WO2019039182A1 - ロータリ圧縮機 - Google Patents

ロータリ圧縮機 Download PDF

Info

Publication number
WO2019039182A1
WO2019039182A1 PCT/JP2018/027969 JP2018027969W WO2019039182A1 WO 2019039182 A1 WO2019039182 A1 WO 2019039182A1 JP 2018027969 W JP2018027969 W JP 2018027969W WO 2019039182 A1 WO2019039182 A1 WO 2019039182A1
Authority
WO
WIPO (PCT)
Prior art keywords
end plate
chamber
refrigerant passage
cylinder
discharge valve
Prior art date
Application number
PCT/JP2018/027969
Other languages
English (en)
French (fr)
Inventor
井上 陽
上田 健史
進吾 矢羽々
泰幸 泉
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN201880054262.2A priority Critical patent/CN111033050B/zh
Priority to US16/636,761 priority patent/US11384760B2/en
Publication of WO2019039182A1 publication Critical patent/WO2019039182A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses

Definitions

  • the present invention relates to a rotary compressor.
  • a two-cylinder rotary compressor is used to compress a refrigerant.
  • the suction, compression, and discharge processes are performed with 180 ° different phases in the two upper and lower cylinders. It is configured.
  • the discharge process of one cylinder occupies about 1/3 of one rotation. Therefore, 1/3 of one rotation is the discharge process of one cylinder (process where the discharge valve is open), the other 1/3 is the discharge process of the other cylinder, and the remaining 1/3 Is the process in which both discharge valves are closed.
  • the upper muffler chamber hereinafter also referred to as the upper end plate cover chamber
  • the lower muffler chamber hereinafter referred to as Both are also referred to as the lower end plate cover chamber
  • the pressure in the compression chamber which is the most upstream of the flow of the refrigerant in the compressed high-pressure region is the highest, followed by the muffler chamber and then the inside of the compressor casing outside the upper muffler chamber.
  • the pressure in the upper muffler chamber becomes higher than the pressure in the compressor casing outside the upper muffler chamber and the pressure in the lower muffler chamber. Therefore, at the next moment, the flow of refrigerant from the upper muffler chamber to the inside of the compressor casing outside the upper muffler chamber and the flow of refrigerant from the upper muffler chamber back to the refrigerant passage hole to the lower muffler chamber are It occurs.
  • a so-called backflow phenomenon of the refrigerant occurs in which the refrigerant compressed by the upper cylinder becomes high pressure and a part of the refrigerant discharged to the upper muffler chamber flows back to the refrigerant passage hole and flows into the lower muffler chamber.
  • the flow from the upper muffler chamber to the inside of the compressor casing, which is the outside of the upper muffler chamber, is the original flow, but the refrigerant that has flowed from the upper muffler chamber to the lower muffler chamber is again processed after the discharge process of the upper cylinder is completed.
  • the refrigerant flows through the refrigerant passage hole and the upper muffler chamber into the compressor housing outside the upper muffler chamber.
  • the flow into the compressor housing is essentially an unnecessary flow, resulting in energy loss and reduced efficiency of the rotary compressor.
  • the lower muffler chamber is made smaller by forming the lower end plate cover in a flat plate shape or forming a bulging portion only in part of the lower end plate cover.
  • the volume of the bulging portion of the lower end plate cover is made of the rotary shaft so as to ensure an adequate volume to achieve both the improvement of the efficiency of the rotary compressor and the suppression of the vibration of the rotary compressor.
  • the area occupied by the bulging portion is expanded in the cross section orthogonal to the axial direction, the refrigerant discharged into the lower muffler chamber may not be smoothly discharged from the refrigerant passage hole only by the refrigerant passage hole disposed in the vicinity of the lower discharge hole. was there.
  • the technology disclosed herein has been made in view of the above, and it is an object of the present invention to provide a rotary compressor that can improve efficiency and suppress vibration.
  • a rotary compressor disclosed in the present application includes a vertically disposed cylindrical compressor casing provided with a discharge unit for the refrigerant at the upper part and a suction unit for the refrigerant at the lower part and sealed, and the compressor case
  • the compressor includes: a compression unit disposed at a lower part, compressing a refrigerant sucked from the suction part and discharging the refrigerant from the discharge part, and a motor disposed at an upper part of the compressor casing to drive the compression part
  • the axis and the axis of rotation An upper eccentric portion and a lower eccentric portion provided with a phase difference of 180 °, and the upper eccentric portion are fitted and revolved along the inner peripheral surface of the upper cylinder to form an upper cylinder chamber in the upper cylinder
  • An upper end plate cover chamber is formed between the lower van
  • An upper end plate cover having an upper end plate cover discharge hole communicating with the inside of the housing, a lower end plate cover which covers the lower end plate and forms a lower end plate cover chamber between the lower end plate and the upper end plate
  • a rotary compressor having a plurality of refrigerant passage holes penetrating a lower cylinder, the intermediate partition plate, the upper end plate, and the upper cylinder and communicating the lower end plate cover chamber and the upper end plate cover chamber;
  • a plurality of bolt holes provided along the circumferential direction of the lower end plate and through which bolts for connecting the compression section pass, a reed valve type lower discharge valve for opening and closing the lower discharge hole, and the lower discharge Before adjacent in the circumferential direction from the hole
  • a lower discharge valve accommodating recess extending in a groove shape to between bolt holes and accommodating the lower discharge valve
  • a sub-refrigerant passage hole spaced apart from the lower discharge valve accommodation recess, and the bulging portion includes the main refrigerant passage hole and the sub-refrigerant passage in a cross section orthogonal to the rotation shaft. It is formed to overlap at least a portion of each of the holes.
  • the efficiency of the rotary compressor can be enhanced and vibration can be suppressed.
  • FIG. 1 is a longitudinal sectional view showing a rotary compressor of the embodiment.
  • FIG. 2 is an exploded perspective view showing the compression unit of the rotary compressor of the embodiment.
  • FIG. 3 is a plan view of the lower end plate of the rotary compressor of the embodiment as viewed from below.
  • FIG. 4 is a plan view of the lower end plate cover of the rotary compressor of the embodiment as viewed from below.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, showing the lower end plate cover of the rotary compressor of the embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. 3, showing the main part of the rotary compressor of the embodiment.
  • FIG. 7 is a transparent plan view of the lower end plate cover attached to the lower end plate as viewed from below in the rotary compressor of the embodiment.
  • FIG. 8 is a longitudinal sectional view showing an essential part of the rotary compressor of the embodiment.
  • FIG. 1 is a longitudinal sectional view showing a rotary compressor of the embodiment.
  • FIG. 2 is an exploded perspective view showing the compression unit of the rotary compressor of the embodiment.
  • FIG. 3 is a plan view of the lower end plate of the rotary compressor of the embodiment as viewed from below.
  • the rotary compressor 1 is disposed at the upper portion in the compressor case 10 and the compression unit 12 disposed in the lower portion in the hermetically sealed vertically placed cylindrical compressor case 10, and is rotated.
  • the motor 11 drives the compression unit 12 via the shaft 15, and a vertically placed cylindrical accumulator 25 fixed to the outer peripheral surface of the compressor housing 10 and sealed.
  • the compressor housing 10 has an upper suction pipe 105 and a lower suction pipe 104 for suctioning the refrigerant, and the upper suction pipe 105 and the lower suction pipe 104 are provided at the lower side of the side surface of the compressor housing 10.
  • the accumulator 25 is connected to the upper cylinder chamber 130T (see FIG. 2) of the upper cylinder 121T via the upper suction pipe 105 as the suction portion and the accumulator upper curved pipe 31T, and the lower suction pipe 104 and the accumulator lower curvature as the suction portion
  • the lower cylinder 121S is connected to the lower cylinder chamber 130S (see FIG. 2) through the pipe 31S.
  • the positions of the upper suction pipe 105 and the lower suction pipe 104 overlap and are located at the same position.
  • the motor 11 includes a stator 111 disposed outside and a rotor 112 disposed inside.
  • the stator 111 is fixed to the inner peripheral surface of the compressor housing 10 by shrink fitting or welding.
  • the rotor 112 is fixed to the rotating shaft 15 by shrink fitting.
  • the lower shaft portion 151 of the lower eccentric portion 152S is rotatably supported by the auxiliary bearing portion 161S provided on the lower end plate 160S, and the main shaft portion 153 above the upper eccentric portion 152T is an upper end of the rotary shaft 15 It is rotatably supported by a main bearing portion 161T provided on the plate 160T.
  • An upper eccentricity portion 152T and a lower eccentricity portion 152S are provided on the rotation shaft 15 with a phase difference of 180 ° to each other, and the upper piston 125T is supported by the upper eccentricity portion 152T, and the lower eccentricity portion
  • the lower piston 125S is supported by 152S.
  • the rotary shaft 15 is rotatably supported by the entire compression unit 12 and, by rotation, causes the outer circumferential surface 139T of the upper piston 125T to revolve along the inner circumferential surface 137T of the upper cylinder 121T.
  • the outer peripheral surface 139S of 125S is revolved along the inner peripheral surface 137S of the lower cylinder 121S.
  • the lubricity of the sliding parts such as the upper cylinder 121T, the upper piston 125T, the lower cylinder 121S, and the lower piston 125S sliding in the compression part 12 is secured, and the upper compression chamber 133T (see FIG. 2) and lubricating oil 18 for sealing the lower compression chamber 133S (see FIG. 2) are sealed so as to substantially immerse the compression section 12.
  • a mounting leg 310 for locking a plurality of elastic support members (not shown) for supporting the entire rotary compressor 1 is fixed.
  • the compression unit 12 compresses the refrigerant drawn from the upper suction pipe 105 and the lower suction pipe 104 and discharges the refrigerant from a discharge pipe 107 described later.
  • the compression unit 12 includes, from the top, an upper end plate cover 170T having an expanded portion 181 in which a hollow space is formed inside, an upper end plate 160T, an annular upper cylinder 121T, an intermediate partition plate 140, and an annular The lower cylinder 121S, the lower end plate 160S, and the flat lower end plate cover 170S are stacked.
  • the entire compression section 12 is fixed by a plurality of through bolts 174 and 175 and an auxiliary bolt 176 which are disposed substantially concentrically from above and below.
  • a cylindrical inner circumferential surface 137T is formed on the upper cylinder 121T.
  • An upper piston 125T having an outer diameter smaller than the inner diameter of the inner peripheral surface 137T of the upper cylinder 121T is disposed inside the inner peripheral surface 137T of the upper cylinder 121T, and the inner peripheral surface 137T of the upper cylinder 121T and the upper piston 125T are disposed.
  • An upper compression chamber 133T for suctioning, compressing and discharging the refrigerant is formed between the outer peripheral surface 139T and the outer peripheral surface 139T.
  • a cylindrical inner circumferential surface 137S is formed on the lower cylinder 121S.
  • the lower piston 125S having an outer diameter smaller than the inner diameter of the inner peripheral surface 137S of the lower cylinder 121S is disposed inside the inner peripheral surface 137S of the lower cylinder 121S, and the inner peripheral surface 137S of the lower cylinder 121S and the lower piston 125S
  • a lower compression chamber 133S for suctioning, compressing and discharging the refrigerant is formed between the outer peripheral surface 139S and the lower peripheral surface 139S.
  • the upper cylinder 121T has an upper side protruding portion 122T that protrudes from the outer peripheral portion to the outer peripheral side in the radial direction of the cylindrical inner peripheral surface 137T.
  • An upper vane groove 128T extending radially outward from the upper cylinder chamber 130T is provided in the upper side protrusion 122T.
  • An upper vane 127T is slidably disposed in the upper vane groove 128T.
  • the lower cylinder 121S has a lower side projecting portion 122S protruding from the outer peripheral portion to the outer peripheral side in the radial direction of the cylindrical inner peripheral surface 137S.
  • the lower protrusion 122S is provided with a lower vane groove 128S extending radially outward from the lower cylinder chamber 130S.
  • a lower vane 127S is slidably disposed in the lower vane groove 128S.
  • the upper side protruding portion 122T is formed over a predetermined protruding range along the circumferential direction of the inner peripheral surface 137T of the upper cylinder 121T.
  • the lower protruding portion 122S is formed over a predetermined protruding range along the circumferential direction of the inner circumferential surface 137S of the lower cylinder 121S.
  • the upper side protruding portion 122T and the lower side protruding portion 122S are used as a chuck holding portion for fixing to the processing jig when the upper cylinder 121T and the lower cylinder 121S are processed.
  • An upper spring hole 124T is provided in the upper side protruding portion 122T at a position not overlapping the upper cylinder chamber 130T at a position overlapping the upper vane groove 128T from the outer side surface.
  • An upper spring 126T is disposed in the upper spring hole 124T.
  • a lower spring hole 124S is provided in the lower protrusion 122S at a position overlapping the lower vane groove 128S from the outer side surface with a depth not penetrating the lower cylinder chamber 130S.
  • a lower spring 126S is disposed in the lower spring hole 124S.
  • the upper cylinder 121T communicates the radially outer side of the upper vane groove 128T with the inside of the compressor housing 10 at the opening to introduce the compressed refrigerant in the compressor housing 10, and the upper vane 127T is An upper pressure introducing passage 129T is formed which applies a back pressure by the pressure of the refrigerant.
  • the compressed refrigerant in the compressor housing 10 is introduced into the lower cylinder 121S by communicating the radially outer side of the lower vane groove 128S with the inside of the compressor housing 10, and the pressure of the refrigerant in the lower vane 127S
  • a lower pressure introducing passage 129S for applying a back pressure is formed.
  • An upper suction hole 135T that engages with the upper suction pipe 105 is provided in the upper side protruding portion 122T of the upper cylinder 121T.
  • a lower suction hole 135S fitted with the lower suction pipe 104 is provided in the lower side projecting portion 122S of the lower cylinder 121S.
  • the upper side of the upper cylinder chamber 130T is closed by the upper end plate 160T, and the lower side is closed by the intermediate partition plate 140.
  • the upper side of the lower cylinder chamber 130S is closed by the intermediate partition plate 140, and the lower side is closed by the lower end plate 160S.
  • the upper cylinder chamber 130T is provided in the upper suction chamber 131T communicated with the upper suction hole 135T and the upper end plate 160T when the upper vane 127T is pressed by the upper spring 126T and abuts on the outer peripheral surface 139T of the upper piston 125T. It is divided into an upper compression chamber 133T communicating with the upper discharge hole 190T.
  • the lower cylinder chamber 130S is provided in the lower suction chamber 131S communicating with the lower suction hole 135S and the lower end plate 160S when the lower vane 127S is pressed by the lower spring 126S and abuts on the outer peripheral surface 139S of the lower piston 125S. It is divided into a lower compression chamber 133S communicating with the lower discharge hole 190S.
  • the upper discharge hole 190T is provided in proximity to the upper vane groove 128T
  • the lower discharge hole 190S is provided in proximity to the lower vane groove 128S.
  • the refrigerant compressed in the upper compression chamber 133T is discharged from the upper compression chamber 133T through the upper discharge hole 190T.
  • the refrigerant compressed in the lower compression chamber 133S is discharged from the lower compression chamber 133S through the lower discharge hole 190S.
  • the upper end plate 160T is provided with an upper discharge hole 190T which penetrates the upper end plate 160T and communicates with the upper compression chamber 133T of the upper cylinder 121T.
  • An upper valve seat 191T is formed around the upper discharge hole 190T on the outlet side of the upper discharge hole 190T.
  • an upper discharge valve accommodation concave portion 164T extending in a groove shape from the position of the upper discharge hole 190T toward the outer periphery of the upper end plate 160T is formed.
  • the entire reed valve type upper discharge valve 200T and the entire upper discharge valve press 201T that regulates the opening degree of the upper discharge valve 200T are accommodated.
  • the upper discharge valve 200T is fixed at its base end portion in the upper discharge valve accommodating recess 164T by the upper rivet 202T, and its tip end opens and closes the upper discharge hole 190T.
  • the upper discharge valve holder 201T has its base end superimposed on the upper discharge valve 200T and is fixed in the upper discharge valve accommodation recess 164T by the upper rivet 202T, and its tip is curved in the direction in which the upper discharge valve 200T opens. Then, the opening degree of the upper discharge valve 200T is restricted.
  • the upper discharge valve accommodating recess 164T has a width slightly larger than the widths of the upper discharge valve 200T and the upper discharge valve retainer 201T, and accommodates the upper discharge valve 200T and the upper discharge valve retainer 201T.
  • the discharge valve 200T and the upper discharge valve retainer 201T are positioned.
  • the lower end plate 160S is provided with a lower discharge hole 190S which penetrates the lower end plate 160S and communicates with the lower compression chamber 133S of the lower cylinder 121S.
  • An annular lower valve seat 191S is formed around the lower discharge hole 190S on the outlet side of the lower discharge hole 190S.
  • the lower valve seat 191S is formed to bulge with respect to the bottom surface of a lower discharge chamber concave portion 163S described later.
  • a lower discharge valve accommodating recess 164S extending in a groove shape from the position of the lower discharge hole 190S toward the outer periphery of the lower end plate 160S is formed on the lower side (lower end plate cover 170S side) of the lower end plate 160S.
  • the entire reed valve type lower discharge valve 200S and the entire lower discharge valve press 201S for regulating the opening degree of the lower discharge valve 200S are stored.
  • the lower discharge valve 200S has a base end fixed to the lower discharge valve receiving recess 164S by the lower rivet 202S, and a distal end opens and closes the lower discharge hole 190S.
  • the lower discharge valve presser 201S has a base end superimposed on the lower discharge valve 200S and is fixed in the lower discharge valve receiving recess 164S by the lower rivet 202S, and the tip is curved in the direction in which the lower discharge valve 200S opens. Then, the opening degree of the lower discharge valve 200S is regulated.
  • the lower discharge valve accommodating recess 164S is formed to have a width slightly larger than the widths of the lower discharge valve 200S and the lower discharge valve retainer 201S, and accommodates the lower discharge valve 200S and the lower discharge valve retainer 201S.
  • the discharge valve 200S and the lower discharge valve press 201S are positioned.
  • an upper end plate cover chamber 180T is formed between the upper end plate 160T tightly fixed to each other and the upper end plate cover 170T having the bulging portion 181.
  • a lower end plate cover chamber 180S (see FIG. 3) is formed between the lower end plate 160S closely attached and fixed to each other and the flat lower end plate cover 170S.
  • a plurality of refrigerant passage holes 136 which penetrate the lower end plate 160S, lower cylinder 121S, middle partition plate 140, upper end plate 160T and upper cylinder 121T and communicate the lower end plate cover chamber 180S and the upper end plate cover chamber 180T (see FIG. The shaded area is provided. The plurality of refrigerant passage holes 136 will be described later.
  • the lower discharge chamber concave portion 163S is in communication with the lower discharge valve housing concave portion 164S.
  • the lower discharge chamber concave portion 163S is formed to have the same depth as the lower discharge valve housing concave portion 164S so as to overlap the lower discharge hole 190S side of the lower discharge valve housing concave portion 164S.
  • the lower discharge hole 190S side of the lower discharge valve accommodation recess 164S is accommodated in the lower discharge chamber recess 163S.
  • the refrigerant passage hole 136 is disposed at a position where at least a part thereof overlaps the lower discharge chamber concave portion 163S and communicates with the lower discharge chamber concave portion 163S.
  • the compression portion 12 is coupled to the area other than the area where the lower discharge chamber concave portion 163S and the lower discharge valve accommodation concave portion 164S are formed.
  • a plurality of bolt holes 138 (FIG. 3) through which bolts 175 and the like pass are provided.
  • the plurality of bolt holes 138 are provided at intervals along the circumferential direction of the lower end plate 160S.
  • the upper discharge chamber concave portion 163T and the upper discharge valve housing concave portion 164T formed in the upper end plate 160T are not shown in detail but a lower discharge chamber concave portion 163S and a lower discharge valve housing concave portion 164S formed in the lower end plate 160S It is formed in the same shape.
  • the upper end plate cover chamber 180T is formed of a dome-like bulging portion 181 of the upper end plate cover 170T, an upper discharge chamber concave portion 163T, and an upper discharge valve accommodation concave portion 164T.
  • coolant by rotation of the rotating shaft 15 is demonstrated.
  • the upper piston 125T fitted to the upper eccentric portion 152T of the rotating shaft 15 revolves along the inner peripheral surface 137T of the upper cylinder 121T by the rotation of the rotating shaft 15.
  • the suction chamber 131T sucks the refrigerant from the upper suction pipe 105 while expanding the volume
  • the upper compression chamber 133T compresses the refrigerant while reducing the volume
  • the pressure of the compressed refrigerant is the upper end plate cover outside the upper discharge valve 200T.
  • the upper discharge valve 200T When the pressure in the chamber 180T is higher, the upper discharge valve 200T is opened, and the refrigerant is discharged from the upper compression chamber 133T to the upper end plate cover chamber 180T.
  • the refrigerant discharged into the upper end plate cover chamber 180T is discharged into the compressor housing 10 from the upper end plate cover discharge hole 172T (see FIG. 1) provided in the upper end plate cover 170T.
  • the lower piston 125S fitted to the lower eccentric portion 152S of the rotating shaft 15 revolves along the inner circumferential surface 137S of the lower cylinder 121S by the rotation of the rotating shaft 15.
  • the lower suction chamber 131S sucks the refrigerant from the lower suction pipe 104 while expanding the volume
  • the lower compression chamber 133S compresses the refrigerant while reducing the volume
  • the pressure of the compressed refrigerant is the lower end of the outer side of the lower discharge valve 200S.
  • the lower discharge valve 200S is opened, and the refrigerant is discharged from the lower compression chamber 133S to the lower end plate cover chamber 180S.
  • the refrigerant discharged into the lower end plate cover chamber 180S is discharged into the compressor housing 10 from the upper end plate cover discharge hole 172T provided in the upper end plate cover 170T through the plurality of refrigerant passage holes 136 and the upper end plate cover chamber 180T. Be done.
  • the refrigerant discharged into the compressor housing 10 has a notch (not shown) provided on the outer periphery of the stator 111 and communicates with the upper and lower sides, a gap (not shown) of the winding portion of the stator 111, or the stator 111
  • the air is guided to the upper side of the motor 11 through a gap 115 (see FIG. 1) between the rotor 112 and the rotor 112, and is discharged from a discharge pipe 107 as a discharge part disposed at the top of the compressor housing 10.
  • FIG. 4 is a plan view of the lower end plate cover 170S of the rotary compressor 1 of the embodiment as viewed from below.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG. 4, showing the lower end plate cover 170S of the rotary compressor 1 of the embodiment.
  • FIG. 6 is a cross-sectional view taken along the line AA in FIG. 3, showing the main part of the rotary compressor 1 of the embodiment.
  • FIG. 7 is a transparent plan view of the lower end plate cover 170S attached to the lower end plate 160S as viewed from below in the rotary compressor of the embodiment.
  • FIG. 8 is a longitudinal sectional view showing the main part of the rotary compressor 1 of the embodiment.
  • the lower end plate 160S is provided with a first main refrigerant passage hole 136A and a first main refrigerant passage hole 136A provided in the lower discharge chamber concave portion 163S as a plurality of refrigerant passage holes 136 (hatched portions in FIG. 3).
  • the first sub refrigerant passage hole 136C and the second sub refrigerant which are provided between the main refrigerant passage hole 136B of 2, the bolt hole 138 and the lower discharge valve accommodating recess 164S and separated from the lower discharge valve accommodating recess 164S.
  • a passage hole 136D is provided between the main refrigerant passage hole 136B of 2
  • the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D are refrigerant passage holes 136 which are additionally added to the first main refrigerant passage hole 136A and the second main refrigerant passage hole 136B.
  • the first main refrigerant passage hole 136A and the second main refrigerant passage hole 136B are formed in a circular shape, and are arranged adjacent to each other along the outer peripheral surface of the lower end plate 160S.
  • the first main refrigerant passage hole 136A is disposed on the outer peripheral side of the lower end plate 160S with respect to the lower discharge hole 190S in the lower discharge chamber concave portion 163S, and is in contact with the inner peripheral surface of the lower discharge chamber concave portion 163S.
  • the second main refrigerant passage hole 136B is disposed such that a portion thereof overlaps the inner peripheral surface of the lower discharge chamber concave portion 163S.
  • the second main refrigerant passage hole 136B is formed to have a diameter larger than that of the first main refrigerant passage hole 136A, and the base end side (the lower rivet) of the lower discharge valve 200S than the first main refrigerant passage hole 136A 202S side).
  • the present embodiment has the two first main refrigerant passage holes 136A and the second main refrigerant passage holes 136B, any one of the first main refrigerant passage holes 136A and the second main refrigerant passage holes 136B. It may be configured to have only one.
  • the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D are formed in a circular shape, and each of the bolt holes 138 adjacent in the circumferential direction of the lower end plate 160S, and the lower discharge valve accommodating recess 164S Between the lower discharge valve housing recess 164S and the lower discharge valve housing recess 164S.
  • the first sub refrigerant passage holes 136C and the second sub refrigerant passage holes 136D are respectively provided on both sides of the lower discharge valve accommodating recess 164S in the circumferential direction of the lower end plate 160S.
  • the mechanical strength of the compression section 12 can be increased as the sub refrigerant passage hole 136 is opened in the lower end plate 160S. The mechanical strength is properly secured without being excessively lowered, and the position of the compression unit 12 is not affected.
  • the first main refrigerant passage hole 136A, the second main refrigerant passage hole 136B, and the second sub refrigerant passage hole 136D have the same hole diameter.
  • the plurality of refrigerant passage holes 136 can be processed using a common cutting tool, and the productivity of the rotary compressor 1 can be enhanced.
  • the refrigerant passage holes 136 for equalizing the hole diameter are not limited, and the first main refrigerant passage hole 136A, the second main refrigerant passage hole 136B, the first sub refrigerant passage hole 136C, and the second sub refrigerant passage
  • the productivity of the rotary compressor 1 is enhanced by equalizing at least two of the holes 136D.
  • refrigerant passage holes 136 (a first main refrigerant passage hole 136A and a second main refrigerant passage hole 136B, a first sub refrigerant passage hole 136C and a second sub refrigerant passage hole 136D)
  • the number of refrigerant passage holes 136 is not limited.
  • the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D may be provided.
  • a third refrigerant passage hole or the like may be further provided.
  • the plurality of refrigerant passage holes 136 is not limited to a circular shape, and may be formed into another cross-sectional shape such as an elliptical shape, for example.
  • the lower end plate cover 170 ⁇ / b> S is formed in a flat plate shape, and has a bulging portion 171 ⁇ / b> S bulging downward of the rotary compressor 1.
  • the bulging portion 171S forms a lower end plate cover chamber 180S. Therefore, as shown in FIG. 6, the lower end plate cover chamber 180S is formed by the lower discharge chamber concave portion 163S and the lower discharge valve accommodation concave portion 164S provided in the lower end plate 160S, and the bulging portion 171S of the lower end plate cover 170S. ing.
  • the bulging portion 171S of the lower end plate cover 170S is from the position facing the tip of the lower discharge valve press 201S (the position facing the lower discharge hole 190S)). It is provided over the base end side (lower rivet 202S side) of 201S.
  • the bulging part 171S has a side wall part 171b bulging from the peripheral part 171a and a part (bottom part) opposed to the lower discharge hole 190S, and the rotation shaft 15
  • the lower discharge hole 190S is overlapped in a cross section orthogonal to the axial direction of the lower discharge hole 190S.
  • the bulging portion 171S is formed so as to overlap the lower discharge chamber concave portion 163S and the lower discharge valve accommodation concave portion 164S in a cross section orthogonal to the axial direction of the rotary shaft 15. (See Figure 3).
  • the bulging portion 171S is properly secured in volume and formed so as to reduce the depth of the lower end plate cover 170S in the thickness direction. It becomes possible.
  • the bulging portion 171S is formed in a shape including a portion where the volume changes in a cross section orthogonal to the axial direction of the rotary shaft 15, that is, a so-called throttling portion, thereby allowing the flow of refrigerant in the lower end plate cover chamber 180S. It is possible to disturb the flow and appropriately adjust the flow of the refrigerant.
  • the bulging portion 171S is, as shown in FIG. 7, a first main refrigerant passage hole 136A, a second main refrigerant passage hole 136B, and a first sub refrigerant passage hole 136C. And at least a portion of each of the second sub refrigerant passage holes 136D.
  • the first main refrigerant passage hole 136A and the second main refrigerant passage hole 136B, the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D are lower end plates via the bulging portion 171S. It communicates with the cover chamber 180S.
  • the bulging portion 171S is formed.
  • the four refrigerant passage holes 136 (first main refrigerant passage holes) disposed around the bulging part 171S, even if the lower discharge chamber concave part 163S and the lower discharge valve housing concave part 164S are expanded.
  • the refrigerant discharged into the lower end plate cover chamber 180S can be smoothly discharged through the 136A and the second main refrigerant passage hole 136B, the first sub refrigerant passage hole 136C, and the second sub refrigerant passage hole 136D). become.
  • the bulging portion 171S of the lower end plate cover 170S is in contact with the lower surface of the lower end plate 160S over the entire peripheral portion 171a of the bulging portion 171S.
  • the bulging portion 171S does not have a portion extending over the sub bearing portion 161S, the refrigerant may leak from the lower end plate cover chamber 180S due to the variation in the shape of the bulging portion 171S and the shape of the sub bearing portion 161S.
  • the air tightness in the bulging portion 171S is enhanced.
  • a circular through hole 145 into which the countershaft portion 151 is inserted is formed at the center of the lower end plate cover 170S.
  • the through bolt 175 or the like is formed in the lower end plate cover 170S and in an area other than the bulging portion 171S except the area opposed to the lower discharge chamber recessed portion 163S and the lower discharge valve accommodating recessed portion 164S of the lower end plate 160S.
  • a plurality of bolt holes 138 (FIG. 4) are provided through which the
  • the plurality of refrigerant passage holes 136 of the lower end plate 160S in the rotary compressor 1 of the embodiment are the main refrigerant passage holes 136 (the first main refrigerant passage hole 136A and the first refrigerant passage hole 136A provided in the lower discharge chamber recess 163S).
  • Sub-refrigerant passage holes 136 (first sub-refrigerant passage holes) provided apart from the lower discharge valve accommodating recess 164S between the main refrigerant passage hole 136B) and the bolt hole 138 and the lower discharge valve accommodating recess 164S; 136C and a second sub refrigerant passage hole 136D).
  • the bulging portion 171S includes the main refrigerant passage hole 136 (the first main refrigerant passage hole 136A and the second main refrigerant passage hole 136B) and the sub refrigerant passage hole 136 (the first sub At least a part of each of the refrigerant passage hole 136C and the second sub refrigerant passage hole 136D is formed to overlap.
  • the volume of the bulging portion 171S can be properly secured, and the refrigerant discharged into the lower end plate cover chamber 180S can be smoothly discharged through the plurality of refrigerant passage holes 136.
  • the pressure pulsation can be suppressed, so that the efficiency of the rotary compressor 1 can be enhanced and the vibration of the rotary compressor 1 can be suppressed.
  • the sub refrigerant passage hole 136 (the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D) is separated from the lower discharge valve accommodating recess 164S between the bolt hole 138 and the lower discharge valve accommodating recess 164S.
  • the improvement of the energy consumption efficiency (coefficient of performance / COP: Coefficient Of Performance) in the refrigeration cycle using the rotary compressor 1 and the suppression of the vibration of the rotary compressor 1 can both be properly achieved. be able to.
  • the bulging portion 171S of the lower end plate cover 170S in the rotary compressor 1 of the embodiment has a lower discharge valve housing recess 164S and a lower discharge chamber recess 163S in a cross section orthogonal to the axial direction of the rotating shaft 15. It is formed to overlap with each other. In this manner, the area occupied by the cross section orthogonal to the axial direction of the rotation shaft 15 is expanded, so that the volume of the bulging portion 171S is properly secured and the depth of the lower end plate cover 170S in the thickness direction is made shallow. be able to.
  • the rotary compressor 1 of the embodiment is a first sub-refrigerant passage hole 136 provided between each of the bolt holes 138 adjacent in the circumferential direction of the lower end plate 160S and the lower discharge valve accommodating concave portion 164S.
  • Sub-refrigerant passage hole 136C and a second sub-refrigerant passage hole 136D are arranged in this manner, the first sub refrigerant passage hole 136C and the second sub refrigerant passage hole 136D are opened in the lower end plate 160S. Accordingly, the mechanical strength can be properly secured without decreasing the mechanical strength of the compression unit 12.
  • At least two of the first main refrigerant passage hole 136A and the second main refrigerant passage hole 136B, the first sub refrigerant passage hole 136C, and the second sub refrigerant passage hole 136D in the rotary compressor 1 of the embodiment. are equal in pore diameter.
  • the plurality of refrigerant passage holes 136 can be processed using a common cutting tool, and the productivity of the rotary compressor 1 can be enhanced.
  • the bulging portion 171S of the lower end plate cover 170S in the rotary compressor 1 of the embodiment is in contact with the lower surface of the lower end plate 160S over the entire peripheral edge portion 171a of the bulging portion 171S.
  • the bulging portion 171S does not have a portion extending over the sub bearing portion 161S, the refrigerant may leak from the lower end plate cover chamber 180S due to the variation in the shape of the bulging portion 171S and the shape of the sub bearing portion 161S.
  • the air tightness in the bulging portion 171S can be enhanced.
  • Example is not limited by the content mentioned above.
  • constituent elements include those which can be easily conceived by those skilled in the art, substantially the same ones, and so-called equivalent ranges.
  • components described above can be combined as appropriate.
  • at least one of various omissions, substitutions, and modifications of the components can be made without departing from the scope of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

下端板は、ボルト(174、175、176)が通される複数のボルト孔(138)と、下吐出弁と、下吐出弁が収容される下吐出弁収容凹部(164S)と、下吐出室凹部(163S)と、を有する。下端板カバー(170S)には、膨出部(171S)が設けられている。下端板カバー室は、下吐出弁収容凹部(164S)、下吐出室凹部(163S)、膨出部(171S)によって形成されている。複数の冷媒通路孔(136)は、下吐出室凹部(163S)に設けられた主冷媒通路孔(136A、136B)と、ボルト孔(138)と下吐出弁収容凹部(164S)との間に下吐出弁収容凹部(164S)から離間して設けられた副冷媒通路孔(136C、136D)と、を有する。回転軸(15)に直交する断面において、膨出部(171S)は、主冷媒通路孔(136A、136B)及び副冷媒通路孔(136C、136D)の各々の少なくとも一部に重なるように形成されている。

Description

ロータリ圧縮機
 本発明は、ロータリ圧縮機に関する。
 例えば空気調和機や冷凍装置では、冷媒を圧縮するために2シリンダ型のロータリ圧縮機が用いられている。2シリンダ型のロータリ圧縮機では、回転軸の1回転あたりのトルクの変動をできるだけ小さくするために、一般に、吸入、圧縮、吐出の工程が2つの上下シリンダにおいて180°異なる位相で行われるように構成されている。起動時など特異な運転条件を除き、通常の室外温度及び室内温度での空気調和機の運転では、1つのシリンダの吐出工程が、1回転中の約1/3を占める。したがって、1回転中の1/3が、一方のシリンダの吐出工程(吐出弁が開いている工程)であり、他の1/3が、他方のシリンダの吐出工程であり、残りの1/3が、両方の吐出弁が閉じている工程である。
 2つの上シリンダと下シリンダの両方の吐出弁が閉じて圧縮室から吐出される冷媒の流れがないときは、上マフラー室(以下、上端板カバー室とも称する。)と下マフラー室(以下、下端板カバー室とも称する。)の両方が、上マフラー室の外側である圧縮機筐体内と同じ圧力となる。一方のシリンダの吐出工程では、圧縮された高圧域のなかでも冷媒の流れの最も上流となる圧縮室の圧力が最も高く、次いでマフラー室、上マフラー室の外側の圧縮機筐体内の順となる。したがって、上シリンダの吐出弁が開いた直後は、上マフラー室の外側の圧縮機筐体内や下マフラー室の圧力よりも上マフラー室の圧力が高くなる。よって、次の瞬間には、上マフラー室から上マフラー室の外側の圧縮機筐体内への冷媒の流れと、上マフラー室から冷媒通路孔を逆流して下マフラー室への冷媒の流れとが生じる。このように上シリンダで圧縮されて高圧となって上マフラー室に吐出された冷媒の一部が冷媒通路孔を逆流して下マフラー室に流れ込む、いわゆる冷媒の逆流現象が生じる。
 上マフラー室から、上マフラー室の外側である圧縮機筐体内への流れは、本来の流れであるが、上マフラー室から下マフラー室へ流れた冷媒は、上シリンダの吐出工程の終了後に再度冷媒通路孔及び上マフラー室を通って上マフラー室の外側の圧縮機筐体内に流れることになる。圧縮機筐体内への流れは、本来、必要のない流れであり、エネルギー損失となってロータリ圧縮機の効率を低下させる。そして、下端板及び下端板カバーに形成される下マフラー室を大きくし過ぎると、上マフラー室から逆流した冷媒が、下マフラー室へ流れ込む空間が大きくなるので、ロータリ圧縮機の効率の低下が大きくなる傾向にある。
特開2016-118142号公報
 そこで、ロータリ圧縮機の効率の低下を抑えるために、下端板カバーを平板状に形成したり、下端板カバーの一部のみに膨出部を形成したりすることにより、下マフラー室を小さくし、ロータリ圧縮機の効率の低下が抑える技術が知られている。
 しかしながら、下端板カバーの膨出部の容積を小さくし過ぎた場合、下マフラー室が小さくなり過ぎることで、下シリンダの下圧縮室で圧出された冷媒が、下マフラー室から、冷媒通路孔を通って上マフラー室へ早めに流れ込む。このため、下マフラー室内の圧力脈動が大きくなり、下マフラー室による消音効果を適正に得られず、下端板カバーに生じる振動の振幅が大きくなる問題がある。
 一方、下端板カバーの膨出部の容積を大きくした場合、下マフラー室内の圧力脈動が小さくなり、圧力脈動に伴ってロータリ圧縮機に生じる振動の振幅の増大が抑えられる。しかし、この場合、上マフラー室から冷媒通路孔を通って下マフラー室へ逆流した冷媒が流れ込む空間が大きくなるので、ロータリ圧縮機の効率の低下を招く。
 以上を踏まえて、下端板カバーの膨出部の容積を、ロータリ圧縮機の効率の向上とロータリ圧縮機の振動の抑制とを両立するために適正な容積が確保されるように、回転軸の軸方向に直交する断面において膨出部が占める面積を広げた場合、下吐出孔近傍に配置した冷媒通路孔だけでは、下マフラー室内に吐出された冷媒が、冷媒通路孔からスムーズに排出されないおそれがあった。
 開示の技術は、上記に鑑みてなされたものであって、効率を高めると共に振動を抑えることができるロータリ圧縮機を提供することを目的とする。
 本願の開示するロータリ圧縮機の一態様は、上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられ密閉された縦置き円筒状の圧縮機筐体と、前記圧縮機筐体の下部に配置され前記吸入部から吸入された冷媒を圧縮し前記吐出部から吐出する圧縮部と、前記圧縮機筐体の上部に配置され前記圧縮部を駆動するモータとを有し、前記圧縮部は、環状の上シリンダ及び下シリンダと、前記上シリンダの上側を閉塞する上端板と、前記下シリンダの下側を閉塞する下端板と、前記上シリンダと前記下シリンダの間に配置され前記上シリンダの下側及び前記下シリンダの上側を閉塞する中間仕切板と、前記上端板に設けられた主軸受部と前記下端板に設けられた副軸受部とに支持され前記モータにより回転される回転軸と、前記回転軸に互いに180°の位相差をつけて設けられた上偏心部及び下偏心部と、前記上偏心部に嵌合され前記上シリンダの内周面に沿って公転し前記上シリンダ内に上シリンダ室を形成する上ピストンと、前記下偏心部に嵌合され前記下シリンダの内周面に沿って公転し前記下シリンダ内に下シリンダ室を形成する下ピストンと、前記上シリンダに設けられた上ベーン溝から前記上シリンダ室内に突出し前記上ピストンに当接して前記上シリンダ室を上吸入室と上圧縮室に区画する上ベーンと、前記下シリンダに設けられた下ベーン溝から前記下シリンダ室内に突出し前記下ピストンに当接して前記下シリンダ室を下吸入室と下圧縮室に区画する下ベーンと、前記上端板を覆って前記上端板との間に上端板カバー室を形成し前記上端板カバー室と前記圧縮機筐体の内部とを連通する上端板カバー吐出孔を有する上端板カバーと、前記下端板を覆って前記下端板との間に下端板カバー室を形成する下端板カバーと、前記上端板に設けられ前記上圧縮室と前記上端板カバー室とを連通させる上吐出孔と、前記下端板に設けられ前記下圧縮室と前記下端板カバー室とを連通させる下吐出孔と、前記下端板、前記下シリンダ、前記中間仕切板、前記上端板及び前記上シリンダを貫通し前記下端板カバー室と前記上端板カバー室とを連通する複数の冷媒通路孔と、を有するロータリ圧縮機において、前記下端板は、前記下端板の周方向に沿って設けられて前記圧縮部を結合するボルトが通される複数のボルト孔と、前記下吐出孔を開閉するリード弁型の下吐出弁と、前記下吐出孔から前記周方向に隣り合う前記ボルト孔間まで溝状に延ばされて前記下吐出弁が収容される下吐出弁収容凹部と、前記下吐出弁収容凹部の前記下吐出孔側に重なるように形成された下吐出室凹部と、を有し、前記下端板カバーは、平板状に形成され、前記下吐出孔に対向する部分を有する膨出部が設けられ、前記下端板カバー室は、前記下吐出弁収容凹部と、前記下吐出室凹部と、前記膨出部とによって形成され、前記複数の冷媒通路孔は、前記下吐出室凹部に設けられた主冷媒通路孔と、前記ボルト孔と前記下吐出弁収容凹部との間に前記下吐出弁収容凹部から離間して設けられた副冷媒通路孔と、を有し、前記回転軸に直交する断面において、前記膨出部は、前記主冷媒通路孔及び前記副冷媒通路孔の各々の少なくとも一部に重なるように形成されている。
 本願の開示するロータリ圧縮機の一態様によれば、ロータリ圧縮機の効率を高めると共に振動を抑えることができる。
図1は、実施例のロータリ圧縮機を示す縦断面図である。 図2は、実施例のロータリ圧縮機の圧縮部を示す分解斜視図である。 図3は、実施例のロータリ圧縮機の下端板を下方から見た平面図である。 図4は、実施例のロータリ圧縮機の下端板カバーを下方から見た平面図である。 図5は、実施例のロータリ圧縮機の下端板カバーを示す、図4中のB-B断面図である。 図6は、実施例のロータリ圧縮機の要部を示す、図3中のA-A断面図である。 図7は、実施例のロータリ圧縮機において、下端板に取り付けられた下端板カバーを下方から見た透視平面図である。 図8は、実施例のロータリ圧縮機の要部を示す縦断面図である。
 以下に、本願の開示するロータリ圧縮機の実施例を図面に基づいて詳細に説明する。なお、以下の実施例によって、本願の開示するロータリ圧縮機が限定されるものではない。
 (ロータリ圧縮機の構成)
 図1は、実施例のロータリ圧縮機を示す縦断面図である。図2は、実施例のロータリ圧縮機の圧縮部を示す分解斜視図である。図3は、実施例のロータリ圧縮機の下端板を下方から見た平面図である。
 図1に示すように、ロータリ圧縮機1は、密閉された縦置き円筒状の圧縮機筐体10内の下部に配置された圧縮部12と、圧縮機筐体10内の上部に配置され回転軸15を介して圧縮部12を駆動するモータ11と、圧縮機筐体10の外周面に固定され密閉された縦置き円筒状のアキュムレータ25と、を備えている。
 圧縮機筐体10は、冷媒を吸入する上吸入管105及び下吸入管104を有しており、上吸入管105及び下吸入管104が圧縮機筐体10の側面下部に設けられている。アキュムレータ25は、吸入部としての上吸入管105及びアキュムレータ上湾曲管31Tを介して上シリンダ121Tの上シリンダ室130T(図2参照)と接続され、吸入部としての下吸入管104及びアキュムレータ下湾曲管31Sを介して下シリンダ121Sの下シリンダ室130S(図2参照)と接続されている。本実施例では、圧縮機筐体10の周方向において、上吸入管105と下吸入管104の位置が重なっており、同一位置に位置する。
 モータ11は、外側に配置されたステータ111と、内側に配置されたロータ112と、を備えている。ステータ111は、圧縮機筐体10の内周面に焼嵌めまたは溶接によって固定されている。ロータ112は、回転軸15に焼嵌めによって固定されている。
 回転軸15は、下偏芯部152Sの下方の副軸部151が、下端板160Sに設けられた副軸受部161Sに回転自在に支持され、上偏芯部152Tの上方の主軸部153が上端板160Tに設けられた主軸受部161Tに回転自在に支持されている。回転軸15には、上偏芯部152Tと下偏芯部152Sとが互いに180°の位相差をつけて設けられており、上偏芯部152Tに上ピストン125Tが支持され、下偏芯部152Sに下ピストン125Sが支持されている。これによって、回転軸15は、圧縮部12全体に対して回転自在に支持されると共に、回転によって上ピストン125Tの外周面139Tを上シリンダ121Tの内周面137Tに沿って公転運動させ、下ピストン125Sの外周面139Sを下シリンダ121Sの内周面137Sに沿って公転運動させる。
 圧縮機筐体10の内部には、圧縮部12において摺動する上シリンダ121Tと上ピストン125T及び下シリンダ121Sと下ピストン125S等の摺動部の潤滑性を確保し、上圧縮室133T(図2参照)及び下圧縮室133S(図2参照)をシールするための潤滑油18が、圧縮部12をほぼ浸漬する量だけ封入されている。圧縮機筐体10の下側には、ロータリ圧縮機1全体を支持する複数の弾性支持部材(図示せず)を係止する取付脚310(図1参照)が固定されている。
 図1に示すように、圧縮部12は、上吸入管105及び下吸入管104から吸入された冷媒を圧縮し、後述する吐出管107から吐出する。図2に示すように、圧縮部12は、上から、内部に中空空間が形成された膨出部181を有する上端板カバー170T、上端板160T、環状の上シリンダ121T、中間仕切板140、環状の下シリンダ121S、下端板160S及び平板状の下端板カバー170Sを積層して構成されている。圧縮部12全体は、上下から略同心円上に配置された複数の通しボルト174,175及び補助ボルト176によって固定されている。
 上シリンダ121Tには、円筒状の内周面137Tが形成されている。上シリンダ121Tの内周面137Tの内側には、上シリンダ121Tの内周面137Tの内径よりも小さい外径の上ピストン125Tが配置されており、上シリンダ121Tの内周面137Tと上ピストン125Tの外周面139Tとの間に、冷媒を吸入し圧縮して吐出する上圧縮室133Tが形成される。下シリンダ121Sには、円筒状の内周面137Sが形成されている。下シリンダ121Sの内周面137Sの内側には、下シリンダ121Sの内周面137Sの内径よりも小さい外径の下ピストン125Sが配置されており、下シリンダ121Sの内周面137Sと下ピストン125Sの外周面139Sとの間に、冷媒を吸入し圧縮して吐出する下圧縮室133Sが形成される。
 図2に示すように、上シリンダ121Tは、外周部から、円筒状の内周面137Tの径方向における外周側へ張り出した上側方突出部122Tを有する。上側方突出部122Tには、上シリンダ室130Tから放射状に外方へ延びる上ベーン溝128Tが設けられている。上ベーン溝128T内には、上ベーン127Tが摺動可能に配置されている。下シリンダ121Sは、外周部から、円筒状の内周面137Sの径方向における外周側へ張り出した下側方突出部122Sを有する。下側方突出部122Sには、下シリンダ室130Sから放射状に外方へ延びる下ベーン溝128Sが設けられている。下ベーン溝128S内には、下ベーン127Sが摺動可能に配置されている。
 上側方突出部122Tは、上シリンダ121Tの内周面137Tの周方向に沿って、所定の突出範囲にわたって形成されている。下側方突出部122Sは、下シリンダ121Sの内周面137Sの周方向に沿って、所定の突出範囲にわたって形成されている。上側方突出部122T及び下側方突出部122Sは、上シリンダ121T及び下シリンダ121Sの加工時に加工治具に固定するためのチャック用保持部として用いられる。上側方突出部122T及び下側方突出部122Sが加工治具に固定されることで、上シリンダ121T及び下シリンダ121Sが所定の位置に位置決めされる。
 上側方突出部122Tには、外側面から上ベーン溝128Tと重なる位置に、上シリンダ室130Tに貫通しない深さで上スプリング穴124Tが設けられている。上スプリング穴124Tには上スプリング126Tが配置されている。下側方突出部122Sには、外側面から下ベーン溝128Sと重なる位置に、下シリンダ室130Sに貫通しない深さで下スプリング穴124Sが設けられている。下スプリング穴124Sには下スプリング126Sが配置されている。
 また、上シリンダ121Tには、上ベーン溝128Tの径方向外側と圧縮機筐体10内とを開口部で連通して圧縮機筐体10内の圧縮された冷媒を導入し、上ベーン127Tに冷媒の圧力により背圧をかける上圧力導入路129Tが形成されている。また、下シリンダ121Sには、下ベーン溝128Sの径方向外側と圧縮機筐体10内とを連通して圧縮機筐体10内の圧縮された冷媒を導入し、下ベーン127Sに冷媒の圧力により背圧をかける下圧力導入路129Sが形成されている。
 上シリンダ121Tの上側方突出部122Tには、上吸入管105と嵌合する上吸入孔135Tが設けられている。下シリンダ121Sの下側方突出部122Sには、下吸入管104と嵌合する下吸入孔135Sが設けられている。
 図2に示すように、上シリンダ室130Tは、上側が上端板160Tで閉塞され、下側が中間仕切板140で閉塞されている。下シリンダ室130Sは、上側が中間仕切板140で閉塞され、下側が下端板160Sで閉塞されている。
 上シリンダ室130Tは、上ベーン127Tが上スプリング126Tに押圧されて上ピストン125Tの外周面139Tに当接することによって、上吸入孔135Tに連通する上吸入室131Tと、上端板160Tに設けられた上吐出孔190Tに連通する上圧縮室133Tと、に区画される。下シリンダ室130Sは、下ベーン127Sが下スプリング126Sに押圧されて下ピストン125Sの外周面139Sに当接することによって、下吸入孔135Sに連通する下吸入室131Sと、下端板160Sに設けられた下吐出孔190Sに連通する下圧縮室133Sと、に区画される。
 また、上吐出孔190Tは、上ベーン溝128Tに近接して設けられており、下吐出孔190Sは、下ベーン溝128Sに近接して設けられている。上圧縮室133T内で圧縮された冷媒は、上圧縮室133T内から上吐出孔190Tを通って吐出される。下圧縮室133S内で圧縮された冷媒は、下圧縮室133S内から下吐出孔190Sを通って吐出される。
 図2に示すように、上端板160Tには、上端板160Tを貫通して上シリンダ121Tの上圧縮室133Tと連通する上吐出孔190Tが設けられている。上吐出孔190Tの出口側には、上吐出孔190Tの周囲に上弁座191Tが形成されている。上端板160Tの上側(上端板カバー170T側)には、上吐出孔190Tの位置から上端板160Tの外周に向かって溝状に延びる上吐出弁収容凹部164Tが形成されている。
 上吐出弁収容凹部164T内には、リード弁型の上吐出弁200T全体と、上吐出弁200Tの開度を規制する上吐出弁押さえ201T全体とが収容されている。上吐出弁200Tは、基端部が上吐出弁収容凹部164T内に上リベット202Tにより固定されており、先端部が上吐出孔190Tを開閉する。上吐出弁押さえ201Tは、基端部が上吐出弁200Tに重ねられて上吐出弁収容凹部164T内に上リベット202Tにより固定されており、先端部が上吐出弁200Tが開く方向へ湾曲して(反って)いて上吐出弁200Tの開度を規制する。また、上吐出弁収容凹部164Tは、その幅が上吐出弁200T及び上吐出弁押さえ201Tの幅よりわずかに大きく形成されており、上吐出弁200T及び上吐出弁押さえ201Tを収容すると共に、上吐出弁200T及び上吐出弁押さえ201Tを位置決めしている。
 図3に示すように、下端板160Sには、下端板160Sを貫通して下シリンダ121Sの下圧縮室133Sと連通する下吐出孔190Sが設けられている。下吐出孔190Sの出口側には、下吐出孔190Sの周囲に環状の下弁座191Sが形成されている。下弁座191Sは、後述する下吐出室凹部163Sの底面に対して盛り上がって形成されている。下端板160Sの下側(下端板カバー170S側)には、下吐出孔190Sの位置から下端板160Sの外周に向かって溝状に延びる下吐出弁収容凹部164Sが形成されている。
 下吐出弁収容凹部164S内には、リード弁型の下吐出弁200S全体と、下吐出弁200Sの開度を規制する下吐出弁押さえ201S全体とが収容されている。下吐出弁200Sは、基端部が下吐出弁収容凹部164S内に下リベット202Sにより固定されており、先端部が下吐出孔190Sを開閉する。下吐出弁押さえ201Sは、基端部が下吐出弁200Sに重ねられて下吐出弁収容凹部164S内に下リベット202Sにより固定されており、先端部が下吐出弁200Sが開く方向へ湾曲して(反って)いて下吐出弁200Sの開度を規制する。また、下吐出弁収容凹部164Sは、その幅が下吐出弁200S及び下吐出弁押さえ201Sの幅よりわずかに大きく形成されており、下吐出弁200S及び下吐出弁押さえ201Sを収容すると共に、下吐出弁200S及び下吐出弁押さえ201Sを位置決めしている。
 また、互いに密着固定された上端板160Tと、膨出部181を有する上端板カバー170Tとの間には、上端板カバー室180Tが形成される。互いに密着固定された下端板160Sと平板状の下端板カバー170Sとの間には、下端板カバー室180S(図3参照)が形成される。下端板160S、下シリンダ121S、中間仕切板140、上端板160T及び上シリンダ121Tを貫通し下端板カバー室180Sと上端板カバー室180Tとを連通する複数の冷媒通路孔136が(図3中の斜線部分)が設けられている。複数の冷媒通路孔136については後述する。
 図3に示すように、下吐出室凹部163Sは、下吐出弁収容凹部164Sに連通されている。下吐出室凹部163Sは、下吐出弁収容凹部164Sの下吐出孔190S側に重なるように、下吐出弁収容凹部164Sの深さと同じ深さに形成されている。下吐出弁収容凹部164Sの下吐出孔190S側は、下吐出室凹部163Sに収容されている。冷媒通路孔136は、少なくとも一部が下吐出室凹部163Sに重なり、下吐出室凹部163Sと連通する位置に配置されている。
 また、下端板160Sの下面(下端板カバー170Sとの当接面)には、下吐出室凹部163S及び下吐出弁収容凹部164Sが形成された領域以外の領域に、圧縮部12を結合する通しボルト175等が通される複数のボルト孔138(図3)が設けられている。複数のボルト孔138は、下端板160Sの周方向に沿って間隔をあけて設けられている。
 上端板160Tに形成された上吐出室凹部163T及び上吐出弁収容凹部164Tについては、詳細な図示を省略するが、下端板160Sに形成された下吐出室凹部163S及び下吐出弁収容凹部164Sと同様の形状に形成されている。上端板カバー室180Tは、上端板カバー170Tのドーム状の膨出部181と上吐出室凹部163Tと上吐出弁収容凹部164Tとによって形成されている。
 以下に、回転軸15の回転による冷媒の流れを説明する。上シリンダ室130T内において、回転軸15の回転によって、回転軸15の上偏芯部152Tに嵌合された上ピストン125Tが、上シリンダ121Tの内周面137Tに沿って公転することにより、上吸入室131Tが容積を拡大しながら上吸入管105から冷媒を吸入し、上圧縮室133Tが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が上吐出弁200Tの外側の上端板カバー室180Tの圧力より高くなると、上吐出弁200Tが開いて上圧縮室133Tから上端板カバー室180Tへ冷媒が吐出される。上端板カバー室180Tに吐出された冷媒は、上端板カバー170Tに設けられた上端板カバー吐出孔172T(図1参照)から圧縮機筐体10内に吐出される。
 また、下シリンダ室130S内において、回転軸15の回転によって、回転軸15の下偏芯部152Sに嵌合された下ピストン125Sが、下シリンダ121Sの内周面137Sに沿って公転することにより、下吸入室131Sが容積を拡大しながら下吸入管104から冷媒を吸入し、下圧縮室133Sが容積を縮小しながら冷媒を圧縮し、圧縮した冷媒の圧力が下吐出弁200Sの外側の下端板カバー室180Sの圧力より高くなると、下吐出弁200Sが開いて下圧縮室133Sから下端板カバー室180Sへ冷媒が吐出される。下端板カバー室180Sに吐出された冷媒は、複数の冷媒通路孔136及び上端板カバー室180Tを通って上端板カバー170Tに設けられた上端板カバー吐出孔172Tから圧縮機筐体10内に吐出される。
 圧縮機筐体10内に吐出された冷媒は、ステータ111外周に設けられた上下に連通する切欠き(図示せず)、又はステータ111の巻線部の隙間(図示せず)、又はステータ111とロータ112との隙間115(図1参照)を通ってモータ11の上方に導かれ、圧縮機筐体10の上部に配置された吐出部としての吐出管107から吐出される。
 (ロータリ圧縮機の特徴的な構成)
 次に、実施例のロータリ圧縮機1の特徴的な構成について説明する。本実施例においては、下端板160Sの複数の冷媒通路孔136及び下端板カバー170Sの膨出部171Sが特徴となる。図4は、実施例のロータリ圧縮機1の下端板カバー170Sを下方から見た平面図である。図5は、実施例のロータリ圧縮機1の下端板カバー170Sを示す、図4中のB-B断面図である。図6は、実施例のロータリ圧縮機1の要部を示す、図3中のA-A断面図である。図7は、実施例のロータリ圧縮機において、下端板160Sに取り付けられた下端板カバー170Sを下方から見た透視平面図である。図8は、実施例のロータリ圧縮機1の要部を示す縦断面図である。
 (冷媒通路孔の構成)
 図3及び図7に示すように、下端板160Sは、複数の冷媒通路孔136(図3中の斜線部分)として、下吐出室凹部163Sに設けられた第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bと、ボルト孔138と下吐出弁収容凹部164Sとの間に下吐出弁収容凹部164Sから離間して設けられた第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dと、を有する。第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dは、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bに補助的に追加された冷媒通路孔136である。
 第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bは、円形状に形成されており、互いに隣接して下端板160Sの外周面に沿って配置されている。第1の主冷媒通路孔136Aは、下吐出室凹部163S内において、下吐出孔190Sに対して下端板160Sの外周側に配置されており、下吐出室凹部163Sの内周面に接している。第2の主冷媒通路孔136Bは、下吐出室凹部163Sの内周面に一部が重なるように配置されている。第2の主冷媒通路孔136Bは、第1の主冷媒通路孔136Aよりも直径が大きく形成されており、第1の主冷媒通路孔136Aよりも下吐出弁200Sの基端部側(下リベット202S側)に配置されている。なお、本実施例は、2つの第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bを有するが、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bのいずれか一方のみを有して構成されてもよい。
 第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dは、円形状に形成されており、下端板160Sの周方向に隣り合うボルト孔138の各々と、下吐出弁収容凹部164Sとの間に、下吐出弁収容凹部164Sから離間してそれぞれ設けられている。言い換えると、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dは、下端板160Sの周方向における下吐出弁収容凹部164Sの両側にそれぞれ設けられている。このように第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dが配置されることによって、下端板160Sに副冷媒通路孔136をあけることに伴って圧縮部12の機械的強度を低下させ過ぎずに機械的強度を適正に確保すると共に、圧縮部12の動作に影響がない位置に配置されている。
 また、本実施例では、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第2の副冷媒通路孔136Dは、孔径が等しくされている。これにより、複数の冷媒通路孔136を共通の切削工具を用いて加工することが可能となり、ロータリ圧縮機1の生産性が高められる。なお、孔径を等しくする冷媒通路孔136を限定するものではなく、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dのうち少なくとも2つの孔径が等しくされることにより、ロータリ圧縮機1の生産性が高められる。
 なお、本実施例では、4つの冷媒通路孔136(第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136D)を有するが、冷媒通路孔136の個数が限定されるものではない。例えば、ロータリ圧縮機1における排除容積等に応じて、例えば、第1の副冷媒通路孔136Cと第2の副冷媒通路孔136Dのいずれか一方のみを有するように構成されてもよい。また、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dに加えて第3の冷媒通路孔等(図示せず)が更に設けられてもよい。また、複数の冷媒通路孔136は、円形に限定されず、例えば、楕円形等の他の断面形状に形成されてもよい。
 (膨出部の構成)
 図4及び図5に示すように、下端板カバー170Sは、平板状に形成されており、ロータリ圧縮機1の下方へ膨出する膨出部171Sを有する。膨出部171Sは、下端板カバー室180Sを形成している。したがって、図6に示すように、下端板カバー室180Sは、下端板160Sに設けられた下吐出室凹部163S及び下吐出弁収容凹部164Sと、下端板カバー170Sの膨出部171Sとによって形成されている。
 図4及び図6に示すように、下端板カバー170Sの膨出部171Sは、下吐出弁押さえ201Sの先端部と対向する位置(下吐出孔190Sに対向する位置))から、下吐出弁押さえ201Sの基端部側(下リベット202S側)にわたって設けられている。図4及び図5に示すように、膨出部171Sは、周縁部171aから膨出した側壁部171bと、下吐出孔190Sに対向する部分(底部)と、を有しており、回転軸15の軸方向に直交する断面において下吐出孔190Sに重なっている。
 図7に示すように、膨出部171Sの少なくとも一部は、回転軸15の軸方向に直交する断面において、下吐出室凹部163Sと下吐出弁収容凹部164Sとにそれぞれ重なって形成されている(図3参照)。このように膨出部171Sは、回転軸15の軸方向に直交する断面において占める面積を広げることによって容積が適正に確保されると共に、下端板カバー170Sの厚み方向に対する深さを浅くする形成することが可能になる。また、膨出部171Sは、回転軸15の軸方向に直交する断面において容積が変化する部分、いわゆる絞り部分を含む形状に形成されることにより、下端板カバー室180S内での冷媒の流れを乱れさせ、冷媒の流れを適宜調整することが可能とされている。
 そして、回転軸15に直交する断面において、膨出部171Sは、図7に示すように、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dの各々の少なくとも一部に重なるように形成されている。これにより、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dは、膨出部171Sを介して、下端板カバー室180Sに連通されている。
 このように、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bに加えて第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dを有することにより、膨出部171Sが下吐出室凹部163S及び下吐出弁収容凹部164Sを覆うように広げられた構成であっても、膨出部171Sの周囲に配置された4つの冷媒通路孔136(第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136D)を通して、下端板カバー室180S内に吐出された冷媒をスムーズに排出することが可能になる。
 また、下端板カバー170Sの膨出部171Sは、図8に示すように、下端板160Sの下面に、膨出部171Sの周縁部171a全体に亘って当接している。これにより、膨出部171Sが副軸受部161Sに跨る部分を有していないので、膨出部171Sの形状と副軸受部161Sとの形状のバラツキによって下端板カバー室180Sから冷媒が漏れることが抑えられ、膨出部171S内の気密性が高められる。なお、膨出部171Sには、下端板160Sの厚み方向において、下吐出弁押さえ201Sの先端部が下吐出室凹部163Sから、下端板カバー170S側へ突出する部分が収容されてもよい。
 また、図4及び図5に示すように、下端板カバー170Sの中央には、副軸部151が挿通される円形の貫通穴145が形成されている。また、下端板カバー170Sには、及び膨出部171S以外の領域であって、下端板160Sの下吐出室凹部163S及び下吐出弁収容凹部164Sに対向する領域以外の領域に、通しボルト175等が通される複数のボルト孔138(図4)が設けられている。
 上述したように、実施例のロータリ圧縮機1における下端板160Sの複数の冷媒通路孔136は、下吐出室凹部163Sに設けられた主冷媒通路孔136(第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B)と、ボルト孔138と下吐出弁収容凹部164Sとの間に下吐出弁収容凹部164Sから離間して設けられた副冷媒通路孔136(第1の副冷媒通路孔136C及び第2の副冷媒通路孔136D)と、を有する。回転軸15に直交する断面において、膨出部171Sは、主冷媒通路孔136(第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B)及び副冷媒通路孔136(第1の副冷媒通路孔136C及び第2の副冷媒通路孔136D)の各々の少なくとも一部に重なるように形成されている。これにより、膨出部171Sの容積を適正に確保すると共に、下端板カバー室180S内に吐出された冷媒を複数の冷媒通路孔136を介してスムーズに排出することが可能になる。したがって、実施例によれば、圧力脈動が抑えられることにより、ロータリ圧縮機1の効率を高めると共に、ロータリ圧縮機1の振動を抑えることができる。また、副冷媒通路孔136(第1の副冷媒通路孔136C及び第2の副冷媒通路孔136D)が、ボルト孔138と下吐出弁収容凹部164Sとの間に下吐出弁収容凹部164Sから離間して設けられることにより、下端板160Sに副冷媒通路孔136をあけることで圧縮部12の機械的強度を乏しくすることなく、機械的強度を適正に確保することができる。
 このため、実施例によれば、ロータリ圧縮機1を用いた冷凍サイクルにおけるエネルギー消費効率(成績係数/COP:Coefficient Of Performance)の向上と、ロータリ圧縮機1の振動の抑制とを適正に両立することができる。
 また、実施例のロータリ圧縮機1における下端板カバー170Sの膨出部171Sの少なくとも一部は、回転軸15の軸方向に直交する断面において、下吐出弁収容凹部164Sと下吐出室凹部163Sとにそれぞれ重なって形成されている。このように回転軸15の軸方向に直交する断面において占める面積を広げることにより、膨出部171Sの容積が適正に確保されると共に、下端板カバー170Sの厚み方向に対する深さを浅くする形成することができる。
 また、実施例のロータリ圧縮機1は、副冷媒通路孔136として、下端板160Sの周方向に隣り合うボルト孔138の各々と、下吐出弁収容凹部164Sとの間にそれぞれ設けられた第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dを含む。このように第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dを配置することで、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dを下端板160Sにあけること伴って圧縮部12の機械的強度を乏しくすることなく、機械的強度を適正に確保することができる。
 また、実施例のロータリ圧縮機1は、回転軸15に直交する断面において、主冷媒通路孔136として、下吐出室凹部163S内に配置された第1の主冷媒通路孔136Aと、下吐出室凹部163Sに一部が重なって配置された第2の主冷媒通路孔136Bとを含む。これにより、下吐出孔190Sから吐出された冷媒を、第1の主冷媒通路孔136A及び第2の主冷媒通路孔136Bを通してスムーズに排出することができる。
 また、実施例のロータリ圧縮機1における第1の主冷媒通路孔136A及び第2の主冷媒通路孔136B、第1の副冷媒通路孔136C及び第2の副冷媒通路孔136Dのうち少なくとも2つは、孔径が等しい。これにより、複数の冷媒通路孔136を共通の切削工具を用いて加工することが可能となり、ロータリ圧縮機1の生産性を高めることができる。
 また、実施例のロータリ圧縮機1における下端板カバー170Sの膨出部171Sは、下端板160Sの下面に、膨出部171Sの周縁部171a全体に亘って当接している。これにより、膨出部171Sが副軸受部161Sに跨る部分を有していないので、膨出部171Sの形状と副軸受部161Sとの形状のバラツキによって下端板カバー室180Sから冷媒が漏れることが抑えられ、膨出部171S内の気密性が高めることができる。
 以上、実施例を説明したが、上述した内容により実施例が限定されるものではない。また、上述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述した構成要素は適宜組み合わせることが可能である。さらに、実施例の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。
  1 ロータリ圧縮機
 10 圧縮機筐体
 11 モータ
 12 圧縮部
 15 回転軸
 104 下吸入管(吸入部)
 105 上吸入管(吸入部)
 107 吐出管(吐出部)
 121T 上シリンダ
 121S 下シリンダ
 125T 上ピストン
 125S 下ピストン
 127T 上ベーン
 127S 下ベーン
 128T 上ベーン溝
 128S 下ベーン溝
 130T 上シリンダ室
 130S 下シリンダ室
 131T 上吸入室
 131S 下吸入室
 133T 上圧縮室
 133S 下圧縮室
 136 冷媒通路孔
 136A 第1の主冷媒通路孔
 136B 第2の主冷媒通路孔
 136C 第1の副冷媒通路孔
 136D 第2の副冷媒通路孔
 138 ボルト孔
 140 中間仕切板
 160T 上端板
 160S 下端板
 163T 上吐出室凹部
 163S 下吐出室凹部
 164T 上吐出弁収容凹部
 164S 下吐出弁収容凹部
 170S 下端板カバー
 171S 膨出部
 174、175 通しボルト
 176 補助ボルト
 180T 上端板カバー室
 180S 下端板カバー室
 190T 上吐出孔
 190S 下吐出孔
 200T 上吐出弁
 200S 下吐出弁

Claims (6)

  1.  上部に冷媒の吐出部が設けられ下部に冷媒の吸入部が設けられ密閉された縦置き円筒状の圧縮機筐体と、前記圧縮機筐体の下部に配置され前記吸入部から吸入された冷媒を圧縮し前記吐出部から吐出する圧縮部と、前記圧縮機筐体の上部に配置され前記圧縮部を駆動するモータとを有し、
     前記圧縮部は、環状の上シリンダ及び下シリンダと、前記上シリンダの上側を閉塞する上端板と、前記下シリンダの下側を閉塞する下端板と、前記上シリンダと前記下シリンダの間に配置され前記上シリンダの下側及び前記下シリンダの上側を閉塞する中間仕切板と、前記上端板に設けられた主軸受部と前記下端板に設けられた副軸受部とに支持され前記モータにより回転される回転軸と、前記回転軸に互いに180°の位相差をつけて設けられた上偏心部及び下偏心部と、前記上偏心部に嵌合され前記上シリンダの内周面に沿って公転し前記上シリンダ内に上シリンダ室を形成する上ピストンと、前記下偏心部に嵌合され前記下シリンダの内周面に沿って公転し前記下シリンダ内に下シリンダ室を形成する下ピストンと、前記上シリンダに設けられた上ベーン溝から前記上シリンダ室内に突出し前記上ピストンに当接して前記上シリンダ室を上吸入室と上圧縮室に区画する上ベーンと、前記下シリンダに設けられた下ベーン溝から前記下シリンダ室内に突出し前記下ピストンに当接して前記下シリンダ室を下吸入室と下圧縮室に区画する下ベーンと、前記上端板を覆って前記上端板との間に上端板カバー室を形成し前記上端板カバー室と前記圧縮機筐体の内部とを連通する上端板カバー吐出孔を有する上端板カバーと、前記下端板を覆って前記下端板との間に下端板カバー室を形成する下端板カバーと、前記上端板に設けられ前記上圧縮室と前記上端板カバー室とを連通させる上吐出孔と、前記下端板に設けられ前記下圧縮室と前記下端板カバー室とを連通させる下吐出孔と、前記下端板、前記下シリンダ、前記中間仕切板、前記上端板及び前記上シリンダを貫通し前記下端板カバー室と前記上端板カバー室とを連通する複数の冷媒通路孔と、を有するロータリ圧縮機において、
     前記下端板は、前記下端板の周方向に沿って設けられて前記圧縮部を結合するボルトが通される複数のボルト孔と、前記下吐出孔を開閉するリード弁型の下吐出弁と、前記下吐出孔から前記周方向に隣り合う前記ボルト孔間まで溝状に延ばされて前記下吐出弁が収容される下吐出弁収容凹部と、前記下吐出弁収容凹部の前記下吐出孔側に重なるように形成された下吐出室凹部と、を有し、
     前記下端板カバーは、平板状に形成され、前記下吐出孔に対向する部分を有する膨出部が設けられ、
     前記下端板カバー室は、前記下吐出弁収容凹部と、前記下吐出室凹部と、前記膨出部とによって形成され、
     前記複数の冷媒通路孔は、前記下吐出室凹部に設けられた主冷媒通路孔と、前記ボルト孔と前記下吐出弁収容凹部との間に前記下吐出弁収容凹部から離間して設けられた副冷媒通路孔と、を有し、
     前記回転軸に直交する断面において、前記膨出部は、前記主冷媒通路孔及び前記副冷媒通路孔の各々の少なくとも一部に重なるように形成されている、
    ロータリ圧縮機。
  2.  前記下端板カバーの前記膨出部の少なくとも一部は、前記回転軸の軸方向に直交する断面において、前記下吐出弁収容凹部と前記下吐出室凹部とにそれぞれ重なって形成されている、
    請求項1に記載のロータリ圧縮機。
  3.  前記副冷媒通路孔は、前記周方向に隣り合う前記ボルト孔の各々と、前記下吐出弁収容凹部との間にそれぞれ設けられた第1の副冷媒通路孔及び第2の副冷媒通路孔を含む、
    請求項1に記載のロータリ圧縮機。
  4.  前記回転軸に直交する断面において、前記主冷媒通路孔は、前記下吐出室凹部内に配置された第1の主冷媒通路孔と、前記下吐出室凹部に一部が重なって配置された第2の主冷媒通路孔とを含む、
    請求項3に記載のロータリ圧縮機。
  5.  前記第1の主冷媒通路孔及び前記第2の主冷媒通路孔、前記第1の副冷媒通路孔及び前記第2の副冷媒通路孔のうち少なくとも2つは、孔径が等しい、
    請求項4に記載のロータリ圧縮機。
  6.  前記下端板カバーの前記膨出部は、前記下端板の下面に、前記膨出部の周縁部全体に亘って当接している、
    請求項1に記載のロータリ圧縮機。
PCT/JP2018/027969 2017-08-24 2018-07-25 ロータリ圧縮機 WO2019039182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880054262.2A CN111033050B (zh) 2017-08-24 2018-07-25 旋转式压缩机
US16/636,761 US11384760B2 (en) 2017-08-24 2018-07-25 Rotary compressor for enhancing efficiency and suppressing vibration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161565A JP6418294B1 (ja) 2017-08-24 2017-08-24 ロータリ圧縮機
JP2017-161565 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039182A1 true WO2019039182A1 (ja) 2019-02-28

Family

ID=64098778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027969 WO2019039182A1 (ja) 2017-08-24 2018-07-25 ロータリ圧縮機

Country Status (4)

Country Link
US (1) US11384760B2 (ja)
JP (1) JP6418294B1 (ja)
CN (1) CN111033050B (ja)
WO (1) WO2019039182A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6835272B1 (ja) 2020-02-26 2021-02-24 株式会社富士通ゼネラル ロータリ圧縮機
DE102021105373A1 (de) * 2021-03-05 2022-09-08 Mann+Hummel Gmbh Filterelement, Filterelementanordnung und Filtersystem mit einer Filterelementanordnung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100278675A1 (en) * 2007-11-08 2010-11-04 Jeong-Min Han 2 stage rotary compressor
JP2014145318A (ja) * 2013-01-29 2014-08-14 Fujitsu General Ltd ロータリ圧縮機
JP2014145316A (ja) * 2013-01-29 2014-08-14 Fujitsu General Ltd ロータリ圧縮機
WO2016098710A1 (ja) * 2014-12-19 2016-06-23 株式会社富士通ゼネラル ロータリ圧縮機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150497A (ja) * 1984-07-30 1985-08-08 Hitachi Ltd ロ−タリ−式圧縮機
JPH11132177A (ja) 1997-10-30 1999-05-18 Toshiba Corp ロータリコンプレッサ
JP2009167828A (ja) 2008-01-11 2009-07-30 Fujitsu General Ltd ロータリ圧縮機
US8043065B2 (en) * 2009-05-01 2011-10-25 General Electric Company Wind turbine blade with prefabricated leading edge segments
JP5445550B2 (ja) 2011-09-29 2014-03-19 三菱電機株式会社 ベーンロータリ圧縮機
JP6778108B2 (ja) 2014-07-16 2020-10-28 株式会社Adeka 感光性組成物
JP6112104B2 (ja) 2014-12-19 2017-04-12 株式会社富士通ゼネラル ロータリ圧縮機
CN107002686B (zh) 2014-12-19 2019-02-26 富士通将军股份有限公司 旋转式压缩机
US10550843B2 (en) * 2015-01-13 2020-02-04 Fujitsu General Limited Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100278675A1 (en) * 2007-11-08 2010-11-04 Jeong-Min Han 2 stage rotary compressor
JP2014145318A (ja) * 2013-01-29 2014-08-14 Fujitsu General Ltd ロータリ圧縮機
JP2014145316A (ja) * 2013-01-29 2014-08-14 Fujitsu General Ltd ロータリ圧縮機
WO2016098710A1 (ja) * 2014-12-19 2016-06-23 株式会社富士通ゼネラル ロータリ圧縮機

Also Published As

Publication number Publication date
CN111033050A (zh) 2020-04-17
US11384760B2 (en) 2022-07-12
US20200166032A1 (en) 2020-05-28
CN111033050B (zh) 2021-11-26
JP2019039354A (ja) 2019-03-14
JP6418294B1 (ja) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6112104B2 (ja) ロータリ圧縮機
WO2016098710A1 (ja) ロータリ圧縮機
JP2014145318A (ja) ロータリ圧縮機
JP6206574B2 (ja) ロータリ圧縮機
AU2016225795B2 (en) Rotary compressor
WO2019039182A1 (ja) ロータリ圧縮機
CN110945246B (zh) 旋转式压缩机
CN107476973B (zh) 旋转式压缩机
EP3232064B1 (en) Rotary compressor
CN115151727B (zh) 回转式压缩机
JP6705317B2 (ja) ロータリ圧縮機
WO2018088409A1 (ja) ロータリ圧縮機
JP7044463B2 (ja) ロータリ圧縮機
JP2020193579A (ja) ロータリ圧縮機
JP6724513B2 (ja) ロータリ圧縮機
WO2019021550A1 (ja) ロータリ圧縮機
JP5471992B2 (ja) ロータリ圧縮機
JP2020180581A (ja) ロータリ圧縮機
JP2023008278A (ja) ロータリ圧縮機
WO2019039181A1 (ja) ロータリ圧縮機
JP2017190698A (ja) ロータリ圧縮機
JP2018080611A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849011

Country of ref document: EP

Kind code of ref document: A1