WO2019059235A1 - 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法 - Google Patents

精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法 Download PDF

Info

Publication number
WO2019059235A1
WO2019059235A1 PCT/JP2018/034667 JP2018034667W WO2019059235A1 WO 2019059235 A1 WO2019059235 A1 WO 2019059235A1 JP 2018034667 W JP2018034667 W JP 2018034667W WO 2019059235 A1 WO2019059235 A1 WO 2019059235A1
Authority
WO
WIPO (PCT)
Prior art keywords
platelets
platelet
concentration
separation
producing
Prior art date
Application number
PCT/JP2018/034667
Other languages
English (en)
French (fr)
Inventor
弘也 高原
順子 富塚
Original Assignee
株式会社メガカリオン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メガカリオン filed Critical 株式会社メガカリオン
Priority to JP2019543675A priority Critical patent/JP7323126B2/ja
Priority to EP18858726.5A priority patent/EP3679938A4/en
Priority to US16/648,551 priority patent/US11773374B2/en
Publication of WO2019059235A1 publication Critical patent/WO2019059235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0644Platelets; Megakaryocytes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0221Freeze-process protecting agents, i.e. substances protecting cells from effects of the physical process, e.g. cryoprotectants, osmolarity regulators like oncotic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/19Platelets; Megacaryocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0209Multiple bag systems for separating or storing blood components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/02Blood transfusion apparatus
    • A61M1/0272Apparatus for treatment of blood or blood constituents prior to or for conservation, e.g. freezing, drying or centrifuging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/262Separation of sediment aided by centrifugal force or centripetal force by using a centrifuge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B15/00Other accessories for centrifuges
    • B04B15/12Other accessories for centrifuges for drying or washing the separated solid particles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0236Mechanical aspects
    • A01N1/0242Apparatuses, i.e. devices used in the process of preservation of living parts, such as pumps, refrigeration devices or any other devices featuring moving parts and/or temperature controlling components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0427Platelets; Thrombocytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2688Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/48Mechanisms for switching between regular separation operations and washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/50Specific extra tanks
    • B01D2313/502Concentrate storage tanks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells

Definitions

  • the present invention relates to a method for producing purified platelets, a method for producing a platelet preparation, a method for producing a blood preparation, a platelet storage solution, a platelet preservative, and a method for preserving platelets.
  • Platelet preparations are administered to patients with hemorrhage due to surgery, injury, etc., and others with decreased platelets. Platelet preparations are currently manufactured from blood obtained by donating blood. However, due to changes in population structure, there is concern that blood donation will be reduced and platelet preparations will run short.
  • Non-patent Document 1 when producing a platelet preparation from the produced platelets, platelets are purified from the culture and filled in a blood bag or the like.
  • the platelets are separated from the culture of megakaryocytes by a filter, the platelets are concentrated using a hollow fiber membrane, and the platelets are washed using a hollow fiber membrane Method (hereinafter also referred to as “the above-mentioned method”) was considered.
  • the first object of the present invention is to provide a method for producing purified platelets that can be
  • this invention makes it the 2nd object to provide the platelet storage solution suitable for preservation
  • the method for producing purified platelets of the present invention comprises a concentration step of concentrating a culture of megakaryocytes, and the obtained concentrate And the step of centrifuging platelets.
  • the method for producing a platelet preparation of the present invention comprises a formulation step of producing a platelet preparation from purified platelets,
  • the purified platelets are characterized in that they are obtained by the method for producing purified platelets of the present invention.
  • the method for producing a blood preparation of the present invention comprises a blood preparation step of producing a blood preparation by mixing purified platelets with other components,
  • the purified platelets are characterized in that they are obtained by the method for producing purified platelets of the present invention.
  • the platelet storage solution of the present invention (hereinafter also referred to as “storage solution”) is characterized by containing albumin.
  • the platelet preservative of the present invention (hereinafter also referred to as "preservative") is characterized by containing albumin.
  • the method for storing platelets of the present invention (hereinafter also referred to as “storage method”) is characterized by including a storage step of storing platelets in the presence of albumin.
  • purification is performed in a short time as compared to the time when the above-mentioned method is carried out so that damage to platelets is reduced and damage to platelets is reduced as compared with the above-mentioned method. It can produce platelets. Further, according to the present invention, platelets can be suitably stored.
  • FIG. 1 is a schematic view showing a concentration system in Example 1.
  • the method for producing purified platelets of the present invention is characterized by including a concentration step of concentrating a culture of megakaryocytes, and a centrifugation step of centrifuging platelets from the obtained concentrate.
  • the method for producing platelets of the present invention is characterized in that platelets are centrifuged from the concentrate obtained in the concentration step in the centrifugation step, and the other constitution and conditions are not particularly limited.
  • the method for producing platelets of the present invention can use, for example, the method for producing a platelet preparation of the present invention described later and the description of the method for producing a blood product.
  • the method for producing platelets of the present invention concentrates the culture of megakaryocytes prior to separation of the platelets. For this reason, according to the method for producing platelets of the present invention, the volume of the sample (eg, concentrate) to be subjected to the centrifugation step can be reduced. Therefore, the method for producing platelets of the present invention can reduce the time required for separation of the platelets in the centrifugation step and can shorten the time for purifying platelets from the culture of megakaryocytes, as described above. As compared with the method, platelets can be obtained in a short time. In the method of producing platelets of the present invention, a culture of a large amount of megakaryocytes is subjected to filter separation, and there is no need to separate platelets. Damage can be avoided. For this reason, the method for producing platelets of the present invention causes less damage to platelets as compared to the above-mentioned method.
  • megakaryocytes are the largest cells present in the bone marrow in vivo, and mean cells that release platelets and cells having equivalent functions.
  • the cell having the same function means a cell having the ability to produce platelets.
  • the megakaryocytes may be megakaryocytes before multinucleation (polyploidization), ie immature megakaryocytes or megakaryocytes in the proliferating stage, or megakaryocytes after multinucleation (multinuclear megakaryocytes). May be.
  • the megakaryocytes may be, for example, any of megakaryocytes, megakaryocytes, megakaryocytes, and mature megakaryocytes.
  • the number of sets of chromosomes possessed by the megakaryocyte after multinucleation may be more than 2 sets, specifically 16 to 32 sets.
  • the origin of the megakaryocytes is not particularly limited, and examples thereof include human and non-human animals.
  • the non-human animals include primates such as monkeys, gorillas, chimpanzees and marmosets, mice, rats, dogs, cats, rabbits, sheep, horses, guinea pigs and the like.
  • the megakaryocytes can be identified by cell surface markers.
  • the cell surface markers include CD41a, CD42a and CD42b. That is, the megakaryocyte is a cell that is positive for CD41a, CD42a and CD42b.
  • the cell surface marker is, for example, at least one selected from the group consisting of CD9, CD61, CD62p, CD42c, CD42d, CD49f, CD51, CD110, CD123, CD131, and CD203c. It may be.
  • platelet is one of the cellular components in blood, and means a cellular component that is positive for CD41a and CD42b.
  • the platelets for example, do not have cell nuclei and are smaller in size as compared to the megakaryocytes. Therefore, the platelets and the megakaryocytes can be distinguished, for example, by the presence or absence and / or the size of the cell nucleus.
  • the platelets play an important role in thrombus formation and hemostasis, and are also known to be involved in tissue regeneration after injury and pathophysiology of inflammation.
  • the platelets when the platelets are activated by hemorrhage etc., receptors for cell adhesion factor such as Integrin ⁇ IIB ⁇ 3 (glycoprotein IIb / IIIa; a complex of CD41a and CD61) are expressed on the membrane. It is done. Further, when the platelets are activated, the platelets aggregate, and fibrin is coagulated by various blood coagulation factors released from the platelets, thereby forming a thrombus and promoting hemostasis. In the present invention, the platelet origin is the same as the megakaryocyte origin.
  • Damaged platelets are known to be abnormal platelets.
  • the negatively charged phospholipid phosphatidylserine is exposed from the inside to the outside of the lipid bilayer.
  • phosphatidylserine is exposed to the surface with activation of platelets in vivo, and binding of many blood coagulation factors thereto amplifies blood coagulation cascade reaction.
  • a large amount of phosphatidylserine is always exposed to the surface, so when abnormal platelets are administered to a patient, excessive blood clotting reaction is caused, and disseminated intravascular coagulation syndrome etc. It may lead to serious pathological condition.
  • annexin V binds to phosphatidylserine.
  • Phosphatidylserine on the platelet surface can be detected using, for example, a flow cytometer using the amount of binding of fluorescently labeled annexin V as an indicator. Therefore, the damage to the platelets can be evaluated as a change in the annexin V positive rate in the platelet fraction, that is, a change in the percentage or number of platelets to which annexin binds.
  • the positive rate of annexin V in platelets after the purification is increased compared to the positive rate of annexin V before the purification.
  • the physiological activity of the platelets can be evaluated by a known method.
  • the physiological activity of the platelets can be evaluated, for example, using an antibody against PAC-1 that specifically binds to Integrin ⁇ IIB ⁇ 3 on activated platelet membranes, to evaluate the activated platelet volume.
  • the physiological activity of the platelets may be, for example, detection of CD62p (P-selectin), which is a marker for activation of platelets, with an antibody to evaluate the amount of activated platelets.
  • the physiological activity of the platelets is, for example, gating with an antibody against the activation-independent platelet marker CD61 or CD41 using flow cytometry, and then detecting the binding of anti-PAC-1 antibody or anti-CD62p antibody It may be implemented by Assessment of the physiological activity of these platelets may be performed in the presence of adenosine diphosphate (ADP).
  • ADP adenosine diphosphate
  • the evaluation of the physiological activity of platelets may be evaluated, for example, by examining whether or not it binds to fibrinogen in the presence of ADP.
  • the binding of the platelets to fibrinogen results in the activation of integrins that are required early in thrombus formation.
  • the physiological activity of the platelets may be performed by a method of visualizing and observing in vivo thrombus forming ability as shown in, for example, FIG. 6 of WO 2011/034073.
  • the platelets can be evaluated as degraded or abnormal (hereinafter, also collectively referred to as “deteriorated”), for example, when the expression rate of CD42b of the platelets is low or when the annexin V positive rate is low. That is, it can be evaluated that the physiological activity of the platelets is low.
  • degraded platelets do not have sufficient thrombogenic function (blood coagulation function) and hemostatic function, for example, and have low clinical usefulness.
  • platelet degradation means that CD42b (GPIb ⁇ ) on the surface of platelets is decreased. Therefore, degraded platelets include, for example, platelets in which the expression of CD42b is reduced and platelets in which the extracellular domain of CD42b has been cleaved by a shedding reaction.
  • VWF von Willebrand factor
  • the deterioration of platelets can be evaluated using the CD42b negative rate (or the number of CD42b negative particles) to the CD42b positive rate (or the number of CD42b positive particles) in the platelet fraction as an indicator.
  • the CD42b positive rate means the ratio of platelets which can be bound by the anti-CD42b antibody among the platelets contained in the platelet fraction
  • the CD42b negative rate means that the anti-CD42b antibody is bound among the platelets contained in the platelet fraction Not mean the percentage of platelets.
  • the megakaryocyte culture can be produced, for example, by culturing the megakaryocyte. Therefore, the method for producing platelets of the present invention may include, for example, a production step of producing the culture of megakaryocytes prior to the concentration step. The production step can be carried out, for example, by culturing the megakaryocyte in the presence of a culture medium.
  • the culture of the megakaryocytes may be performed, for example, on feeder cells or may be performed without feeder cells.
  • the megakaryocytes can be cultured without the feeder cells, for example, because they can be cultured in suspension.
  • the megakaryocyte culture comprises the platelets.
  • culture conditions for the megakaryocytes are not particularly limited, and normal culture conditions for the megakaryocytes can be adopted.
  • the culture temperature is, for example, about 35 to about 42 ° C., about 36 to about 40 ° C., about 37 to about 39 ° C.
  • the CO 2 concentration is, for example, about 5 to about 15%.
  • the O 2 concentration is, for example, about 15 to about 25%, about 20%.
  • the medium is not particularly limited, and examples thereof include known media suitable for producing platelets from the megakaryocytes and media equivalent thereto.
  • the medium can be prepared, for example, as a basal medium that is used for culturing animal cells.
  • the basal medium is, for example, IMDM medium, Medium 199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM), Ham's F12 medium, RPMI 1640 medium, Fischer's medium, Neurobasal (registered trademark) Medium
  • IMDM medium IMDM medium
  • EMEM Eagle's Minimum Essential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • RPMI 1640 Dulbecco's modified Eagle's Medium
  • Fischer's medium Neurobasal (registered trademark) Medium
  • a single medium such as (manufactured by Thermo Fisher Scientific) or a mixed medium thereof can be mentioned.
  • the medium may contain, for example, serum or plasma, or may be a serum-free medium without these.
  • the serum and plasma are preferably derived from the same as the megakaryocytes.
  • the megakaryocyte is of human origin
  • the serum and plasma are preferably each of human origin.
  • the culture medium may contain, for example, other components.
  • the other components are not particularly limited.
  • the other components may be, for example, one type or two or more types.
  • the cytokine is, for example, a substance that promotes differentiation of blood cell lineage, and specific examples thereof include vascular endothelial cell growth factor (VEGF), thrombopoietin (TPO), various TPO-like agents, Stem Cell Factor (SCF), ITS (Insulin-transferrin-selenite) supplements, an ADAM inhibitor, a FLT inhibitor, a WNT inhibitor, a ROCK inhibitor, an aromatic hydrocarbon receptor (AhR) inhibitor and the like.
  • the medium is preferably, for example, an IMDM medium containing serum, insulin, transferrin, serine, thiolglycerol, ascorbic acid, TPO.
  • the medium may further contain, for example, SCF, and may further contain heparin.
  • concentration of the other components is not particularly limited.
  • the concentration of TPO is, for example, about 10 ng / mL to about 200 ng / mL, about 50 ng / mL to about 100 ng / mL.
  • the concentration of SCF is, for example, about 10 ng / mL to about 200 ng / mL, about 50 ng / mL.
  • the concentration of the heparin is, for example, about 10 U / mL to about 100 U / mL, about 25 U / mL.
  • the medium may further contain, for example, phorbol ester (eg, phorbol-12-myristate-13-acetate; PMA).
  • the megakaryocytes can be derived, for example, from undifferentiated cells than megakaryocytes. Therefore, the method for producing platelets of the present invention may include, for example, a megakaryocytes induction step of inducing the megakaryocytes from undifferentiated cells from the megakaryocytes prior to the production of the culture of the megakaryocytes.
  • the "cell undifferentiated from megakaryocytes” means a cell capable of differentiating into the megakaryocytes.
  • specific examples of the undifferentiated cells from the megakaryocytes include, for example, hematopoietic stem cells, hematopoietic precursor cells, CD34 positive cells, megakaryocyte-erythropoietin (MEP), megakaryocytic precursor cells, etc. can give.
  • the cells undifferentiated from the megakaryocytes may be isolated from, for example, bone marrow, cord blood, peripheral blood, etc., ES cells (embryonic stem cells, embryonic stem cells), induced pluripotent stem cells , IPS cells), nuclear transfer ES cells (nt ES cells), reproductive stem cells, somatic stem cells, embryonic tumor cells, and other pluripotent cells.
  • ES cells embryonic stem cells
  • IPS cells induced pluripotent stem cells
  • nt ES cells nuclear transfer ES cells
  • reproductive stem cells somatic stem cells, embryonic tumor cells, and other pluripotent cells.
  • the method of inducing the megakaryocytes is not particularly limited, and can be carried out by a known inducing method.
  • the method of inducing the megakaryocytes may be, for example, the methods described in WO 2011/034073, WO 2012/157586, and the like.
  • oncogenes and polycomb genes may be forcibly expressed in cells undifferentiated from the megakaryocyte.
  • immortalized megakaryocyte which proliferates infinitely can be obtained.
  • the immortalized megakaryocytes can be induced to be multinucleated megakaryocytes to produce platelets.
  • the megakaryocyte precursor cells may be forced to express an apoptosis suppression gene.
  • the immortalized megakaryocyte can be obtained.
  • multinucleated megakaryocytes can be induced from the immortalized megakaryocytes to produce platelets.
  • the oncogene, the polycomb gene, and the apoptosis suppression gene may be forcibly expressed.
  • forced expression of the oncogene, the polycomb gene, and the apoptosis suppression gene may be performed simultaneously or separately.
  • the forced expression may be canceled and then the apoptosis suppression gene may be forcedly expressed, or the oncogene;
  • the polycomb gene and the apoptosis suppression gene may be forcibly expressed, or the oncogene and the polycomb gene may be forcibly expressed, and the apoptosis suppression gene may be further expressed.
  • the immortalized megakaryocyte can be obtained. Furthermore, for example, by releasing the forced expression of the immortalized megakaryocytes, multinucleated megakaryocytes can be induced from the immortalized megakaryocytes to produce platelets.
  • the megakaryocyte induction step can improve, for example, the transfer efficiency of each gene, a first expression step of forcibly expressing an oncogene and a polycomb gene in the undifferentiated cell from the megakaryocyte, and the undifferentiated cell
  • a second expression step of forcibly expressing an apoptosis suppression gene such as Bcl-xL gene
  • a releasing step of releasing all the forced expression it is preferable to include a second expression step of forcibly expressing an apoptosis suppression gene such as Bcl-xL gene, and a releasing step of releasing all the forced expression.
  • Forced expression of each gene and release of the forced expression are known, for example, methods described in WO 2011/034073, WO 2012/157586, WO 2014/123242 or Reference 1 below. It can carry out by the method of, or the method according to it.
  • forced expression and forced expression release of each gene can be performed using, for example, a drug-responsive gene expression induction system.
  • the gene expression induction system include a Tet-on (registered trademark) system, a Tet-off (registered trademark) system, and the like.
  • the Tet-on system for example, in the forced expression step, culturing is performed in the presence of an agent that induces gene expression, such as tetracycline or doxycycline, and in the step of releasing the forced expression, The culture is performed in the absence.
  • an agent that induces gene expression such as tetracycline or doxycycline
  • the culture is performed in the absence.
  • Reference 1 Nakamura S et al, “Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells.”, Cell Stem Cell, 2014, vol. 14, No. 4, pages 535-548
  • oncogene refers to a gene capable of inducing canceration of cells in vivo, such as MYC family gene such as c-MYC, N-MYC, L-MYC, SRC family gene, RAS Examples include family genes, RAF family genes, c-kit (CD117), PDGFR (platelet growth factor receptor), protein kinase family genes such as Abl (Abelson murine leukemia viral oncogene homolog), and the like.
  • polycomb gene refers to a gene known to function to negatively regulate CDKN2a (cyclin-dependent kinase inhibition 2A, INK4a / ARF) and to avoid cellular senescence (see the following reference) 2 to 4).
  • the polycomb gene is, for example, BMI1 (Polycomb complex protein BMI-1, polycomb group RING finger protein 4 (PCGF4), RING finger protein 51 (RNF51)), Mel 18 (Polycomb group RING finger protein 2), Ring (Ring Finger Protein) 1a / b, Phc (Polyhomeotic Homolog) 1/2/3, Cbx (Chromobox) 2/4/6/7/8, Ezh 2 (Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit), Eed (Embryonic Ectoderm Development), Suz12 (SUZ12 Polycomb Repressive Complex 2 Subunit), HADC (Histone deacetylases), Dnmt (DNA (cytotidine-5) -methyltransferase) 1 / 3a / 3b and the like.
  • BMI1 Polycomb complex protein BMI-1, polycomb group RING finger protein 4 (PCGF4), RING finger protein 51 (RNF51)
  • Mel 18 Polycomb group RING finger protein 2
  • Ring Ring
  • apoptosis suppressor gene means a gene having a function capable of suppressing apoptosis of cells, for example, BCL2 (B-cell lymphoma 2), Bcl-xL (B-cell lymphoma-extra large), Survivin (Baculoviral IAP Repeat Containing 5), MCL1 (BCL2 Family Apoptosis Regulator), etc. are mentioned.
  • the concentration step is a step of concentrating the culture of the megakaryocyte as described above.
  • the culture of megakaryocytes comprises the platelets, as described above.
  • the culture of megakaryocytes is, for example, a mixed solution containing solid fractions such as the megakaryocytes and the platelets and liquid fractions such as the culture medium. Therefore, in the concentration step, for example, the solid fraction in the culture of the megakaryocyte, specifically, platelets is concentrated. Thereby, in the concentration step, for example, a concentrate containing the platelets can be obtained.
  • the method for concentrating the culture of megakaryocytes is not particularly limited, and can be carried out, for example, by a known method capable of concentrating the platelets.
  • the concentration step can be performed by, for example, a known solid-liquid separation method, and as a specific example, may be performed using a concentration member, or may be performed by centrifugation or the like.
  • the concentration member is not particularly limited, and for example, known concentration members suitable for concentration of platelets can be used.
  • Examples of the concentration member include hollow fiber membranes and porous structures.
  • the pore diameter of the concentration member is, for example, a pore diameter capable of capturing the platelets.
  • the type of the hollow fiber membrane is not particularly limited, and examples thereof include hollow fiber membranes made of polyethylene and the like, and specific examples include plasma flow OP (Asahi Kasei Medical) and the like.
  • the concentration of the culture of the megakaryocytes is preferably performed in a cross-flow manner.
  • the concentration step includes, for example, a culture vessel containing a culture of the megakaryocyte, the concentration member, an introduction pipe, and an outlet pipe, and the liquid of the culture vessel and the concentration member
  • the introduction part can be in communication with the introduction pipe
  • the culture vessel and the liquid outlet part of the concentration member can be implemented using a concentration device in communication with the extraction pipe.
  • the liquid introducing unit can introduce, for example, a culture of the megakaryocyte into the hollow fiber membrane
  • the liquid outlet unit may, for example, be the hollow fiber membrane.
  • the concentrate inside can be discharged to the outlet tube.
  • the culture of megakaryocytes in the culture tank is concentrated by being introduced into the concentration member through the liquid introducing portion of the introduction tube and the concentration member, in the concentration device.
  • the concentrate of the culture of the megakaryocytes can be obtained by discharging the concentrated product into the culture vessel through the liquid discharge part and the discharge pipe of the concentration member.
  • the introduction and withdrawal of the culture of megakaryocytes can be carried out, for example, using a liquid delivery means such as a pump.
  • the introduction and discharge of the culture of the megakaryocytes to the concentration member may be performed once or plural times in the concentration apparatus. In the latter case, the concentration step can also be called, for example, a step of circulating the culture of the megakaryocyte in the concentration device.
  • the concentration apparatus may further include, for example, a drainage tank and a drainage pipe, and the drainage tank and the drainage part of the concentration member may be communicated by the drainage pipe.
  • the drainage portion can, for example, discharge the drainage outside the hollow fiber membrane to a drainage pipe.
  • the concentration step for example, the drainage is discharged to a drainage tank in parallel with the concentration of the culture of the megakaryocyte.
  • the concentration ratio of the culture of the megakaryocytes in the concentration step is not particularly limited, and is, for example, 5 to 20 times or 10 to 20 times.
  • the concentration factor can be calculated by the following formula (1).
  • the concentration ratio of the culture of the megakaryocyte in the concentration step is, for example, 5 to 20 times and 10 to 20 times.
  • M c V b / V a (1)
  • V b Volume of culture of megakaryocytes before concentration (L)
  • the said centrifugation process is a process of centrifuging platelets from the obtained concentrate as mentioned above.
  • the method and conditions for centrifugation of the platelets are not particularly limited, and can be carried out by known centrifugation methods and conditions for centrifugation of the platelets.
  • the centrifuging step may include, for example, centrifuging the concentrate a plurality of times with different centrifugal forces.
  • the centrifugation step may be, for example, a first centrifugation step of fractionating megakaryocytes and platelets in the culture of the megakaryocytes by centrifugation.
  • the centrifuging step includes a first centrifuging step of separating by a centrifugal force of about 150 to about 550 ⁇ g (g: gravity acceleration), and a liquid component recovered in the first centrifuging step. It is preferable to include a second centrifugation step of separating at a centrifugal force of about 600 to about 4000 ⁇ g.
  • the said centrifugation process can be implemented, for example using a well-known centrifugation apparatus.
  • the centrifugal force in the first and second centrifugation steps can be calculated by the following equation (2) based on the number of rotations and the radius of rotation of the rotor of the centrifugal separator that carries out the centrifugation.
  • RCF 1119 ⁇ r ⁇ N 2 ⁇ 10 ⁇ 8 ( ⁇ g) (2)
  • RCF Centrifugal force (relative centrifugal acceleration)
  • r Maximum value of rotation radius (cm)
  • N Rotational speed (rpm)
  • the centrifugal force in the first centrifugation step may be about 150 to about 550 ⁇ g, which can suppress shear stress on platelets due to deposition of solid fractions such as megakaryocytes and platelets, Preferably, it is about 160 to about 500 ⁇ g, more preferably about 170 to about 400 ⁇ g, since the expression of the physiological activity of platelets due to shear stress can be further suppressed.
  • a platelet storage solution may be added to the culture of the megakaryocyte.
  • the platelet storage solution include biological standard blood storage solution A (Acid-Citrate-Dextrose; ACD-A), Bikanate transfusion including human serum albumin and ACD-A solution, and the like.
  • ACD-A solution has, for example, a blood / platelet anticoagulant action, and also functions as a glucose source which is an energy source of platelets.
  • the centrifugal force in the second centrifugation step may be about 600 to about 4000 ⁇ g, and preferably about 800 to about 3000 ⁇ g, more preferably, because loss of physiological activity of the platelets can be suppressed. It is about 1000 to about 2000 ⁇ g.
  • the centrifugation step can be carried out using, for example, a known centrifuge as described above.
  • the type of rotor used in the centrifugal separator is not particularly limited, and examples thereof include an angle rotor, a swing rotor, a batch rotor, a continuous rotor, and an elutriation rotor.
  • the centrifugal separator for example, can suppress damage to platelets in the centrifugal separation step, so that depending on the centrifugal force, in the concentrate or the recovered liquid component (hereinafter also referred to as “concentrate etc.”)
  • a rotatable separation bowl including an inner wall to which a component having a high specific gravity is attached and an outlet from which a liquid component after separation such as the concentrate is discharged; and a recovery means for recovering the liquid component flowing out from the outlet
  • the inner wall is disposed outside, for example, when passing through the center of the bottom surface of the separation bowl and centered on an axis perpendicular to the bottom surface, as compared with the outlet.
  • the inner wall may be an inner wall of the storage tank.
  • the said concentrate etc. when centering on the axis
  • the centrifugal separator include the device described in JP-A-2005-296675 and the device described in JP-A-7-284529.
  • centrifugal separator for example, a commercially available centrifugal separator used for separating blood components or a commercially available device used for washing platelets of a concentrated platelet preparation may be used.
  • the commercially available device include ACP 215 of HAEMONETICS, COBE 2991 of Terumo, and the like.
  • centrifugal separation apparatus including the separation bowl
  • the centrifugal force The component of high specific gravity adheres and deposits on the inner wall of the separation bowl, and the component of low specific gravity remains in the liquid.
  • centrifugation is carried out while introducing the concentrate or the like at a predetermined speed into the separation bowl using a centrifugal separator including the separation bowl, and the separated liquid component is recovered by the recovery means at the same time.
  • a large amount of concentrate or recovered liquid components can be separated continuously.
  • the component having a large specific gravity is, for example, the megakaryocytes, and the component having a small specific gravity is, for example, the platelets.
  • the component having a large specific gravity is, for example, platelets, and the component having a small specific gravity is, for example, another component such as a protein.
  • the liquid component containing the component having a small specific gravity and the component having a large specific gravity can be recovered by the recovery means, for example.
  • the recovery means includes, for example, a tube such as a tube connected to the outlet of the separation bowl, and a recovery bag replaceably connected to the tube.
  • the collection bag may be, for example, one that does not affect the quality of the platelets, and for example, a commercially available blood storage bag, a blood component storage bag, etc. can be used.
  • the first centrifugation step can be performed, for example, by rotating the separation bowl with the aforementioned centrifugal force.
  • the first centrifugation step is performed, for example, by introducing the concentrate into the separation bowl while rotating the separation bowl with the above-described centrifugal force.
  • the megakaryocytes and the platelets can be separated.
  • the megakaryocyte adheres to the inner wall of the separation bowl, and the platelets remain in the liquid component after separation. Therefore, for example, the liquid component including the platelets can be recovered by recovering the liquid component of the separation bowl into the recovery bag or the like using the recovery means. Then, the liquid component containing the platelets is subjected to the second centrifugation step, for example, as the liquid component recovered in the first centrifugation step.
  • the method of introducing the culture of the megakaryocyte into the separation bowl is not particularly limited, and for example, a liquid feeding means such as a pump provided in the centrifugal device may be used.
  • the container containing the culture of megakaryocytes and the separation bowl may be connected by a tube, the container may be suspended at a high position, and the culture of megakaryocytes may be allowed to spontaneously fall into the separation bowl through the tube.
  • the introduction rate of the culture of the megakaryocyte is not particularly limited, and is, for example, about 50 to about 150 mL / min, about 80 to about 130 mL / min, about 100 mL / min.
  • the implementation temperature of the first centrifugation step is not particularly limited, and is, for example, room temperature (for example, around 25 ° C.).
  • the centrifugation time in the first centrifugation step is not particularly limited, and is, for example, a time obtained by dividing the volume of the culture of megakaryocytes by the introduction rate of the culture of megakaryocytes or more. .
  • the separation bowl may be replaced or washed.
  • the second centrifugation step is performed.
  • the second centrifugation step can be performed, for example, by rotating the separation bowl with the aforementioned centrifugal force.
  • the liquid component recovered in the first separation step is introduced into the separation bowl while the separation bowl is rotated by the centrifugal force described above. carry out. Thereby, the platelets can be separated from the collected liquid component.
  • the method of introducing the recovered liquid component into the separation bowl is not particularly limited, and may be performed, for example, in the same manner as in the first centrifugation step, or
  • the collection bag containing the recovered liquid component obtained in the centrifugation step 1 may be suspended at a high position and introduced into the separation bowl by natural fall through the tube.
  • the introduction rate of the recovered liquid component is not particularly limited, and, for example, the description of the introduction rate of the culture of megakaryocytes can be used.
  • the implementation temperature of the second centrifugation step is not particularly limited, and is, for example, room temperature (for example, around 25 ° C.).
  • the centrifugation time in the second centrifugation step is not particularly limited, and is, for example, a time obtained by dividing the volume of the collected liquid component by the introduction speed of the collected liquid component or more. .
  • the method for producing platelets of the present invention may further include, for example, a recovery step of recovering platelets after the centrifugation.
  • the recovery method is not particularly limited, and can be carried out by recovering the liquid fraction (liquid component) or the solid fraction (solid component) containing the platelets, depending on the centrifugation conditions in the centrifugation step.
  • the platelets adhere to the inner wall of the separation bowl after the second centrifugation step, and the other component remains in the liquid component after separation .
  • the recovery step for example, first, the liquid component of the separation bowl is recovered using the recovery means.
  • the recovery step for example, the separation bowl is swung. Thereby, the platelets are shaken off from the separation bowl and suspended, for example, in a liquid component such as a washing storage solution (for example, remaining washing storage solution) present in the separation bowl.
  • the recovery step for example, the platelets are recovered by pressurizing from the outlet of the separation bowl and discharging the cleaning storage solution from the inlet of the separation bowl.
  • the platelets are recovered by introducing a gas such as air from the outlet of the separation bowl. More specifically, a gas such as the air is introduced from the outlet of the separation bowl, and a liquid component such as a washing preservation solution containing platelets is recovered from the inlet of the separation bowl.
  • the washing storage solution present after recovery of the liquid component of the separation bowl may be, for example, the washing storage solution remaining in the separation bowl after recovery of the liquid component, or the washing introduced after recovery of the liquid component. It may be a storage solution or a mixture of these.
  • the platelets may be recovered, for example, from the inlet for the washing and storage solution.
  • washing and storage solution examples include bicarbonate Ringer's solution such as bicarbon (BICARBON) infusion solution.
  • the washing storage solution may further contain, for example, platelet storage solution (ACD), albumin, etc. Specifically, 5 to 20 (v / v)% of ACD and 2.5 to 10 (w / v) % Albumin may be included.
  • ACD platelet storage solution
  • albumin Specifically, 5 to 20 (v / v)% of ACD and 2.5 to 10 (w / v) % Albumin may be included.
  • the washing and storage solution is preferably, for example, the storage solution of the present invention described later because it can suppress deterioration of platelets in the first and second separation steps.
  • the method for producing platelets of the present invention may include, for example, a washing step of adding a washing and storage solution to the separation bowl after the second centrifugation step, and washing by rotating the separation bowl.
  • the method for producing platelets of the present invention may further include, for example, a platelet recovery step of recovering platelets by adding the recovery solution to the separation bowl after the washing step and rotating the separation bowl.
  • the method for producing platelets of the present invention includes the washing step, whereby components such as a medium that adheres and deposits with the platelets can be removed, for example, in the second centrifugation step.
  • the method for producing platelets according to the present invention can suppress clogging of the separation member, for example, when it is carried out in combination with the platelet separation step described later, by including the above-mentioned washing step. It can be manufactured.
  • a washing storage solution is introduced into the separation bowl, and the separation bowl is rotated at a centrifugal force of about 600 to 3600 ⁇ g.
  • the method for introducing the washing and storage solution is not particularly limited, and can be performed, for example, in the same manner as the first and second centrifugation steps.
  • the introduction rate of the washing and storage solution is not particularly limited, for example, introduced at a constant rate.
  • the washing and storage solution may use, for example, bicarbonate Ringer's solution such as bicarbon infusion solution.
  • the washing storage solution may further contain, for example, platelet storage solution (ACD-A), albumin, etc. Specifically, 5 to 20 (v / v)% of ACD and 2.5 to 10 (w / l) v) may contain% albumin.
  • the platelet collection step can be performed, for example, in the same manner as the collection step.
  • the method for producing platelets of the present invention may include, for example, a separated component collecting step of collecting separated components in the separation bowl after the second centrifugation step prior to the washing step.
  • the method for producing platelets of the present invention includes, for example, a separation component concentration step of concentrating the separation component.
  • the method for producing platelets of the present invention includes the separated component recovery step, in the washing step, for example, the concentrated separated component and the washing storage solution are added to the separation bowl, and the separation bowl is rotated. It is preferable to wash by washing.
  • the separated component is a component attached to the inner wall of the separation bowl, and specific examples include platelets.
  • the separated component recovery step can be performed, for example, in the same manner as the recovery step.
  • the separated component concentration step can be performed in the same manner as the concentration step, for example, except that the recovered separated component is used instead of the culture of the megakaryocyte.
  • the separation component concentration step is preferably performed with the concentration member described above. No particular limitation is imposed on the concentration factor of the separated separated component collected in the separated component concentration step, and is, for example, 5 to 20 times or 10 to 20 times.
  • the concentration factor can be calculated by the above equation (1) by replacing “the culture of megakaryocytes” with “the separated component recovered”.
  • the method for producing platelets of the present invention includes, for example, a platelet separation step of separating platelets by passing the platelets collected in the above-mentioned collection step or platelet collection step through a separation member.
  • the platelets recovered in the recovery step or the platelet recovery step may include, for example, other blood cells such as the megakaryocytes in addition to the platelets. For this reason, for example, more purified platelets can be obtained by including the platelet separation step in the method for producing platelets of the present invention. Further, in the method for producing platelets of the present invention, for example, the amount of sample to be supplied to the separation member is reduced as compared with the above-mentioned method.
  • the separation member is not particularly limited, and any known separation member capable of separating the platelets and other blood cells can be used.
  • separation membranes such as non-woven fabric and mesh material, hollow fiber membranes, porous structures can give.
  • the hole diameter of the separation member is, for example, a hole diameter through which the platelets can pass. The said description can be used for the said hollow fiber membrane, for example.
  • the method for introducing the collected platelets into the separation member is not particularly limited, and may be carried out using a liquid feeding means such as a pump or may be carried out by natural fall, for example.
  • a liquid feeding means such as a pump
  • natural fall for example.
  • the increase in pressure on the platelets is suppressed compared to the liquid feeding by the liquid feeding means, and damage to the platelets can be suppressed, so the latter preferable.
  • the method for producing platelets of the present invention may, for example, collect the separated platelets after the platelet separation step.
  • the method for producing platelets of the present invention may, for example, further remove impurities in platelets separated using a filter.
  • the method for producing platelets of the present invention can produce purified platelets.
  • the platelets of the present invention are characterized by being obtained by the method for producing purified platelets of the present invention.
  • the platelets of the present invention are characterized by being obtained by the method of producing platelets of the present invention, and the other steps and conditions are not particularly limited.
  • the description of the method for producing platelets of the present invention can be used.
  • the platelets of the invention may comprise albumin.
  • the platelets of the present invention include platelets and albumin.
  • the description of albumin in the storage solution of the present invention described later can be used for the description of the albumin.
  • the method for producing a platelet preparation of the present invention includes, as described above, a preparation step of producing a platelet preparation from purified platelets, and the purified platelets are obtained by the method for producing purified platelets of the present invention.
  • the method for producing a platelet preparation of the present invention is characterized in that the purified platelets are obtained by the method for producing platelets of the present invention, and the other steps and conditions are not particularly limited.
  • the description of the method for producing platelets of the present invention can be used for the method for producing a platelet preparation of the present invention.
  • other components may be added, for example.
  • the other components include stabilizers for cells such as the platelets.
  • the method for producing a platelet preparation of the present invention may include a purified platelet production step of producing purified platelets by the method for producing platelets of the present invention prior to the formulation step.
  • the description of the method for producing platelets of the present invention can be used, for example, in the purified platelet production step.
  • the platelet preparation of the present invention is characterized by being obtained by the method for producing a platelet preparation of the present invention.
  • the platelet preparation of the present invention is characterized by being obtained by the method for producing a platelet preparation of the present invention, and the other steps and conditions are not particularly limited.
  • the platelet preparation of the present invention can use, for example, the description of the method for producing purified platelets of the present invention and the method for producing a platelet preparation above.
  • the platelet preparation of the present invention may comprise albumin.
  • the platelet preparation of the present invention comprises platelets and albumin.
  • the description of albumin in the storage solution of the present invention described later can be used for the description of the albumin.
  • the method for producing a blood preparation of the present invention includes a blood preparation step of producing a blood preparation by mixing purified platelets with other components as described above, and the purified platelets are the purified platelets of the present invention. Obtained by the manufacturing method of The method for producing a blood preparation of the present invention is characterized in that the purified platelets are obtained by the method for producing platelets of the present invention, and the other steps and conditions are not particularly limited. The description of the method of producing platelets of the present invention can be used for the method of producing blood products of the present invention.
  • the other components are not particularly limited, and examples thereof include other blood cells such as red blood cells and the like, stabilizers of cells such as platelets, and the like.
  • the method for producing a blood preparation of the present invention may include a purified platelet production step of producing purified platelets by the method for producing platelets of the present invention prior to the blood production step.
  • the description of the method for producing platelets of the present invention can be used, for example, in the purified platelet production step.
  • the blood preparation of the present invention is characterized by being obtained by the method for producing a blood preparation of the present invention.
  • the blood product of the present invention is characterized by being obtained by the method for producing a blood product of the present invention, and the other steps and conditions are not particularly limited.
  • the description of the method for producing purified platelets of the present invention and the method for producing a blood product can be used for the blood product of the present invention.
  • the platelet storage solution of the present invention is characterized by containing albumin as described above.
  • the preservation solution of the present invention is characterized in that it contains albumin, and the other constitution and conditions are not particularly limited.
  • the preservation solution of platelets of the present invention can use, for example, the method for producing the purified platelets of the present invention, and the description of the preservative and the storage method of the present invention described later.
  • the present inventors have found that preservation of platelets in the presence of albumin can suppress deterioration of platelets as compared to preservation of platelets in the absence of albumin, thereby establishing the present invention. Therefore, according to the present invention, platelets can be suitably stored. Furthermore, the present inventors have found that by centrifuging platelets in the presence of albumin, deterioration of platelets can be suppressed as compared with centrifugation of platelets in the absence of albumin.
  • the preservation solution of the present invention it is possible to suppress the deterioration of platelets in centrifugal separation of platelets, and for example, it is suitably used as a centrifuging solution of platelets, a washing preservation solution in the method of producing purified platelets of the present invention described above. it can.
  • the albumin examples include serum albumin, lactalbumin and the like, preferably serum albumin.
  • the origin of the albumin is not particularly limited, and, for example, the description of the origin of the megakaryocyte can be used.
  • the origin of the albumin is preferably the same as the origin of the platelets.
  • the albumin when the platelets are human platelets, the albumin is preferably human albumin, more preferably human serum albumin.
  • the human serum albumin includes a protein consisting of an amino acid sequence registered under NCBI accession number NP — 000468.
  • the albumin may be, for example, one purified from a biological sample such as blood or body fluid, or may be a recombinant protein.
  • the said albumin may be a commercial item and may be prepared in-house.
  • the lower limit of the concentration of albumin may be more than 0 w / v% (mass volume%).
  • the concentration of albumin is not particularly limited, and is, for example, 25 w / v% or less and 20% or less.
  • it is preferably 15 w / v% or less because handling at the time of use becomes easier.
  • the range of concentration of the albumin is, for example, more than 0 w / v% and 25 w / v% or less. For example, it is preferable because platelet deterioration can be further suppressed and handling at the time of use becomes easier. And 1.25 to 15 w / v%, more preferably 2.5 to 10 w / v%, still more preferably 5 to 10 w / v%.
  • the preservation solution of the present invention preferably contains sugar, for example, because it serves as an energy source for platelets and can suppress deterioration of platelets.
  • sugar examples include glucose (glucose).
  • the lower limit of the sugar concentration is, for example, 0.05 w / v%, 0.1 w / v% or more, and preferably 0.104 w / v% or more.
  • the upper limit of the concentration of the sugar is 0.2 w / v% or less, 0.4 w / v% or less, preferably 0.367 w / v% or less.
  • the concentration range of the sugar is, for example, 0.05 to 0.8 w / v%, 0.1 to 0.4 w / v%, and more preferably 0.104 to 0.367 w / v% .
  • the preservation solution of the present invention preferably contains, for example, an electrolyte.
  • the electrolyte include sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate, citric acid and the like.
  • the preservation solution of the present invention preferably contains sodium citrate and citric acid, for example, because it has a blood / platelet anticoagulant action and can suppress deterioration of platelets.
  • the preservation solution of the present invention may contain, for example, one type of electrolyte, or may contain two or more types of electrolyte.
  • the concentration of the electrolyte is not particularly limited, and can be appropriately set according to the type of the electrolyte.
  • the concentration range of the sodium chloride is, for example, 0.3 to 1.5 w / v%, 0.3 to 0.8 w / v%, 0.4 to 0.6 w / v%, preferably 0. It is .48 to 0.56 w / v% and 0.486 to 0.557 w / v%.
  • the range of concentration of the potassium chloride is, for example, 0.01 to 0.04 w / v%, 0.02 to 0.03 w / v%, preferably 0.025 to 0.028 w / v%, 0 It is .025-0.0286 w / v%.
  • the range of the concentration of the calcium chloride dihydrate is, for example, 0.01 to 0.04 w / v%, 0.015 to 0.03 w / v%, and preferably 0.018 to 0.025 w. / V%, 0.0183 to 0.021 w / v%.
  • calcium chloride dihydrate in the storage solution is used for each compound. It is preferable to set so that the concentrations converted to.
  • the range of the concentration of the magnesium chloride is, for example, 0.01 to 0.03 w / v%, 0.015 to 0.02 w / v%, preferably 0.016 to 0.019 w / v%, 0 0167 to 0.019 w / v%.
  • the concentration range of the sodium hydrogen carbonate is, for example, 0.1 to 0.3 w / v%, 0.15 to 0.25 w / v%, preferably 0.19 to 0.23 w / v%, It is 0.195 to 0.224 w / v%.
  • the range of the concentration of sodium citrate dihydrate is, for example, 0.05 to 0.5 w / v%, 0.1 to 0.4 w / v%, preferably 0.12 to 0. It is 39 w / v%, 0.123 to 0.384 w / v%.
  • the concentration of the sodium citrate converted to sodium citrate dihydrate in the storage solution is set to be equivalent. It is preferable to do.
  • the range of the concentration of the citric acid monohydrate is, for example, 0.01 to 0.15 w / v%, 0.03 to 0.14 w / v%, preferably 0.035 to 0.135 w. / V%, 0.038 to 0.134 w / v%.
  • citric acid is used instead of the citric acid monohydrate, it is preferable to set the concentration of the citric acid converted to citric acid monohydrate in the storage solution to be equal. .
  • the storage solution of the present invention preferably contains the sugar and the electrolyte.
  • the electrolyte preferably contains any one or more of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate and citric acid, and all of them are included. Is more preferred.
  • concentrations of the sugar and the electrolyte may be combined with any of the examples described above.
  • the preservation solution of the present invention may contain, for example, platelets.
  • the preservation solution of the present invention can also be referred to as, for example, a platelet preparation.
  • the platelets may contain, for example, only platelets, or may contain cellular components other than platelets.
  • the former is preferred. In the former case, the platelets are obtained, for example, by the method for producing purified platelets of the present invention it can.
  • the preservation solution of the present invention may contain other components, documents to be handled, attached documents, and the like.
  • the preservation solution of the present invention may be contained, for example, in a bag such as an infusion bag or a blood bag.
  • the preservation solution of the present invention may be produced by mixing various components or may be produced using a commercially available product.
  • the storage solution of the present invention may be mixed with bicarbonate Ringer's solution such as bicarbon infusion solution and albumin, or the bicarbonate Ringer's solution and blood storage solution such as ADC-A solution may be mixed.
  • it may be produced by adding albumin.
  • ACD-A solution manufactured by Terumo Corporation
  • bicarbon infusion solution manufactured by Otsuka Pharmaceutical Co., Ltd.
  • the storage solution is, for example, the ACD-A solution based on the volume (B) of the bicarbon infusion solution.
  • the volume (Ac) is, for example, 0 ⁇ B ⁇ Ac ⁇ 0.2 ⁇ B, preferably 0.05 ⁇ B ⁇ Ac ⁇ 0.2 ⁇ B, more preferably 0.1 ⁇ B ⁇ Ac ⁇ 0. It can be prepared by adding to 2 ⁇ B.
  • the preservation solution is, for example,
  • the volume (Al) of the human serum albumin preparation is, for example, 0 ⁇ B ⁇ Al ⁇ 0.25 ⁇ B, preferably 0.0125 ⁇ B ⁇ Al ⁇ 0, based on the volume (B) of the bicarbon infusion solution. It can be prepared by adding 15 ⁇ B, more preferably 0.025 ⁇ B ⁇ Al ⁇ 0.1 ⁇ B or 0.05 ⁇ B ⁇ Al ⁇ 0.1 ⁇ B.
  • the storage solution may be added to a bicarbon infusion solution (manufactured by Otsuka Pharmaceutical Co., Ltd.) with ACD-A solution and human serum albumin preparation.
  • a bicarbon infusion solution manufactured by Otsuka Pharmaceutical Co., Ltd.
  • ACD-A solution and human serum albumin preparation can be used for the addition ratio of the ACD-A solution and the human serum albumin preparation.
  • the platelet preservative of the present invention is characterized in that it contains albumin as described above.
  • the preservative of the present invention is characterized by containing albumin, and the other constitution and conditions are not particularly limited. According to the present invention, for example, since the deterioration of platelets can be suppressed, platelets can be suitably stored.
  • the preservative of the present invention can be used, for example, the description of the method of producing purified platelets of the present invention, and the preservative and storage method of the present invention described later.
  • the albumin is preferably serum albumin.
  • the content of the albumin can be set, for example, to be the concentration of albumin in the storage solution of the present invention when mixed with a prescribed amount of water.
  • the preservative of the present invention preferably comprises sugar, more preferably glucose.
  • the content of the sugar can be set, for example, to be the concentration of the sugar in the storage solution of the present invention when it is mixed with a prescribed amount (preset amount) of water.
  • the preservative of the present invention preferably contains an electrolyte.
  • the electrolyte preferably contains one or more selected from sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate, and citric acid, and more preferably all of them.
  • the content of each electrolyte can be set, for example, to be the concentration of each electrolyte in the explanation of the storage solution of the present invention when mixed with a prescribed amount of water.
  • the preservative of the present invention preferably comprises the sugar and the electrolyte.
  • each configuration may be contained in the same container in a mixed or unmixed state, or each may be contained in a separate container.
  • the preservative of the present invention can also be referred to, for example, a preservation kit.
  • the dosage form of the preservative of the present invention is not particularly limited, and examples thereof include liquid and solid.
  • the method of storing platelets of the present invention is characterized by including the step of storing platelets in the presence of albumin as described above.
  • the storage method of the present invention is characterized by storing platelets in the presence of albumin, and the other steps and conditions are not particularly limited. According to the present invention, for example, since the deterioration of platelets can be suppressed, platelets can be suitably stored.
  • the storage method of the present invention can use the description of the method for producing purified platelets of the present invention, the storage solution, and the preservative.
  • the storage step stores platelets in the presence of albumin.
  • the storage step can be carried out, for example, by bringing the platelets into contact with the storage solution of the present invention, and storing the obtained mixture.
  • the platelets may contain, for example, only platelets, or may contain cellular components other than platelets.
  • the former is preferred. In the former case, the platelets are obtained, for example, by the method for producing purified platelets of the present invention it can.
  • the albumin is preferably serum albumin.
  • concentration of albumin for example, the description of the concentration of albumin in the storage solution of the present invention can be used.
  • the storage conditions of the platelets are not particularly limited, and can be appropriately set based on, for example, storage conditions of known platelet preparations.
  • the storage temperature of the platelets is, for example, 15 to 37 ° C., preferably 20 to 24 ° C.
  • the storage time of the platelets is, for example, 0 to 14 days, preferably 4 days or less.
  • the storage pH of the platelets is, for example, pH 6.5 or higher, preferably pH 6.5 to 7.5. Also, the platelets may be gently shaken and agitated during storage of the storage container containing the platelets.
  • save method of this invention implements the said preservation
  • sugar is preferably glucose.
  • concentration of sugar for example, the description of the concentration of sugar in the storage solution of the present invention can be used.
  • the storage step is preferably carried out in the presence of an electrolyte.
  • the electrolyte preferably contains one or more selected from sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate, and citric acid, and more preferably all of them. .
  • concentration of the electrolyte for example, the description of the concentration of the electrolyte in the storage solution of the present invention can be used.
  • the present invention is the use of albumin for the storage of platelets and the use of albumin for the storage of platelet preparations.
  • the present invention can use, for example, the description of the method for producing purified platelets of the present invention, the storage solution, the preservative, and the storage method.
  • Example 1 It was confirmed that damage to platelets was suppressed by the method for producing platelets of the present invention as compared to the above-mentioned method.
  • HPC hematopoietic progenitor cells
  • the gene transfer system utilized a lentiviral vector system.
  • the lentiviral vector is a Tetracycline-regulated Tet-on® gene expression induction system vector.
  • the mOKS cassette of LV-TRE-mOKS-Ubc-tTA-I2G (Reference 6 below) was prepared by replacing it with c-MYC, BMI1, or BCL-xL.
  • Vectors into which c-MYC, BMI1 or BCL-xL has been introduced are described as LV-TRE-c-Myc-Ubc-tTA-I2G, LVTRE-BMI1-Ubc-tTA-I2G, and LV-TRE-BCL-, respectively.
  • c-MYC, BMI1, and BCL-xL viruses were generated by gene transfer into 293T cells with the lentiviral vector. By infecting the cells of interest with the obtained virus, the c-MYC, BMI1 and BCL-xL genes are introduced into the genome sequence of the cells of interest. These genes stably introduced into the genome sequence can be force-expressed by adding doxycycline (clontech # 631311) to the medium.
  • doxycycline clontech # 631311
  • virus particles were added to the medium so as to obtain MOI (multiplicity of infection) 20 respectively, and infection was performed by spin infection (32 ° C., 900 rpm, 60 minutes centrifugation). The spin infection was performed twice every 12 hours.
  • the medium was a basic medium (15% Bovine Serum (GIBCO), 1% Penicillin-Streptomycin-Glutamine (GIBCO), 1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO), 0.45 mmol / L 1-Thioglycerol (Sigma-Aldrich), 50 ng / mL Human thrombopoietin (TPO) (R & D SYSTEMS) in IMDM containing 50 ⁇ g / mL L-Ascorbic Acid (Sigma-Aldrich) (Iscove's Modified Dulbecco's Medium) (Sigma-Aldrich) Protamine was added to a final concentration of 50 ng / mL
  • virus-infected blood cells obtained by the above method were collected by pipetting, and the supernatant was removed by centrifugation at 1200 rpm for 5 minutes. Thereafter, they were suspended in fresh differentiation medium and seeded onto fresh C3H10T1 / 2 feeder cells (6 well plate). Passage was performed on the 9th day of the infection by the same procedure. At the time of re-seeding, after counting the number of cells, the cells were seeded on C3H10T1 / 2 feeder cells so as to be 1 ⁇ 10 5 cells / 2 mL / well (6 well plate).
  • Virus-infected blood cells are collected, and per 1.0 ⁇ 10 5 cells, anti-human CD41a-APC antibody (BioLegend), anti-human CD42 b-PE antibody (eBioscience), and anti-human CD235 ab-pacific blue (e-bioCD)
  • the blood cells were reacted with the antibody using 2 ⁇ L, 1 ⁇ L, and 1 ⁇ L of BioLegend) antibody, respectively.
  • analysis was performed using FACS Verse (trademark) (BD Biosciences).
  • cells having a CD41a positive rate of 50% or more were regarded as megakaryocyte self-proliferating strains.
  • BCL-xL was introduced into the megakaryocyte self-growing strain on the 14th day of the infection by lentivirus method using BCL-xL virus.
  • Virus particles were added to the medium to an MOI of 10 and infected by spin infection (32 ° C., 900 rpm, 60 minutes centrifugation). Forced expression of the BCL-xL gene was performed by adding DOX to the culture medium to 1 ⁇ g / mL DOX.
  • a megakaryocyte self-proliferating strain into which BCL-xL has been transfected on the 24th day of the infection is recovered, and per 1.0 ⁇ 10 5 cells, an anti-human CD41a-APC antibody (BioLegend), an anti-human CD42b-PE antibody (eBioscience), and Anti-human CD235ab-Pacific Blue (Anti-CD235ab-PB; BioLegend) antibodies were immunostained using 2 ⁇ L, 1 ⁇ L and 1 ⁇ L respectively and then analyzed using FACS VerseTM. Then, on the 24th day of infection, a strain having a CD41a positive rate of 50% or more was defined as an immortalized megakaryocyte cell line. Those cells which were able to proliferate for more than 24 days after infection were designated as immortalized megakaryocyte cell lines SeV2-MKCL and NIH5-MKCL.
  • SeV2-MKCL and NIH5-MKCL were statically cultured in a 10 cm dish (10 mL / dish).
  • the culture medium added the following components to IMDM as a basic culture medium (concentration is final concentration).
  • the culture conditions were 27 ° C. and 5% CO 2 .
  • FBS Sigma # 17 2012 lot.
  • culture was carried out for 6 days in the presence of the above-mentioned platelet production medium to produce platelets, thereby producing a culture of megakaryocytes.
  • the culture of the megakaryocyte is concentrated using a hollow fiber membrane (plasma flow OP, manufactured by Asahi Kasei Medical Co., Ltd.), and the concentrate of the culture of the megakaryocyte obtained is used as a storage bag It was collected.
  • a hollow fiber membrane plasma flow OP, manufactured by Asahi Kasei Medical Co., Ltd.
  • the cell bag containing the culture to which the ACD-A solution had been added was joined to the ACP 215 disposable set using a sterile junction device. Then, the ACP 215 was started up in the service mode, and the rotation speed was set to 2500 rpm (350 ⁇ g). ACP 215 was started, and the culture in the cell bag was introduced into the separation bowl at about 100 mL / min. The liquid component flowing out of the separation bowl was collected in a collection bag. After introducing the whole amount of culture in the cell bag into the separation bowl, an additional 500 mL of wash stock was introduced into the separation bowl. After the washing and storage solution was introduced into the separation bowl, the centrifuge was stopped and a collection bag (a collected liquid component including platelets) was separated using a tube sealer.
  • a collection bag a collected liquid component including platelets
  • a new ACP 215 disposable set was used to join a collection bag containing the collection solution (including platelets) using the aseptic bonding apparatus. Launched ACP 215 in normal mode.
  • the program setting was WPC, and according to the instruction of the instrument, the ACP 215 disposable set was set in which the collection bag was joined.
  • the collection bag containing the collection solution was placed on the stand.
  • centrifugation speed of ACP 215 was changed to 5000 rpm (1398.8 ⁇ g), and centrifugation was started.
  • Automatic injection was changed to manual injection when the recovery liquid was introduced into the separation bowl.
  • the recovered solution was introduced into the separation bowl at an introduction rate of about 100 mL / min. After the total amount of the recovered solution was added to the separation bowl, an additional 500 mL of washing solution was added.
  • the platelets and the megakaryocytes are classified according to the particle size represented by forward scattered light (FSC) and side scattered light (SSC), and further, In each section, the particles that are positive for CD41a and CD42b are taken as platelets, and the particles that are positive for CD41a, CD42a and CD42b are taken as megakaryocytes, so that the number of platelets and the number of megakaryocytes in the culture of megakaryocyte and purified platelets Was calculated. Then, based on the obtained platelet count and megakaryocyte count, the platelet recovery rate and megakaryocyte removal rate were calculated. The recovery rate of the platelets was calculated by the following equation (3), and the removal rate of the megakaryocytes was calculated by the following equation (4). These results are shown in Table 2 below.
  • FSC forward scattered light
  • SSC side scattered light
  • R (M b -M a ) / M b (4)
  • R Megakaryocyte removal rate (%)
  • M b Megakaryocyte number in culture of megakaryocytes
  • M a Megakaryocyte number in purified platelets
  • Examples 1-1 and 1-2 show the removal rate of megakaryocytes equal to or higher than Comparative Examples 1-1 to 1-4, confirming that platelets can be purified with sufficient purity. did it. Further, it was found that the recovery rate of platelets was increased in Examples 1-1 and 1-2 as compared with Comparative Examples 1-1 to 1-4.
  • the method for producing platelets of the present invention suppresses damage to platelets as compared to the above-mentioned method.
  • the method for producing platelets of the present invention is improved in platelet collection efficiency as compared with the above-mentioned method.
  • Example 2 By the method for producing platelets of the present invention, it was confirmed that purified platelets can be produced in a short time as compared with the time when the aforementioned method is carried out so as to reduce damage to the platelets.
  • the processing time required for producing platelets from 50000 mL of the culture of megakaryocyte was simulated.
  • the introduction speed (processing speed) in each step was the speed at which damage to platelets was reduced when each processing was actually performed.
  • 3000 mL of washing storage solution was added.
  • the total treatment time is 462 minutes, whereas in the platelet production method of the present invention, the total treatment time is 241 minutes. , Processing time was halved.
  • purified platelets can be produced in a short time by the method for producing platelets of the present invention as compared with the time when the above-mentioned method is carried out so as to reduce damage to platelets.
  • Example 3 It was confirmed that the preservation solution of the present invention can suppress the deterioration of platelets during storage.
  • the platelets were purified in the same manner as in Example 1 except that the washed platelets were collected using a stock solution.
  • the above-mentioned preservation solution contains human serum so as to obtain 5 v / v% ACD-A solution (5 mL of ACD-A solution per 1 L of Bikanate infusion) and a predetermined concentration (0, 1.25 or 5 w / v%) in Bicanate infusion.
  • Albumin was added and adjusted to pH 7.2 with NaOH.
  • Table 5 The composition of each storage solution is shown in Table 5 below.
  • the platelets in the stock solution were then stored at 22 ° C. for 24, 48, 72 or 168 hours.
  • the storage temperature was 22 ° C., and during storage, the bag containing platelets was gently shaken and agitated. Then, platelets at the start of storage (0 hour) and after storage were collected, and in the same manner as in Example 1 (4), the percentage of particles annexin V-positive was measured.
  • Table 6 the ratio shown in parentheses means the increase ratio of Annexin V-positive particles based on the storage start time.
  • the preservation solution of the present invention can suppress deterioration of platelets during storage, and in particular, can be suitably used for long-term storage of platelets.
  • Example 4 It was confirmed that the preservation solution of the present invention can suppress damage to platelets at the time of centrifugation.
  • the platelet damage at the time of centrifugation decreased with the increase of the addition amount of the ACD-A solution.
  • concentrations of electrolytes and sugars in each cleaning and storage solution are as shown in Table 7 above, and satisfy the numerical ranges of the concentrations of each electrolyte and sugar shown in the embodiment. Therefore, it was found that damage to platelets at the time of centrifugation can be suppressed by setting the concentration range of each electrolyte and sugar shown in the embodiment to a numerical value.
  • the preservation solution of the present invention can suppress damage to platelets during centrifugation.
  • the centrifugation step is A first centrifugation step of separating the concentrate with a centrifugal force of 150 to 550 g;
  • the centrifugation step is According to the centrifugal force, an inner wall to which the component having a large specific gravity in the concentrate or the recovered liquid component is attached, and an outlet from which the liquid component after separation of the concentrate or the recovered liquid component is discharged
  • the method for producing purified platelets according to claim 2 which is carried out in a centrifugal separator comprising a rotatable separation bowl, and a recovery means for recovering the liquid component having flowed out from the outlet.
  • Method of producing platelets (Supplementary Note 5) A separated component recovery step of recovering separated components in the separation bowl after the second centrifugation step prior to the washing step; And a separation component concentration step of concentrating the separation component.
  • the concentration step including a production step of producing said culture of megakaryocytes,
  • the production process is A first expression step of forcibly expressing an oncogene and a polycomb gene in cells undifferentiated from the megakaryocytes;
  • (Supplementary Note 11) Including a formulation step of producing a platelet preparation from purified platelets, The method for producing a platelet preparation, characterized in that the purified platelets are obtained by the method for producing purified platelets according to any one of appendices 1 to 10.
  • (Supplementary Note 12) Including a blood preparation process for manufacturing a blood preparation by mixing purified platelets with other components, The method for producing a blood preparation, wherein the purified platelets are obtained by the method for producing purified platelets according to any one of appendices 1 to 10.
  • a platelet storage solution characterized by containing albumin.
  • the electrolyte comprises at least one selected from the group consisting of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate and citric acid.
  • (Appendix 28) A method for storing platelets, comprising the step of storing platelets in the presence of albumin. (Supplementary Note 29) 29.
  • the electrolyte comprises at least one selected from the group consisting of sodium chloride, potassium chloride, calcium chloride, magnesium chloride, sodium hydrogencarbonate, sodium citrate and citric acid.
  • the culture of megakaryocytes is concentrated prior to the separation of the platelets.
  • the volume of the sample (eg, concentrate) to be subjected to the centrifugation step can be reduced. Therefore, the method for producing platelets of the present invention can reduce the time required to separate the platelets in the centrifugation step and shorten the time to purify the platelets from the culture of megakaryocytes, as described above. As compared with the method, platelets can be obtained in a short time.
  • the production method of the present invention does not require separation of platelets by subjecting culture of a large amount of megakaryocytes to filter separation, it is not necessary to separate platelets. It can be avoided. For this reason, the method for producing platelets of the present invention causes less damage to platelets as compared to the above-mentioned method. Therefore, the present invention is extremely useful in, for example, the field of cell medicine using platelets, the field of medicine, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Vascular Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Anesthesiology (AREA)
  • Environmental Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

巨核球の培養物から血小板をフィルタで分離後、中空糸膜を用いて血小板を濃縮し、さらに、中空糸膜を用いて血小板を洗浄する方法と比較して、血小板へのダメージが少なく、かつ血小板へのダメージが低減されるように前述の方法を実施した際の時間と比較して、短時間で実施可能な血小板の製造方法を提供する。 本発明の精製血小板の製造方法は、巨核球の培養物を濃縮する濃縮工程、および 得られた濃縮物から血小板を遠心分離する遠心分離工程を含むことを特徴とする。

Description

精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法
 本発明は、精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法に関する。
 血小板製剤は、手術、傷害等の出血時、その他血小板の減少を伴う患者に対して投与される。血小板製剤は、献血で得られた血液から現在製造されている。しかしながら、人口構成の変化から、献血量が低減し、血小板製剤が不足することが懸念されている。
 また、献血の提供者が細菌等の感染症に罹患している場合、血液が細菌汚染されている可能性があるため、細菌汚染された血小板製剤の投与による感染症のリスクがある。このため、in vitroで血小板を製造する方法が開発されている(非特許文献1)。また、製造された血小板から血小板製剤を製造する場合、培養物から血小板を精製し、血液バッグ等に充填する。
 巨核球の培養物から血小板を精製する方法として、前記巨核球の培養物から前記血小板をフィルタで分離後、中空糸膜を用いて血小板を濃縮し、さらに、中空糸膜を用いて血小板を洗浄する方法(以下、「前述の方法」ともいう)が考えられた。
 しかしながら、1つの血小板製剤を製造するには、多量の巨核球の培養物(例えば、50Lの培養物)から血小板を分離および精製する必要がある。このため、一定時間で培養物から血小板製剤を製造しようとすると、フィルタ分離を行なう際の流量を多くする必要があった。しかしながら、フィルタ分離を行なう際の流量を多くすると、フィルタ等の目詰まりが生じた際に培養物にかける圧力を高める必要がある。このため、培養物中の血小板にかかる圧力も高くなり、血小板がダメージ(例えば、アネキシンV(Annexin V)の発現上昇)をうけるという問題があった。
 そこで、本発明は、例えば、前述の方法と比較して、血小板へのダメージが少なく、且つ血小板へのダメージが低減されるように前述の方法を実施した際の時間と比較して、短時間で実施可能な精製血小板の製造方法の提供を第1の目的とする。
 また、本発明は、得られた精製血小板の保存に適した血小板保存液の提供を第2の目的とする。
 前記第1の目的を達成するために、本発明の精製血小板の製造方法(以下、「血小板の製造方法」ともいう)は、巨核球の培養物を濃縮する濃縮工程、および
得られた濃縮物から血小板を遠心分離する遠心分離工程を含むことを特徴とする。
 本発明の血小板製剤の製造方法は、精製血小板から血小板製剤を製造する製剤工程を含み、
前記精製血小板は、前記本発明の精製血小板の製造方法で得られたことを特徴とする。
 本発明の血液製剤の製造方法は、精製血小板と他の成分とを混合することにより、血液製剤を製造する血液製剤工程を含み、
前記精製血小板は、前記本発明の精製血小板の製造方法で得られたことを特徴とする。
 前記第2の目的を達成するために、本発明の血小板保存液(以下、「保存液」ともいう)は、アルブミンを含むことを特徴とする。
 本発明の血小板保存剤(以下、「保存剤」ともいう)は、アルブミンを含むことを特徴とする。
 本発明の血小板の保存方法(以下、「保存方法」ともいう)は、アルブミンの存在下、血小板を保存する保存工程を含むことを特徴とする。
 本発明によれば、前述の方法と比較して、血小板へのダメージが少なく、且つ血小板へのダメージが低減されるように前述の方法を実施した際の時間と比較して、短時間で精製血小板を製造できる。また、本発明によれば、血小板を好適に保存できる。
図1は、実施例1における濃縮システムを示す模式図である。
<精製血小板の製造方法>
 本発明の精製血小板の製造方法は、前述のように、巨核球の培養物を濃縮する濃縮工程、および得られた濃縮物から血小板を遠心分離する遠心分離工程を含むことを特徴とする。本発明の血小板の製造方法は、前記遠心分離工程において、前記濃縮工程で得られた濃縮物から血小板を遠心分離することが特徴であり、その他の構成および条件は、特に制限されない。本発明の血小板の製造方法は、例えば、後述する本発明の血小板製剤の製造方法、および血液製剤の製造方法の説明を援用できる。
 本発明の血小板の製造方法は、前記血小板の分離に先立ち、前記巨核球の培養物を濃縮する。このため、本発明の血小板の製造方法によれば、前記遠心分離工程に供するサンプル(例えば、濃縮物)の体積を低減できる。したがって、本発明の血小板の製造方法は、前記遠心分離工程において、前記血小板の分離に要する時間を低減でき、前記巨核球の培養物から血小板を精製する時間を短縮することができるため、前述の方法と比較して、短時間で血小板を得ることができる。また、本発明の血小板の製造方法は、多量の巨核球の培養物をフィルタ分離に供し、血小板を分離する必要がないため、例えば、前述の方法において、流量を多くした際に生じる血小板へのダメージを回避することができる。このため、本発明の血小板の製造方法は、前述の方法と比較して、血小板へのダメージが少ない。
 本発明において、「巨核球」は、生体内においては骨髄中に存在する最大の細胞であり、血小板を放出する細胞および同等の機能を有する細胞を意味する。前記同等の機能を有する細胞は、血小板の産生能を有する細胞を意味する。本発明において、巨核球は、多核化(多倍体化)前の巨核球、すなわち、未成熟な巨核球または増殖期の巨核球でもよいし、多核化後の巨核球(多核化巨核球)でもよい。具体例として、前記巨核球は、例えば、前巨核芽球、巨核芽球、前巨核球、および成熟巨核球のいずれでもよい。前記多核化後の巨核球が有する染色体のセット数は、2セットを超えればよく、具体例として、16~32セットである。
 前記巨核球の由来は、特に制限されないが、例えば、ヒトおよび非ヒト動物があげられる。前記非ヒト動物は、例えば、サル、ゴリラ、チンパンジー、マーモセット等の霊長類、マウス、ラット、イヌ、ネコ、ウサギ、ヒツジ、ウマ、モルモット等があげられる。
 本発明において、前記巨核球は、細胞表面マーカーにより特定できる。前記巨核球がヒト由来の場合、前記細胞表面マーカーは、CD41a、CD42aおよびCD42bがあげられる。すなわち、前記巨核球は、CD41a、CD42aおよびCD42bが陽性の細胞である。前記巨核球がヒト由来の場合、前記細胞表面マーカーは、例えば、CD9、CD61、CD62p、CD42c、CD42d、CD49f、CD51、CD110、CD123、CD131、およびCD203cからなる群から選択された少なくとも1つであってもよい。
 本発明において、「血小板」は、血液中の細胞成分の一つであり、CD41aおよびCD42bが陽性である細胞成分を意味する。前記血小板は、例えば、細胞核を有さず、また、前記巨核球と比較して、大きさが小さい。このため、前記血小板と前記巨核球とは、例えば、細胞核の有無および/または大きさにより区別できる。前記血小板は、血栓形成と止血において重要な役割を果たすとともに、損傷後の組織再生や炎症の病態生理にも関与することが知られている。また、前記血小板は、出血等により血小板が活性化されると、その膜上にIntegrin αIIBβ3(glycoprotein IIb/IIIa; CD41aとCD61の複合体)等の細胞接着因子の受容体が発現することが知られている。また、前記血小板が活性化されると、血小板同士が凝集し、血小板から放出される各種の血液凝固因子によってフィブリンが凝固することにより、血栓が形成され、止血が進む。本発明において、前記血小板の由来は、前記巨核球の由来と同じである。
 ダメージを受けた血小板は、異常な血小板となることが知られている。前記異常な血小板では、陰性電荷リン脂質であるホスファチジルセリンが脂質二重層の内側から外側に露出する。また、ホスファチジルセリンは、生体内において血小板の活性化に伴って表面に露出し、そこに多くの血液凝固因子が結合することによって、血液凝固カスケード反応が増幅されることが知られている。一方、前記異常な血小板では、常に多くのホスファチジルセリンが表面に露出しているため、異常な血小板が患者に投与されると、過剰な血液凝固反応を引き起こし、播種性血管内凝固症候群等の重篤な病態に繋がる可能性がある。また、ホスファチジルセリンには、アネキシンVが結合する。前記血小板表面上のホスファチジルセリンは、例えば、蛍光標識したアネキシンVの結合量を指標にしてフローサイトメータを用いて検出することができる。このため、前記血小板へのダメージは、血小板分画中のアネキシンV陽性率の変化、すなわち、アネキシンが結合する血小板の割合または数の変化として評価することができる。具体例として、精製時に血小板へのダメージがある場合、例えば、前記精製後の血小板におけるアネキシンVの陽性率は、前記精製前のアネキシンVの陽性率と比較して上昇する。
 本発明において、前記血小板の生理活性は、公知の方法により評価することができる。前記血小板の生理活性は、例えば、活性化した血小板膜上のIntegrin αIIBβ3に特異的に結合するPAC-1に対する抗体を用いて、活性化した血小板量を評価することができる。また、前記血小板の生理活性は、例えば、血小板の活性化マーカーであるCD62p(P-selectin)を抗体で検出し、活性化した血小板量を評価してもよい。前記血小板の生理活性は、例えば、フローサイトメトリーを用い、活性化非依存性の血小板マーカーCD61またはCD41に対する抗体でゲーティングを行い、その後、抗PAC-1抗体や抗CD62p抗体の結合を検出することにより実施してもよい。これらの血小板の生理活性の評価は、アデノシン二リン酸(ADP)存在下で実施してもよい。
 本発明において、前記血小板の生理活性の評価は、例えば、ADP存在下でフィブリノーゲンと結合するか否かを見て評価してもよい。前記血小板がフィブリノーゲンと結合することにより、血栓形成の初期に必要なインテグリンの活性化が生じる。さらに、前記血小板の生理活性は、例えば、国際公開第2011/034073号の図6に示されるように、in vivoでの血栓形成能を可視化して観察する方法で実施してもよい。
 前記血小板は、例えば、前記血小板のCD42bの発現率が低い場合、またはアネキシンV陽性率が低い場合、劣化している、または異常である(以下、あわせて「劣化」ともいう)と評価できる、すなわち、前記血小板の生理活性は低いと評価できる。また、劣化している血小板は、例えば、血栓形成機能(血液凝固機能)および止血機能を十分に有さず、臨床的な有用性が低い。
 本発明において、「血小板の劣化」は、血小板表面のCD42b(GPIbα)が減少することを意味する。したがって、劣化した血小板には、例えば、CD42bの発現が低下した血小板、およびシェディング反応によってCD42bの細胞外領域が切断された血小板が含まれる。前記血小板表面のCD42bがなくなると、フォン・ウィルブランド因子(von Willebrand factor:VWF)との会合ができなくなり、結果的に、血小板の血液凝固機能が失われる。前記血小板の劣化は、血小板分画中のCD42b陽性率(またはCD42b陽性粒子数)に対するCD42b陰性率(またはCD42b陰性粒子数)を指標として評価することができる。前記CD42b陽性率に対するCD42b陰性率が高いほど、または、CD42b陽性粒子数に対するCD42b陰性粒子数が多いほど、血小板は劣化していると評価できる。CD42b陽性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合できる血小板の割合を意味し、CD42b陰性率とは、血小板分画に含まれる血小板のうち、抗CD42b抗体が結合しない血小板の割合を意味する。
 前記巨核球の培養物は、例えば、前記巨核球を培養することにより生産することができる。このため、本発明の血小板の製造方法は、例えば、前記濃縮工程に先立ち、前記巨核球の培養物を生産する生産工程を含んでもよい。前記生産工程は、例えば、培地の存在下、前記巨核球を培養することにより実施できる。前記巨核球の培養は、例えば、フィーダ細胞上で実施してもよいし、フィーダ細胞なしで実施してもよい。前記巨核球は、例えば、浮遊培養できるため、前記フィーダ細胞なしで培養できる。前記巨核球の培養物は、前記血小板を含む。
 前記生産工程において、前記巨核球の培養条件は、特に制限されず、前記巨核球の通常の培養条件を採用できる。具体例として、培養温度は、例えば、約35~約42℃、約36~約40℃、約37~約39℃である。CO濃度は、例えば、約5~約15%である。O濃度は、例えば、約15~約25%、約20%である。
 前記培地は、特に制限されず、例えば、前記巨核球から血小板が産生するのに好適な公知の培地およびそれに準ずる培地があげられる。具体例として、前記培地は、例えば、動物細胞の培養に用いる培地を基礎培地として調製することができる。前記基礎培地は、例えば、IMDM培地、Medium 199培地、Eagle’s Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco’s modified Eagle’s Medium(DMEM)、Ham’s F12培地、RPMI1640培地、Fischer’s培地、Neurobasal(登録商標) Medium(Thermo Fisher Scientific社製)等の単独培地またはこれらの混合培地があげられる。前記培地は、例えば、血清または血漿を含んでもよいし、これらを含まない無血清培地でもよい。前記血清および血漿の由来は、前記巨核球の由来と同じ由来であることが好ましい。具体例として、前記巨核球がヒト由来である場合、前記血清および血漿は、それぞれ、ヒト由来であることが好ましい。
 前記培地は、例えば、他の成分を含んでもよい。前記他の成分は、特に制限されず、例えば、アルブミン、インスリン、トランスフェリン、セレン、脂肪酸、微量元素、2-メルカプトエタノール、チオールグリセロール、モノチオグリセロール(MTG)、脂質、アミノ酸(例えば、L-グルタミン)、アスコルビン酸、ヘパリン、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類、サイトカイン等があげられる。前記他の成分は、例えば、1種類でもよいし、2種類以上でもよい。前記サイトカインは、例えば、血球系細胞の分化を促進する物質であり、具体例として、血管内皮細胞増殖因子(VEGF)、トロンボポエチン(TPO)、各種TPO様作用物質、Stem Cell Factor(SCF)、ITS(インスリン-トランスフェリン-セレナイト)サプリメント、ADAM阻害剤、FLT阻害剤、WNT阻害剤、ROCK阻害剤、芳香族炭化水素受容体(AhR)阻害剤等があげられる。前記培地は、例えば、血清、インスリン、トランスフェリン、セリン、チオールグリセロール、アスコルビン酸、TPOを含むIMDM培地が好ましい。前記培地は、例えば、さらにSCFを含んでいてもよく、さらにヘパリンを含んでいてもよい。前記他の成分の濃度は、特に制限されない。前記TPOの濃度は、例えば、約10ng/mL~約200ng/mL、約50ng/mL~約100ng/mLである。前記SCFの濃度は、例えば、約10ng/mL~約200ng/mL、約50ng/mLである。前記ヘパリンの濃度は、例えば、約10U/mL~約100U/mL、約25U/mLである。前記培地は、例えば、さらに、ホルボールエステル(例えば、ホルボール-12-ミリスタート-13-アセタート;PMA)を含んでもよい。
 前記巨核球は、例えば、巨核球より未分化な細胞から誘導することができる。このため、本発明の血小板の製造方法は、例えば、前記巨核球の培養物の生産に先立ち、巨核球より未分化な細胞から前記巨核球を誘導する巨核球誘導工程を含んでもよい。
 前記「巨核球より未分化な細胞」は、前記巨核球への分化能を有する細胞を意味する。具体例として、前記巨核球より未分化な細胞は、例えば、造血幹細胞、造血前駆細胞、CD34陽性細胞、巨核球・赤芽球前駆細胞(megakaryocyte-erythroid progenitor:MEP)、巨核球前駆細胞等があげられる。前記巨核球より未分化な細胞は、例えば、骨髄、臍帯血、末梢血等から単離してもよいし、ES細胞(胚性幹細胞、embryonic stem cells)、人工多能性幹細胞(induced pluripotent stem cells、iPS細胞)、核移植ES細胞(ntES細胞)、生殖性幹細胞、体性幹細胞、胚性腫瘍細胞等の多能性細胞から誘導してもよい。
 前記巨核球の誘導方法は、特に制限されず、公知の誘導方法により実施できる。具体例として、前記巨核球の誘導方法は、例えば、国際公開第2011/034073号、国際公開2012/157586号等に記載された方法があげられる。具体例として、前記巨核球誘導工程では、例えば、前記巨核球より未分化な細胞に、癌遺伝子およびポリコーム遺伝子を強制発現させてもよい。これにより、前記巨核球誘導工程では、例えば、無限に増殖する不死化巨核球を得ることができる。さらに、例えば、前記不死化巨核球の前記強制発現を解除することにより、前記不死化巨核球を多核化巨核球に誘導し、血小板を産生させることができる。また、前記巨核球誘導工程では、例えば、前記巨核球前駆細胞にアポトーシス抑制遺伝子を強制発現させてもよい。これにより、前記巨核球誘導工程では、前記不死化巨核球を得ることができる。さらに、例えば、前記不死化巨核球の前記強制発現を解除することにより、前記不死化巨核球から多核化巨核球を誘導し、血小板を産生させることができる。
 前記巨核球誘導工程では、例えば、前記癌遺伝子、前記ポリコーム遺伝子、および前記アポトーシス抑制遺伝子を強制発現させてもよい。この場合、前記癌遺伝子、前記ポリコーム遺伝子、および前記アポトーシス抑制遺伝子の強制発現は、同時に行なってもよいし、別個に行なってもよい。具体例として、前記巨核球誘導工程では、前記癌遺伝子および前記ポリコーム遺伝子を強制発現後、前記強制発現を解除し、つぎに、前記アポトーシス抑制遺伝子を強制発現させてもよいし、前記癌遺伝子、前記ポリコーム遺伝子、および前記アポトーシス抑制遺伝子を強制発現させてもよいし、前記癌遺伝子および前記ポリコーム遺伝子を強制発現させ、さらに、前記アポトーシス抑制遺伝子を発現させてもよい。これにより、前記巨核球誘導工程では、前記不死化巨核球を得ることができる。さらに、例えば、前記不死化巨核球の前記強制発現を解除することにより、前記不死化巨核球から多核化巨核球を誘導し、血小板を産生させることができる。
 前記巨核球誘導工程は、例えば、各遺伝子の導入効率を向上できることから、前記巨核球より未分化な細胞に、癌遺伝子およびポリコーム遺伝子を強制発現させる第1の発現工程と、前記未分化な細胞において、Bcl-xL遺伝子等のアポトーシス抑制遺伝子を強制発現させる第2の発現工程と、前記強制発現を全て解除する解除工程とを含むことが好ましい。
 各遺伝子の強制発現および強制発現の解除は、例えば、国際公開第2011/034073号、国際公開第2012/157586号、国際公開第2014/123242号または下記参考文献1に記載された方法等の公知の方法、またはそれに準ずる方法で実施できる。具体例として、各遺伝子の強制発現および強制発現の解除は、例えば、薬剤応答性の遺伝子発現誘導システムを用いて実施できる。前記遺伝子発現誘導システムは、例えば、Tet-on(登録商標)システム、Tet-off(登録商標)システム等があげられる。前記Tet-onシステムを用いる場合、例えば、前記強制発現する工程では、テトラサイクリン、ドキシサイクリン等の遺伝子発現を誘導する薬剤の存在下、培養を実施し、前記強制発現を解除する工程では、前記薬剤の非存在下で、前記培養を実施する。
参考文献1:Nakamura S et al, “Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells.”, Cell Stem Cell, 2014, vol.14, No.4, pages 535-548
 本発明において、「癌遺伝子」は、生体内で細胞の癌化を誘導可能な遺伝子を意味し、例えば、c-MYC、N-MYC、L-MYC等のMYCファミリー遺伝子、SRCファミリー遺伝子、RASファミリー遺伝子、RAFファミリー遺伝子、c-kit(CD117)、PDGFR(血小板成長因子受容体)、Abl(Abelson murine leukemia viral oncogene homolog)等のプロテインキナーゼファミリー遺伝子等があげられる。
 本発明において、「ポリコーム遺伝子」は、CDKN2a(サイクリン依存性キナーゼ阻害2A、INK4a/ARF)を負に制御し、細胞老化を回避するために機能すると知られている遺伝子を意味する(下記参考文献2~4)。具体例として、前記ポリコーム遺伝子は、例えば、BMI1(Polycomb complex protein BMI-1、polycomb group RING finger protein 4 (PCGF4)、RING finger protein 51 (RNF51))、Mel18(Polycomb group RING finger protein 2)、Ring(Ring Finger Protein)1a/b、Phc(Polyhomeotic Homolog)1/2/3、Cbx(Chromobox)2/4/6/7/8、Ezh2(Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit)、Eed(Embryonic Ectoderm Development)、Suz12(SUZ12 Polycomb Repressive Complex 2 Subunit)、HADC(Histone deacetylases)、Dnmt(DNA (cytosine-5)-methyltransferase)1/3a/3b等があげられる。
参考文献2:小黒秀行ら、「ポリコーム群蛋白複合体による幹細胞の老化制御」、再生医療、2007年、第6巻、第4号、26-32頁
参考文献3:Jesus Gil et.al, “ Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all”, Nature Reviews Molecular Cell Biology, 2007, vol.7, pages 667-677
参考文献4:Soo-Hyun Kim et.al., “ Absence of p16INK4a and truncation of ARF tumor suppressors in chickens”, PNAS, 2003, vol.100, No.1, pages 211-216
 本発明において、「アポトーシス抑制遺伝子」は、細胞のアポトーシスを抑制可能な機能を有する遺伝子を意味し、例えば、BCL2(B-cell lymphoma 2)、Bcl-xL(B-cell lymphoma-extra large)、Survivin(Baculoviral IAP Repeat Containing 5)、MCL1(BCL2 Family Apoptosis Regulator)等があげられる。
 前記濃縮工程は、前述のように、前記巨核球の培養物を濃縮する工程である。前記巨核球の培養物は、前述のように、前記血小板を含む。また、前記巨核球の培養物は、例えば、前記巨核球、前記血小板等の固体画分と、前記培地等の液体画分とを含む混合液である。このため、前記濃縮工程では、例えば、前記巨核球の培養物における固体画分、具体的には、血小板を濃縮する。これにより、前記濃縮工程では、例えば、前記血小板を含む濃縮物を得ることができる。前記巨核球の培養物の濃縮方法は、特に制限されず、例えば、前記血小板を濃縮可能な公知の方法により実施できる。具体例として、前記濃縮工程は、例えば、公知の固液分離方法により実施でき、具体例として、濃縮部材を用いて実施してもよいし、遠心分離等により実施してもよい。前記濃縮部材は、特に制限されず、例えば、血小板の濃縮に好適な公知の濃縮部材を使用できる。前記濃縮部材は、中空糸膜、多孔構造体等があげられる。前記濃縮部材の孔径は、例えば、前記血小板を捕捉可能な孔径である。前記中空糸膜の種類は、特に制限されず、例えば、ポリエチレン製の中空糸膜等があげられ、具体例として、プラズマフローOP(旭化成メディカル)等があげられる。前記中空糸膜を用いて前記巨核球の培養物を濃縮する場合、前記巨核球の培養物の濃縮は、クロスフロー式で実施することが好ましい。
 前記濃縮部材を用いる場合、前記濃縮工程では、例えば、前記巨核球の培養物を含む培養槽と、前記濃縮部材と、導入管と、導出管とを含み、前記培養槽と前記濃縮部材の液体導入部とは、前記導入管に連通され、前記培養槽と前記濃縮部材の液体導出部とは、前記導出管に連通されている濃縮装置を用いて実施できる。前記濃縮部材として中空糸膜を用いる場合、前記液体導入部は、例えば、前記中空糸膜の内部に前記巨核球の培養物を導入可能であり、前記液体導出部は、例えば、前記中空糸膜の内部の濃縮物を前記導出管に導出可能である。そして、前記濃縮工程では、例えば、前記濃縮装置において、前記培養槽内の巨核球の培養物を、前記導入管および濃縮部材の液体導入部を通じて、前記濃縮部材に導入することにより濃縮し、得られた濃縮物を、前記濃縮部材の液体導出部および導出管を通じ、前記培養槽に導出することにより、前記巨核球の培養物の濃縮物を得ることができる。前記巨核球の培養物の導入および導出は、例えば、ポンプ等の送液手段を用いて、実施できる。前記濃縮装置内において、前記巨核球の培養物の前記濃縮部材への前記導入および導出は、1回実施してもよいし、複数回実施してもよい。後者の場合、前記濃縮工程は、例えば、前記濃縮装置内で、前記巨核球の培養物を循環させる工程ということもできる。前記濃縮装置は、例えば、さらに、排液槽と排液管とを含み、前記排液槽と前記濃縮部材の排液部とは、前記排液管により連通されてもよい。前記濃縮部材として中空糸膜を用いる場合、前記排液部は、例えば、前記中空糸膜の外部の排液を排液管に導出可能である。この場合、前記濃縮工程では、例えば、前記巨核球の培養物の濃縮と並行して、前記排液を排液槽に導出する。
 前記濃縮工程における前記巨核球の培養物の濃縮倍率は、特に制限されず、例えば、5~20倍、10~20倍である。前記濃縮倍率は、下記式(1)により算出できる。後述するように、前記分離工程後の分離成分を濃縮する場合、前記濃縮工程における前記巨核球の培養物の濃縮倍率は、例えば、5~20倍、10~20倍である。
 M=V/V   ・・・(1)
   M:濃縮倍率
   V:濃縮後の巨核球の培養物(濃縮物)の体積(L)
   V:濃縮前の巨核球の培養物の体積(L)
 前記遠心分離工程は、前述のように、得られた濃縮物から血小板を遠心分離する工程である。前記血小板の遠心分離方法および条件は、特に制限されず、前記血小板の遠心分離に用いられる公知の遠心分離方法および遠心分離条件により実施できる。前記遠心分離工程は、例えば、前記濃縮物を異なる遠心力で複数回遠心分離する工程を含んでもよい。前記遠心分離工程において複数回の遠心分離を実施する場合、前記遠心分離工程は、例えば、前記巨核球の培養物における巨核球と血小板とを遠心分離により分画する第1の遠心分離工程と、前記第1の遠心分離工程後の血小板を含む画分について、前記血小板を遠心分離により精製する第2の遠心分離工程とを含む。具体例として、前記遠心分離工程は、約150~約550×g(g:重力加速度)の遠心力で分離する第1の遠心分離工程と、前記第1の遠心分離工程で回収された液体成分を約600~約4000×gの遠心力で分離する第2の遠心分離工程とを含むことが好ましい。前記遠心分離工程は、例えば、公知の遠心分離装置を用いて実施できる。このため、前記第1および第2の遠心分離工程における前記遠心力は、遠心分離を実施する遠心分離装置のロータの回転数および回転半径に基づき、下記式(2)により算出できる。
 RCF=1119×r×N×10-8(×g)  ・・・(2)
   RCF:遠心力(相対遠心加速度)
   r  :回転半径の最大値(cm)
   N  :回転数(rpm)
 前記第1の遠心分離工程における遠心力は、約150~約550×gであればよく、前記巨核球および血小板等の固体画分の堆積による血小板へのずり応力(shear stress)を抑制でき、ずり応力による血小板の生理活性の発現をより抑制できることから、好ましくは、約160~約500×g、より好ましくは、約170~約400×gである。前記第1の遠心分離工程では、例えば、前記巨核球の培養物に、血小板保存液を添加してもよい。前記血小板保存液は、例えば、生物学的製剤基準血液保存液A液(Acid-Citrate-Dextrose;ACD-A)、ヒト血清アルブミンとACD-A液を含むビカネイト輸液等があげられる。前記血小板保存液としては、後述の本発明の保存液を用いることが好ましい。前記ACD-A液は、例えば、血液・血小板抗凝固作用を有し、血小板のエネルギー源であるグルコース供給源としても機能する。
 前記第2の遠心分離工程における遠心力は、約600~約4000×gであればよく、前記血小板の生理活性の喪失を抑制できることから、好ましくは約800~約3000×g、さらに好ましくは、約1000~約2000×gである。
 前記遠心分離工程は、前述のように、例えば、公知の遠心分離装置を用いて実施できる。前記遠心分離装置で用いるロータの種類は、特に制限されず、例えば、アングルロータ、スイングロータ、バッチロータ、連続ロータ、エルトリエーションロータ等があげられる。前記遠心分離装置は、例えば、前記遠心分離工程における血小板へのダメージを抑制できることから、遠心力に応じて、前記濃縮物または前記回収された液体成分(以下、「濃縮物等」ともいう)における比重の大きい成分を付着させる内壁と、前記濃縮物等の分離後の液体成分を流出させる流出口とを含む、回転可能な分離ボウル、および前記流出口から流出した液体成分を回収する回収手段を含む遠心分離装置で実施されることが好ましい。前記分離ボウルにおいて、前記内壁は、例えば、前記分離ボウルの底面の中心を通り、前記底面に垂直な軸を中心とした際に、前記流出口と比較して、外側に配置されている。前記分離ボウルが導入された前記濃縮物等を貯留可能な貯留槽を有する場合、前記内壁は、前記貯留槽の内壁としてもよい。また、前記貯留槽を有する場合、前記濃縮物等は、前記底面に垂直な軸を中心とした際に、外側から前記貯留槽に導入されることが好ましい。すなわち、前記濃縮物等の導入口は、前記貯留槽の外側で接続していることが好ましい。具体例として、前記遠心分離装置は、例えば、特開2005-296675号公報に記載の装置、特開平7-284529号公報に記載の装置等があげられる。また、前記遠心分離装置として、例えば、血液成分の分離に使用される市販の遠心分離装置または濃厚血小板製剤の血小板の洗浄に用いられている市販の装置等を用いてもよい。前記市販の装置は、例えば、HAEMONETICS社のACP215、テルモ社のCOBE2991等があげられる。
 前記分離ボウルを含む遠心分離装置では、例えば、前記分離ボウルを、その底面の中心を通り、前記底面に垂直な軸を中心に回転させながら、前記濃縮物等を導入すると、遠心力に応じて、比重の大きい成分は分離ボウルの内壁に付着・堆積し、比重の小さい成分は液体中に残る。このため、前記分離ボウルを含む遠心分離装置を用い、前記分離ボウルに、前記濃縮物等を所定速度で導入しながら遠心分離を実施し、同時に分離された液体成分を回収手段で回収することで、例えば、前記分離ボウルの容量とは関係なく、大量の濃縮物または回収された液体成分を連続的に分離することができる。前記第1の遠心分離工程において、前記比重の大きい成分は、例えば、前記巨核球であり、前記比重の小さい成分は、例えば、前記血小板である。また、前記第2の遠心分離工程において、前記比重の大きい成分は、例えば、血小板であり、前記比重の小さい成分は、例えば、タンパク質等の他の成分である。
 前記遠心分離装置において、前記比重の小さい成分を含む液体成分および前記比重の大きい成分は、例えば、前記回収手段により回収できる。前記回収手段は、例えば、前記分離ボウルの流出口に接続したチューブ等の管と、前記管に交換可能に接続した回収バッグを含む。前記回収バッグは、例えば、前記血小板の品質に影響を与えないものであればよく、例えば、市販の血液保存バッグ、血液成分保存バッグ等を使用できる。
 前記分離ボウルを含む遠心分離装置を用いる場合、前記第1の遠心分離工程では、例えば、前記分離ボウルを前述の遠心力で回転させることにより実施できる。具体的には、前記第1の遠心分離工程は、例えば、前記分離ボウルを前述の遠心力で回転させながら、前記濃縮物を前記分離ボウルに導入することにより実施する。これにより、例えば、前記巨核球と、前記血小板とを分離できる。また、前記第1の遠心分離工程後において、例えば、前記巨核球は、前記分離ボウルの内壁に付着し、前記血小板は、分離後の液体成分に残る。このため、例えば、前記回収手段を用いて、前記分離ボウルの液体成分を前記回収バック等に回収することにより、血小板を含む液体成分を回収できる。そして、前記血小板を含む液体成分を、例えば、前記第1の遠心分離工程で回収された液体成分として、前記第2の遠心分離工程に供する。
 前記第1の遠心分離工程において、前記巨核球の培養物の分離ボウルへの導入方法は、特に制限されず、例えば、前記遠心分離装置に備えられたポンプ等の送液手段を用いてもよいし、前記巨核球の培養物を入れた容器と分離ボウルをチューブで接続し、前記容器を高い位置に吊るし、チューブを通して前記巨核球の培養物を前記分離ボウル内に自然落下させてもよい。前記巨核球の培養物の導入速度は、特に制限されず、例えば、約50~約150mL/min、約80~約130mL/min、約100mL/minである。前記第1の遠心分離工程の実施温度は、特に制限されず、例えば、室温(例えば、25℃前後)である。また、前記第1の遠心分離工程における遠心時間は、特に制限されず、例えば、前記巨核球の培養物の体積を、前記巨核球の培養物の導入速度で除した時間、またはそれ以上である。
 前記第1の遠心分離工程後、例えば、前記分離ボウルを交換または洗浄してもよい。そして、前記第2の遠心分離工程を実施する。前記第2の遠心分離工程は、例えば、前記分離ボウルを前述の遠心力で回転させることにより実施できる。具体的には、前記第2の遠心分離工程は、例えば、前記分離ボウルを前述の遠心力で回転させながら、前記第1の分離工程で回収された液体成分を前記分離ボウルに導入することにより実施する。これにより、前記回収された液体成分から前記血小板を分離できる。
 前記第2の遠心分離工程において、前記回収された液体成分の分離ボウルへの導入方法は、特に制限されず、例えば、前記第1の遠心分離工程と同様に実施してもよいし、前記第1の遠心分離工程で得られた、回収された液体成分を含む回収バッグを高い位置に吊し、前記管を通して自然落下により前記分離ボウルに導入してもよい。前記回収された液体成分の導入速度は、特に制限されず、例えば、前記巨核球の培養物の導入速度の説明を援用できる。前記第2の遠心分離工程の実施温度は、特に制限されず、例えば、室温(例えば、25℃前後)である。また、前記第2の遠心分離工程における遠心時間は、特に制限されず、例えば、前記回収された液体成分の体積を、前記回収された液体成分の導入速度で除した時間、またはそれ以上である。
 本発明の血小板の製造方法は、例えば、さらに、前記遠心分離後の血小板を回収する回収工程を含んでもよい。前記回収方法は、特に制限されず、前記遠心分離工程における遠心分離条件に応じて、前記血小板を含む液体画分(液体成分)または固体画分(固体成分)を回収することにより実施できる。
 前記分離ボウルを含む遠心分離装置を用いる場合、前記第2の遠心分離工程後において、例えば、前記血小板は、前記分離ボウルの内壁に付着し、前記他の成分は、分離後の液体成分に残る。このため、前記回収工程では、例えば、まず、前記回収手段を用いて、前記分離ボウルの液体成分を回収する。つぎに、前記回収工程では、例えば、前記分離ボウルを揺動する。これにより、前記血小板は分離ボウルから振り落とされ、例えば、前記分離ボウル内に存在する洗浄保存液(例えば、残存する洗浄保存液)等の液体成分に懸濁される。そして、前記回収工程では、例えば、前記分離ボウルの流出口から加圧し、前記洗浄保存液を前記分離ボウルの導入口から導出することにより、前記血小板を回収する。具体的には、前記回収工程では、例えば、前記分離ボウルの流出口から空気等の気体を導入することにより、前記血小板を回収する。より具体的には、前記分離ボウルの流出口から前記空気等の気体を導入し、前記分離ボウルの導入口から血小板の入った洗浄保存液等の液体成分を回収する。なお、前記分離ボウルの液体成分の回収後に存在する洗浄保存液は、例えば、前記液体成分の回収後に、前記分離ボウルに残存する洗浄保存液でもよいし、前記液体成分の回収後に導入された洗浄保存液でもよいし、これらの混合液でもよい。また、前記分離ボウルが前記洗浄保存液の導入口を有する場合、前記血小板は、例えば、前記洗浄保存液の導入口から回収してもよい。前記洗浄保存液は、例えば、ビカーボン(BICARBON)輸液等の重炭酸リンゲル溶液等があげられる。前記洗浄保存液は、例えば、さらに、血小板保存液(ACD)、アルブミン等を含んでもよく、具体例として、5~20(v/v)%のACDおよび2.5~10(w/v)%アルブミンを含んでもよい。前記洗浄保存液は、例えば、第1および第2の分離工程における血小板の劣化を抑制できることから、後述の本発明の保存液が好ましい。
 本発明の血小板の製造方法は、例えば、前記第2の遠心分離工程後、前記分離ボウルに洗浄保存液を添加し、前記分離ボウルを回転させることにより洗浄する洗浄工程を含んでもよい。この場合、本発明の血小板の製造方法は、例えば、さらに、前記洗浄工程後、前記分離ボウルに回収液を添加し、前記分離ボウルを回転させることにより、血小板を回収する血小板回収工程を含んでもよい。本発明の血小板の製造方法は、前記洗浄工程を含むことで、例えば、前記第2の遠心分離工程において、前記血小板と共に付着・堆積する培地等の成分を除去できる。また、本発明の血小板の製造方法は、前記洗浄工程を含むことで、例えば、後述する血小板分離工程と組合せて実施した際に、分離部材の目詰まりを抑制でき、さらに短時間で精製血小板を製造できる。
 前記洗浄工程では、例えば、前記分離ボウル内に洗浄保存液を導入し、前記分離ボウルを約600~3600×gの遠心力で回転させる。これにより、例えば、前記血小板は、前記分離ボウルの内壁に付着し、前記培地等の成分は、洗浄後の液体成分に残る。前記洗浄保存液の導入方法は、特に制限されず、例えば、前記第1および第2の遠心分離工程と同様に実施できる。前記洗浄保存液の導入速度は、特に制限されず、例えば、一定速度で導入する。前記洗浄保存液は、例えば、ビカーボン輸液等の重炭酸リンゲル溶液を用いてもよい。前記洗浄保存液は、例えば、さらに、血小板保存液(ACD-A)、アルブミン等を含んでもよく、具体例として、5~20(v/v)%のACDおよび2.5~10(w/v)%アルブミンを含んでもよい。
 つぎに、前記血小板回収工程は、例えば、前記回収工程と同様に実施できる。
 本発明の血小板の製造方法は、例えば、前記洗浄工程に先立ち、前記第2の遠心分離工程後の前記分離ボウル内の分離成分を回収する分離成分回収工程を含んでもよい。この場合、本発明の血小板の製造方法は、例えば、前記分離成分を濃縮する分離成分濃縮工程を含む。また、本発明の血小板の製造方法が前記分離成分回収工程を含む場合、前記洗浄工程では、例えば、前記分離ボウルに、濃縮された分離成分と洗浄保存液とを添加し、前記分離ボウルを回転させることにより洗浄することが好ましい。
 前記分離成分回収工程において、前記分離成分は、前記分離ボウルの内壁に付着した成分であり、具体的には、血小板があげられる。前記分離成分回収工程は、例えば、前記回収工程と同様に実施できる。
 前記分離成分濃縮工程は、例えば、前記巨核球の培養物に代えて、回収された分離成分を用いる以外は、前記濃縮工程と同様に実施できる。前記分離成分濃縮工程は、前述の濃縮部材で実施されることが好ましい。前記分離成分濃縮工程における前記回収された分離成分の濃縮倍率は、特に制限されず、例えば、5~20倍、10~20倍である。前記濃縮倍率は、「巨核球の培養物」を「回収された分離成分」に読み替えて、前記式(1)により算出できる。
 本発明の血小板の製造方法は、例えば、前述の回収工程または血小板回収工程で回収された血小板を、分離部材を通過させることにより、血小板を分離する血小板分離工程を含む。前記回収工程または前記血小板回収工程で回収された血小板は、例えば、前記血小板に加え、前記巨核球等の他の血球系細胞を含む場合がある。このため、本発明の血小板の製造方法は前記血小板分離工程を含むことで、例えば、より精製された血小板を得ることができる。また、本発明の血小板の製造方法では、例えば、前記分離部材に供するサンプルの量が、前述の方法と比較して低減されている。このため、本発明の血小板の製造方法では、前述の方法で使用する分離部材と比較して、小型の分離部材を使用できる。前記分離部材は、特に制限されず、前記血小板と他の血球細胞とを分離可能な公知の分離部材が使用でき、例えば、不織布、網目状素材等の分離膜、中空糸膜、多孔構造体があげられる。前記分離部材の孔径は、例えば、前記血小板が通過可能な孔径である。前記中空糸膜は、例えば、前述の説明を援用できる。
 前記血小板分離工程において、回収された血小板の分離部材への導入方法は、特に制限されず、例えば、ポンプ等の送液手段を用いて実施してもよいし、自然落下により実施してもよいが、前記分離部材に目詰まりが生じた際に、前記送液手段による送液と比較して、前記血小板に対する圧の上昇が抑制されており、前記血小板へのダメージを抑制できることから、後者が好ましい。
 本発明の血小板の製造方法は、例えば、前記血小板分離工程後に、分離された血小板を回収してもよい。本発明の血小板の製造方法は、例えば、さらに、フィルタを用いて分離された血小板における不純物を除去してもよい。このようにして、本発明の血小板の製造方法は、精製血小板を製造できる。
<血小板>
 本発明の血小板は、前記本発明の精製血小板の製造方法により得られたことを特徴とする。本発明の血小板は、前記本発明の血小板の製造方法により得られたことが特徴であり、その他の工程および条件は、特に制限されない。本発明の血小板は、例えば、前記本発明の血小板の製造方法の説明を援用できる。
 本発明の血小板は、アルブミンを含んでもよい。この場合、本発明の血小板は、血小板およびアルブミンを含む。前記アルブミンの説明は、後述の本発明の保存液におけるアルブミンの説明を援用できる。
<血小板製剤の製造方法>
 本発明の血小板製剤の製造方法は、前述のように、精製血小板から血小板製剤を製造する製剤工程を含み、前記精製血小板は、前記本発明の精製血小板の製造方法で得られたことを特徴とする。本発明の血小板製剤の製造方法は、前記精製血小板が、前記本発明の血小板の製造方法で得られたことを特徴とし、その他の工程および条件は、特に制限されない。本発明の血小板製剤の製造方法は、前記本発明の血小板の製造方法の説明を援用できる。
 前記製剤工程では、例えば、他の成分を添加してもよい。前記他の成分は、例えば、前記血小板等の細胞の安定化剤等があげられる。
 本発明の血小板製剤の製造方法は、前記製剤工程に先立ち、前記本発明の血小板の製造方法により、精製血小板を製造する精製血小板製造工程を含んでもよい。前記精製血小板製造工程は、例えば、前記本発明の血小板の製造方法の説明を援用できる。
<血小板製剤>
 本発明の血小板製剤は、前記本発明の血小板製剤の製造方法により得られたことを特徴とする。本発明の血小板製剤は、前記本発明の血小板製剤の製造方法により得られたことが特徴であり、その他の工程および条件は、特に制限されない。本発明の血小板製剤は、例えば、前記本発明の精製血小板の製造方法および血小板製剤の製造方法の説明を援用できる。
 本発明の血小板製剤は、アルブミンを含んでもよい。この場合、本発明の血小板製剤は、血小板およびアルブミンを含む。前記アルブミンの説明は、後述の本発明の保存液におけるアルブミンの説明を援用できる。
<血液製剤の製造方法>
 本発明の血液製剤の製造方法は、前述のように、精製血小板と他の成分とを混合することにより、血液製剤を製造する血液製剤工程を含み、前記精製血小板は、前記本発明の精製血小板の製造方法で得られたことを特徴とする。本発明の血液製剤の製造方法は、前記精製血小板が、前記本発明の血小板の製造方法で得られたことを特徴とし、その他の工程および条件は、特に制限されない。本発明の血液製剤の製造方法は、前記本発明の血小板の製造方法の説明を援用できる。
 前記他の成分は、特に制限されず、例えば、赤血球等の他の血球系細胞、前記血小板等の細胞の安定化剤等があげられる。
 本発明の血液製剤の製造方法は、前記血液製剤工程に先立ち、前記本発明の血小板の製造方法により、精製血小板を製造する精製血小板製造工程を含んでもよい。前記精製血小板製造工程は、例えば、前記本発明の血小板の製造方法の説明を援用できる。
<血液製剤>
 本発明の血液製剤は、前記本発明の血液製剤の製造方法により得られたことを特徴とする。本発明の血液製剤は、前記本発明の血液製剤の製造方法により得られたことが特徴であり、その他の工程および条件は、特に制限されない。本発明の血液製剤は、例えば、前記本発明の精製血小板の製造方法および血液製剤の製造方法の説明を援用できる。
<血小板保存液>
 本発明の血小板保存液は、前述のように、アルブミンを含むことを特徴とする。本発明の保存液は、アルブミンを含むことが特徴であり、その他の構成および条件は、特に制限されない。本発明の血小板の保存液は、例えば、前記本発明の精製血小板の製造方法、ならびに後述の本発明の保存剤および保存方法の説明を援用できる。
 本発明者らは鋭意研究の結果、アルブミン存在下で血小板を保存すると、アルブミン非存在下で血小板を保存した場合と比較して、血小板の劣化を抑制できることを見出し、本発明を確立した。このため、本発明によれば、血小板を好適に保存できる。また、本発明者らは、アルブミン存在下で血小板を遠心分離すると、アルブミン非存在下で血小板を遠心分離した場合と比較して、血小板の劣化を抑制できることを見出した。このため、本発明の保存液によれば、血小板の遠心分離における血小板の劣化を抑制でき、例えば、血小板の遠心分離液、前述の本発明の精製血小板の製造方法における洗浄保存液として好適に使用できる。
 前記アルブミンは、例えば、血清アルブミン、ラクトアルブミン等があげられ、好ましくは、血清アルブミンである。前記アルブミンの由来は、特に制限されず、例えば、前記巨核球の由来の説明を援用できる。前記アルブミンの由来は、前記血小板の由来と同じであることが好ましい。具体例として、前記血小板がヒト血小板の場合、前記アルブミンは、ヒトアルブミンが好ましく、ヒト血清アルブミンがより好ましい。具体例として、前記ヒト血清アルブミンは、NCBIアクセッション番号NP_000468で登録されているアミノ酸配列からなるタンパク質があげられる。前記アルブミンは、例えば、血液、体液等の生体試料から精製したものでもよいし、組み換えタンパク質でもよい。また、前記アルブミンは、市販品でもよいし、自家調製してもよい。
 本発明の保存液において、前記アルブミンの濃度の下限は、0w/v%(質量体積%)を超えればよく、例えば、血小板の劣化をより抑制できることから、好ましくは、1.25w/v%以上であり、血小板の劣化をさらに抑制できることから、より好ましくは、2.5w/v%以上であり、さらに好ましくは、5w/v%以上である。前記アルブミンの濃度の上限は、特に制限されず、例えば、25w/v%以下、20%以下であり、例えば、使用時の取扱いがより容易になることから、好ましくは、15w/v%以下であり、投与時の取扱いがさらに容易になることから、より好ましくは、10w/v%以下である。前記アルブミンの濃度の範囲は、例えば、0w/v%を超え、25w/v%以下であり、例えば、血小板の劣化をより抑制でき、かつ使用時の取扱いがより容易になることから、好ましくは、1.25~15w/v%であり、より好ましくは、2.5~10w/v%であり、さらに好ましくは、5~10w/v%である。
 本発明の保存液は、例えば、血小板のエネルギー源となり、血小板の劣化を抑制できることから、糖を含むことが好ましい。前記糖は、例えば、ブドウ糖(グルコース)があげられる。
 本発明の保存液において、前記糖の濃度の下限は、例えば、0.05w/v%、0.1w/v%以上であり、好ましくは、0.104w/v%以上である。前記糖の濃度の上限は、0.2w/v%、0.4w/v%以下であり、好ましくは、0.367w/v%以下である。前記糖の濃度の範囲は、例えば、0.05~0.8w/v%、0.1~0.4w/v%であり、より好ましくは、0.104~0.367w/v%である。
 本発明の保存液は、例えば、電解質を含むことが好ましい。前記電解質は、例えば、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、クエン酸等があげられる。本発明の保存液は、例えば、血液・血小板抗凝固作用を有し、血小板の劣化を抑制できることから、クエン酸ナトリウム、クエン酸を含むことが好ましい。本発明の保存液は、例えば、1種類の電解質を含んでもよいし、2種類以上の電解質を含んでもよい。
 本発明の保存液において、前記電解質の濃度は、特に制限されず、前記電解質の種類に応じて適宜設定できる。前記塩化ナトリウムの濃度の範囲は、例えば、0.3~1.5w/v%、0.3~0.8w/v%、0.4~0.6w/v%であり、好ましくは、0.48~0.56w/v%、0.486~0.557w/v%である。前記塩化カリウムの濃度の範囲は、例えば、0.01~0.04w/v%、0.02~0.03w/v%であり、好ましくは、0.025~0.028w/v%、0.025~0.0286w/v%である。前記塩化カルシウム・二水和物の濃度の範囲は、例えば、0.01~0.04w/v%、0.015~0.03w/v%であり、好ましくは、0.018~0.025w/v%、0.0183~0.021w/v%である。なお、前記塩化カルシウム・二水和物に代えて、塩化カルシウム、塩化カルシウム・四水和物または塩化カルシウム・六水和物を用いる場合、各化合物を前記保存液における塩化カルシウム・二水和物に換算した濃度が同等となるように設定することが好ましい。前記塩化マグネシウムの濃度の範囲は、例えば、0.01~0.03w/v%、0.015~0.02w/v%であり、好ましくは、0.016~0.019w/v%、0.0167~0.019w/v%である。前記炭酸水素ナトリウムの濃度の範囲は、例えば、0.1~0.3w/v%、0.15~0.25w/v%であり、好ましくは、0.19~0.23w/v%、0.195~0.224w/v%である。前記クエン酸ナトリウム・二水和物の濃度の範囲は、例えば、0.05~0.5w/v%、0.1~0.4w/v%であり、好ましくは、0.12~0.39w/v%、0.123~0.384w/v%である。なお、前記クエン酸ナトリウム・二水和物に代えて、クエン酸ナトリウムを用いる場合、前記クエン酸ナトリウムを前記保存液におけるクエン酸ナトリウム・二水和物に換算した濃度が同等となるように設定することが好ましい。前記クエン酸・一水和物の濃度の範囲は、例えば、0.01~0.15w/v%、0.03~0.14w/v%であり、好ましくは、0.035~0.135w/v%、0.038~0.134w/v%である。なお、前記クエン酸・一水和物に代えて、クエン酸を用いる場合、前記クエン酸を前記保存液におけるクエン酸・一水和物に換算した濃度が同等となるように設定することが好ましい。
 本発明の保存液は、前記糖および前記電解質を含むことが好ましい。この場合、前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸のうちいずれか1種類または2種類以上を含むことが好ましく、全てを含むことがさらに好ましい。前記糖および電解質の濃度は、前述の説明を援用でき、任意の例示を組合せ可能である。
 本発明の保存液は、例えば、血小板を含んでもよい。この場合、前記本発明の保存液は、例えば、血小板製剤ということもできる。前記血小板は、例えば、血小板のみを含んでもよいし、血小板以外の細胞成分を含んでもよいが、前者が好ましい、前者の場合、前記血小板は、例えば、前記本発明の精製血小板の製造方法により取得できる。
 本発明の保存液は、他の成分、取扱い文書、添付文書等を含んでもよい。
 本発明の保存液は、例えば、輸液バッグ、血液バッグ等のバッグに収容されもよい。
 本発明の保存液は、各種成分を混合することにより製造してもよいし、市販品を用いて製造してもよい。後者の場合、本発明の保存液は、例えば、ビカーボン輸液等の重炭酸リンゲル液と、アルブミンとを混合してもよいし、重炭酸リンゲル液と、ADC-A液等の血液保存液とを混合し、さらに、アルブミンを添加することにより製造してもよい。具体例として、ビカーボン輸液(大塚製薬社製)にACD-A液(テルモ社製)を添加する場合、前記保存液は、例えば、ビカーボン輸液の体積(B)を基準として、ACD-A液の体積(Ac)が、例えば、0×B≦Ac≦0.2×B、好ましくは、0.05×B≦Ac≦0.2×B、より好ましくは、0.1×B≦Ac≦0.2×Bとなるように添加することにより調製できる。また、ビカーボン輸液(大塚製薬社製)に人血清アルブミン製剤(アルブミン濃度25w/v%(例えば、アルブミナー(登録商標)25%、CSLベーリング社製))を添加する場合、前記保存液は、例えば、ビカーボン輸液の体積(B)を基準として、人血清アルブミン製剤の体積(Al)が、例えば、0×B<Al≦0.25×B、好ましくは、0.0125×B≦Al≦0.15×B、より好ましくは、0.025×B≦Al≦0.1×Bまたは0.05×B≦Al≦0.1×Bとなるように添加することにより調製できる。また、前記保存液は、ビカーボン輸液(大塚製薬社製)にACD-A液および人血清アルブミン製剤を添加してもよい。この場合、ACD-A液および人血清アルブミン製剤の添加割合は、前述の説明を援用できる。
<血小板保存剤>
 本発明の血小板保存剤は、前述のように、アルブミンを含むことを特徴とする。本発明の保存剤は、アルブミンを含むことが特徴であり、その他の構成および条件は、特に制限されない。本発明によれば、例えば、血小板の劣化を抑制できるため、血小板を好適に保存できる。本発明の保存剤は、例えば、前記本発明の精製血小板の製造方法、ならびに後述の本発明の保存剤および保存方法の説明を援用できる。
 前記アルブミンは、血清アルブミンが好ましい。前記アルブミンの含有量は、例えば、規定量の水と混和した際に、前記本発明の保存液におけるアルブミンの濃度となるように設定できる。
 本発明の保存剤は、糖を含むことが好ましく、より好ましくは、ブドウ糖である。前記糖の含有量は、例えば、規定量(予め設定した量)の水と混和した際に、前記本発明の保存液における糖の濃度となるように設定できる。
 本発明の保存剤は、電解質を含むことが好ましい。前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸のうちいずれか1種類または2種類以上を含むことが好ましく、全てを含むことがさらに好ましい。各電解質の含有量は、例えば、規定量の水と混和した際に、前記本発明の保存液の説明における各電解質の濃度となるように設定できる。
 本発明の保存剤は、前記糖および電解質を含むことが好ましい。
 本発明の保存剤が複数の構成を含む場合、各構成は、同一の容器に混合状態または未混合状態で収容されてもよいし、それぞれが別個の容器に収容されてもよい。各構成が別個の容器に収容されている場合、本発明の保存剤は、例えば、保存キットということもできる。
 本発明の保存剤の剤型は、特に制限されず、例えば、液体状、固体状があげられる。
<血小板の保存方法>
 本発明の血小板の保存方法は、前述のように、アルブミンの存在下、血小板を保存する保存工程を含むことを特徴とする。本発明の保存方法は、アルブミンの存在下、血小板を保存することが特徴であり、その他の工程および条件は、特に制限されない。本発明によれば、例えば、血小板の劣化を抑制できるため、血小板を好適に保存できる。本発明の保存方法は、前記本発明の精製血小板の製造方法、保存液、および保存剤の説明を援用できる。
 前記保存工程は、アルブミンの存在下、血小板を保存する。具体的には、前記保存工程は、例えば、前記血小板と、前記本発明の保存液とを接触させ、得られた混合液を保存することで実施できる。前記血小板は、例えば、血小板のみを含んでもよいし、血小板以外の細胞成分を含んでもよいが、前者が好ましい、前者の場合、前記血小板は、例えば、前記本発明の精製血小板の製造方法により取得できる。前記アルブミンは、血清アルブミンが好ましい。前記アルブミンの濃度は、例えば、前記本発明の保存液におけるアルブミンの濃度の説明を援用できる。
 前記血小板の保存条件は、特に制限されず、例えば、公知の血小板製剤の保存条件に基づき、適宜設定できる。前記血小板の保存温度は、例えば、15~37℃、好ましくは、20~24℃である。前記血小板の保存時間は、例えば、0~14日、好ましくは、4日以内である。前記血小板の保存時のpHは、例えば、pH6.5以上であり、好ましくは、pH6.5~7.5である。また、前記血小板は、保存中に、前記血小板を含む保存容器を軽度に振とう、撹拌されてもよい。
 本発明の保存方法は、糖の存在下、前記保存工程を実施することが好ましい。前記糖は、ブドウ糖が好ましい。前記糖の濃度は、例えば、前記本発明の保存液における糖の濃度の説明を援用できる。
 本発明の保存方法は、電解質の存在下、前記保存工程を実施することが好ましい。前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸のうちいずれか1種類または2種類以上を含むことが好ましく、全てを含むことがさらに好ましい。前記電解質の濃度は、例えば、前記本発明の保存液における電解質の濃度の説明を援用できる。
 本発明の保存方法は、前記糖および電解質の存在下、前記保存工程を実施することが好ましい。
<血小板の保存のための使用>
 本発明は、血小板の保存のための、アルブミンの使用であり、血小板製剤の保存のためのアルブミンの使用である。本発明は、例えば、前記本発明の精製血小板の製造方法、保存液、保存剤、および保存方法の説明を援用できる。
 以下、実施例を用いて本発明を詳細に説明するが、本発明は実施例に記載された態様に限定されるものではない。
[実施例1]
 本発明の血小板の製造方法により、前述の方法と比較して、血小板へのダメージが抑制されていることを確認した。
(1)不死化巨核球細胞の作製
 不死化巨核球は、以下の手順で作製した。
(1-1)iPS細胞からの造血前駆細胞の調製
 ヒトiPS細胞(TKDN SeV2およびNIH5:センダイウイルスを用いて樹立されたヒト胎児皮膚繊維芽細胞由来iPS細胞)から、下記参考文献5に記載の方法に従って、血球細胞への分化培養を実施した。具体的には、ヒトES/iPS細胞コロニーを20ng/mL VEGF(R&D SYSTEMS社製)存在下でC3H10T1/2フィーダ細胞と14日間共培養して造血前駆細胞(Hematopoietic Progenitor Cells;HPC)を作製した。培養条件は、37℃、20%O、5%COで実施した(特に記載がない限り、以下同条件)。
参考文献5:Takayama N. et al., “Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells”, J. Exp. Med., 2010, vo.13, pages 2817-2830
(1-2)遺伝子導入システム
 遺伝子導入システムは、レンチウイルスベクターシステムを利用した。レンチウイルスベクターは、Tetracycline制御性のTet-on(登録商標)遺伝子発現誘導システムベクターである。LV-TRE-mOKS-Ubc-tTA-I2G(下記参考文献6)のmOKSカセットをc-MYC、BMI1、またはBCL-xLに組み替えることで作製した。c-MYC、BMI1、またはBCL-xLが導入されたベクターを、それぞれ、LV-TRE-c-Myc-Ubc-tTA-I2G、LVTRE-BMI1-Ubc-tTA-I2G、およびLV-TRE-BCL-xL-Ubc-tTA-I2Gとした。c-MYC、BMI1、およびBCL-xLウイルスは、293T細胞へ前記レンチウイルスベクターで遺伝子導入することにより作製した。得られたウイルスを目的の細胞に感染させることによって、c-MYC、BMI1、およびBCL-xL遺伝子が目的の細胞のゲノム配列に導入される。安定的にゲノム配列に導入されたこれらの遺伝子は、培地にドキシサイクリン(clontech#631311)を加えることによって強制発現させることができる。
参考文献6:Kobayashi, T.et al., “Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells.”, Cell, 2010, vol.142, No.5, pages 787-799
(1-3)造血前駆細胞へのc-MYCおよびBMI1ウイルスの感染
 予めC3H10T1/2フィーダ細胞を播種した6 well plate上に、前記(1-1)の方法で得られたHPCを5×104cells/wellとなるように播種し、BMI1ウイルスおよびc-MYCウイルスを用いたレンチウイルス法にてc-MYCおよびBMI1を強制発現させた。このとき、細胞株1種類につき6 wellずつ使用した。具体的には、それぞれMOI(multiplicity of infection)20となるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃、900rpm、60分間遠心)で感染させた。前記スピンインフェクションは、12時間おきに2回実施した。培地は、基本培地(15% Fetal Bovine Serum (GIBCO)、1% Penicillin-Streptomycin-Glutamine (GIBCO)、1% Insulin, Transferrin, Selenium Solution (ITS-G) (GIBCO)、0.45 mmol/L 1-Thioglycerol (Sigma-Aldrich)、50μg/mL L-Ascorbic Acid (Sigma-Aldrich)を含有するIMDM (Iscove’s Modified Dulbecco’s Medium) (Sigma-Aldrich))に、50 ng/mL Human thrombopoietin (TPO)(R&D SYSTEMS)、50 ng/mL Human Stem Cell Factor (SCF) (R&D SYSTEMS)および2μg/mL Doxycycline (Dox、clontech #631311)となるようにそれぞれを添加した培地(以下、分化培地)に、さらに、Protamineを最終濃度が10 μg/mLとなるように添加した培地を用いた。
(1-4)巨核球自己増殖株の作製および維持培養
 前記(1-3)の方法でc-MYCおよびBMI1ウイルスの感染を実施した日を感染0日目として、以下の通り、c-MYC遺伝子およびBMI1遺伝子が導入されたHPCを培養することで、巨核球自己増殖株をそれぞれ作製した。c-MYC遺伝子およびBMI1遺伝子の強制発現は、培地に1μg/mL DOXとなるようにDOXを添加することにより実施した。
・感染2日目~感染11日目
 感染2日目に、ピペッティングにて上記の方法で得られたウイルス感染済み血球細胞を回収し、1200rpm、5分間遠心操作を行って上清を除去した後、新しい分化培地で懸濁して新しいC3H10T1/2フィーダ細胞上に播種した(6well plate)。感染9日目に同様の操作をすることによって継代を実施した。前記再播種時は、細胞数を計測後、1×105 cells/2mL/wellとなるようにC3H10T1/2フィーダ細胞上に播種した(6well plate)。
・感染12日目~感染13日目
 感染2日目と同様の操作を実施した。細胞数を計測後3×105 cells/10mL/100mm dishとなるように、C3H10T1/2フィーダ細胞上に播種した(100mm dish)。
・感染14日目
 ウイルス感染済み血球細胞を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、および抗ヒトCD235ab-pacific blue(BioLegend)抗体を、それぞれ2μL、1μL、および1μLを用いて、前記血球細胞と抗体とを反応させた。前記反応後、FACS Verse(商標)(BD Biosciences)を用いて解析した。感染14日目において、CD41a陽性率が50%以上である細胞を、巨核球自己増殖株とした。
(1-5)巨核球自己増殖株へのBCL-xLウイルス感染
 前記感染14日目の巨核球自己増殖株に、BCL-xLウイルスを用いたレンチウイルス法にてBCL-xLを遺伝子導入した。MOI 10になるように培地中にウイルス粒子を添加し、スピンインフェクション(32℃、900rpm、60分間遠心)で感染させた。BCL-xL遺伝子の強制発現は、培地に1μg/mL DOXとなるようにDOXを添加することにより実施した。
(1-6)巨核球不死化株の作成および維持培養
・感染14日目~感染18日目
 前記(1-5)の方法で得られたBCL-xL遺伝子を導入した巨核球自己増殖株を回収し、1200rpm、5分間遠心操作を行った。前記遠心後、沈殿した細胞を新しい分化培地で懸濁した後、新しいC3H10T1/2フィーダ細胞上に2×105cells/2mL/wellとなるように播種した(6well plate)。
・感染18日目:継代
 BCL-xL遺伝子を導入後の巨核球自己増殖株を回収し、細胞数を計測後、3×105 cells/10mL/100mm dishとなるように播種した。
・感染24日目:継代
 BCL-xL遺伝子を導入後の巨核球自己増殖株を回収し、細胞数を計測後、1×105 cells/10mL/100mm dishとなるように播種した。以後、4-7日毎に同様にして継代を行い、維持培養を行った。なお、継代時には、新たな分化培地に懸濁の上、播種した。
 感染24日目にBCL-xLを遺伝子導入した巨核球自己増殖株を回収し、細胞1.0×105個あたり、抗ヒトCD41a-APC抗体(BioLegend)、抗ヒトCD42b-PE抗体(eBioscience)、および抗ヒトCD235ab-Pacific Blue(Anti-CD235ab-PB; BioLegend)抗体を、それぞれ、2μL、1μL、および1μLを用いて、免疫染色した後にFACS Verse(商標)を用いて解析した。そして、感染24日目において、CD41a陽性率が50%以上である株を不死化巨核球細胞株とした。感染後24日以上増殖することができたこれらの細胞を、不死化巨核球細胞株SeV2-MKCLおよびNIH5-MKCLとした。
 得られたSeV2-MKCLおよびNIH5-MKCLを、10cmディッシュ(10mL/ディッシュ)で静置培養した。培地は、IMDMを基本培地として、以下の成分を加えた(濃度は終濃度)。培養条件は、27℃、5%COとした。
FBS(シグマ#172012 lot.12E261)15%
L-Glutamin (Gibco #25030-081) 2mmol/L
ITS (Gibco #41400-045) 100倍希釈
MTG (monothioglycerol, sigma #M6145-25ML) 450μmol/L
アスコルビン酸(sigma #A4544) 50μg/mL
Puromycin (sigma #P8833-100MG) 2μg/mL
SCF (和光純薬#193-15513) 50ng/mL
TPO様作用物質200ng/mL
(2)巨核球の培養物の生産
 DOXを含まない培地で培養することで強制発現を解除した。具体的には、前記(1)の方法で得た不死化巨核球細胞株(SeV2-MKCLおよびNIH5-MKCL)を、PBS(-)で2度洗浄し、下記血小板生産培地に懸濁した。細胞の播種密度は、1.0×105 cells/mLとした。
 前記血小板生産培地は、IMDMを基本培地として、以下の成分を加えた(濃度は、終濃度)。
human plasma 5%
L-Glutamin (Gibco #25030-081) 4mmol/L
ITS (Gibco #41400-045) 100倍希釈
MTG (monothioglycerol, sigma #M6145-25ML) 450μmol/L
アスコルビン酸 (sigma #A4544) 50μg/mL
SCF (和光純薬#193-15513) 50ng/mL
TPO様作用物質200ng/mL
ADAM阻害剤15μmol/L
GNF351(Calbiochem #182707)500nmol/LY39983(Chemscene LLC #CS-0096)500nmol/L
Urokinase 5U/mL
低分子heparin(SANOFI、クレキサン)1U/mL
 そして、前記血小板生産培地存在下で6日間培養して、血小板を産生させることにより、巨核球の培養物を生産させた。
(3)精製血小板の製造
 前記(2)で得られた巨核球の培養物について、以下の手順で、血小板を製造(精製)した。なお、同様の精製を2回実施した。
(3-1)巨核球の培養物の濃縮
 前記(2)で得られた巨核球の培養物について、培養物バッグに導入した。そして、前記培養物バッグについて、図1のように、濃縮システムに接続した。図1において、洗浄保存液バッグ1および2は、洗浄保存液を含む。前記洗浄保存液は、ビカネイト輸液(ビカーボン輸液、大塚製薬社製)に20%(v/v%)ACDおよび2.5%(w/v%)ヒト血清アルブミンを添加し、NaOHでpH7.2に調整したものを使用した。そして、下記表1にしたがって、中空糸膜(プラズマフローOP、旭化成メディカル社製)を用いて、前記巨核球の培養物を濃縮し、得られた巨核球の培養物の濃縮液を貯蔵バッグに回収した。
Figure JPOXMLDOC01-appb-T000001
(3-2)血小板の遠心分離
 まず、無菌接合装置を用いて、ACP215ディスポーザブルセットの廃液バッグを回収用バッグに置換した。前記回収用バッグは、ハイカリックIVHバック(テルモ HC-B3006A)を用いた。つぎに、前記巨核球の培養物の濃縮液に対して10%量のACD-A液(テルモ社製)を添加した。前記添加後、ACD-A液を添加した濃縮液を、細胞バッグに注入した。前記細胞バッグは、ハイカリックIVHバック(テルモ HC-B3006A)を用いた。
 つぎに、無菌接合装置を用いて、ACD-A液を添加した培養物を含む細胞バッグをACP215ディスポーザブルセットに接合した。そして、ACP215をサービスモードで立ち上げ、回転数を2500rpm(350×g)にセットした。ACP215をスタートさせ、前記細胞バッグ中の培養物を約100mL/minで分離ボウルに導入した。前記分離ボウルより流出する液体成分は、回収バッグに回収した。前記細胞バッグ中の培養物の全量を分離ボウルに導入後、さらに500mLの洗浄保存液を前記分離ボウルに導入した。前記分離ボウルに前記洗浄保存液を導入後、遠心を止めてチューブシーラーを用いて回収液(血小板を含む回収された液体成分)を含む回収バッグを切り離した。
 新しいACP215ディスポーザブルセットに、前記無菌接合装置を用いて回収液(血小板を含む)を含んだ回収バッグを接合した。ACP215を通常モードで立ち上げた。プログラム設定はWPCを選択し、機器の指示に従い、前記回収バッグを接合したACP215ディスポーザブルセットをセットした。なお、回収液を含んだ回収バッグはスタンドに設置した。
 つぎに、ACP215の遠心速度を5000rpm(1398.8×g)に変更し、遠心をスタートさせた。前記分離ボウルへ前記回収液が導入され始めたとき、自動注入から手動注入に変更した。具体的には、前記回収液を約100mL/minの導入速度で前記分離ボウルに導入した。前記回収液全量を分離ボウルに添加後、さらに500mLの洗浄保存液を追加した。
(3-3)血小板の洗浄
 洗浄は、ACP215のプログラムに従って、2000mLの前記洗浄保存液で洗浄した。
(3-4)血小板の回収
 ACP215のプログラムに従って、200mLの洗浄済み血小板を血小板製剤バッグに回収した。
(3-5)血小板の分離
 前記血小板製剤バッグについて、前記中空糸膜を用いて、常法により血小板を分離し、回収用バッグに回収した(実施例1-1~1-2)。
(3-6)比較例の血小板の製造(精製)
 比較例の血小板の製造方法として、前記巨核球の培養物から血小板をフィルタで分離後、中空糸膜を用いて血小板を濃縮し、さらに、中空糸膜を用いて血小板を洗浄することにより、血小板を製造した。フィルタおよび中空糸膜は、異なる4種類の市販品を用いた(比較例1-1~1-4)。
(4)血小板の回収率、巨核球の除去率および血小板のダメージの測定
 前記巨核球の培養物、および実施例または比較例の血小板の製造方法により得られた精製血小板について、血小板の回収率、巨核球の除去率、および血小板におけるアネキシンVの陽性率を、フローサイトメータを用いて測定した。具体的には、血小板の回収率および巨核球の除去率の測定では、1.5mLマイクロチューブに希釈液900μLを添加し、巨核球の培養物または血小板精製後の回収物(精製血小板)100μLを添加し、混合した。得られた溶液のうち200μLをFACSチューブに分注し、下記標識抗体を添加して染色し、フローサイトメータで分析した。また、血小板におけるアネキシンVの陽性率の測定は、前記巨核球の培養物および精製血小板の回収物100μLをFACSチューブに分注し、下記標識抗体およびタンパク質を添加して染色を行い、フローサイトメータ分析直前にアネキシンV binding buffer(BD Biosciences)で5倍希釈し、分析した。
・血小板の回収率、巨核球の除去率の測定
1.0μL 抗CD41a抗体APC標識(Bio Legend 303710)
1.0μL 抗CD42a抗体PB標識(eBioscience 48-0428-42)
1.0μL 抗CD42b抗体PE標識(Bio Legend 303906)
・血小板のダメージの測定
1.0μL 抗CD41a抗体APC標識(Bio Legend 303710)
1.0μL 抗CD42b抗体PE標識(Bio Legend 303906)
5μL Annexin V FITC標識(BD Biosciences 556419)
(4-1)血小板の回収率および巨核球の除去率
 前方散乱光(FSC)および側方散乱光(SSC)で表される粒子の大きさにより、血小板と巨核球とを区分し、さらに、各区分において、CD41aおよびCD42bが陽性である粒子を血小板とし、CD41a、CD42aおよびCD42bが陽性である粒子を巨核球とすることにより、前記巨核球の培養物および精製血小板における血小板数および巨核球数を算出した。そして、得られた血小板数および巨核球数に基づき、血小板の回収率および巨核球の除去率を算出した。前記血小板の回収率は、下記式(3)、前記巨核球の除去率は、下記式(4)により算出した。これらの結果を下記表2に示す。
 C=P/P   ・・・(3)
  C:血小板の回収率(%)
  P:巨核球の培養物における血小板数
  P:精製血小板における血小板数
 R=(M-M)/M   ・・・(4)
  R:巨核球の除去率(%)
  M:巨核球の培養物における巨核球数
  M:精製血小板における巨核球数
Figure JPOXMLDOC01-appb-T000002
 前記表2に示すように、実施例1-1および1-2は、比較例1-1~1-4と同等以上の巨核球の除去率を示し、十分な純度で血小板を精製できることが確認できた。また、実施例1-1および1-2は、比較例1-1~1-4と比較して、血小板の回収率が増加することがわかった。
(4-2)血小板のダメージ
 CD41aおよびCD42bが陽性であり、CD42aが陰性である粒子におけるアネキシンV陽性の粒子の割合を測定した。前記精製血小板におけるアネキシンV陽性の粒子の割合から前記巨核球の培養物におけるアネキシンV陽性の粒子の割合を引くことにより、変動値を算出した。この結果を、下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 前記表3に示すように、比較例1-1~1-4では、アネキシンV陽性の粒子の割合が増加し、血小板がダメージを受けていた。これに対して、実施例1-1および1-2は、アネキシンV陽性の粒子の割合が減少し、血小板はダメージを受けていなかった。
 以上のことから、本発明の血小板の製造方法は、前述の方法と比較して、血小板へのダメージが抑制されていることがわかった。また、本発明の血小板の製造方法は、前述の方法と比較して、血小板の回収効率が向上していることがわかった。
[実施例2]
 本発明の血小板の製造方法により、血小板へのダメージが低減されるように前述の方法を実施した際の時間と比較して、短時間で精製血小板を製造できることを確認した。
 前記実施例1(3)における実施例の血小板の製造方法および比較例の血小板の製造方法について、前記巨核球の培養物50000mLから血小板を製造する際に要する処理時間をシミュレーションした。なお、各工程における導入速度(処理速度)は、実際に各処理を行なった際に、血小板へのダメージが低減されている速度とした。なお、洗浄時には、洗浄保存液3000mLを添加した。これらの結果を、下記表4AおよびBに示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 前記表4AおよびBに示すように、比較例の血小板の製造方法では、合計の処理時間が462分であるのに対し、本発明の血小板の製造方法では、合計の処理時間が241分であり、処理時間が半減した。
 以上のことから、本発明の血小板の製造方法により、血小板へのダメージが低減されるように前述の方法を実施した際の時間と比較して、短時間で精製血小板を製造できることがわかった。
[実施例3]
 本発明の保存液により、保存時の血小板の劣化を抑制できることを確認した。
 洗浄済の血小板の回収を保存液で実施した以外は、前記実施例1と同様にして、血小板を精製した。前記保存液は、ビカネイト輸液に5v/v%ACD-A液(ビカネイト輸液1Lあたり、ACD-A液5mL)と、所定濃度(0、1.25または5w/v%)となるようにヒト血清アルブミンを添加し、NaOHでpH7.2に調整したものを使用した。各保存液の組成を、下記表5に示す。
Figure JPOXMLDOC01-appb-T000006
 つぎに、前記保存液中の血小板を、22℃で、24、48、72、または168時間保存した。保存温度は、22℃とし、保存中は、血小板を含むバッグを軽度に振とう、撹拌した。そして、保存開始時(0時間)および保存後の血小板を回収し、前記実施例1(4)と同様にして、アネキシンV陽性の粒子の割合を測定した。この結果を下記表6に示す。下記表6において、括弧で示す割合は、保存開始時を基準とした、アネキシンV陽性の粒子の増加割合を意味する。
Figure JPOXMLDOC01-appb-T000007
 前記表6に示すように、ヒト血清アルブミン非添加の保存液で保存した血小板と比較して、ヒト血清アルブミン添加の保存液で保存した血小板では、保存後のいずれの時間においても、アネキシンV陽性の粒子の割合が減少していた、すなわち、ダメージを受けている血小板の割合が減少した。また、ヒト血清アルブミンの濃度を増加させると、ダメージを受けている血小板の割合が減少した。さらに、ヒト血清アルブミン添加の保存液で保存した血小板では、保存後168時間において、ヒト血清アルブミン非添加の保存液で保存した血小板と比較して、アネキシンV陽性の粒子の増加が顕著に抑制されていた。
 以上のことから、本発明の保存液により、保存時の血小板の劣化を抑制できること、特に、血小板の長期保存に好適に使用できることが分かった。
[実施例4]
 本発明の保存液により、遠心分離時の血小板へのダメージを抑制できることを確認した。
(1)洗浄保存液の調製
 第1の遠心分離工程および第2の遠心分離工程において用いる洗浄保存液として、ビカネイト輸液に2.5w/v%のヒト血清アルブミンと、所定濃度(5、10、または20v/v%)となるようにACD-A液とを添加し、NaOHでpH7.2に調整したものを使用した。各保存液の組成を、下記表7に示す。
Figure JPOXMLDOC01-appb-T000008
(2)血小板のダメージ
 つぎに、前記洗浄保存液として、前記実施例4(1)で調製した洗浄保存液を用いた以外は、前記実施例1(3-2)と同様にして、血小板を遠心分離した。また、前記遠心分離の前、第1回目の遠心分離(350×gでの遠心)の後、および第2回目の遠心分離(1398.8×gでの遠心)の後に血小板を回収し、前記実施例1(4)と同様にして、アネキシンV陽性の粒子の割合を測定した。この結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000009
 前記表8に示すように、ACD-A液の添加量の増加と共に、遠心時の血小板のダメージが減少した。また、各洗浄保存液における電解質および糖の濃度は、前記表7のとおりであり、実施形態に示す各電解質および糖の濃度の数値範囲を満たす。このため、実施形態に示す各電解質および糖の濃度の数値範囲とすることにより、遠心分離時の血小板へのダメージを抑制できることが分かった。
 以上のことから、本発明の保存液により、遠心分離時の血小板へのダメージを抑制できることがわかった。
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2017年9月19日に出願された日本出願特願2017-179138を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
(付記1)
巨核球の培養物を濃縮する濃縮工程、および
得られた濃縮物から血小板を遠心分離する遠心分離工程を含むことを特徴とする、精製血小板の製造方法。
(付記2)
前記遠心分離工程は、
 前記濃縮物を150~550gの遠心力で分離する第1の遠心分離工程と、
 前記第1の遠心分離工程で回収された液体成分を600~4000gの遠心力で遠心分離する第2の遠心分離工程とを含む、付記1記載の精製血小板の製造方法。
(付記3)
前記遠心分離工程は、
 遠心力に応じて、前記濃縮物または前記回収された液体成分における比重の大きい成分を付着させる内壁と、前記濃縮物または前記回収された液体成分の分離後の液体成分を流出させる流出口とを含む、回転可能な分離ボウル、および
 前記流出口から流出した液体成分を回収する回収手段を含む遠心分離装置で実施される、付記2記載の精製血小板の製造方法。
(付記4)
前記第2の遠心分離工程後、前記分離ボウルに洗浄保存液を添加し、前記分離ボウルを回転させることにより洗浄する洗浄工程と、
前記洗浄工程後、前記洗浄保存液が存在する分離ボウルを揺動し、さらに前記分離ボウルの流出口から空気を導入することにより、血小板を回収する血小板回収工程とを含む、付記3記載の精製血小板の製造方法。
(付記5)
前記洗浄工程に先立ち、前記第2の遠心分離工程後の前記分離ボウル内の分離成分を回収する分離成分回収工程と、
前記分離成分を濃縮する分離成分濃縮工程とを含み、
前記洗浄工程は、前記分離ボウルに、濃縮された分離成分と洗浄保存液とを添加し、前記分離ボウルを回転させることにより洗浄する、付記4記載の精製血小板の製造方法。
(付記6)
前記回収された血小板を、分離部材を通過させることにより、血小板を分離する血小板分離工程を含む、付記4または5記載の精製血小板の製造方法。
(付記7)
前記血小板分離工程において、前記回収された血小板を自然落下により前記分離部材に導入する、付記6記載の精製血小板の製造方法。
(付記8)
前記濃縮工程は、濃縮部材で実施される、付記1から7のいずれかに記載の精製血小板の製造方法。
(付記9)
前記分離成分濃縮工程は、濃縮部材で実施される、付記5記載の精製血小板の製造方法。
(付記10)
前記濃縮工程に先立ち、前記巨核球の培養物を生産する生産工程を含み、
前記生産工程は、
 前記巨核球より未分化な細胞に、癌遺伝子およびポリコーム遺伝子を強制発現させる第1の発現工程と、
 前記未分化な細胞において、Bcl-xL遺伝子を強制発現させる第2の発現工程と、
 前記強制発現を全て解除する解除工程とを含む、付記1から9のいずれかに記載の精製血小板の製造方法。
(付記11)
精製血小板から血小板製剤を製造する製剤工程を含み、
前記精製血小板は、付記1から10のいずれかに記載の精製血小板の製造方法で得られたことを特徴とする、血小板製剤の製造方法。
(付記12)
精製血小板と他の成分とを混合することにより、血液製剤を製造する血液製剤工程を含み、
前記精製血小板は、付記1から10のいずれかに記載の精製血小板の製造方法で得られたことを特徴とする、血液製剤の製造方法。
(付記13)
アルブミンを含むことを特徴とする、血小板保存液。
(付記14)
前記アルブミンの濃度は、1.25w/v%以上である、付記13記載の血小板保存液。
(付記15)
前記アルブミンの濃度は、10w/v%以下である、付記14記載の血小板保存液。
(付記16)
前記アルブミンは、血清アルブミンである、付記13から15のいずれかに記載の血小板保存液。
(付記17)
糖を含む、付記13から16のいずれかに記載の血小板保存液。
(付記18)
前記糖濃度は、0.1~0.4w/v%である、付記17記載の血小板保存液。
(付記19)
前記糖は、ブドウ糖である、付記17または18記載の血小板保存液。
(付記20)
電解質を含む、付記13から19のいずれかに記載の血小板保存液。
(付記21)
前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、付記20記載の血小板保存液。
(付記22)
アルブミンを含むことを特徴とする、血小板保存剤。
(付記23)
前記アルブミンは、血清アルブミンである、付記22記載の血小板保存剤。
(付記24)
糖を含む、付記22または23記載の血小板保存剤。
(付記25)
前記糖は、ブドウ糖である、付記24記載の血小板保存剤。
(付記26)
電解質を含む、付記22から25のいずれかに記載の血小板保存剤。
(付記27)
前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、付記26記載の血小板保存剤。
(付記28)
アルブミンの存在下、血小板を保存する保存工程を含むことを特徴とする、血小板の保存方法。
(付記29)
前記アルブミンの濃度は、1.25w/v%以上である、付記28記載の血小板の保存方法。
(付記30)
前記アルブミンの濃度は、10w/v%以下である、付記29記載の血小板の保存方法。
(付記31)
前記アルブミンは、血清アルブミンである、付記28から30のいずれかに記載の血小板の保存方法。
(付記32)
糖の存在下、前記保存工程を実施する、付記28から31のいずれかに記載の血小板の保存方法。
(付記33)
前記糖濃度は、0.1~0.4w/v%である、付記32記載の血小板の保存方法。
(付記34)
前記糖は、ブドウ糖である、付記32または33記載の血小板の保存方法。
(付記35)
電解質の存在下、前記保存工程を実施する、付記28から34のいずれかに記載の血小板の保存方法。
(付記36)
前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、付記35記載の血小板の保存方法。
 以上のように、本発明の血小板の製造方法は、前記血小板の分離に先立ち、前記巨核球の培養物を濃縮する。このため、本発明の血小板の製造方法によれば、前記遠心分離工程に供するサンプル(例えば、濃縮物)の体積を低減できる。したがって、本発明の血小板の製造方法は、前記遠心分離工程において、前記血小板を分離に要する時間を低減でき、前記巨核球の培養物から血小板を精製する時間を短縮することができるため、前述の方法と比較して、短時間で血小板を得ることができる。また、本発明の製造方法は、多量の巨核球の培養物をフィルタ分離に供し、血小板を分離する必要がないため、例えば、前述の方法において、流量を多くした際に生じる血小板へのダメージを回避することができる。このため、本発明の血小板の製造方法は、前述の方法と比較して、血小板へのダメージが少ない。したがって、本発明は、例えば、血小板を使用する細胞医薬分野、医療分野等において極めて有用である。

Claims (36)

  1. 巨核球の培養物を濃縮する濃縮工程、および
    得られた濃縮物から血小板を遠心分離する遠心分離工程を含むことを特徴とする、精製血小板の製造方法。
  2. 前記遠心分離工程は、
     前記濃縮物を150~550gの遠心力で分離する第1の遠心分離工程と、
     前記第1の遠心分離工程で回収された液体成分を600~4000gの遠心力で遠心分離する第2の遠心分離工程とを含む、請求項1記載の精製血小板の製造方法。
  3. 前記遠心分離工程は、
     遠心力に応じて、前記濃縮物または前記回収された液体成分における比重の大きい成分を付着させる内壁と、前記濃縮物または前記回収された液体成分の分離後の液体成分を流出させる流出口とを含む、回転可能な分離ボウル、および
     前記流出口から流出した液体成分を回収する回収手段を含む遠心分離装置で実施される、請求項2記載の精製血小板の製造方法。
  4. 前記第2の遠心分離工程後、前記分離ボウルに洗浄保存液を添加し、前記分離ボウルを回転させることにより洗浄する洗浄工程と、
    前記洗浄工程後、前記洗浄保存液が存在する分離ボウルを揺動し、さらに前記分離ボウルの流出口から空気を導入することにより、血小板を回収する血小板回収工程とを含む、請求項3記載の精製血小板の製造方法。
  5. 前記洗浄工程に先立ち、前記第2の遠心分離工程後の前記分離ボウル内の分離成分を回収する分離成分回収工程と、
    前記分離成分を濃縮する分離成分濃縮工程とを含み、
    前記洗浄工程は、前記分離ボウルに、濃縮された分離成分と洗浄保存液とを添加し、前記分離ボウルを回転させることにより洗浄する、請求項4記載の精製血小板の製造方法。
  6. 前記回収された血小板を、分離部材を通過させることにより、血小板を分離する血小板分離工程を含む、請求項4または5記載の精製血小板の製造方法。
  7. 前記血小板分離工程において、前記回収された血小板を自然落下により前記分離部材に導入する、請求項6記載の精製血小板の製造方法。
  8. 前記濃縮工程は、濃縮部材で実施される、請求項1から7のいずれか一項に記載の精製血小板の製造方法。
  9. 前記分離成分濃縮工程は、濃縮部材で実施される、請求項5記載の精製血小板の製造方法。
  10. 前記濃縮工程に先立ち、前記巨核球の培養物を生産する生産工程を含み、
    前記生産工程は、
     前記巨核球より未分化な細胞に、癌遺伝子およびポリコーム遺伝子を強制発現させる第1の発現工程と、
     前記未分化な細胞において、Bcl-xL遺伝子を強制発現させる第2の発現工程と、
     前記強制発現を全て解除する解除工程とを含む、請求項1から9のいずれか一項に記載の精製血小板の製造方法。
  11. 精製血小板から血小板製剤を製造する製剤工程を含み、
    前記精製血小板は、請求項1から10のいずれか一項に記載の精製血小板の製造方法で得られたことを特徴とする、血小板製剤の製造方法。
  12. 精製血小板と他の成分とを混合することにより、血液製剤を製造する血液製剤工程を含み、
    前記精製血小板は、請求項1から10のいずれか一項に記載の精製血小板の製造方法で得られたことを特徴とする、血液製剤の製造方法。
  13. アルブミンを含むことを特徴とする、血小板保存液。
  14. 前記アルブミンの濃度は、1.25w/v%以上である、請求項13記載の血小板保存液。
  15. 前記アルブミンの濃度は、10w/v%以下である、請求項14記載の血小板保存液。
  16. 前記アルブミンは、血清アルブミンである、請求項13から15のいずれか一項に記載の血小板保存液。
  17. 糖を含む、請求項13から16のいずれか一項に記載の血小板保存液。
  18. 前記糖濃度は、0.1~0.4w/v%である、請求項17記載の血小板保存液。
  19. 前記糖は、ブドウ糖である、請求項17または18記載の血小板保存液。
  20. 電解質を含む、請求項13から19のいずれか一項に記載の血小板保存液。
  21. 前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、請求項20記載の血小板保存液。
  22. アルブミンを含むことを特徴とする、血小板保存剤。
  23. 前記アルブミンは、血清アルブミンである、請求項22記載の血小板保存剤。
  24. 糖を含む、請求項22または23記載の血小板保存剤。
  25. 前記糖は、ブドウ糖である、請求項24記載の血小板保存剤。
  26. 電解質を含む、請求項22から25のいずれか一項に記載の血小板保存剤。
  27. 前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、請求項26記載の血小板保存剤。
  28. アルブミンの存在下、血小板を保存する保存工程を含むことを特徴とする、血小板の保存方法。
  29. 前記アルブミンの濃度は、1.25w/v%以上である、請求項28記載の血小板の保存方法。
  30. 前記アルブミンの濃度は、10w/v%以下である、請求項29記載の血小板の保存方法。
  31. 前記アルブミンは、血清アルブミンである、請求項28から30のいずれか一項に記載の血小板の保存方法。
  32. 糖の存在下、前記保存工程を実施する、請求項28から31のいずれか一項に記載の血小板の保存方法。
  33. 前記糖濃度は、0.1~0.4w/v%である、請求項32記載の血小板の保存方法。
  34. 前記糖は、ブドウ糖である、請求項32または33記載の血小板の保存方法。
  35. 電解質の存在下、前記保存工程を実施する、請求項28から34のいずれか一項に記載の血小板の保存方法。
  36. 前記電解質は、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化マグネシウム、炭酸水素ナトリウム、クエン酸ナトリウム、およびクエン酸からなる群から選択される少なくとも1つを含む、請求項35記載の血小板の保存方法。
PCT/JP2018/034667 2017-09-19 2018-09-19 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法 WO2019059235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019543675A JP7323126B2 (ja) 2017-09-19 2018-09-19 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法
EP18858726.5A EP3679938A4 (en) 2017-09-19 2018-09-19 METHOD FOR PREPARING PURIFIED BLOOD PLATELETS, METHOD FOR PREPARING BLOOD PLATFORM PREPARATION, METHOD FOR PREPARING BLOOD PREPARATION, PLATELET CONSERVATION FLUID, AND CONSERVATION OF BLOOD PLATES
US16/648,551 US11773374B2 (en) 2017-09-19 2018-09-19 Method for producing purified platelets, method for producing platelet product, method for producing blood product, platelet preserving solution, platelet preserving agent, and method for preserving platelets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017179138 2017-09-19
JP2017-179138 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019059235A1 true WO2019059235A1 (ja) 2019-03-28

Family

ID=65810847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034667 WO2019059235A1 (ja) 2017-09-19 2018-09-19 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法

Country Status (4)

Country Link
US (1) US11773374B2 (ja)
EP (1) EP3679938A4 (ja)
JP (2) JP7323126B2 (ja)
WO (1) WO2019059235A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092169A1 (ja) * 2020-10-27 2022-05-05 国立大学法人 長崎大学 骨形成組成物およびその用途

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284529A (ja) 1994-01-21 1995-10-31 Haemonetics Corp 血液を加工する遠心機ボウル及びその方法
JPH10511402A (ja) * 1995-03-08 1998-11-04 セロックス ラボラトリーズ,インコーポレーテッド 凍結保存溶液
JP2000506024A (ja) * 1996-03-12 2000-05-23 ローヌ―プーラン・ロレ・エス・アー 生物材料の保存用培地
JP2005296675A (ja) 2005-06-22 2005-10-27 Terumo Corp 血液成分分離装置
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JP2016538859A (ja) * 2013-11-19 2016-12-15 プラトードPlatod 血小板産生流体装置
WO2017065280A1 (ja) * 2015-10-14 2017-04-20 株式会社メガカリオン 精製血小板の製造方法
JP2017179138A (ja) 2016-03-30 2017-10-05 積水化成品工業株式会社 ゴム変性ポリスチレン系樹脂の発泡性粒子、発泡粒子及び発泡成形体、並びに、それらの製造方法及び用途

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2072378C (en) * 1991-11-21 2000-12-26 Vlado Ivan Matkovich System for processing separate containers of biological fluid
DE19964109A1 (de) 1999-12-29 2001-07-05 Dade Behring Marburg Gmbh Gebrauchsfertiges langzeitstabiles Ristocetin Cofaktor Testreagenz
US7291450B2 (en) * 2003-03-28 2007-11-06 Smith & Nephew, Inc. Preparation of a cell concentrate from a physiological solution
WO2014100779A1 (en) * 2012-12-21 2014-06-26 Advanced Cell Technology, Inc. Methods ofr production of platelets from pluripotent stem cells and compositions thereof
US10039877B2 (en) * 2013-08-23 2018-08-07 Fenwal, Inc. Apheresis platelets with fixed residual plasma volume
JP6528399B2 (ja) 2014-12-19 2019-06-12 株式会社カネカ 細胞濃縮液の製造方法
JP6457338B2 (ja) 2015-05-28 2019-01-23 株式会社日立製作所 液体還流容器、細胞濃縮装置及び細胞濃縮システム
US10570372B2 (en) * 2015-09-15 2020-02-25 Megakaryon Corporation Method for manufacturing platelets by rotary stirring culture method
WO2017077964A1 (ja) * 2015-11-02 2017-05-11 株式会社メガカリオン 往復動撹拌装置を用いた血小板の製造方法
US11952587B2 (en) * 2017-03-06 2024-04-09 Kyoto University Method for producing platelets
EP3650535A4 (en) * 2017-07-07 2021-03-17 Kyoto University PROCESS AND APPARATUS FOR THE PRODUCTION OF PLATES AND METHOD FOR DETERMINING OPERATING CONDITIONS IN AN APPARATUS FOR THE PRODUCTION OF PLATES

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284529A (ja) 1994-01-21 1995-10-31 Haemonetics Corp 血液を加工する遠心機ボウル及びその方法
JPH10511402A (ja) * 1995-03-08 1998-11-04 セロックス ラボラトリーズ,インコーポレーテッド 凍結保存溶液
JP2000506024A (ja) * 1996-03-12 2000-05-23 ローヌ―プーラン・ロレ・エス・アー 生物材料の保存用培地
JP2005296675A (ja) 2005-06-22 2005-10-27 Terumo Corp 血液成分分離装置
WO2011034073A1 (ja) 2009-09-15 2011-03-24 国立大学法人東京大学 分化細胞の新規製造法
WO2012157586A1 (ja) 2011-05-13 2012-11-22 国立大学法人東京大学 多核化巨核球細胞、及び血小板の製造方法
WO2014123242A1 (ja) 2013-02-08 2014-08-14 国立大学法人京都大学 巨核球及び血小板の製造方法
JP2016538859A (ja) * 2013-11-19 2016-12-15 プラトードPlatod 血小板産生流体装置
WO2017065280A1 (ja) * 2015-10-14 2017-04-20 株式会社メガカリオン 精製血小板の製造方法
JP2017179138A (ja) 2016-03-30 2017-10-05 積水化成品工業株式会社 ゴム変性ポリスチレン系樹脂の発泡性粒子、発泡粒子及び発泡成形体、並びに、それらの製造方法及び用途

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
HIDEYUKI OGURO ET AL.: "Senescence and Ageing of Stem Cells Regulated by Polycomb Complexes", REGENERATIVE MEDICINE, vol. 6, no. 4, 2007, pages 26 - 32
JESUS GIL: "Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all", NATURE REVIEWS MOLECULAR CELL BIOLOGY, vol. 7, 2007, pages 667 - 677
KOBAYASHI, T. ET AL.: "Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells", CELL, vol. 142, no. 5, 2010, pages 787 - 799, XP055053670, DOI: 10.1016/j.cell.2010.07.039
NAKAMURA S ET AL.: "Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells", CELL STEM CELL, vol. 14, no. 4, 2014, pages 535 - 548, XP055567214, DOI: 10.1016/j.stem.2014.01.011
OKADA HIDETOSHI ET AL.: "Significance of existence of albumin in artificial preservation solution of blood platelet", JOURNAL OF THE SOCIETY FOR JAPANESE BLOOD PROGRAMME, vol. 12, 1988, pages 109, XP009520542, ISSN: 0917-7833 *
SCHLINKER, A. C. ET AL.: "Separation of In-Vitro-Derived Megakaryocytes and Platelets Using Spinning-Membrane Filtration", BIOTECHNOLOGY AND BIOENGINEERING, vol. 112, no. 4, 2015, pages 788 - 800, XP055376178, DOI: 10.1002/bit.25477 *
SHIGEMORI TOMOHIKO ET AL.: "Development of platelet preparations using iPS cell technology", IGAKU NO AYUMI, vol. 257, no. 3, 2016, pages 208 - 212, XP009520573, ISSN: 0039-2359 *
SOO-HYUN KIM: "Absence of p16INK4a and truncation of ARF tumor suppressors in chickens", PNAS, vol. 100, no. 1, 2003, pages 211 - 216
TAKAYAMA N. ET AL.: "Transient activation of c-MYC expression is critical for efficient platelet generation from human induced pluripotent stem cells", J. EXP. MED., vol. 13, 2010, pages 2817 - 2830
TAKAYAMA N: "Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors", BLOOD, vol. Ill, no. 11, 2008, pages 5298 - 5306

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092169A1 (ja) * 2020-10-27 2022-05-05 国立大学法人 長崎大学 骨形成組成物およびその用途

Also Published As

Publication number Publication date
JP7323126B2 (ja) 2023-08-08
JPWO2019059235A1 (ja) 2020-10-22
EP3679938A1 (en) 2020-07-15
EP3679938A4 (en) 2021-06-09
JP2023100831A (ja) 2023-07-19
US11773374B2 (en) 2023-10-03
US20200216809A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP7287634B2 (ja) 精製血小板の製造方法
KR102664131B1 (ko) 왕복 이동 교반 장치를 사용한 혈소판의 제조 방법
WO2020189538A1 (ja) 哺乳動物細胞の保存液
RU2756000C2 (ru) Способ производства тромбоцитов способом ротационного перемешивания культуры
KR20200060343A (ko) 적혈구 전구체 세포의 생산 방법
JP2023100831A (ja) 精製血小板の製造方法、血小板製剤の製造方法、血液製剤の製造方法、血小板保存液、血小板保存剤および血小板の保存方法
WO2023072813A1 (en) Methods for expanding natural killer cells (nk cells)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543675

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858726

Country of ref document: EP

Effective date: 20200420