培地に含有させ、これらを培地から除くことによって強制発現を抑制してもよい。
 本発明における巨核球細胞の培養工程は浮遊培養によって行われるので、フィーダー細胞なしで実施することができる。
 本発明は、本発明に係る方法で製造した血小板も包含する。
 本発明に係る血小板製剤の製造方法は、本発明に係る方法により巨核球細胞を培養して血小板を産生させ、培養物から血小板が豊富に存在する画分を回収する工程と、当該血小板画分から血小板以外の血球系細胞成分を除去する工程と、を含む。血球系細胞成分を除去する工程は、白血球除去フィルター(例えば、テルモ社製、旭化成メディカル社製)などを使用して、巨核球細胞を含む血小板以外の血球系細胞成分を除去することによって行うことができる。血小板製剤のより具体的な製造方法は、例えば、国際公開第2011/034073号に記載されている。
 本発明に係る血液製剤の製造方法は、本発明に係る方法で血小板製剤を製造する工程と、当該血小板製剤を他の成分と混合する工程と、を含む。他の成分としては、例えば赤血球細胞が挙げられる。
 血小板製剤及び血液製剤には、その他、細胞の安定化に資する他の成分を加えてもよい。
 本明細書において引用されるすべての特許文献及び非特許文献の開示は、全体として本明細書に参照により組み込まれる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。
 1.不死化巨核球細胞の作製
 1-1.iPS細胞からの造血前駆細胞の調製
 ヒトiPS細胞(TKDN SeV2:センダイウイルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞)から、Takayama N., et al. J Exp Med. 2817-2830 (2010)に記載の方法に従って、血球細胞への分化培養を実施した。即ち、ヒトES/iPS細胞コロニーを20ng/mL VEGF (R&D SYSTEMS)存在下でC3H10T1/2フィーダー細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells;HPC)を作製した。培養条件は20% O2、5% CO2で実施した(特に記載がない限り、以下同条件)。
 1-2.遺伝子導入システム
 遺伝子導入システムは、レンチウイルスベクターシステムを利用した。レンチウイルスベクターは、Tetracycline制御性のTet-On(登録商標)遺伝子発現誘導システムベクターである。LV-TRE-mOKS-Ubc-tTA-I2G(Kobayashi, T., et al. Cell 142, 787-799 (2010))のmOKSカセットをc-MYC、BMI1、BCL-xLに組み替えることで作製した。それぞれ、LV-TRE-c-Myc-Ubc-tTA-I2G、LV-TRE-BMI1-Ubc-tTA-I2G、およびLV-TRE-BCL-xL-Ubc-tTA-I2Gとした。
 ウイルス粒子は、293T細胞へ上記レンチウイルスベクターを任意の方法で遺伝子導入することにより作成した。
 かかるウイルス粒子を目的の細胞に感染させることによって、BMI1、MYC、及びBCL-xLの遺伝子が目的の細胞のゲノム配列に導入される。安定的にゲノム配列に導入されたこれらの遺伝子は、培地にドキシサイクリン (clontech #631311)を加えることによって強制発現させることができる。
 1-3.造血前駆細胞へのc-MYC及びBMI1ウイルス感染
 予めC3H10T1/2フィーダー細胞を播種した6 well plate上に、上記の方法で得られたHPCを5x104cells/wellずつ播種し、レンチウイルス法にてc-MYCおよびBMI1を強制発現させた。このとき、細胞株1種類につき6 wellずつ使用した。即ち、それぞれMOI 20になるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃ 900rpm、60分間遠心)で感染させた。本操作は、12時間おきに2回実施した。
 培地は、基本培地(15% Fetal Bovine Serum (GIBCO)、1% Penicillin-Streptomycin-Glutamine (GIBCO)、1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO)、0.45mM 1-Thioglycerol (Sigma-Aldrich)、50μg/mL L-Ascorbic Acid (Sigma-Aldrich)を含有するIMDM (Iscove’s Modified Dulbecco’s Medium) (Sigma-Aldrich))に50ng/mL Human thrombopoietin (TPO) (R&D SYSTEMS)、50ng/mL Human Stem Cell Factor (SCF) (R&D SYSTEMS)および2μg/mL Doxycycline (Dox)を添加した培地(以下、分化培地)に、更に、Protamineを最終濃度10μg/mL加えたものを使用した。
 1-4.巨核球自己増殖株の作製および維持培養
 上記の方法でcMYC及びBMI1ウイルス感染を実施した日を感染0日目として、以下の通り、cMYC及びBMI1遺伝子導入型巨核球細胞を培養することで、巨核球自己増殖株をそれぞれ作製した。BMI1遺伝子、c-MYC遺伝子の強制発現は、培地にドキシサイクリン (clontech #631311) 1μg/mLを加えることにより行った。
 ・感染2日目~感染11日目
 ピペッティングにて上記の方法で得られたウイルス感染済み血球細胞を回収し、1200rpm、5分間遠心操作を行って上清を除去した後、新しい分化培地で懸濁して新しいC3H10T1/2フィーダー細胞上に播種した(6well plate)。感染9日目に同様の操作をすることによって継代を実施した。細胞数を計測後1×105 cells/2mL/wellでC3H10T1/2フィーダー細胞上に播種した(6well plate)。
 ・感染12日目~感染13日目
 感染2日目と同様の操作を実施した。細胞数を計測後3×105cells/10mL/100mm dishでC3H10T1/2フィーダー細胞上に播種した(100mm dish)。
 ・感染14日目
 ウイルス感染済み血球細胞を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、抗ヒトCD235ab-pacific blue(BioLegend)抗体をそれぞれ2μL、1μL、1μLずつを用いて抗体反応した。反応後に、FACS Verse(BD)を用いて解析した。感染14日目において、CD41a陽性率が50%以上であった細胞を、巨核球自己増殖株とした。
 1-5.巨核球自己増殖株へのBCL-xLウイルス感染
 前記感染14日目の巨核球自己増殖株に、レンチウイルス法にてBCL-xLを遺伝子導入した。MOI 10になるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃ 900rpm、60分間遠心)で感染させた。BCL-xL遺伝子の強制発現は、培地にドキシサイクリン (clontech #631311) 1μg/mLを加えることにより行った。
 1-6.巨核球不死化株の作成及び維持培養
 ・感染14目~感染18日目
 前述の方法で得られたBCL-xLを遺伝子導入した巨核球自己増殖株を回収し、1200rpm、5分間遠心操作を行った。遠心後、沈殿した細胞を新しい分化培地で懸濁した後、新しいC3H10T1/2フィーダー細胞上に2×105cells/2mL/wellで播種した(6well plate)。
 ・感染18日目:継代
 細胞数を計測後、3×105 cells/10mL/100mm dishで播種した。
 ・感染24日目:継代
 細胞数を計測後、1×105 cells/10mL/100mm dishで播種した。以後、4-7日毎に継代を行い、維持培養を行った。
 感染24日目にBCL-xLを遺伝子導入した巨核球自己増殖株を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、抗ヒトCD235ab-Pacific Blue(Anti-CD235ab-PB; BioLegend)抗体をそれぞれ2μL、1μL、1μLずつを用いて免疫染色した後にFACS Verse(BD)を用いて解析して、感染24日目においても、CD41a陽性率が50%以上である株を不死化巨核球細胞株とした。感染後24日以上増殖することができたこれらの細胞を、不死化巨核球細胞株SeV2-MKCLとした。
 得られたSeV2-MKCLを、10cmディッシュ(10mL/ディッシュ)で静置培養した。培地は、IMDMを基本培地として、以下の成分を加えた(濃度は終濃度)。
  FBS(シグマ#172012 lot.12E261)15%
  L-Glutamin (Gibco #25030-081) 2mM
  ITS (Gibco #41400-045) 100倍希釈
  MTG (monothioglycerol, sigma #M6145-25ML) 450μM
  アスコルビン酸 (sigma #A4544) 50μg/mL
  Puromycin (sigma #P8833-100MG) 2μg/mL
  SCF (和光純薬 #193-15513) 50ng/mL
  TPO様作用物質 200ng/mL
 培養条件は、37℃、5%CO2とした。
 2.血小板の生産
 次に、ドキシサイクリンを含まない培地で培養することで強制発現を解除した。具体的には、1.の方法で得た不死化巨核球細胞株(SeV2-MKCL)を、PBS(-)で2度洗浄し、1.0x105 cells/mLの播種密度で次の培地に懸濁した。
 培地は、IMDMに以下の成分が含まれたものである(濃度は終濃度)。
  FBS 15%
  L-Glutamine (Gibco #25030-081) 2mM
  ITS (Gibco #41400-045) 100倍希釈
  MTG (monothioglycerol, sigma #M6145-25ML) 450μM
  アスコルビン酸 (sigma #A4544) 50μg/mL
  SCF (和光純薬 #193-15513) 50ng/mL
  TPO様作用物質 200ng/mL
  ADAM阻害剤 15μM
  SR1 750nM
  ROCK阻害剤 10μM
 前述の1.の方法で得た不死化巨核球細胞株(SeV2-MKCL)を上記培地に懸濁して細胞懸濁液を調整した。当該細胞懸濁液2.4Lをバイオリアクター10に添加し、当該細胞懸濁液25mLを125 mL容積シェーカーフラスコに添加した。バイオリアクター10は、少なくとも1段以上の撹拌羽根14を有し、同撹拌羽根14を上下方向に往復動させることが出来る3.0L容積のVMF培養装置(以下、VMFと記載する)を用いた。
VMFの仕様は、次のとおりである。本体外寸法(mm):300W×485D×890H、培養槽11の寸法(mm):内径140×深さ203、培養槽11の液量:3.0 L、撹拌羽根14:下段楕円形状折り曲げ構造+上段平板楕円形状 2段取付、直動伝達方式:リニアシャフトドライブノンシール式、温度調節範囲:室温+5~20℃、上下動振幅:10~30 mm、上下動最大翼速度:80~150 mm/s、計測制御:撹拌, 温度, pH, 溶存酸素, レベル, フィード。図4にVMFを示す。
 VMFでは、2.4Lの不死化巨核球細胞株懸濁液の培養を行った。培養環境は、37℃および5%CO2とした。撹拌速度は、1.6 Hzとして、撹拌ストローク長は3 cmとした。
 125 mL容積シェーカーフラスコでは、25mLの不死化巨核球細胞株懸濁液の培養を行った。振とう培養器(N-BIOTEK, AniCell)を用いて、37℃および5%CO2環境下、100 rpm速度で振とう培養した。
 3.血小板の測定
 上記2.の方法で生産された血小板を測定するために、強制発現解除後、培養6日後の培養上清サンプルを回収し、各種抗体による染色と共に、フローサイトメーターを用いた分析を行った。CD41a陽性CD42b陽性の粒子数を正常血小板数とし、CD41a陽性CD42b陰性の粒子数を劣化血小板数とした。アネキシンV陽性の粒子数を異常血小板数とした。また、サンプルをPMA又はADP/Thrombinで刺激し、刺激前後のPAC-1およびCD62pの陽性率を算出して生理活性を測定した。
 詳しい測定方法と結果は以下のとおりである。
 3-1.血小板の測定
 正常血小板、劣化血小板、血小板の生理活性の測定のために、1.5 mLマイクロチューブに希釈液 900 mLを添加し、そこに培養上清100 mLを添加し、混合した。希釈混合した培養上清200 mLをFACSチューブに分注し、以下の標識抗体或はタンパク質を添加して染色を行った。異常血小板の測定のために、培養上清 100 mLをFACSチューブに分注し、以下の標識抗体或はタンパク質を添加して染色を行い、フローサイトメーター分析直前にアネキシン V binding buffer(BD)で5倍希釈し、分析した。
使用した抗体は以下のとおりである。
正常血小板および劣化血小板の測定
  0.5μL 抗CD41抗体 APC標識(Bio Legend 303710)
  0.5μL 抗CD42a抗体PB標識(eBioscience  48-0428-42)
  0.5μL 抗CD42b抗体PE標識(eBioscience  12-0428-42)
血小板の生理活性の測定
  0.5μL 抗CD42a抗体PB標識(eBioscience  48-0428-42)
  0.5μL 抗CD42b抗体PE標識(eBioscience  12-0428-42)
  0.5μL 抗CD62p抗体APC標識(Bio Legend 304910)
  10μL  抗PAC-1抗体FITC標識(BD 303704)
異常血小板数の測定
  0.5μL 抗CD41抗体 APC標識(Bio Legend 303710)
  0.5μL 抗CD42a抗体PB標識(eBioscience  48-0428-42)
  5 (L Annexin V FITC標識(BD, 556419)
 3-2.正常血小板生産量の測定
 結果を図5に示す。正常血小板生産量は、VMFによる培養では、シェーカーフラスコによる培養に比較して高かった(図5(B))。また、巨核球細胞数当たりの正常血小板数を正常血小板生産効率として算出した場合、シェーカーフラスコによる培養に比べて、VMFによる培養では、当該正常血小板生産効率が約6.0~7.7倍高かった(図5(C))。つまり、VMFによる培養によって、従来のシェーカーフラスコによる培養よりも、巨核球細胞数当たりの正常血小板生産量を増加させることができた。
 3-3.劣化血小板の測定
 劣化血小板を測定するとき、前記3-1.の方法によって、各処理サンプルをフローサイトメーターを用いて分析し、CD41a陽性CD42b陽性、及び、CD41a陽性CD42b陰性、それぞれの粒子数を測定した。そして、CD41a陽性CD42b陽性の粒子数を正常血小板数、並びに、CD41a陽性CD42b陰性の粒子数劣化血小板数として、正常血小板数に対する劣化血小板数の割合を算出した。
 結果を図5に示す。VMFによる培養での正常血小板数に対する劣化血小板数の割合は、シェーカーフラスコによる培養での正常血小板数に対する劣化血小板数の割合の約0.31~0.39倍に減少した(図5(A))。つまり、VMFによる培養によって、従来のシェーカーフラスコによる培養よりも、劣化血小板の生産量を低く抑えることができた。
 3-3.血小板生理活性の測定
 血小板の刺激は、PMA 0.2 mM (Phorbol 12-myristate 13-acetate, sigma #P1585-1MG)、又は、ADP 100 μM(sigma #A2754)およびThrombin 0.5 U/mL(sigma)で室温にて行った。刺激30分後にBD社FACSverceにて測定を実施した。CD42a陽性の血小板画分における、刺激前後のPAC-1陽性率及びCD62p陽性率を測定し、比較評価した。
 結果を図6、及び図7に示す。VMFによる培養では、シェーカーフラスコによる培養に比較して、PMAもしくはADP/Thrombin刺激時のPAC-1陽性率が約1.9~3.1倍高かった(図6)。また、VMFによる培養では、シェーカーフラスコによる培養に比較して、CD62p陽性率が約1.8~2.7倍以上高かった(図7)。つまり、VMFによる培養によって、従来のシェーカーフラスコによる培養よりも、生理活性の高い血小板の生産量を増加させることができた。
 3-4.異常血小板の測定
 前記3-1.の方法によって、各処理サンプルをフローサイトメーターを用いて分析し、アネキシンV陽性の粒子数を測定した。CD42b陽性アネキシンV陽性の粒子数を異常血小板数とした。
 結果を図8に示す。VMFによる培養では、シェーカーフラスコによる培養に比較して、CD42b陽性アネキシンV陽性の粒子数が約0.31~0.34倍未満に減少した(図8)。つまり、 VMFによる培養によって、従来のシェーカーフラスコによる培養よりも、異常血小板の生産量を低く抑えることができた。
 本発明によって、シェーカーフラスコによる振とう培養では達成し得ない高品質な血小板を得ることができるのは明白である。故に、本発明は、血小板の工業レベルの大量生産の実現に貢献し得るものである。

Claims (13)

  1.  血小板の製造方法であって、
     培養容器内の培養液中で巨核球細胞を培養する培養工程を含み、
     前記培養工程において、前記培養液を往復動する撹拌羽根で撹拌する、方法。
  2.  前記培養工程に用いられる前記撹拌羽根を上下方向、若しくは左右方向、若しくは正逆回転方向に往復動して培養液を非定常撹拌するバイオリアクターを用いる、請求項1に記載の方法。
  3.  前記培養工程に用いられる前記撹拌羽根は楕円形状であって、前記培養工程において前記撹拌羽根を上下に往復して培養液を撹拌するバイオリアクターを用いる、請求項1に記載の方法。
  4.  前記培養工程に用いられる前記撹拌羽根は楕円形状折り曲げ構造であって、前記培養工程において前記撹拌羽根を上下に往復して培養液を撹拌するバイオリアクターを用いる、請求項1に記載の方法。
  5.  前記培養工程に用いられる前記撹拌羽根は折り曲げ楕円形状であって、平板楕円形状の撹拌羽根と直交して撹拌軸に1段以上取り付けられており、前記培養工程において前記撹拌羽根を上下に往復して培養液を撹拌するバイオリアクターを用いる、請求項1に記載の方法。
  6.  前記撹拌羽根として、抜き穴が設けられたものを用いる請求項1から5のいずれか一項に記載の方法。
  7.  前記培養容器が、密閉型バイオリアクターである、請求項1に記載の方法。
  8.  前記巨核球細胞が、
     巨核球細胞より未分化な細胞において、癌遺伝子、ポリコーム遺伝子、及びアポトーシス抑制遺伝子からなる群より選択される遺伝子の少なくとも1つを強制発現した後、当該強制発現を解除した細胞である、請求項1から7のいずれか1項に記載の方法。
  9.  血小板製剤の製造方法であって、
     請求項1から8のいずれか1項に記載の方法で巨核球細胞に血小板を産生させ、培養物から血小板を回収する工程と、
     前記血小板から血小板以外の血球系細胞成分を除去する工程と、を含む方法。
  10.  血液製剤の製造方法であって、
     請求項9に記載の方法で血小板製剤を製造する工程と、
     前記血小板製剤を他の成分と混合して血液製剤を得る工程と、を含む方法。
  11.  請求項1から8のいずれか1項に記載の方法で製造された血小板。
  12.  請求項8に記載の方法で製造された血小板製剤、又は請求項11に記載の血小板を含む、血小板製剤。
  13.  請求項10に記載された方法で製造された血液製剤、又は請求項11に記載の血小板を含む、血液製剤。
PCT/JP2016/082206 2015-11-02 2016-10-31 往復動撹拌装置を用いた血小板の製造方法 WO2017077964A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA3003679A CA3003679A1 (en) 2015-11-02 2016-10-31 Method for producing platelets using reciprocating stirring device
CN201680063249.4A CN108473954A (zh) 2015-11-02 2016-10-31 使用往复运动搅拌装置的血小板的制造方法
RU2018120143A RU2741871C2 (ru) 2015-11-02 2016-10-31 Способ получения тромбоцитов с помощью устройства для возвратно-поступательного перемешивания
AU2016350296A AU2016350296B2 (en) 2015-11-02 2016-10-31 Method for producing platelets using reciprocating stirring device
SG11201803591UA SG11201803591UA (en) 2015-11-02 2016-10-31 Method for producing platelets using reciprocating stirring device
JP2017548743A JP6856537B2 (ja) 2015-11-02 2016-10-31 往復動撹拌装置を用いた血小板の製造方法および血小板の製造に用いられる培養容器
KR1020187015256A KR102664131B1 (ko) 2015-11-02 2016-10-31 왕복 이동 교반 장치를 사용한 혈소판의 제조 방법
ES16862024T ES2833357T3 (es) 2015-11-02 2016-10-31 Procedimiento de preparación de plaquetas con un dispositivo de agitación recíproca
US15/773,099 US20180318352A1 (en) 2015-11-02 2016-10-31 Method for producing platelets using reciprocating stirring device
DK16862024.3T DK3372674T3 (da) 2015-11-02 2016-10-31 Fremgangsmåde til fremstilling af blodplader under anvendelse af røreindretning med frem- og tilbagegående rørebevægelse
EP16862024.3A EP3372674B1 (en) 2015-11-02 2016-10-31 Method for preparing platelets using reciprocating stirring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015215936 2015-11-02
JP2015-215936 2015-11-02

Publications (1)

Publication Number Publication Date
WO2017077964A1 true WO2017077964A1 (ja) 2017-05-11

Family

ID=58663012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082206 WO2017077964A1 (ja) 2015-11-02 2016-10-31 往復動撹拌装置を用いた血小板の製造方法

Country Status (12)

Country Link
US (1) US20180318352A1 (ja)
EP (1) EP3372674B1 (ja)
JP (1) JP6856537B2 (ja)
KR (1) KR102664131B1 (ja)
CN (1) CN108473954A (ja)
AU (1) AU2016350296B2 (ja)
CA (1) CA3003679A1 (ja)
DK (1) DK3372674T3 (ja)
ES (1) ES2833357T3 (ja)
RU (1) RU2741871C2 (ja)
SG (1) SG11201803591UA (ja)
WO (1) WO2017077964A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6423942B1 (ja) * 2017-11-08 2018-11-14 佐竹化学機械工業株式会社 マイクロキャリア撹拌培養装置
WO2019009364A1 (ja) 2017-07-07 2019-01-10 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
JP2020054313A (ja) * 2018-10-04 2020-04-09 佐竹化学機械工業株式会社 撹拌培養装置
WO2020189538A1 (ja) 2019-03-15 2020-09-24 株式会社メガカリオン 哺乳動物細胞の保存液
WO2021060550A1 (ja) 2019-09-27 2021-04-01 祥二 勝目 攪拌体とこれを備える攪拌装置
WO2022223693A1 (fr) 2021-04-21 2022-10-27 Etablissement Français Du Sang Procede de liberation de plaquettes en regime turbulent et systeme de liberation de plaquettes pour la mise en œuvre de ce procede
WO2023153401A1 (ja) * 2022-02-10 2023-08-17 佐竹マルチミクス株式会社 血小板を製造するための撹拌装置、及び該撹拌装置の制御方法
JP7376897B2 (ja) 2022-03-09 2023-11-09 成浩 小島 摘出組織処理装置、および摘出組織処理方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952587B2 (en) 2017-03-06 2024-04-09 Kyoto University Method for producing platelets
EP3679938A4 (en) * 2017-09-19 2021-06-09 Megakaryon Corporation METHOD FOR PREPARING PURIFIED BLOOD PLATELETS, METHOD FOR PREPARING BLOOD PLATFORM PREPARATION, METHOD FOR PREPARING BLOOD PREPARATION, PLATELET CONSERVATION FLUID, AND CONSERVATION OF BLOOD PLATES
CN109592777B (zh) * 2018-12-28 2022-08-09 杭州汉山环境工程技术有限公司 一种污水氧化处理设备
CN109967016B (zh) * 2019-01-23 2021-03-19 南京市江宁医院 一种流体运动模式体外人工合成血小板方法
CN112089897B (zh) * 2020-07-30 2023-09-15 京美德(深圳)医疗科技有限公司 一种介入式给药引流治疗装置
CN114480121B (zh) * 2022-01-13 2022-12-09 山东水发生命科学研究有限公司 适用于细胞生长的反应装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122747A1 (ja) * 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
JP2009297023A (ja) * 2008-05-15 2009-12-24 Asahi Kasei Corp 血小板の誘導方法
JP2012510804A (ja) * 2008-12-04 2012-05-17 インセルム (アンスティテュ・ナショナル・ドゥ・ラ・サント・エ・ドゥ・ラ・ルシェルシュ・メディカル) 血小板の産生方法
WO2012157586A1 (ja) * 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2014123242A1 (ja) * 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JP2015181405A (ja) * 2014-03-24 2015-10-22 東レエンジニアリング株式会社 血小板産生装置および血小板産生方法
JP2016021908A (ja) * 2014-07-18 2016-02-08 佐竹化学機械工業株式会社 培地抜出機能を有した往復動撹拌培養装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2068265C1 (ru) * 1992-11-27 1996-10-27 Валентин Анатольевич Лифановский Способ получения тромбоцитов
US6491422B1 (en) * 2000-05-16 2002-12-10 Rütten Engineering Mixer
US20050249033A1 (en) * 2004-05-04 2005-11-10 Krause Richard J Disposable reciprocating bag mixing systems
DE102006020461B3 (de) * 2006-04-28 2007-10-04 Sartorius Biotech Gmbh Behälter mit flexiblen Wänden
DE502007005070D1 (de) * 2007-11-01 2010-10-28 Mettler Toledo Ag Rührereinheit aufweisend einen Adapter
DE102008025507A1 (de) * 2008-05-28 2009-12-03 Sartorius Stedim Biotech Gmbh Mischsystem
CN102150042B (zh) * 2008-08-11 2014-12-10 藤森工业株式会社 血小板检验方法和血小板检验装置
US10012107B2 (en) 2011-05-11 2018-07-03 Dresser-Rand Company Compact compression system with integral heat exchangers
CA2896053A1 (en) * 2012-12-21 2014-06-26 Ocata Therapeutics, Inc. Methods for production of platelets from pluripotent stem cells and compositions thereof
US9909102B2 (en) * 2013-11-19 2018-03-06 Platod Fluidic device for producing platelets
WO2016073858A1 (en) * 2014-11-07 2016-05-12 Genesis Technologies, Llc Linear reciprocating actuator
CN107624128A (zh) * 2015-03-19 2018-01-23 彼得罗·拉布鲁佐 生产微生物培养物的方法和生物反应器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009122747A1 (ja) * 2008-04-01 2009-10-08 国立大学法人東京大学 iPS細胞からの血小板の調製方法
JP2009297023A (ja) * 2008-05-15 2009-12-24 Asahi Kasei Corp 血小板の誘導方法
JP2012510804A (ja) * 2008-12-04 2012-05-17 インセルム (アンスティテュ・ナショナル・ドゥ・ラ・サント・エ・ドゥ・ラ・ルシェルシュ・メディカル) 血小板の産生方法
WO2012157586A1 (ja) * 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2014123242A1 (ja) * 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JP2015181405A (ja) * 2014-03-24 2015-10-22 東レエンジニアリング株式会社 血小板産生装置および血小板産生方法
JP2016021908A (ja) * 2014-07-18 2016-02-08 佐竹化学機械工業株式会社 培地抜出機能を有した往復動撹拌培養装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"SATAKE VMOVE MIXER", 23 September 2015 (2015-09-23), pages 1 - 5, XP055541655, Retrieved from the Internet <URL:http://web.archive.org/web/20150923175757/https://www.satake.co.jp/index_versus.html> *
DUNOIS-LARDE C. ET AL.: "Exposure of human megakaryocytes to high shear rates accelerates platelet production", BLOOD, vol. 114, 2009, pages 1875 - 1883, XP002563898 *
K. HARIMOTO, Y. TSUDA, Y. ITO, H. ENDO, S. NAKAMURA, K. ETO: "Towards Industrialization: Development of Ips cell -derived Platelet Production System", TISSUE ENG., PART A, vol. 21, no. Suppl.1, 1 September 2015 (2015-09-01), pages S15, XP055373242, ISSN: 1937-3341 *
NAKAMURA S. ET AL.: "Expandable Megakaryocyte Cell Lines Enable Clinically Applicable Generation of Platelets from human Induced Pluripotent Stem Cells", CELL STEM CELL, vol. 14, 2014, pages 535 - 548, XP055144556 *
See also references of EP3372674A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210130781A1 (en) * 2017-07-07 2021-05-06 Kyoto University Method and apparatus for producing platelet and method for determining operating condition of apparatus for producing platelet
WO2019009364A1 (ja) 2017-07-07 2019-01-10 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
JPWO2019009364A1 (ja) * 2017-07-07 2020-08-20 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
JP7153276B2 (ja) 2017-07-07 2022-10-14 国立大学法人京都大学 血小板の製造方法および製造装置、ならびに血小板の製造装置における運転条件の決定方法
JP2019083759A (ja) * 2017-11-08 2019-06-06 佐竹化学機械工業株式会社 マイクロキャリア撹拌培養装置
JP6423942B1 (ja) * 2017-11-08 2018-11-14 佐竹化学機械工業株式会社 マイクロキャリア撹拌培養装置
JP2020054313A (ja) * 2018-10-04 2020-04-09 佐竹化学機械工業株式会社 撹拌培養装置
JP7280679B2 (ja) 2018-10-04 2023-05-24 佐竹マルチミクス株式会社 撹拌培養装置
KR20210126086A (ko) 2019-03-15 2021-10-19 가부시키가이샤 메가카리온 포유동물 세포의 보존액
WO2020189538A1 (ja) 2019-03-15 2020-09-24 株式会社メガカリオン 哺乳動物細胞の保存液
WO2021060550A1 (ja) 2019-09-27 2021-04-01 祥二 勝目 攪拌体とこれを備える攪拌装置
WO2022223693A1 (fr) 2021-04-21 2022-10-27 Etablissement Français Du Sang Procede de liberation de plaquettes en regime turbulent et systeme de liberation de plaquettes pour la mise en œuvre de ce procede
FR3122185A1 (fr) * 2021-04-21 2022-10-28 Institut National De La Sante Et De La Recherche Medicale (Inserm) Procede de liberation de plaquettes en regime turbulent et systeme de liberation de plaquettes pour la mise en œuvre de ce procede
WO2023153401A1 (ja) * 2022-02-10 2023-08-17 佐竹マルチミクス株式会社 血小板を製造するための撹拌装置、及び該撹拌装置の制御方法
JP7376897B2 (ja) 2022-03-09 2023-11-09 成浩 小島 摘出組織処理装置、および摘出組織処理方法

Also Published As

Publication number Publication date
RU2018120143A3 (ja) 2020-04-06
AU2016350296A1 (en) 2018-05-31
ES2833357T3 (es) 2021-06-15
CN108473954A (zh) 2018-08-31
EP3372674A1 (en) 2018-09-12
KR20180080261A (ko) 2018-07-11
AU2016350296B2 (en) 2022-02-10
KR102664131B1 (ko) 2024-05-10
SG11201803591UA (en) 2018-05-30
EP3372674B1 (en) 2020-10-07
RU2741871C2 (ru) 2021-01-29
DK3372674T3 (da) 2020-10-12
RU2018120143A (ru) 2019-12-04
JP6856537B2 (ja) 2021-04-07
JPWO2017077964A1 (ja) 2018-10-11
US20180318352A1 (en) 2018-11-08
CA3003679A1 (en) 2017-05-11
EP3372674A4 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6856537B2 (ja) 往復動撹拌装置を用いた血小板の製造方法および血小板の製造に用いられる培養容器
JP7287634B2 (ja) 精製血小板の製造方法
US20210130781A1 (en) Method and apparatus for producing platelet and method for determining operating condition of apparatus for producing platelet
WO2017047492A1 (ja) 回転式撹拌培養法による血小板の製造方法
JP6959135B2 (ja) 巨核球を含む培養物の製造方法及びこれを用いた血小板の製造方法
JP7297203B2 (ja) 血小板の製造方法
JP2023100831A (ja) 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017548743

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3003679

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15773099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187015256

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016350296

Country of ref document: AU

Date of ref document: 20161031

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018120143

Country of ref document: RU

Ref document number: 2016862024

Country of ref document: EP