WO2017073019A1 - ロータリ式圧縮機 - Google Patents

ロータリ式圧縮機 Download PDF

Info

Publication number
WO2017073019A1
WO2017073019A1 PCT/JP2016/004503 JP2016004503W WO2017073019A1 WO 2017073019 A1 WO2017073019 A1 WO 2017073019A1 JP 2016004503 W JP2016004503 W JP 2016004503W WO 2017073019 A1 WO2017073019 A1 WO 2017073019A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
discharge ports
rotary compressor
discharge port
interval
Prior art date
Application number
PCT/JP2016/004503
Other languages
English (en)
French (fr)
Inventor
俊輔 薬師寺
小川 真
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201680025135.0A priority Critical patent/CN107614881B/zh
Priority to EP16859259.0A priority patent/EP3369932B1/en
Publication of WO2017073019A1 publication Critical patent/WO2017073019A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators

Definitions

  • the present invention relates to a rotary compressor used in a refrigeration apparatus.
  • the rotary compressor used in the refrigeration apparatus includes a cylinder 2 having a cylindrical inner wall surface and a piston provided eccentrically with respect to the center of the cylinder 2. And a rotor 3.
  • the piston rotor 3 is provided on a main shaft 4 provided along the central axis of the cylinder 2.
  • the main shaft 4 is provided so as to be rotatable around its central axis via an upper bearing 5A and a lower bearing 5B fixed to the cylinder 2.
  • a rotor 6 ⁇ / b> A of a motor 6 is fixed to the main shaft 4.
  • a stator 6B fixed to the inner peripheral surface of the hermetic container 1 is disposed.
  • the rotary compressor in FIG. 7 is a two-cylinder type compressor that includes two pairs of a cylinder 2 and a piston rotor 3 at the top and bottom.
  • the rotary compressor sucks the refrigerant into a compression chamber formed between the cylinder 2 and the piston rotor 3, and compresses the refrigerant by reducing the volume of the compression chamber by the rotation of the piston rotor 3.
  • the compressed refrigerant is discharged from a discharge port (not shown) to the upper muffler 7A and the lower muffler 7B, and then reaches the sealed container 1.
  • the rotary compressor separates the refrigerant from gas and liquid by the accumulator 8 and then sucks and compresses the refrigerant.
  • the upper cover (corresponding to a muffler) has a two-layer structure of an inner first cover and an outer second cover, and the lower cover has a single-layer structure of a third cover.
  • the refrigerant discharged from the third cover is caused to flow into the upper second cover (outside the first cover).
  • the first cover and the third cover share the second cover, and in addition to the two-stage silencing by the flow path connecting the first cover to the second cover, the third cover is connected to the second cover. Two stages of noise reduction are realized by the flow path.
  • an object of the present invention is to provide a rotary compressor that can reduce pulsation based on the acoustic eigenvalue of the muffler itself by using a muffler having a two-layer structure.
  • a rotary compressor according to the present invention is rotatable in each of a rotary compression mechanism that compresses and discharges a supplied refrigerant, an upper bearing and a lower bearing provided across the rotary compression mechanism, and an upper bearing and a lower bearing.
  • a muffler to be stored in a sealed container.
  • the muffler of the rotary compressor of the present invention has a first muffler provided inside, and a second muffler that is outside the first muffler and covers the first muffler, and the first muffler is specified in advance.
  • the acoustic characteristic value of the frequency F is excited, and the second muffler absorbs the sound wave of the frequency F that passes through the first muffler.
  • the first muffler includes a plurality of first discharge ports that discharge the refrigerant that has flowed into the second muffler, and the second muffler passes through the first discharge port to the inside.
  • a plurality of second discharge ports are provided for discharging the flowed refrigerant into the sealed container, and the interval between the plurality of second discharge ports is based on 1 ⁇ 2 of the interval between the plurality of first discharge ports. Can be determined.
  • the interval between the first discharge ports can be set to the interval passing the side where the discharge port is not provided.
  • interval of a 1st discharge outlet can be specified so that the frequency of an acoustic eigenvalue may be excited.
  • the first muffler may have two first discharge ports, and the second muffler may have three or more second discharge ports.
  • the plurality of first discharge ports can be arranged on the same circumference.
  • a plurality of second discharge ports can be arranged on the same circumference.
  • the plurality of first discharge ports and the plurality of second discharge ports can be arranged on the same circumference.
  • at least one second discharge port can be adjacent to the first discharge port on both sides in the circumferential direction.
  • the first discharge port and the plurality of second discharge ports can be arranged radially inward from the discharge port.
  • the first muffler includes a single first discharge port that discharges the flowing refrigerant into the second muffler, and the second muffler passes through the first discharge port to the inside.
  • a plurality of second discharge ports are provided to discharge the refrigerant flowing into the closed container, and the interval between the plurality of second discharge ports is 1 ⁇ 2 of the interval between the first discharge port and the discharge port. It can be determined by reference.
  • a plurality of second discharge ports can be arranged on the same circumference. Moreover, a single first discharge port and a plurality of second discharge ports can be arranged on the same circumference.
  • the position where the single or plural first discharge ports are provided overlaps with the position where the plural second discharge ports are provided in plan view of the first muffler and the second muffler. It is preferable that it has shifted
  • the rotary compressor includes a two-layered muffler having a first muffler provided inside, and a second muffler that is outside the first muffler and covers the first muffler, It is assumed that one muffler is excited with an acoustic eigenvalue of a frequency F specified in advance, and that the second muffler absorbs a sound wave having a frequency F that passes through the first muffler, so that the muffler itself has an acoustic eigenvalue.
  • the pulsation based can be reduced.
  • FIG. 1 It is a longitudinal section showing a schematic structure of a rotary type compressor concerning an embodiment of the present invention. It is the elements on larger scale of FIG.
  • the muffler of the rotary compressor of FIG. 1 is shown, (a) is a top view of a 1st muffler, (b) is a top view of a 2nd muffler. (A) is a top view which shows typically the muffler by which arrangement
  • the compressor 10 includes a rotary compression mechanism, and an upper muffler 50 to be described later has a two-layer structure, and the arrangement of refrigerant discharge ports in each layer is specified, whereby the upper muffler 50 is identified. Suppresses pulsation based on its own acoustic eigenvalue.
  • the configuration of the compressor 10 will be described, and then the operation and effect of the compressor 10 will be described.
  • the compressor 10 is a so-called two-cylinder rotary compressor in which disk-shaped cylinders 20 ⁇ / b> A and 20 ⁇ / b> B provided in two upper and lower stages are accommodated in a cylindrical sealed container 11. is there.
  • a cylindrical cylinder inner wall surface 20S is formed in each of the cylinders 20A and 20B.
  • Cylindrical piston rotors 21A and 21B each having an outer diameter smaller than the inner diameter of the cylinder inner wall surface 20S are arranged inside the cylinders 20A and 20B.
  • the piston rotors 21A and 21B are inserted and fixed to the eccentric shaft portions 40A and 40B of the main shaft 23 along the central axis of the sealed container 11, respectively.
  • a disc-shaped partition plate 24 is provided between the upper cylinder 20A and the lower cylinder 20B. The partition plate 24 partitions the space of the upper cylinder 20A and the space of the lower cylinder 20B into the compression chamber R1 and the compression chamber R2 without communicating with each other.
  • the upper and lower cylinders 20A and 20B are provided with blades (not shown) for dividing the compression chambers R1 and R2 into two, respectively.
  • the blade is held by an insertion groove formed extending in the radial direction of the cylinders 20A and 20B so as to be able to advance and retreat in a direction toward and away from the piston rotors 21A and 21B.
  • the cylinders 20A and 20B each have a discharge port (not shown) for discharging the refrigerant at a predetermined position, and the discharge port is provided with a reed valve (not shown). When the pressure of the compressed refrigerant reaches a predetermined value, the refrigerant is discharged to the outside of the cylinders 20A and 20B by pushing the reed valve open.
  • the main shaft 23 is rotatably supported around its central axis by an upper bearing 29A fixed to the cylinder 20A and a lower bearing 29B fixed to the cylinder 20B.
  • the upper bearing 29A and the lower bearing 29B are provided with a rotary compression mechanism interposed therebetween.
  • the main shaft 23 includes eccentric shaft portions 40A and 40B that are offset in a direction orthogonal to the central axis of the main shaft 23, that is, are shifted in position.
  • the eccentric shaft portions 40A and 40B have outer diameters slightly smaller than the inner diameters of the piston rotors 21A and 21B.
  • the main shaft 23 protrudes and extends upward from the upper bearing 29A, and a rotor 37 of an electric motor 36 for rotating the main shaft 23 is integrally provided in the protruding portion.
  • a stator 38 facing the outer peripheral portion of the rotor 37 is fixed to the inner peripheral surface of the sealed container 11.
  • the upper bearing 29A includes a base 291A and a sleeve 292A that rises vertically from the base 291A.
  • the base portion 291A and the sleeve 292A are formed so that their axial centers coincide with each other, and a receiving surface 293A for supporting the main shaft 23 is formed around the axial center.
  • the outer peripheral surface of the base portion 291A is fixed to the inner peripheral surface of the sealed container 11 at a plurality of fixing points. This fixing is performed by, for example, welding or fastening with a bolt.
  • the lower bearing 29B includes a base 291B and a sleeve 292B that rises vertically from the base 291B.
  • the base 291 ⁇ / b> B and the sleeve 292 ⁇ / b> B are formed so that their axes coincide with each other, and a receiving surface 293 ⁇ / b> B for supporting the main shaft 23 is formed around the axis.
  • the upper bearing 29A and the lower bearing 29B are disposed so that the base 291A and the base 291B face each other.
  • the upper bearing 29A supports the main shaft 23 between the cylinder 20A and the electric motor 36, and the lower bearing 29B supports the main shaft 23 at a portion protruding downward from the cylinder 20B.
  • the upper bearing 29A is provided with a discharge port 294A (see FIG.
  • the lower bearing 29B includes a discharge port (not shown) communicating with a discharge port (not shown) formed in the cylinder 20B, and the refrigerant passing through the cylinder 20B passes through the discharge port and passes through the lower muffler 60. It is discharged into the inside of.
  • Compressor 10 has upper muffler 50 mounted on upper bearing 29A and lower muffler 60 mounted on lower bearing 29B.
  • the refrigerant that has passed through the upper bearing 29A and the lower bearing 29B flows into the upper muffler 50 and the lower muffler 60, respectively, the pulsating component is removed.
  • the refrigerant from which the pulsating component has been removed flows toward the upper side of the sealed container 11 through the first discharge port 56A formed in the upper muffler 50 and the second discharge port 56B formed in the lower muffler 60. Details of the upper muffler 50 will be described later.
  • Openings 12A and 12B are formed on the side of the sealed container 11 at positions facing the outer peripheral surfaces of the cylinders 20A and 20B.
  • suction ports 30A and 30B are formed at positions facing the openings 12A and 12B to communicate with a predetermined position on the cylinder inner wall surface 20S.
  • an accumulator 14 for gas-liquid separation of the refrigerant Prior to supplying the compressor 10 to the compressor 10, an accumulator 14 for gas-liquid separation of the refrigerant is fixed to the sealed container 11 via a stay 15.
  • the accumulator 14 is provided with suction pipes 16A and 16B for letting the compressor 10 suck the refrigerant in the accumulator 14.
  • the distal ends of the suction pipes 16A and 16B pass through the openings 12A and 12B and are connected to the suction ports 30A and 30B.
  • the compressor 10 takes in the refrigerant into the accumulator 14 from the suction port 14a of the accumulator 14, separates the refrigerant in the accumulator 14, and the gas phase is sucked into the cylinders 20A and 20B from the suction pipes 16A and 16B.
  • the gas is supplied to compression chambers R1 and R2 that are internal spaces of the cylinders 20A and 20B via the ports 30A and 30B. Then, by eccentrically rolling the piston rotors 21A and 21B, the volumes of the compression chambers R1 and R2 are gradually reduced, and the refrigerant is compressed.
  • the compressed refrigerant passes through the upper bearing 29A and the upper muffler 50 on the cylinder 20A side, and passes through the lower bearing 29B and the lower muffler 60 on the cylinder 20B side. It is discharged to the outside of the upper muffler 50 and the lower muffler 60 inside. After passing through the electric motor 36, the refrigerant is discharged to the piping constituting the refrigeration cycle via the discharge port 42 provided at the top.
  • the upper muffler 50 that is a feature of the present embodiment will be described.
  • the upper muffler 50 is a two-layer structure including a first muffler 50A provided inside and a second muffler 50B outside the first muffler 50A and covering the first muffler 50A.
  • Each has a structure and is fixed to the upper bearing 29A by a plurality of bolts B.
  • the first muffler 50A includes a flange 51A and a cup 52A that rises from the flange 51A.
  • a flange 51A and a cup 52A are integrally formed by subjecting a flat metal plate such as an aluminum alloy plate to sheet metal processing.
  • the flange 51A is a portion provided to fix the upper muffler 50 to the upper bearing 29A, and is a flat member whose outer shape is circular in plan view.
  • the flange 51A is abutted against the upper surface of the upper bearing 29A without any gap, and is fixed to the upper bearing 29A at a plurality of locations, in this embodiment, at five locations by a plurality of bolts B penetrating the flange 51A.
  • bolt B of the flange 51A is fixed is provided in the aperture_diaphragm
  • the cup 52A includes a hollow cylindrical side wall 54A and a top plate 55A that covers the opening at the upper end of the side wall 54A.
  • the top plate 55A has a ring shape having an outer periphery and an inner periphery, the outer periphery is connected to the side wall 54A, and the inner periphery is abutted against the sleeve 292A of the upper bearing 29A.
  • the same elements as those of the first muffler 50A are denoted by the reference numerals in which A is changed to B in FIGS. The description is omitted.
  • the upper muffler 50 passes through a refrigerant path through which compressed refrigerant discharged from discharge ports 294A and 294B (FIG. 3A) provided in the upper bearing 29A passes in order of the first muffler 50A and the second muffler 50B.
  • the air is discharged inside the sealed container 11 and outside the upper muffler 50 and the lower muffler 60.
  • the discharge port 294B is for the compressed refrigerant once discharged to the lower muffler 60 to be discharged to the first muffler 50A through the lower bearing 29B and further through the upper bearing 29A. In order to form this refrigerant path, as shown in FIG.
  • the first muffler 50A has two first discharge ports 56A1 and 56A2 formed through the front and back of the top plate 55A.
  • 50B has three 2nd discharge outlets 56B1, 56B2, and 56B3 formed through the front and back of the top plate 55B. That is, the compressed refrigerant is the discharge ports 294A and 294B of the upper bearing 29A, the internal space of the first muffler 50A, the first discharge ports 56A1 and 56A2 of the first muffler 50A, and the space between the second muffler 50B and the first muffler 50A. And the second outlets 56B1, 56B2, and 56B3 of the second muffler 50B pass in this order.
  • the first discharge ports 56A1 and 56A2 and the second discharge ports 56B1, 56B2, and 56B3 are formed so as not to overlap with each other in plan view of the first muffler 50A and the second muffler 50B.
  • the compressed refrigerant is prevented from passing directly through the second discharge port 56B1 from the discharge port 56A1.
  • the positions of the first discharge ports 56A1, 56A2 of the first muffler 50A and the second discharge ports 56B1, 56B2, 56B3 of the second muffler 50B are specified as follows.
  • the positions of the first outlets 56A1 and 56A2 are specified so that the acoustic eigenvalue of the frequency F to be silenced by the first muffler 50A is excited most strongly.
  • the acoustic eigenvalue is specified by the mutual interval L1 along the circumferential direction of the first discharge port 56A1 and the discharge port 56A2.
  • the first muffler 50A can be actively expanded and contracted at the frequency F to be silenced, and pulsation energy can be converted into heat energy to suppress pulsation.
  • the first discharge port 56A1 and the first discharge port 56A2 can have two mutual intervals along the circumferential direction, but the interval L1 here passes through the side where the discharge ports 294A and 294B are not provided. And In this embodiment, the interval L1 is set to pass through the side where the discharge ports 294A and 294B are not provided, but the discharge ports 294A and 294B are provided depending on the interval between the discharge port 294A and the discharge port 294B. The direction passing the side can also be set as the interval L1.
  • the second muffler 50B absorbs the sound wave having the frequency F that passes through the first muffler 50A, and suppresses the transmission of pulsation to the outside of the second muffler 50B. Therefore, the second discharge ports 56B1, 56B2, and 56B3 of the second muffler 50B are arranged such that the interval L2 between adjacent discharge ports including the first discharge ports 56A1 and 56A2 is the interval between the first discharge ports 56A1 and 56A2. It is set to be 1/2 of L1. In FIG.
  • the interval L2 between the second discharge port 56B1 and the discharge port 56B3 is 1 / 2L1
  • the interval L2 between the discharge port 56B3 and the discharge port 56A2 is 1 / 2L1
  • the second discharge port 56B2 and the first discharge port is 1 / 2L1.
  • the second muffler 50B resonates at half the wavelength of the sound wave that resonates with the first muffler 50A, and therefore can absorb the sound wave transmitted through the first muffler 50A.
  • the interval L2 here is 1 / 2L1, which is the most preferable form, but the effect of the present invention can be enjoyed even if the interval L2 is slightly shifted from 1 / 2L2. That is, according to the present invention, the interval L2 can be determined with reference to 1 / 2L1.
  • the upper muffler 50 has a two-layer structure of the first muffler 50A and the second muffler 50B, and the frequency F to be silenced by the first muffler 50A can be specified. Therefore, the pulsation of the targeted frequency can be reliably reduced.
  • the pulsation caused by the refrigerant immediately after being discharged from the compression chamber has a strong frequency component determined by the dimensions of the compression chamber, and if the pulsation of this frequency can be reduced by this embodiment, the problem of noise caused by the pulsation is reduced. It can be almost solved.
  • the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.
  • the example in which the two first discharge ports 56A1 and 56A2 of the first muffler 50A are provided has been shown.
  • the first muffler 50A has a single first discharge port.
  • the present invention can also be applied when 56A1 is provided. In this case, based on the interval L1 or interval L3 between the discharge port 294A and the first discharge port 56A1 shown in FIG. 5A, as shown in FIG. 5B, the second discharge ports 56B1, 56B2, and 56B3. Determine the interval.
  • the discharge port 294A is not considered in specifying the interval L1 (interval L2), but this is because the interval between the discharge port 294A and the first discharge port 56A1 is extremely narrow, and the corresponding frequency is high. This is because it has been determined that there is no need for mute.
  • the present invention can also be applied when three or more first discharge ports 56A1, 56A2, and 56A3 are provided in the first muffler 50A.
  • the second muffler 50B is provided with second discharge ports 56B1, 56B2, and 56B3.
  • the upper muffler 50 of the two-cylinder type rotary compressor is taken as an example, but the present invention can also be applied to the muffler of the one-cylinder type rotary compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

二層構造のマフラ自身の音響固有値に基づく脈動を低減できるロータリ式圧縮機を提供すること。本発明のロータリ式の圧縮機10は、上部マフラ50は、内側に設けられる第一マフラ50Aと、第一マフラ50Aの外側にあって、第一マフラ50Aを覆う第二マフラ50Bと、を有し、第一マフラ50Aは、予め特定された周波数Fの音響固有値が励起され、第二マフラ50Bは、第一マフラ50Aを透過する周波数Fの音波を吸収することを特徴とする。第二マフラ50Bの第二吐出口56B1,56B2,56B3のそれぞれの間隔L2を、第一マフラ50Aの第一吐出口56A1,56A2の間隔L1の1/2にすることが、本発明の効果を得る上で最も効果的である。

Description

ロータリ式圧縮機
 本発明は、冷凍装置に用いられるロータリ式圧縮機に関する。
 冷凍装置に用いられるロータリ式圧縮機は、図7に示すように、密閉容器1の内部に、円筒状の内壁面を有したシリンダ2と、シリンダ2の中心に対して偏心して設けられたピストンロータ3と、を備えている。ピストンロータ3は、シリンダ2の中心軸線に沿って設けられた主軸4に設けられている。主軸4は、シリンダ2に固定された上部軸受5A、下部軸受5Bを介してその中心軸線周りに回転自在に設けられている。主軸4には、モータ6のロータ6Aが固定されている。ロータ6Aの外周側には、密閉容器1の内周面に固定されたステータ6Bが配置され、ステータ6Bに通電されることによって、ロータ6Aとともに主軸4が回転駆動され、ピストンロータ3がシリンダ2の内部で旋回する。なお、図7のロータリ式圧縮機は、シリンダ2とピストンロータ3の対を上下に二つ備える2気筒タイプの圧縮機である。
 ロータリ式圧縮機は、シリンダ2とピストンロータ3との間に形成された圧縮室に冷媒を吸い込み、ピストンロータ3の回転により圧縮室の容積を減少させることで冷媒を圧縮する。圧縮された冷媒は、図示を省略する吐出口から上側のマフラ7A,下側のマフラ7Bに吐出された後に、密閉容器1に至る。また、このロータリ式圧縮機は、アキュムレータ8により冷媒を気液分離してから、冷媒を吸込んで圧縮する。
 上側のマフラを内外の二層構造にすれば、二段階で行うことにより消音効果を上げられることが知られている。その中で、特許文献1は、上側のカバー(マフラに相当)を内側の第一カバーと外側の第二カバーの二層構造とし、下側のカバーを第三カバーの一層構造とするが、第三カバーから吐出される冷媒を上側の第二カバーの内部(第一カバーの外部)に流入させる。そうすることにより、第一カバーと第三カバーが第二カバーを共用して、第一カバーから第二カバーに連なる流路による二段階の消音に加えて、第三カバーから第二カバーに連なる流路による二段階の消音を実現している。
特開2001-280241号公報
 シリンダとピストンロータからなるロータリ圧縮機構の圧縮動作に伴い発生する脈動が、冷媒の吐出流路を伝わっていく間に音響固有値や構造固有値を励起し、ロータリ式圧縮機の振動を誘発し騒音となる。
 特許文献1を含めマフラを二層構造にすることにより、圧縮動作に伴う脈動を低減することはできるが、マフラ自身の音響固有値に基づく脈動を低減することはできず、この脈動はマフラから漏れてしまう。
 そこで本発明は、二層構造のマフラを利用することで、マフラ自身の音響固有値に基づく脈動を低減できるロータリ式圧縮機を提供することを目的とする。
 本発明のロータリ式圧縮機は、供給された冷媒を圧縮して吐出するロータリ圧縮機構と、ロータリ圧縮機構を挟んで設けられる上部軸受及び下部軸受と、上部軸受及び下部軸受の各々に回転自在に支持され、ロータリ圧縮機構を貫通する主軸と、主軸をその中心軸線の周りに回転駆動させる電動モータと、ロータリ圧縮機構から吐出される冷媒が、上部軸受に設けられる吐出ポートを介して内部に流入するマフラと、が密閉容器に収容される。
 本発明のロータリ式圧縮機のマフラは、内側に設けられる第一マフラと、第一マフラの外側にあって、第一マフラを覆う第二マフラと、を有し、第一マフラは、予め特定された周波数Fの音響固有値が励起され、第二マフラは、第一マフラを透過する周波数Fの音波を吸収する、ことを特徴とする。
 本発明のロータリ式圧縮機において、第一マフラは、流入した冷媒を第二マフラの内部に吐出させる、複数の第一吐出口を備え、第二マフラは、第一吐出口を通って内部に流入した冷媒を密閉容器の内部に吐出させる、複数の第二吐出口を備え、複数の第二吐出口の相互の間隔は、複数の第一吐出口の相互の間隔の1/2を基準にして定めることができる。
 本発明のロータリ式圧縮機において、第一吐出口の相互の間隔は、吐出ポートが設けられていない側を通る方の間隔にすることができる。
 そして、第一吐出口の相互の間隔は、音響固有値の周波数が励起されるように特定することができる。
 本発明のロータリ式圧縮機において、第一マフラが、二つの第一吐出口を備え、第二マフラが、三つ以上の第二吐出口を備える、形態にすることができる。
 本発明のロータリ式圧縮機において、複数の第一吐出口を、同一円周上に配置させることができる。
 また、複数の第二吐出口を、同一円周上に配置させることができる。
 さらに、複数の第一吐出口と複数の第二吐出口を、同一円周上に配置させることができる。この場合に、少なくとも一つの第二吐出口を、円周方向の両側で第一吐出口と隣接させることができる。
 本発明のロータリ式圧縮機において、第一吐出口と複数の第二吐出口は、吐出ポートより、半径方向の内側に配置させることができる。
 本発明のロータリ式圧縮機において、第一マフラは、流入した冷媒を第二マフラの内部に吐出させる、単一の第一吐出口を備え、第二マフラは、第一吐出口を通って内部に流入した冷媒を密閉容器の内部に吐出させる、複数の第二吐出口を備え、複数の第二吐出口の相互の間隔は、第一吐出口と吐出ポートの相互の間隔の1/2を基準にして定めることができる。
 本発明のロータリ式圧縮機において、複数の第二吐出口を、同一円周上に配置させることができる。また、単一の第一吐出口と複数の第二吐出口を、同一円周上に配置させることができる。
 本発明のロータリ式圧縮機において、単数又は複数の第一吐出口が設けられる位置と複数の第二吐出口が設けられる位置とが、第一マフラと第二マフラを平面視して、重複することなくずれている、ことが好ましい。
 本発明のロータリ式圧縮機によれば、内側に設けられる第一マフラと、第一マフラの外側にあって、第一マフラを覆う第二マフラと、を有する二層構造のマフラを備え、第一マフラを、予め特定された周波数Fの音響固有値で励起されるものとし、第二マフラを、第一マフラを透過する周波数Fの音波を吸収するものとすることで、マフラ自身の音響固有値に基づく脈動を低減できる。
本発明の実施形態に係るロータリ式圧縮機の概略構成を示す縦断面図である。 図1の部分拡大図である。 図1のロータリ式圧縮機のマフラを示し、(a)は第一マフラの平面図であり、(b)は第二マフラの平面図である。 (a)は第一マフラの第一吐出口と第二マフラの第二吐出口の配置が示されたマフラを模式的に示す平面図、(b)は本実施形態による消音の原理を示す図である。 第一マフラの第一吐出口と第二マフラの第二吐出口の他の配置例を示す模式図である。 第一マフラの第一吐出口と第二マフラの第二吐出口の他の配置例を示す模式図である。 従来のロータリ式圧縮機の概略構成を示す縦断面図である。
 以下、添付図面を参照しながら、本発明の実施形態について説明する。
 本実施形態に係る圧縮機10は、ロータリ式の圧縮機構を備え、後述する上部マフラ50を二層構造にするとともに、それぞれの階層における冷媒の吐出口の配置を特定することで、上部マフラ50自身の音響固有値に基づく脈動を抑える。
 以下、圧縮機10の構成を説明し、次いで、圧縮機10の作用・効果について説明する。
[圧縮機10の構成]
 圧縮機10は、図1に示すように、円筒状の密閉容器11の内部に、上下二段に設けられたディスク状のシリンダ20A,20Bが収容される、いわゆる2気筒タイプのロータリ圧縮機である。シリンダ20A,20Bの内部には、それぞれ、円筒状のシリンダ内壁面20Sが形成されている。シリンダ20A,20Bの内側には、各々、シリンダ内壁面20Sの内径よりも小さな外径を有する円筒状のピストンロータ21A,21Bが配置されている。ピストンロータ21A,21Bは、各々、密閉容器11の中心軸線に沿った主軸23の偏心軸部40A,40Bに挿入固定されている。これにより、シリンダ20A,20Bのシリンダ内壁面20Sとピストンロータ21A,21Bの外周面との間には、平面視で、それぞれ三日月状の開口断面を有する空間が形成されている。
 ここで、上段側のピストンロータ21Aと、下段側のピストンロータ21Bとは、その位相が互いに180°だけ異なるように設けられている。
 また、上段側のシリンダ20Aと下段側のシリンダ20Bの間には、ディスク状の仕切板24が設けられている。仕切板24により、上段側のシリンダ20Aの空間と、下段側のシリンダ20Bの空間とが互いに連通せずに圧縮室R1と圧縮室R2とに仕切られている。
 上下のシリンダ20A,20Bには、圧縮室R1、R2を、それぞれ2つに区切るブレード(図示省略)が設けられている。ブレードは、シリンダ20A,20Bの径方向に延在して形成された挿入溝によって、ピストンロータ21A,21Bに対して接近方向及び離間する方向に進退自在に保持されている。
 また、シリンダ20A,20Bは、所定の位置に、冷媒を吐出する吐出口(図示省略)が形成されており、この吐出口にはリード弁(図示省略)が備えられている。圧縮された冷媒の圧力が所定値に達すると、リード弁を押し開くことで、冷媒はシリンダ20A,20Bの外部に吐出される。
 主軸23は、シリンダ20Aに固定された上部軸受29A、及び、シリンダ20Bに固定された下部軸受29Bにより、その中心軸線の周りに回転自在に支持されている。上部軸受29A及び下部軸受29Bは、ロータリ圧縮機構を挟んで設けられている。
 主軸23は、主軸23の中心軸線から直交する方向にオフセットされた、つまり、位置をずらして配置された偏心軸部40A,40Bを備えている。偏心軸部40A,40Bは、ピストンロータ21A,21Bの内径よりもわずかに小さな外径を有している。これにより、主軸23が回転すると、偏心軸部40A,40Bが主軸23の中心軸線周りに旋回して、上下のピストンロータ21A,21Bがシリンダ20A,20B内で転動する。このとき、前述したブレードは、その先端がピストンロータ21A,21Bの動きに追従して進退しながら、ピストンロータ21A,21Bに常に押し付けられる。
 主軸23は、上部軸受29Aから上方に突出して延びており、突出した部分には、主軸23を回転駆動させるための電動モータ36のロータ37が一体に設けられている。ロータ37の外周部に対向するステータ38が、密閉容器11の内周面に固定されている。
 上部軸受29Aは、図1及び図2に示すように、基部291Aと、基部291Aから垂直に立ち上るスリーブ292Aとを備えている。基部291Aとスリーブ292Aは軸心が一致するように形成され、その軸心の周囲には主軸23を支持される受面293Aが形成されている。上部軸受29Aは、基部291Aの外周面が密閉容器11の内周面と、複数箇所の固定点で固定されている。この固定は、例えば溶接、ボルトによる締結などで行われる。
 下部軸受29Bは、基部291Bと、基部291Bから垂直に立ち上るスリーブ292Bとを備えている。基部291Bとスリーブ292Bは軸心が一致するように形成され、その軸心の周囲には主軸23が支持される受面293Bが形成されている。
 上部軸受29Aと下部軸受29Bは、互いの基部291Aと基部291Bが対向するように配置される。上部軸受29Aは主軸23をシリンダ20Aと電動モータ36の間で支持し、下部軸受29Bは主軸23をシリンダ20Bから下方に向けて突出する部分で支持する。
 上部軸受29Aは、シリンダ20Aに形成された吐出口(図示省略)と連通する吐出ポート294A(図3(a)参照)を備えており、シリンダ20Aを通過する冷媒がこの吐出ポート294Aを通って後述する上部マフラ50の内部に吐出される。同様に、下部軸受29Bは、シリンダ20Bに形成された吐出口(図示省略)と連通する吐出ポート(図示省略)を備えており、シリンダ20Bを通過する冷媒がこの吐出ポートを通って下部マフラ60の内部に吐出される。
 圧縮機10は、上部軸受29Aに上部マフラ50を装着するとともに、下部軸受29Bに下部マフラ60を装着している。上部軸受29A、下部軸受29Bを通ってきた冷媒は、各々、上部マフラ50、下部マフラ60の内部に流入すると、脈動成分が除去される。脈動成分が除去された冷媒は、上部マフラ50に形成された第一吐出口56A、下部マフラ60に形成された第二吐出口56Bを通って、密閉容器11の上方に向けて流入する。上部マフラ50について、詳しくは後述する。
 密閉容器11の側方には、シリンダ20A,20Bの外周面に対向する位置に、開口12A,12Bが形成されている。シリンダ20A,20Bには、開口12A,12Bに対向した位置に、シリンダ内壁面20Sの所定位置まで連通する吸入ポート30A,30Bが形成されている。
 圧縮機10は、圧縮機10に供給するのに先立って冷媒を気液分離するアキュムレータ14が、ステー15を介して密閉容器11に固定されている。
 アキュムレータ14には、アキュムレータ14内の冷媒を圧縮機10に吸入させるための吸入管16A、16Bが設けられている。吸入管16A、16Bの先端部は、開口12A,12Bを貫通して、吸入ポート30A,30Bに接続されている。
 圧縮機10は、アキュムレータ14の吸入ポート14aからアキュムレータ14の内部に冷媒を取り込み、アキュムレータ14内で冷媒を気液分離して、その気相を吸入管16A、16Bから、シリンダ20A,20Bの吸入ポート30A,30Bを介し、シリンダ20A,20Bの内部空間である圧縮室R1、R2に供給する。
 そして、ピストンロータ21A,21Bを偏心転動させることにより、圧縮室R1、R2の容積が徐々に減少して冷媒が圧縮される。圧縮された冷媒は、シリンダ20Aの側については、上部軸受29A及び上部マフラ50を通過して、また、シリンダ20Bの側については、下部軸受29B及び下部マフラ60を通過して、密閉容器11の内部であって上部マフラ50及び下部マフラ60の外部に吐出される。この冷媒は、電動モータ36を通過してから、上部に設けられた吐出ポート42を経由して冷凍サイクルを構成する配管に排出される。
 次に、本実施形態の特徴である上部マフラ50について説明する。
 上部マフラ50は、図2及び図3に示すように、内側に設けられる第一マフラ50Aと、第一マフラ50Aの外側にあって第一マフラ50Aを覆う第二マフラ50Bと、からなる二層構造を有しており、いずれも上部軸受29Aに複数のボルトBにより固定されている。
 第一マフラ50Aは、図2及び図3に示すように、フランジ51Aと、フランジ51Aから立ち上がるカップ52Aと、を備えている。第一マフラ50Aは、偏平な金属板、例えばアルミニウム合金板に板金加工を施すことで、フランジ51A及びカップ52Aが一体的に形成されている。
 フランジ51Aは、上部マフラ50を上部軸受29Aに固定するのに供される部分であり、平面視で外形が円形をなす偏平な部材である。フランジ51Aは、上部軸受29Aの上面に隙間なく突き合わせられるとともに、フランジ51Aを貫通する複数のボルトBにより上部軸受29Aに複数個所、本実施形態では5カ所で固定される。なお、フランジ51AのボルトBが固定される部位は、カップ52Aの側壁54Aが径方向の中心に向けて窪んでいる絞りに設けられる。
 カップ52Aは、中空円筒状の側壁54Aと、側壁54Aの上端の開口を覆う天板55Aと、を備える。天板55Aは、外周と内周を有するリング状の形態をなしており、外周側が側壁54Aと繋がっているとともに、内周側が上部軸受29Aのスリーブ292Aと突き合わされている。
 第二マフラ50Bも基本的な構成は第一マフラ50Aと同じであるので、第一マフラ50Aの各要素と同じ各要素について、AをBに変えた符号を図1~図3に付して、その説明を省略する。
 上部マフラ50は、上部軸受29Aに設けられた吐出ポート294A,294B(図3(a))から吐出される圧縮冷媒が、第一マフラ50A、第二マフラ50Bの順に通過する冷媒径路を通って、密閉容器11の内部であって上部マフラ50及び下部マフラ60の外部に吐出される。吐出ポート294Bは、一旦は下部マフラ60に吐出された圧縮冷媒が、下部軸受29Bを通り、さらに上部軸受29Aを通って第一マフラ50Aに吐出させるためのものである。
 この冷媒径路を形成するために、図3に示すように、第一マフラ50Aは、天板55Aの表裏を貫通して形成される二つの第一吐出口56A1,56A2を有し、第二マフラ50Bは、天板55Bの表裏を貫通して形成される三つの第二吐出口56B1,56B2,56B3を有している。つまり、圧縮冷媒は、上部軸受29Aの吐出ポート294A,294B、第一マフラ50Aの内部空間、第一マフラ50Aの第一吐出口56A1,56A2、第二マフラ50Bと第一マフラ50Aの間の空間及び第二マフラ50Bの第二吐出口56B1,56B2,56B3の順に通過する。なお、第一吐出口56A1,56A2と第二吐出口56B1,56B2,56B3は、第一マフラ50Aと第二マフラ50Bを平面視して、重複することなくずれて形成されており、例えば第一吐出口56A1から、圧縮冷媒が直接的に第二吐出口56B1を通過することを回避している。
 第一マフラ50Aの第一吐出口56A1,56A2及び第二マフラ50Bの第二吐出口56B1,56B2,56B3は、以下のようにしてその位置が特定されている。
 第一マフラ50Aは、第一マフラ50Aで消音したい周波数Fの音響固有値が最も強く励起されるように第一吐出口56A1,56A2の位置が特定される。具体的には、図4(a)に示すように、第一吐出口56A1と吐出口56A2の円周方向に沿う相互の間隔L1により、音響固有値が特定される。この第一吐出口56A1,56A2の配置を採用することにより、第一マフラ50Aにおいて、消音したい周波数Fで積極的に膨張収縮させ、脈動エネルギを熱エネルギに変換して脈動を抑えることができる。なお、第一吐出口56A1と第一吐出口56A2の円周方向に沿う相互の間隔は、二通りあり得るが、ここでいう間隔L1は、吐出ポート294A,294Bが設けられていない側を通る方とする。なお、本実施形態では、間隔L1を吐出ポート294A,294Bが設けられていない側を通る方としているが、吐出ポート294Aと吐出ポート294Bの間隔によっては、吐出ポート294A,294Bが設けられている側を通る方を間隔L1とすることもできる。
 第二マフラ50Bは、第一マフラ50Aを透過する周波数Fの音波を吸収し、第二マフラ50Bの外部に脈動が透過するのを抑える。そのために、第二マフラ50Bの第二吐出口56B1,56B2,56B3の配置は、第一吐出口56A1,56A2を含めて、隣接する吐出口の間隔L2が、第一吐出口56A1,56A2の間隔L1の1/2になるように設定される。図4(a)において、例えば、第二吐出口56B1と吐出口56B3の間隔L2が1/2L1、吐出口56B3と吐出口56A2の間隔L2が1/2L1、第二吐出口56B2と第一吐出口56A1の間隔L2が1/2L1という具合である。これにより、第二マフラ50Bは、第一マフラ50Aで共鳴する音波の1/2の波長で共鳴するため、第一マフラ50Aを透過した音波を吸収することができる。
 なお、以上のことを図4(b)に模式的に示している。また、ここでいう間隔L2が1/2L1というのは最も好ましい形態であるが、間隔L2が1/2L2よりも少々ずれていても本発明の効果を享受することができる。つまり、本発明は、間隔L2を1/2L1を基準にして定めることができる。
[圧縮機10の作用・効果]
 本実施形態に係る圧縮機10の作用・効果について説明する。
 圧縮機10は、上部マフラ50を第一マフラ50Aと第二マフラ50Bの二層構造にし、第一マフラ50Aで消音したい周波数Fを特定できるので、狙った周波数の脈動を確実に低減できる。
 ロータリ式圧縮機では、圧縮室から吐出された直後の冷媒による脈動は、圧縮室の寸法で定まる周波数成分が強く、本実施形態によりこの周波数の脈動さえ低減できれば、脈動に起因する騒音の問題をほぼ解決できる。特に、本実施形態は、第一吐出口56A1,56A2の相互の間隔L1及び第二吐出口56B1,56B2,56B3の相互の間隔L2を調整すれば足りるので、低コストで脈動を低減できる。
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
 以上の実施形態では、第一マフラ50Aの二つの第一吐出口56A1,56A2を設ける例を示したが、図5(a)に示すように、第一マフラ50Aに単一の第一吐出口56A1を設ける場合にも本発明を適用することができる。この場合には、図5(a)に示す吐出ポート294Aと第一吐出口56A1の間隔L1又は間隔L3に基づいて、図5(b)に示すように第二吐出口56B1,56B2,56B3の間隔を定める。
 なお、前述した実施形態では、吐出ポート294Aを間隔L1(間隔L2)の特定に考慮しなかったが、これは吐出ポート294Aと第一吐出口56A1の間隔が極めて狭く、対応する周波数が高く、消音の対象とする必要がないと判断したためである。
 また、図6(a),(b)に示すように、第一マフラ50Aに三つ以上の第一吐出口56A1,56A2,56A3が設けられる場合にも、本発明を適用することができる。この場合には、第二マフラ50Bには第二吐出口56B1,56B2,56B3が設けられる。
 また、以上の実施形態は、2気筒タイプのロータリ式圧縮機の上部マフラ50を例にしたが、1気筒タイプのロータリ式圧縮機のマフラに本発明を適用することもできる。
10  圧縮機
11  密閉容器
12A,12B  開口
14  アキュムレータ
14a 吸入ポート
15  ステー
16A,16B 吸入管
20A,20B シリンダ
20S シリンダ内壁面
21A,21B ピストンロータ
23  主軸
24  仕切板
29A 上部軸受
29B 下部軸受
291A,291B  基部
292A,292B  スリーブ
293A,293B  受面
294A,294B  吐出ポート
30A,30B  吸入ポート
36  電動モータ
37  ロータ
38  ステータ
40A,40B  偏心軸部
42  吐出ポート
50  上部マフラ
50A 第一マフラ
50B 第二マフラ
51A,51B  フランジ
52A,52B  カップ
54A,54B  側壁
55A,55B  天板
56A1,56A2,56A3  第一吐出口
56B1,56B2,56B3  第二吐出口
60  下部マフラ
R1,R2  圧縮室

Claims (14)

  1.  供給された冷媒を圧縮して吐出するロータリ圧縮機構と、
     前記ロータリ圧縮機構を挟んで設けられる上部軸受及び下部軸受と、
     前記上部軸受及び前記下部軸受の各々に回転自在に支持され、前記ロータリ圧縮機構を貫通する主軸と、
     前記主軸をその中心軸線の周りに回転駆動させる電動モータと、
     前記ロータリ圧縮機構から吐出される前記冷媒が、前記上部軸受に設けられる吐出ポートを介して内部に流入するマフラと、
    が密閉容器に収容されるロータリ式圧縮機であって、
     前記マフラは、
     内側に設けられる第一マフラと、
     前記第一マフラの外側にあって、前記第一マフラを覆う第二マフラと、を有し、
     前記第一マフラは、予め特定された周波数Fの音響固有値が励起され、
     前記第二マフラは、前記第一マフラを透過する周波数Fの音波を吸収する、
    ことを特徴とするロータリ式圧縮機。
  2.  前記第一マフラは、
     流入した前記冷媒を前記第二マフラの内部に吐出させる、複数の第一吐出口を備え、
     前記第二マフラは、
     前記第一吐出口を通って内部に流入した前記冷媒を前記密閉容器の内部に吐出させる、複数の第二吐出口を備え、
     複数の前記第二吐出口の相互の間隔は、複数の前記第一吐出口の相互の間隔の1/2を基準にして定められる、
    請求項1に記載のロータリ式圧縮機。
  3.  複数の前記第一吐出口の相互の前記間隔は、前記吐出ポートが設けられていない側を通る方の間隔である、請求項2に記載のロータリ圧縮機。
  4.  複数の前記第一吐出口の相互の前記間隔は、音響固有値の周波数が励起されるように特定される、
    請求項2又は請求項3に記載のロータリ圧縮機。
  5.  前記第一マフラが、二つの前記第一吐出口を備え、
     前記第二マフラが、三つ以上の前記第二吐出口を備える、
    請求項2~請求項4のいずれか一項に記載のロータリ式圧縮機。
  6.  複数の前記第一吐出口は、同一円周上に配置している、
    請求項2~請求項5のいずれか一項に記載のロータリ式圧縮機。
  7.  複数の前記第二吐出口は、同一円周上に配置している、
    請求項2~請求項6のいずれか一項に記載のロータリ式圧縮機。
  8.  複数の前記第一吐出口と複数の前記第二吐出口は、同一円周上に配置している、
    請求項2~請求項5のいずれか一項に記載のロータリ式圧縮機。
  9.  少なくとも一つの前記第二吐出口は、円周方向の両側で前記第一吐出口と隣接している、
    請求項8に記載のロータリ式圧縮機。
  10.  複数の前記第一吐出口と複数の前記第二吐出口は、前記吐出ポートより、半径方向の内側に配置している、請求項2~請求項9のいずれか一項に記載のロータリ式圧縮機。
  11.  前記第一マフラは、
     流入した前記冷媒を前記第二マフラの内部に吐出させる、単一の第一吐出口を備え、
     前記第二マフラは、
     前記第一吐出口を通って内部に流入した前記冷媒を前記密閉容器の内部に吐出させる、複数の第二吐出口を備え、
     複数の前記第二吐出口の相互の間隔は、前記第一吐出口と前記吐出ポートの相互の間隔の1/2を基準にして定められる、
    請求項1に記載のロータリ式圧縮機。
  12.  複数の前記第二吐出口は、同一円周上に配置している、
    請求項11に記載のロータリ式圧縮機。
  13.  前記第一吐出口と複数の前記第二吐出口は、同一円周上に配置している、
    請求項11に記載のロータリ式圧縮機。
  14.  単数又は複数の前記第一吐出口が設けられる位置と複数の前記第二吐出口が設けられる位置とが、前記第一マフラと前記第二マフラを平面視して、重複することなくずれている、
    請求項2~請求項13のいずれか一項に記載のロータリ式圧縮機。
PCT/JP2016/004503 2015-10-27 2016-10-06 ロータリ式圧縮機 WO2017073019A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680025135.0A CN107614881B (zh) 2015-10-27 2016-10-06 旋转式压缩机
EP16859259.0A EP3369932B1 (en) 2015-10-27 2016-10-06 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-210285 2015-10-27
JP2015210285A JP6625864B2 (ja) 2015-10-27 2015-10-27 ロータリ式圧縮機

Publications (1)

Publication Number Publication Date
WO2017073019A1 true WO2017073019A1 (ja) 2017-05-04

Family

ID=58631384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004503 WO2017073019A1 (ja) 2015-10-27 2016-10-06 ロータリ式圧縮機

Country Status (4)

Country Link
EP (1) EP3369932B1 (ja)
JP (1) JP6625864B2 (ja)
CN (1) CN107614881B (ja)
WO (1) WO2017073019A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2924088T3 (es) 2020-03-25 2022-10-04 Bollhoff Otalu Sa Pieza de inserción de remache ciega, un componente con una pieza de inserción de remache ciega instalada, y método para instalar dicha pieza de inserción de remache ciega en una abertura del componente
CN113864197B (zh) * 2021-10-25 2023-03-21 珠海格力电器股份有限公司 一种泵体结构、压缩机及空调器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613565U (ja) * 1979-07-12 1981-02-05
JPH05133377A (ja) * 1991-11-12 1993-05-28 Sanyo Electric Co Ltd 密閉型圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051084A (ko) * 2001-12-20 2003-06-25 주식회사 엘지이아이 회전식 압축기의 소음 저감장치
AU2006329386B2 (en) * 2005-12-28 2010-02-04 Daikin Industries, Ltd. Compressor
JP2008002366A (ja) * 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd 多気筒圧縮機
CN203130519U (zh) * 2013-02-04 2013-08-14 安徽美芝精密制造有限公司 压缩机的消音器及具有其的压缩机
JP6161923B2 (ja) * 2013-03-12 2017-07-12 三菱重工業株式会社 ロータリー圧縮機
CN103967800B (zh) * 2014-05-19 2016-08-24 松下·万宝(广州)压缩机有限公司 阻抗复合型排气消音器及具有该消音器的压缩机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613565U (ja) * 1979-07-12 1981-02-05
JPH05133377A (ja) * 1991-11-12 1993-05-28 Sanyo Electric Co Ltd 密閉型圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3369932A4 *

Also Published As

Publication number Publication date
CN107614881B (zh) 2019-06-21
CN107614881A (zh) 2018-01-19
JP6625864B2 (ja) 2019-12-25
EP3369932B1 (en) 2021-03-31
JP2017082632A (ja) 2017-05-18
EP3369932A4 (en) 2018-10-10
EP3369932A1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2018037906A1 (ja) 圧縮機
US20060056986A1 (en) Multi-cylinder compressor
JP2006083844A (ja) 多気筒回転圧縮機
JP6112104B2 (ja) ロータリ圧縮機
WO2017073019A1 (ja) ロータリ式圧縮機
US10731650B2 (en) Rotary compressor
JP6130642B2 (ja) 圧縮機
JP6161923B2 (ja) ロータリー圧縮機
JP6548915B2 (ja) 圧縮機
JP6408808B2 (ja) 電動圧縮機
US11698072B2 (en) Compressor
WO2019021976A1 (ja) ロータリ圧縮機
JP6705317B2 (ja) ロータリ圧縮機
WO2019039182A1 (ja) ロータリ圧縮機
WO2016052325A1 (ja) 圧縮機
JP2009085216A (ja) 回転式流体機械
JP2020186660A (ja) ロータリ圧縮機
JPH09144681A (ja) 複数シリンダロータリ圧縮機
JP5179955B2 (ja) 容積形圧縮機
JP2007016681A (ja) ロータリコンプレッサ
WO2017183367A1 (ja) ロータリー圧縮機
KR20180104871A (ko) 로터리 압축기
JPH0377393B2 (ja)
KR20070023152A (ko) 다기통 회전압축기
JP2007092738A (ja) 圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE