WO2017072883A1 - 光調節装置及び光調節装置を搭載する光学機器 - Google Patents

光調節装置及び光調節装置を搭載する光学機器 Download PDF

Info

Publication number
WO2017072883A1
WO2017072883A1 PCT/JP2015/080427 JP2015080427W WO2017072883A1 WO 2017072883 A1 WO2017072883 A1 WO 2017072883A1 JP 2015080427 W JP2015080427 W JP 2015080427W WO 2017072883 A1 WO2017072883 A1 WO 2017072883A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
light adjusting
shaft body
adjusting device
current
Prior art date
Application number
PCT/JP2015/080427
Other languages
English (en)
French (fr)
Inventor
智大 北中
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2017547255A priority Critical patent/JPWO2017072883A1/ja
Priority to PCT/JP2015/080427 priority patent/WO2017072883A1/ja
Publication of WO2017072883A1 publication Critical patent/WO2017072883A1/ja
Priority to US15/964,325 priority patent/US20180246319A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/18Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having horse-shoe armature cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/002Driving devices, e.g. vibrators using only longitudinal or radial modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/0075Electrical details, e.g. drive or control circuits or methods

Definitions

  • the present invention relates to a light adjusting device for inserting / removing a light adjusting element acting on a light beam or an optical image transmitted through an optical path into / from the optical path and an optical apparatus equipped with the light adjusting device.
  • a light adjusting element known as a diaphragm or a filter is disposed on the optical path of an optical device, and exerts an action suitable for each purpose on a passing light beam.
  • a light adjustment element is fixed on the optical path but also a configuration in which the light adjustment element is retracted from the optical path is required, it is mounted as a light adjustment device that combines the light adjustment element and the moving mechanism. ing.
  • Patent Document 1 discloses a light amount adjusting device using printed circuit board technology.
  • a hole in the center of the ring-shaped substrate is used as an optical path, and a coil body with a wiring pattern is provided on the substrate around the hole.
  • a blade member that is a light adjusting element that is cantilevered by a rotor made of a cylindrical magnet is provided in a hole formed in the vicinity of the coil body.
  • This substrate is housed in an upper cover and a lower cover.
  • the blade member penetrates the shaft integrally with the rotor, is fitted to the shaft receiver provided in each of the upper cover and the lower cover, and is rotatably held.
  • the blade member is swung between a position where the light path is blocked by the magnetic force generated in the coil body and a position where the blade member is retracted to the side.
  • a braking groove and a rib are provided in the upper cover, and are in contact with each other so as to serve as a guide for the swinging motion of the blade member.
  • the substrate is sandwiched and stored between the upper cover and the lower cover.
  • the blade member since the blade member is also supported by being sandwiched between both covers using a shaft, a manufacturing error and an assembly error are greatly affected, and the structure in which the swinging operation of the blade member easily occurs. It has become.
  • the frictional resistance in the stopped state is larger than that in the moving state. Therefore, the blade member is in contact with the braking groove and the rib when swinging, and has a frictional resistance when starting from a stopped state when moving from one side to the other (or from the other side) compared to when moving. Large and requires extra force (starting force).
  • the present invention is a small and simple driving mechanism, and is equipped with a light adjusting device that starts agilely by reducing frictional resistance at the start of driving by vibration and performs a more stable swinging operation, and the light adjusting device. It is an object of the present invention to provide an optical apparatus that performs the above-described process.
  • a light adjusting device is disposed on at least one optical path, and is provided rotatably on a light adjusting unit that acts on a passing light beam, and a support member,
  • a pivoting arm that swings the light adjusting unit to enter and exit the optical path, a pivoting unit that extends and supports the pivoting arm, and has a rotating shaft body in which a magnet is installed, and rotates the rotating shaft body
  • a driving current generating unit that generates a driving current for driving; a high-frequency current generating unit that generates a high-frequency current superimposed on the driving current; and a driving current on which the high-frequency current is superimposed to supply the rotating shaft body.
  • a magnetic circuit that generates a magnetic flux that passes through, acts on the magnet by the magnetic flux, and, together with the rotational force to the rotary shaft body, slightly vibrates at a sliding portion between the rotary shaft body and the support member
  • a light adjustment device that is a small and simple drive mechanism, and that starts agile and performs more stable rocking operation by reducing frictional resistance during vibration by vibration, and the light adjustment device therefor Can be provided.
  • FIG. 1 is a perspective view showing an external configuration of the light adjusting device according to the first embodiment as viewed obliquely from above.
  • FIG. 2 is a diagram illustrating an external configuration of the light adjusting device viewed from the front.
  • FIG. 3 is an exploded configuration diagram of the light adjusting device.
  • FIG. 4 is a diagram illustrating a configuration of a drive power supply unit in the light adjusting device illustrated in FIG. 3.
  • FIG. 5 is a diagram illustrating a waveform of an output current of a component in the drive power supply unit.
  • FIG. 6 is a perspective view showing an insertion portion of an endoscope in which the light adjusting device is mounted.
  • FIG. 1 is a perspective view showing an external configuration of the light adjusting device according to the first embodiment as viewed obliquely from above.
  • FIG. 2 is a diagram illustrating an external configuration of the light adjusting device viewed from the front.
  • FIG. 3 is an exploded configuration diagram of the light adjusting device.
  • FIG. 7 is a perspective view showing an external configuration of the light adjusting device according to the second embodiment viewed obliquely from above.
  • FIG. 8 is a diagram illustrating a configuration of a drive power supply unit of the light adjusting device.
  • FIG. 9 is a perspective view showing an external configuration of the light adjusting device according to the third embodiment viewed obliquely from above.
  • FIG. 10 is a diagram illustrating an external configuration viewed from the front of the light adjusting device.
  • FIG. 11 is an exploded configuration diagram of the light adjusting device.
  • FIG. 12 is a diagram illustrating a configuration of a drive power supply unit in the light adjusting device illustrated in FIG. 9.
  • FIG. 13 is a perspective view which shows the external appearance structure which looked at the light control apparatus which concerns on 4th Embodiment from diagonally upward.
  • FIG. 14 is a diagram illustrating an external configuration viewed from the front of the light adjusting device.
  • FIG. 1 is a perspective view showing an external configuration of the light adjusting device according to the first embodiment as viewed obliquely from above
  • FIG. 2 is a diagram showing an external configuration of the light adjusting device as viewed from the front
  • FIG. It is a disassembled block diagram of a light adjusting device.
  • the optical axis direction of the optical path is the Z-axis direction
  • the directions orthogonal to the Z-axis direction are the X-axis direction (front side) and the Y-axis direction. (Side side).
  • Examples of the optical apparatus equipped with the light adjusting device 1 of the present embodiment include at least an imaging device (imaging optical system), an illumination device, a microscope, an optical measurement device, an optical reading device (barcode reader, etc.), and the like.
  • An optical device including an optical device including an imaging device will be described.
  • the light adjusting device 1 includes a drive mechanism 50 having a rotating arm portion 8 and an electromagnetic drive source 13 that is installed upright on both side surfaces of the drive mechanism 50 and forms a magnetic circuit to be described later.
  • the drive mechanism 50 is composed of the swinging part 5 and a support member.
  • the support member has a U-shaped spacer 4 interposed behind the lower substrate 2 on the flat plate, and the upper substrate 3 is overlapped on the upper substrate 3 in parallel with the lower substrate 2. It is configured integrally.
  • the lower substrate 2 and the upper substrate 3 are assembled with a swinging portion 5 that rotates around the Z axis.
  • the oscillating portion 5 includes a columnar magnet (rotary shaft member) 6, a rotating shaft body 7 having magnetic permeability and fitting the magnet 6, and a rotating arm portion (attached to the bottom surface of the rotating shaft body 7). Blade member) 8.
  • the rotating arm unit 8 is driven by the electromagnetic driving source 13 and swings integrally with the rotating shaft 7.
  • the lower substrate 2 and the upper substrate 3 are formed into the same rectangular plate using a hard material.
  • the lower substrate 2 and the upper substrate 3 have the same outer shape. However, this is a design matter, and the shape and size of each of the lower substrate 2 and the upper substrate 3 are appropriately changed according to the installation space of the equipment to be mounted. Is done.
  • a U-shaped notch 3c is formed on the upper substrate 3 from the front side, and stoppers 15 (15a, 15a, 15b for restricting the swing range (swing angle) of the rotating arm portion 8 are provided on both sides thereof. Two holes 3b for fitting 15b) are formed.
  • a structure may be employed in which notches on both side surfaces of the upper substrate 3 are formed, protrusions are formed on the yoke 11 side, and these are fitted together.
  • the standing angle of the yoke 11 is set to an angle parallel to the rotation axis direction of the rotating shaft body 7 (or an angle perpendicular to the surface direction of the upper substrate 3).
  • the angle is not limited, and the angle may be changed as appropriate within a range in which a mounting space for the optical device to be mounted and a magnetic circuit for driving the rotating shaft 7 to be described later can be formed. Good.
  • the both sides of the lower substrate 2 are fitted in the fixing grooves 11c of the yoke 11 shown in FIG. 3, and positioning in the plane direction (XY plane) with respect to the drive mechanism 50 and positioning of the height thereof are performed.
  • the protrusion part 2a is provided so that it may overhang.
  • the height of the rear spacer 4 on the lower substrate 2 defines the distance between the lower substrate 2 and the upper substrate 3 as shown in FIG. It is set not to touch.
  • the rotating shaft body 7 includes a hollow cylindrical shaft body 7a having magnetic permeability, an upper flange portion 7b, and a lower flange portion 7c.
  • the upper flange portion 7b and the lower flange portion 7c are provided around the shaft body 7a with a distance obtained by adding a thickness portion of the upper substrate 3 and a gap portion that allows rotation.
  • the shaft body 7 a of the rotating shaft body 7 is rotatably fitted in the cutout portion 3 c of the upper substrate 3, and then the frame body 10 is fixed to the upper surface of the upper substrate 3.
  • the rotating shaft body 7 is prevented from coming off from the notch 3c.
  • the width of the notch 3c is set to be slightly larger than the diameter of the fitted shaft body 7a, and is set to a length that can be rotated and does not generate rattling.
  • the rotary shaft body 7 is erected vertically with respect to the upper substrate 3 by the restriction of the notch portion 3c of the upper flange portion 7b, and the central axis of rotation is the Z-axis direction.
  • the central axis of the rotating shaft body 7 (magnet 6) coincides with the central axis of the oscillating portion 5.
  • the side where the rotating arm portion 8 of the drive mechanism 50 protrudes is referred to as a front surface, and both sides of the front surface are referred to as side surfaces.
  • the magnet 6 is fitted so as to be in close contact, and is fixed with an adhesive or the like.
  • the magnet 6 is made of a hard magnetic material such as ferrite, neodymium, and samarium cobalt, and has an outer shape that matches the inner shape of the shaft body 7a. In this example, the magnet 6 has a cylindrical shape.
  • the magnet 6 is bipolarized with a plane passing through the central axis of the cylindrical shape as a domain wall, is magnetized in one semi-cylindrical shape on the N pole (N pole portion 6a), and is formed in the other semi-cylindrical shape on the S pole (S The pole portion 6b) is magnetized.
  • the shaft body 7 a and the bottom surface of the magnet 6 are provided in the same plane.
  • the shaft body 7a may be formed in a bottomed cup shape. Further, when the upper flange portion 7b and the lower flange portion 7c are fitted into the cutout portion 3c of the upper substrate 3, the shaft body 7a is prevented from floating in the vertical direction of the Z axis.
  • a hole 8a into which a light adjusting member (light adjusting element) (not shown) is fitted is formed at the other end of the rotating arm portion 8.
  • the light adjusting member is, for example, a diaphragm, a shutter, a lens, a light shielding plate, a filter, or the like, and may be fixed in the hole 8a or may be detachably attached.
  • the rotating arm portion 8 of the present embodiment swings in the X axis-Y axis directions shown in FIG. 1 integrally with the shaft body 7a.
  • pin-shaped stoppers 15 are fitted and fixed to the two holes 3b provided in the upper substrate 3 up to the head portion.
  • the tip of the pin may be threaded, and a screw hole (not shown) may be formed in the lower substrate 2 and screwed, or simply fixed with an adhesive or the like.
  • the stopper 15 is formed of a metal material or a hard resin material, and defines the rotation range (rotation angle) and stop position of the rotation arm unit 8 by applying the rotation arm unit 8.
  • the stop position of the hole 8a of the rotating arm portion 8 is defined by the positions of two optical paths (optical axes) that are light-adjusted by the light adjusting device 1.
  • the position sensor that detects the position of the rotating arm unit 8 and the structure that performs the stop position control are not provided.
  • the optical path of the light beam (or optical image) to be light-adjusted is a position that passes through the hole 8a when the rotating arm portion 8 is at the stop position.
  • the attachment position (position of the hole 3b) of the stopper 15 of the light adjusting device 1 may be set in accordance with the position of the optical path in the optical device to be mounted.
  • the rotation range (rotation angle) of the rotation arm unit 8 is set to 180 degrees or less.
  • the stop position where the rotating arm portion 8 shown in FIG. 1 is applied to the stopper 15a is defined as a first position
  • the stop position applied to the stopper 15b is defined as a second position
  • the optical path passing through the hole 8a is the first optical path when the rotating arm unit 8 is stopped at the first position, and passes through the hole 8a when stopped at the second position.
  • Let the optical path be the second optical path.
  • the first optical path and the second optical path where light adjustment is performed are switched. It is not necessary to set an optical path at each position, and one may be set as the position of the optical path and the other as the retracted position.
  • examples of the light beam transmitted through the optical path include a light image formed on the imaging optical system, illumination light, visible light, infrared light, and ultraviolet light.
  • FIG. 4 is a diagram illustrating a configuration of a drive power supply unit in the light adjusting device illustrated in FIG. 3, and FIG. 5 is a diagram illustrating a waveform of an output current of a configuration unit in the drive power supply unit.
  • the electromagnetic drive source 13 includes a yoke 11 serving as a magnetic flux passage portion, a coil 14 wound around the yoke 11, and a substrate 16 on which a drive circuit 17 connected to the coil 14 is mounted. Is done.
  • the yoke 11 is a magnetically permeable member formed in a U shape using a conductive material such as iron or a magnetically permeable (soft magnetic) material, and the coil 14 is tightly wound around the center of the bottom of the U shape.
  • the coil 14 is disposed at a position facing the upper surface of the upper substrate 3.
  • the coil 14 may be provided on the yoke 11 to generate a magnetic flux, the coil 14 is disposed on the upper surface of the upper substrate 3. It is not limited to the position opposite to.
  • the yoke 11 passes through the protrusion 3a of the upper substrate 3 fitted in the fixing groove 11d, and is further fixed to the protrusion 2a of the lower substrate 2 by fitting in the fixing groove 11c.
  • the substrate 16 of the present embodiment is assumed to be a flex substrate made of a soft resin or the like, but a hard substrate made of a hard material is also applicable, and is made close to the coil 14 on the back side of the yoke 11. Is provided.
  • the magnetic flux H generated by the coil 14 passes through the yoke 11 and passes through the gap (gap) between the end 11a and the end 11b where the rotary shaft 7 is disposed. At this time, the rotary shaft body 7 is taken into the magnetic circuit formed by the yoke 11.
  • the drive circuit 17 includes a rectangular wave generator 18, a superposition high frequency generator 19, and a mixer 20. Furthermore, a drive current I3 in which a high frequency is superimposed on the coil 14 is output from the drive circuit 17 in accordance with an operation instruction of the operation unit 45 provided on the optical device side on which the light adjusting device 1 is mounted.
  • the rectangular wave generator (drive current generator) 18 generates and outputs a rectangular wave current I1 (drive current) that is a pulse wave that is alternately positive and negative as shown in FIG.
  • the height of the pulse wave, that is, the rectangular wave current I1 is supplied to the coil 14 to generate a magnetic flux H, and provides rotational power to the rotating shaft 7.
  • the pulse length of the rectangular wave current I1 is preferably about 1 to 100 msec, and the pulse width is preferably about 500 mA or less.
  • these values are values according to the specifications and design of the light adjusting device, and are not limited.
  • the rectangular wave current I1 is not output, that is, when the current is 0 (A)
  • the rotary shaft 7 and the yoke 11 are in a sucked state, but the rotating arm portion 8 can be It is in a free state that rotates due to the applied impulse.
  • the superposition high-frequency generator 19 is supplied to the coil 14 simultaneously with the rectangular wave current I1 and outputs a superposition high-frequency current I2 for applying vibration to the rotating arm 8.
  • the superposition high-frequency current I2 has a peak length of about 1/2 to 1/10 of the rectangular wave current I1, and its amplitude is set to be equal to or smaller than the amplitude of the rectangular wave current I1.
  • the mixer 20 superimposes the superposition high-frequency current I2 on the rectangular wave current I1 and outputs it to the coil 14 as the drive current I3.
  • the coil 14 functions as an electromagnet and applies a magnetic flux H to the yoke 11 when a pulse current which is a drive current I3 is applied.
  • the yoke 11 allows the magnetic flux H to pass therethrough, forms a magnetic field in the gap between the end portions 11a and 11b, acts on the magnet 6 in the magnetic field, and causes the magnet 6 to generate an attractive force or a repulsive force. That is, when the polarity of the magnetic field and the polarity of the magnet 6 (N pole, S pole) are the same, a repulsive force is generated and the rotating shaft 7 is rotated to the opposite side.
  • the drive current I3 of the present embodiment acts on the magnet 6 by generating a repetitive strength change according to the superposition high-frequency current I2 in the magnetic flux H generated by the coil 14.
  • the magnetic flux H accompanied by repetitive strength changes causes the shaft 7a to swing finely in the rotation direction, and constantly vibrates the rotating arm unit 8. In the state where the vibration is stopped while being vibrated, the friction is generated not as wrinkle friction but as dynamic friction at the sliding portion.
  • the rotating arm unit 8 is swung while being vibrated by the superposition high-frequency current I2, and the stopper 15 Even in the stopped state applied to the motor, fine vibration is maintained. Then, when the positive and negative polarities of the supplied drive current I3 are switched in the state of slight vibration, the rotating arm portion 8 is swung toward the opposite stopper.
  • the rotating shaft 7 by superimposing the superposition high-frequency current I2 on the drive current I3 that gives the rotational power to the rotating shaft 7, the rotating shaft 7 generates a minute swing in the rotating direction.
  • the rotating arm unit 8 is slightly vibrated.
  • the rotating arm portion 8 maintains a slight vibration in a state where the rotating arm portion 8 is stopped by being connected to the stopper 15a (15b). That is, in a state where the rotating shaft body 7 is stopped while being slightly oscillated, dynamic friction is generated at the sliding portion between the rotating shaft body 7 and the upper substrate 3 instead of wrinkle friction.
  • kinetic friction has a smaller frictional resistance (or friction coefficient) than saddle friction.
  • the rotating arm unit 8 when the rotating arm unit 8 is repeatedly oscillated and driven, when the rotating shaft 7 that is finely oscillated is rotated, the rotating arm unit 8 can be quickly activated and rotated from the stopped state.
  • the driving current can be reduced as compared with the conventional case, and the driving circuit can be downsized and the power consumption can be reduced.
  • the present embodiment is realized by an electrical process that devises the drive current I3, additional components need not be additionally mounted on the lower substrate 2 and the upper substrate 3, and the current small size can be reduced. Maintained.
  • a rectangular pulse wave is output from the rectangular wave generator 18
  • the waveform is not limited to a rectangular shape, and for example, a sawtooth wave shape whose value decreases from the rising edge of the waveform. It is possible to apply.
  • the light adjusting device of this embodiment also includes the following effects.
  • the rotating arm portion 8 is provided so as to be rotatable by mechanical restraints that sandwich the upper substrate 3 from above and below by the upper flange portion 7b and the lower flange portion 7c of the rotating shaft body 7 that supports the rotating arm portion 8. Yes. Thereby, the floating (moving in the axial direction) of the rotating shaft body 7 at the time of swinging can be prevented, and the rotating operation of the rotating arm portion 8 without contact with other members and without shaking can be realized.
  • the shaft 7a of the rotating shaft 7 is provided so as to be rotatable by mechanical restraint in the left-right direction caused by fitting into the notch 3c of the upper substrate 3.
  • the place of contact at the time of rotation differs depending on the inclination of the electronic device on which the light adjusting device is mounted, but each facing surface of the upper flange portion 7b or the lower flange portion 7c facing the front and back surfaces of the upper substrate 3, Alternatively, since only the contact between the outer peripheral surface of the shaft body 7a and the inner surface of the upper substrate 3 is made, the frictional resistance is small, and a stable rotation operation of the rotation arm portion 8 can be realized. Moreover, since it is the support structure by clamping between two structural members, it is a structure which is hard to be influenced by the temperature of ambient environment.
  • the yoke 11 and the substrate 16 are provided so as to stand upright on the surface of the upper substrate 3, the area of the surface orthogonal to the optical axis can be reduced by being arranged along the optical axis direction in the light adjusting device. It can be easily mounted on a small-diameter electronic device.
  • FIG. 6 illustrates an example in which the electronic apparatus in which the light adjusting device is mounted is mounted on the insertion portion 41 of the endoscope.
  • the insertion portion 41 has a hard portion 43 disposed at the distal end, and a bending portion 42 that bends in response to an operator's operation on a proximal end side thereof, and a flexible portion that is continuously provided on the proximal end side of the bending portion 42.
  • the longitudinal direction of the curved portion 42 is an optical axis direction L (Z-axis direction) and a radial direction (X-axis-Y-axis direction) R orthogonal to the optical axis direction L is shown in FIG.
  • the upper surface of the upper substrate 3 is arranged in the radial direction R, and the electromagnetic drive source 13 is incorporated in the hard portion 43 so as to stand upright in the optical axis direction L.
  • the hard part 43 has a cylindrical shape, is provided with an imaging window 44 on the tip surface, and houses various units such as an imaging element and an imaging optical system.
  • the light adjusting device 1 includes an optical axis of a light image formed on the imaging optical system in the hard part 43 and an optical path defined by the hole 8a of the rotating arm part 8 (first optical path, second optical path). Are incorporated so that at least one of them matches.
  • the light adjusting unit 9 is attached to the hole 8a of the rotating arm unit 8.
  • the example which provided the light adjusting device 1 in the hard part 43 is given, if it is the arrangement
  • the electromagnetic drive source 13 has been described as being stored in the hard portion 43 in a state of being erected vertically with respect to the drive mechanism 50. However, when other components are obstructed during storage, It is also possible to set the electromagnetic drive source 13 by tilting as appropriate.
  • FIG. 7 is a perspective view showing an external configuration of the light adjusting device according to the second embodiment viewed obliquely from above
  • FIG. 8 is a diagram showing a configuration of a drive power supply unit of the light adjusting device.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a driving current I3 in which a high-frequency current is superimposed is supplied to the coil 14 of the electromagnetic driving source 13 to cause the rotating shaft body 7 to swing finely in the rotating direction, thereby rotating the rotating arm.
  • the portion 8 was slightly vibrated.
  • the upper arm 3 and the rotating arm portion 8 in contact with the stopper 15 are vibrated using the stopper 15, thereby sliding between the rotating shaft body 7 and the upper substrate 3. Instead of wrinkle friction, dynamic friction is generated in the moving part.
  • piezoelectric stoppers 26 (26a and 26b) formed of a piezoelectric body are used.
  • a stopper formed of a piezoelectric body is referred to as a piezoelectric stopper.
  • a piezoelectric ceramic material or the like can be used as the piezoelectric body.
  • the head portion is formed by the upper electrode 24 (24a, 24b) made of a metal material.
  • a lower electrode is formed of a conductive material on a part of the lower substrate 2 with which the tip of the piezoelectric stopper 26 contacts, or a lower electrode is provided at the tip of the piezoelectric stopper 26.
  • the piezoelectric stopper 26 is caused to function as a piezoelectric element, and high frequency power is applied to generate micro vibrations. This slight vibration is transmitted to the upper substrate 3 and vibrates the sliding portion between the upper substrate 3 and the rotating shaft body 7.
  • the piezoelectric element of the present embodiment a structure in which a piezoelectric body is sandwiched between an upper electrode and a lower electrode is proposed, but the arrangement and shape of the electrode may be set as appropriate.
  • the piezoelectric body of the stopper may be a cylindrical shape.
  • the structure may be such that the electrode is sandwiched from both sides by changing to a prismatic shape. By changing the arrangement of the electrodes, the vibration direction can be set as appropriate.
  • stacks a some piezoelectric material may be sufficient.
  • the rotating arm portion 8 of the present embodiment is provided with a vibration damping portion 8b formed of a soft resin, rubber or the like in the peripheral portion of the hole 8a into which the light adjusting member is fitted.
  • the vibration attenuating portion 8b acts so that the fine vibration transmitted from the rotating arm portion 8 to the light adjusting member is attenuated. Further, if the rotating arm unit 8 is in contact with the piezoelectric stopper 26, the generated fine vibration is directly transmitted to the rotating arm unit 8.
  • the electromagnetic drive source 13 shown in FIG. 8 includes a yoke 11, a coil 14 wound around the yoke 11, a drive circuit 23, a piezoelectric stopper 26, and an operation unit 45 provided outside an optical device or the like. Is done.
  • the drive circuit 23 includes a constant current power supply unit 21 that supplies a constant current (constant power), a changeover switch 27 that receives the supply of the constant current and outputs a rectangular wave current as shown in FIG.
  • the high-frequency generator 25 generates a high-frequency current for generating fine vibrations on the body stopper 26.
  • the high frequency generator 25 is commercialized as a small component that can be mounted on a printed circuit board.
  • the piezoelectric stoppers 26 a and 26 b slightly vibrate due to the high-frequency current output from the high-frequency generator 25 in response to an operation instruction from the operation unit 45, and the upper substrate 3 and the rotating shaft body 7 to which the fine vibration has been transmitted. Dynamic friction is generated at the sliding portion between them instead of heel friction.
  • the rotation instruction is issued simultaneously with the fine vibration start instruction by the operation instruction, and the magnetic flux H is generated from the coil 14 described above by the rectangular wave current output from the changeover switch 27 and acts on the magnet 6.
  • the rotating shaft 7 is rotated by the force, and the rotating arm unit 8 is swung. This swinging is applied to the opposite piezoelectric stopper 26.
  • a period until the rotating arm unit 8 starts from the stopped state and is applied to the piezoelectric stopper 26 on the opposite side is assumed or actually measured and set in advance.
  • the period during which the high-frequency current is output may be controlled. This period control eliminates vibration of the rotating arm portion 8 after being applied, which is suitable for a light adjusting member that is not suitable for the vibration state.
  • the setting of the high-frequency current output period can also be applied to the superposition high-frequency generator 19 in the first embodiment described above.
  • the rotating arm unit 8 when the rotating arm unit 8 is started from a stopped state, dynamic friction is generated at the sliding portion between the upper substrate 3 to which the minute vibration is transmitted and the rotating shaft body 7.
  • the rotating shaft body 7 is quickly activated and rotated by a small frictional resistance.
  • the micro-vibration generating source of the present embodiment to the stopper that is already mounted, it is not necessary to secure a mounting space by a new additional component, and the downsizing of the apparatus is maintained.
  • FIG. 9 is a perspective view showing an external configuration of the light adjusting device according to the third embodiment as viewed obliquely from above
  • FIG. 10 is a diagram showing an external configuration of the light adjusting device viewed from the front
  • FIG. It is a disassembled block diagram of a light adjusting device.
  • FIG. 12 is a diagram illustrating a configuration of a drive power supply unit in the light adjusting device illustrated in FIG. 9.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • This embodiment is different in the holding structure of the rotating shaft body 7 in the drive mechanism of the light adjusting device according to the first embodiment described above.
  • the rotating shaft body 7 is fitted in a shaft erected on the support substrate 32 and disposed in a magnetic circuit formed by a yoke made of a conductive material or a magnetically permeable (soft magnetic) material. It is the structure hold
  • the support substrate 32 has a structure in which the lower substrate 2 and the spacer 4 are integrated.
  • the support substrate 32 has a U-shaped space portion 32a corresponding to the spacer 4, and both side surfaces of the upper surface of the space portion 32a.
  • Protrusions 32b for positioning the fixed position of the yoke 31 are provided on the sides.
  • a thin straight shaft 33 is erected vertically.
  • both inner corners 32c in front of the space portion 32a are rounded and function as stoppers that are applied when the turning arm 8 is turned and stopped at the optical path position.
  • the rotary shaft body 7 has a hollow cylindrical shape formed of a metal material, and a cylindrical magnet 35 is fitted therein, and a rotating arm portion 8 is fixed on the bottom surface side.
  • the magnet 35 is bipolarized with a plane passing through the central axis of the columnar shape as a domain wall, and is magnetized to an N pole (N pole portion 35a) in one semi-cylindrical shape.
  • the S pole (S pole portion 35b) is magnetized in a semi-cylindrical shape.
  • the magnet 35 is formed with a hole 35c for fitting the shaft 33 at the position of the central axis.
  • the yoke 31 has a notch in which projecting portions 31 a and 31 b are provided so as to be inward from both end portions on the open side of the cap-shaped yoke 11 of the first embodiment and to be close to the rotary shaft body 7. It is formed in a frame shape. Each of the projecting portions 31 a and 31 b has an opposing curved surface 36 that is opposed to the outer peripheral surface of the rotating shaft 7 at a uniform distance (gap).
  • overhang portions 31a and 31b are fixed so that the yoke 11 stands on the space portion 32a.
  • a protrusion 32b is formed on the space portion 32a, and a recessed portion 31c that fits into the protrusion 32b is formed on each of the standing surfaces (lower surfaces) of the projecting portions 31a and 31b.
  • the light adjusting device having the drive mechanism 30 configured as described above is provided with a drive circuit 17 shown in FIG.
  • the drive circuit 17 includes a constant-current power supply unit 28 that outputs constant-current driving power (constant-current output), a superposition high-frequency generator 19 that is the same as that described above with reference to FIG.
  • the wave generating unit 29 and an operation unit 45 provided outside the optical device or the like are included.
  • the rectangular wave generator 29 generates a rectangular wave current having a positive and negative pulse waveform as shown in FIG. 5 for the input constant current output.
  • the pulse length and pulse width of the rectangular wave current generated in this embodiment are the same as those in the first embodiment.
  • the superposition high-frequency current I2 is mixed by the mixer 20 and superimposed on the constant current output output from the constant current power supply unit 28.
  • the constant current output on which the high-frequency current I2 is superimposed is generated into a positive and negative rectangular wave by the rectangular wave generator 29, and the same drive current I3 as shown in FIG.
  • the magnetic flux H generated by the coil 14 by the drive current I3 causes the rotating shaft 7 to swing finely in the rotating direction, so that the rotating arm is always operated.
  • the part 8 is vibrated.
  • the drive circuit of the electromagnetic drive source 13 of the present embodiment may be equivalent to the drive circuit 17 of the electromagnetic drive source 13 of the first embodiment shown in FIG. 4 described above.
  • the rotating shaft body 7 that is slightly vibrated when the rotating shaft body 7 that is slightly vibrated is rotated in order to repeatedly drive the rotating arm portion 8, It can be activated quickly from the stop state and rotated.
  • the driving current can be reduced as compared with the conventional case, and the driving circuit can be downsized and the power consumption can be reduced.
  • the vibration resistance is reduced by generating vibration by electrical processing in which a high-frequency current is superimposed on the drive current I3 without adding additional components, the current small size is achieved. Size is maintained.
  • FIG. 13 is a perspective view showing an external configuration of the light adjusting device according to the fourth embodiment as viewed obliquely from above
  • FIG. 14 is a diagram showing an external configuration of the light adjusting device as viewed from the front.
  • the light adjusting device 1 according to the present embodiment has the drive mechanism 30 according to the third embodiment described above, and is configured by combining the electromagnetic drive source 13 including the drive circuit 23 described above.
  • the shaft 33 erected on the support substrate 32 is formed of a conductive material such as metal, and serves as a holding member that rotatably fits and holds the rotary shaft 7 and also serves as an electrode of the piezoelectric element. Also used as.
  • a piezoelectric body 37 is provided at the upper end of the shaft 33, and the upper electrode 24 is formed on the upper surface of the piezoelectric body 37. That is, a piezoelectric element using the shaft 33 as a lower electrode is configured.
  • the drive circuit 23 has the same configuration as that shown in FIG. 8, and the shaft 33 vibrates due to the high-frequency current output from the high-frequency generator 25, so that the drive circuit 23 is slid between the shaft 33 and the inner surface of the hole 35 c of the magnet 35. Microvibration occurs. Due to this slight vibration, the sliding portion of the shaft 33 and the hole 35c is not subjected to wrinkle friction but dynamic friction is generated.
  • the vibration of the shaft 33 generated by the piezoelectric element is transmitted to the rotating shaft body 7 (magnet 35), and the shaft 33 and the rotating shaft body 7 become dynamic friction, and the frictional resistance is reduced compared to the heel friction.
  • the rotating arm unit 8 is repeatedly driven to swing, the rotating shaft 7 that slightly vibrates can be quickly started and rotated from the stopped state.
  • the driving current can be reduced as compared with the conventional case, and the driving circuit can be downsized and the power consumption can be reduced.
  • the piezoelectric element at the upper end of the shaft 33, it can also function as prevention of the rotation shaft body 7 from coming off from the shaft 33.
  • the piezoelectric element is disposed at the upper end of the shaft 33, a space that is not used is utilized, and the current small size can be maintained.
  • the present invention is not limited only to the above-described embodiment, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.
  • SYMBOLS 1 Light control apparatus, 2 ... Lower board

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Diaphragms For Cameras (AREA)
  • Astronomy & Astrophysics (AREA)

Abstract

光調節装置は、光調節部を光路に出入させる回動アーム部を支持し、磁石を内設する回転軸体と、回転軸体を回動可能に支持する支持部材と、回転軸体を回路上に含む磁気回路を形成し、高周波を重畳した駆動電流により発生された磁束を磁石に作用させて、回転軸体を回動させる回動力と、回転軸体と支持部材との間の摺動箇所に微振動とを与える電磁駆動源とを備え、摺動箇所の摩擦抵抗を靜摩擦から動摩擦に変えて、回転軸体の回動起動時に摩擦抵抗を減少させる。

Description

光調節装置及び光調節装置を搭載する光学機器
 本発明は、光路を透過する光束又は光像に作用する光調節素子を光路上に挿脱する光調節装置及び光調節装置を搭載する光学機器に関する。
 一般に、絞りやフィルタ等として知られる光調節素子は、光学機器の光路上に配置されて、通過する光束に対し、それぞれに目的に合った作用を及ぼしている。光学機器によっては光調節素子を光路上に固定されている形態だけではなく、光路上から退避させる形態も必要とされる場合には、光調節素子と移動機構を組み合わせた光調節装置として搭載している。
 光学機器として、例えば、カメラ等に用いられる光調節装置の一例として、特許文献1には、プリント基板技術を利用した光量調整装置が開示されている。この光量調整装置は、環形状の基板中央の孔が光路として利用され、その孔の周囲の基板上には、配線パターンによるコイル体が設けられる。このコイル体の近傍に形成された孔内に、円筒形状の磁石からなるロータに片持ち支持された光調節素子である羽根部材が設けられている。この基板は、上カバーと下カバーに収納される。この時、羽根部材は、ロータと一体的にシャフトに貫通され、上カバーと下カバーのそれぞれに設けられたシャフト受けに嵌合されて、回動可能に挟持されている。このような構成で、羽根部材は、コイル体に発生される磁力により光路を塞ぐ位置と脇に退避した位置とに揺動される。また上カバー内には、制動溝とリブが設けられ、羽根部材の揺動動作のガイドとなるように接触している。
特開平10-20360号公報
 前述した特許文献1の光調節装置において、基板は上カバーと下カバーにより挟まれて収納される。その際に、羽根部材もシャフトを用いて両カバーにより挟まれるように支持されているため、製造誤差や組み立て誤差が大きく影響し、羽根部材の揺動動作にがたつきが発生しやすい構造となっている。通常、停止状態の靜摩擦の方が移動状態の動摩擦よりも摩擦抵抗が大きい。従って、羽根部材は、揺動時に制動溝及びリブとの接触があり、一方から他方(又は、他方から一方)に移動する時の停止状態から起動する際に、移動中に比べて摩擦抵抗が大きく、余分に力(起動力)を必要する。また、摺動箇所の摩擦抵抗の大きさによっては、起動開始にタイムラグが発生する事態も想定される。これは、駆動部に印加する駆動電流を大きくすることで解消可能であるが、カバーにより密閉された空間内でコイルがより発熱してしまうため、光調節装置の内部温度が上がることとなり、好適な対応策ではない。
 そこで本発明は、小型で簡易な駆動機構であり、振動により駆動開始時の摩擦抵抗を低減させることで敏捷に起動し、より安定した揺動動作を行う光調節装置及びその光調節装置を搭載する光学機器を提供することを目的とする。
 上記目的を達成するために、本発明に従う実施形態の光調節装置は、少なくとも1つの光路上に配置され、通過する光束に作用する光調節部と、支持部材に回動可能に設けられ、前記光調節部を揺動して前記光路に出入させる回動アーム及び該回動アームを延出させて支持し、磁石を内設する回転軸体を有する揺動部と、前記回転軸体を回転駆動させるための駆動電流を生成する駆動電流生成部と、前記駆動電流に重畳する高周波電流を生成する高周波電流生成部と、前記高周波電流が重畳された駆動電流が供給されて前記回転軸体を通過する磁束を発生する磁気回路とを有し、前記磁束により前記磁石に作用し、前記回転軸体への回動力と共に、前記回転軸体と前記支持部材との間の摺動箇所に微振動を与える電磁駆動源と、を備える。
 本発明によれば、小型で簡易な駆動機構であり、振動により揺動時の摩擦抵抗を低減させることで、敏捷に起動し、より安定した揺動動作を行う光調節装置及びその光調節装置を搭載する光学機器を提供することができる。
図1は、第1の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図である。 図2は、光調節装置を正面から見た外観構成を示す図である。 図3は、光調節装置の分解構成図である。 図4は、図3に示す光調節装置における駆動電源部の構成を示す図である。 図5は、駆動電源部内の構成部の出力電流の波形を示す図である。 図6は、光調節装置が搭載される内視鏡の挿入部を示す斜視図である。 図7は、第2の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図である。 図8は、光調節装置の駆動電源部の構成を示す図である。 図9は、第3の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図である。 図10は、光調節装置の正面から見た外観構成を示す図である。 図11は、光調節装置の分解構成図である。 図12は、図9に示す光調節装置における駆動電源部の構成を示す図である。 図13は、第4の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図である。 図14は、光調節装置の正面から見た外観構成を示す図である。
 以下、図面を参照して本発明の実施形態について詳細に説明する。 
[第1の実施形態] 
 第1の実施形態に係る光調節装置について説明する。図1は、第1の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図、図2は、光調節装置を正面から見た外観構成を示す図、及び図3は、光調節装置の分解構成図である。以下の各実施形態の説明において、図1に示すように、光路の光軸方向をZ軸方向とし、Z軸方向に対して、互いに直交する方向をX軸方向(正面側)及びY軸方向(側面側)とする。
 本実施形態の光調節装置1を搭載する光学機器としては、少なくとも撮像装置(撮像光学系)、照明装置、顕微鏡、光学測定装置、光学的読み取り装置(バーコードリーダ等)等が挙げられ、また撮像装置からなる光学機器を搭載する光学機器について説明する。 
 この光調節装置1は、回動アーム部8を有する駆動機構50及び、この駆動機構50の両側面に接合して立設され、後述する磁気回路を形成する電磁駆動源13を有する。
 駆動機構50は、揺動部5と支持部材とで構成される。支持部材は、図3に示すように、平板の下側基板2上の後方にコの字形のスペーサ4を介在させて、その上方に下側基板2と平行になるように上側基板3を重ねて一体的に構成される。これらの下側基板2及び上側基板3に、Z軸周りに回動する揺動部5が組み付けられる。揺動部5は、円柱形状の磁石(回転軸部材)6と、透磁性を有し、磁石6を嵌装する回転軸体7と、回転軸体7の底面に取り付けられる回動アーム部(羽根部材)8と、で構成される。回動アーム部8は、回転軸体7と一体的に、電磁駆動源13に駆動されて揺動する。
 下側基板2及び上側基板3は、硬質材料を用いて同形の矩形形状の平板に形成される。本実施形態では、下側基板2と上側基板3は、外形が同じ形状であるが、これは設計事項であり、搭載させる機器の設置スペースに合わせて、適宜、それぞれの形状や大きさが変更される。
 上側基板3には、正面側からU形の切り欠き部3cが形成され、その両側のそれぞれに、回動アーム部8の揺動範囲(揺動角度)を規制するためのストッパ15(15a,15b)を嵌め入れるための2つの孔3bが形成されている。上側基板3の両側面には、図3に示すヨーク11の固定溝11dに嵌合して支持すると共に、ヨーク11の立設する角度方向の位置決めを行うための突起部3aが設けられている。また、この接合構造とは反対に、上側基板3の両側面の切り欠きを形成し、ヨーク11側に突起部を形成し、これらを嵌め合わせる構造であってもよい。本実施形態におけるヨーク11の立設角度は、回転軸体7の回転軸方向に対して平行となる角度(又は、上側基板3の面方向に垂直となる角度)に設定されているが、勿論、この角度は限定されるものではなく、搭載する光学機器の実装スペース及び、後述する回転軸体7を駆動するための磁気回路が形成可能な範囲内で、適宜、その角度を変更してもよい。
 また、下側基板2の両側面には、図3に示すヨーク11の固定溝11cに嵌合して、駆動機構50に対する平面方向(X-Y面)の位置決め及び、その高さの位置決めを行うために、張り出すように突起部2aが設けられている。また下側基板2上の後方のスペーサ4の高さは、図2に示すように、下側基板2と上側基板3との間隔を規定し、少なくとも回動アーム部8が下側基板2に接触しないように設定されている。
 回転軸体7は、透磁性を有する中空な円筒形状の軸体7a、上部フランジ部7b及び、下部フランジ部7cで構成される。上部フランジ部7bと下部フランジ部7cは、軸体7aの周囲に、上側基板3の厚さ分と回動可能にする隙間分を足した距離を空けて設けられている。
 回転軸体7の軸体7aは、上側基板3の切り欠き部3cに回動可能に嵌め入れられ、その後、上側基板3の上面に枠体10が固定される。枠体10を設けることで、回転軸体7が切り欠き部3cから外れ出ることを防止している。また、切り欠き部3cの幅は、嵌め入れられた軸体7aの径よりも僅かに大きく設定され、回動可能で且つ、がたつきが発生しない長さに設定されている。
 この回転軸体7は、上部フランジ部7bの切り欠き部3cの規制により、上側基板3に対して垂直に立設され、回動の中心軸がZ軸方向となっている。ここでは、回転軸体7(磁石6)の中心軸が揺動部5の中心軸と一致している。以下、駆動機構50の回動アーム部8が張り出している側を正面とし、その正面の両側を側面と称する。
 回転軸体7の軸体7a内には、磁石6が密着するように嵌入されて接着剤等により固定される。磁石6は、フェライト、ネオジム、サマリウムコバルト等の硬質磁性材料を用いて、軸体7aの内部形状に合うように外形形状が形成され、ここでは一例として、円柱形状に形成されている。
 この磁石6は、円柱形状の中心軸を通る平面を磁壁として2分極化されて、一方の半円柱形状にN極(N極部6a)に帯磁され、他方の半円柱形状にS極(S極部6b)に帯磁されている。この例では、軸体7aの底部と磁石6の底面と同一平面となるように設けられている。尚、軸体7aは、有底のカップ形状に形成してもよい。また、これらの上部フランジ部7bと下部フランジ部7cは、上側基板3の切り欠き部3cに嵌め入れられた際に、軸体7aにおけるZ軸の上下方向に対する浮動が防止される。
 回動アーム部8の他端には、図示しない光調節部材(光調節素子)が嵌着される孔8aが形成されている。光調節部材は、例えば、絞り、シャッタ、レンズ、遮光板又はフィルタ等であり、孔8a内に固定されてもよいし、着脱可能に取り付けられる構成であってもよい。本実施形態の回動アーム部8は、軸体7aと一体的に図1に示すX軸-Y軸方向に揺動する。
 また図3に示すように、上側基板3に設けられた2つの孔3bに、ピン形状のストッパ15がヘッド部まで嵌め込まれて固定されている。固定方法としては、ピン先端をネジ切りし、下側基板2には、ねじ穴(図示せず)を形成して螺着してもよいし、単に、接着剤等で接着固定してもよい。ストッパ15は、金属材料や硬質樹脂材料により形成され、回動アーム部8の当てつけにより、回動アーム部8の回動範囲(回動角度)及び停止位置を規定する。回動アーム部8の孔8aの停止位置は、光調節装置1により光調節される2つの光路(光軸)の位置により規定される。即ち、本実施形態では、回動アーム部8の位置検出を行う位置センサと停止位置制御を行う構成を有していない構造である。このため、光調節される光束(又は光像)の光路は、回動アーム部8が停止位置に在る時に、孔8aを通過する位置となる。勿論、これとは反対に、搭載する光学機器における光路の位置に合わせて、光調節装置1のストッパ15の取り付け位置(孔3bの位置)を設定してもよい。この構成において、本実施形態では、2極の磁石6を使用する例であるため、回動アーム部8の回動範囲(回転角度)は、180度以下に設定される。
 本実施形態では、図1に示す回動アーム部8がストッパ15aに当てつけられる停止位置を第1の位置とし、ストッパ15bに当てつけられる停止位置を第2の位置とする。ここでは、回動アーム部8が、第1の位置に停止している時に、孔8aを通過する光路を第1の光路とし、第2の位置に停止している時に、孔8aを通過する光路を第2の光路とする。このような回動アーム部8の回動により、光調節が実施される第1の光路と第2の光路とが切り換えられる。尚、それぞれの位置に光路を設定する必要は無く、一方は光路の位置として、他方は退避位置として設定してもよい。また、光路を伝送される光束としては、撮像光学系に結像された光像、照明光、可視光、赤外光又は紫外光等がある。
 次に、電磁駆動源13について説明する。  
 図4は、図3に示す光調節装置における駆動電源部の構成を示す図、図5は、駆動電源部内の構成部の出力電流の波形を示す図である。 
 電磁駆動源13は、図4に示すように、磁束通路部となるヨーク11と、ヨーク11に巻回されたコイル14と、コイル14に接続する駆動回路17が実装された基板16とで構成される。
 ヨーク11は、鉄等の導電体材料や透磁性(軟質磁性)材料を用いてU字形に形成された透磁性部材であり、U字の底部中央にコイル14が密に巻回されている。この例では、コイル14は、上側基板3の上面と対向する位置に配置されているが、ヨーク11上に設けられて磁束を発生させればよいため、その配置箇所は、上側基板3の上面との対向位置に限定されるものではない。
 ヨーク11は、図3に示すように、上側基板3の突起部3aを固定溝11dに嵌合させて通過し、更に下側基板2の突起部2aに固定溝11cに嵌合して固定されている。また、本実施形態の基板16は、軟性な樹脂等からなるフレックス基板の採用を想定しているが、硬質材料からなる硬質基板でも適用可能であり、ヨーク11の裏面側でコイル14に近接させて設けられている。本実施形態において、コイル14により発生された磁束Hは、ヨーク11を通り、回転軸体7が配置された端部11aと端部11bの空隙(ギャップ)を通過する。この時、ヨーク11により形成される磁気回路内に回転軸体7が取り込まれた形態となる。
 駆動回路17は、矩形波発生部18と、重畳用高周波発生部19と、混合器20とで構成される。さらに、光調節装置1が搭載された光学機器側に設けられる操作部45の操作指示により、駆動回路17からコイル14に高周波が重畳された駆動電流I3が出力される。
 矩形波発生部(駆動電流発生部)18は、図5に示す交互に正負となるパルス波である矩形波電流I1(駆動電流)を生成して出力する。このパルス波の高さ、即ち矩形波電流I1は、コイル14に供給されて磁束Hを発生し、回転軸体7に回動力を与える。尚、供給する矩形波電流I1の電流値が大きいほど、発生する回動力が大きくなるが、発生する熱量も大きくなるため、放熱等を考慮した電流値に適宜設定される。例えば、矩形波電流I1のパルス長は、略1msec~100msec程度であり、パルス幅は、略500mA以下が好適する。勿論、これらの数値は、光調節装置の仕様や設計に従う数値であり、限定されるものではない。尚、矩形波電流I1が出力されていない時、即ち、0(A)の時は、回転軸体7とヨーク11は、吸引した状態ではあるが、回動アーム部8は、重力や外部から加わる衝動により回動してしまうフリー状態となっている。
 重畳用高周波発生部19は、矩形波電流I1と同時にコイル14に供給され、回動アーム部8に振動を与えるための重畳用高周波電流I2を出力する。重畳用高周波電流I2は、矩形波電流I1に対してピーク長が略1/2~1/10程度であり、その振幅は、矩形波電流I1の振幅以下に設定される。また、混合器20は、図5に示すように、矩形波電流I1に重畳用高周波電流I2を重畳して駆動電流I3としてコイル14に出力する。
 コイル14は、駆動電流I3であるパルス電流が加えられた際に、電磁石として機能し、ヨーク11に磁束Hを与える。ヨーク11は、内部に磁束Hを通過させて、端部11a,11b間のギャップに磁界を形成し、その磁界内の磁石6に作用して、磁石6に吸引力又は反発力を発生させる。即ち、磁界の極性と磁石6の極性(N極、S極)が同じ場合には、反発力が発生し、回転軸体7を反対側に回転させる。また、磁界の極性と磁石6の極性が異なる場合には、吸引力(吸着力)が発生し、回転軸体7は回動せず、その状態を維持する。この回転軸体7の回動に伴って、回動アーム部8が揺動され、ストッパ15a,15bの何れかに当てつけて停止した状態となる。この停止後は、通常であれば、回転軸体7と上側基板3との間の摺動箇所に、靜摩擦が発生する。
 しかし、本実施形態の駆動電流I3は、コイル14により発生する磁束Hに重畳用高周波電流I2に従う反復的な強弱の変化を発生させて、磁石6に作用する。この反復的な強弱の変化を伴う磁束Hは、軸体7aに対して回動方向に微細な揺れを生じさせて、常時、回動アーム部8を振動させる。この振動されながら停止されている状態においては、摺動箇所に靜摩擦ではなく、動摩擦として発生していることとなる。
 従って、正負の極性の切換を伴う駆動電流I3が駆動回路17からコイル14に印加されている期間は、回動アーム部8が重畳用高周波電流I2による振動を伴いながら揺動され、またストッパ15に当てつけられた停止状態においても、微振動を維持している。そして、微振動の状態のまま、供給される駆動電流I3の正負の極性が切り替わると、反対側のストッパに向かうように回動アーム部8が揺動される。
 本実施形態の光調節装置によれば、回転軸体7に回動力を与える駆動電流I3に重畳用高周波電流I2を重畳させることにより、回転軸体7が回動方向に微細な揺れを発生し、回動アーム部8が微振動される。回動アーム部8は、ストッパ15a(15b)に当て連つけられて停止された状態で、微振動を維持している。即ち、回転軸体7が微少に振動されながら停止されている状態においては、回転軸体7と上側基板3との間の摺動箇所には、靜摩擦ではなく、動摩擦が発生していることとなる。一般的に、動摩擦の方が靜摩擦よりも摩擦抵抗(又は、摩擦係数)が小さいことが知られている。従って、回動アーム部8を反復的に揺動駆動させる際に、微振動されている回転軸体7を回動させる際に、停止状態から敏捷に起動して、回動させることができる。また、従来に比べて駆動用電流の低減も可能であり、駆動回路の小型化や消費電力の低減も実現することができる。
 また本実施形態は、駆動電流I3を工夫する電気的処理により実現しているため、下側基板2と上側基板3に対して、さらなる構成部品の追加実装を必要とせず、現状の小型サイズが維持される。前述した本実施形態では、矩形波発生部18から矩形のパルス波を出力した例について説明したが、その波形は矩形形状に限定されず、例えば、波形の立ち上がりから値が減少するノコギリ波形状でも適用することが可能である。
 尚、本実施形態の光調節装置は以下の作用効果も含んでいる。 
 回動アーム部8は、回動アーム部8を支持する回転軸体7の上部フランジ部7b及び下部フランジ部7cにより、上側基板3を上下から挟む機械的な拘束により回動可能に設けられている。これにより、揺動時の回転軸体7における浮動(軸方向への移動)を防止して、他部材との接触やブレのない回動アーム部8の回動動作を実現することができる。また同様に、回転軸体7の軸体7aが上側基板3の切り欠き部3cに嵌め込まれたことによる左右方向の機械的な拘束により、回動可能に設けられている。また、固定フランジ部が形成された回転軸体7に、1つのフランジ部を組み付けた簡易な構成であるため、製造時における上下方向の組み立て誤差や遊びをより低く抑えて、高い精度で製造することができる。
 また、回動の際に接触する箇所は、光調節装置が搭載された電子機器の傾きにより異なるが、上側基板3の表裏面と対向する上部フランジ部7b又は下部フランジ部7cの各対向面、又は軸体7aの外周面と上側基板3の内面の何れかの接触のみであるため、摩擦抵抗が小さく、安定した回動アーム部8の回動動作を実現できる。また、2つの構成部材間の挟持による支持構成であるため、周囲環境の温度に影響され難い構成である。
 さらに、上側基板3の面に立設するようにヨーク11及び基板16を設けているため、光調節装置における光軸方向に沿って配置され、光軸と直交する面の面積が小さくて済み、小径化された電子機器に対しても容易に搭載することができる。
 次に、図6には、光調節装置が搭載された電子機器として、内視鏡の挿入部41に搭載した例について説明する。 
 挿入部41は、先端に硬質部43が配置され、その基端側に操作者の操作に応じて湾曲する湾曲部42と、湾曲部42の基端側に連設される可撓部とを有している。図6においては、湾曲部42の長手方向を光軸方向L(Z軸方向)とし、この光軸方向Lと直交する径方向(X軸-Y軸方向)Rとすれば、図1に示す上側基板3の上面が径方向Rに配置され、且つ電磁駆動源13が光軸方向Lに立設されるように硬質部43内に組み込まれる。
 硬質部43は、円筒形状を成し、先端面に撮像用窓44が設けられ、内部には撮像素子と撮像光学系などの各種ユニットが収納されている。光調節装置1は、硬質部43内の撮像光学系に結像された光像の光軸と、回動アーム部8の孔8aに規定された光路(第1の光路、第2の光路)の少なくとも一方が一致するように組み込まれる。
 回動アーム部8の孔8aには、前述した光調節部9が取り付けられている。ここでは、硬質部43内に光調節装置1を設けた例を挙げているが、回動アーム部8の孔8aを光像が透過する配置であれば、硬質部43内への配置に限定されるのではなく、図示しない挿入部の基端側に設けられた操作部内であってもよい。
 このように光調節装置1を内視鏡の挿入部41に組み込むことにより、挿入部41の長手方向と直交する径方向に小型化することを実現し、挿入部41の細径化に寄与する。尚、電磁駆動源13が駆動機構50に対して、垂直に立設する状態で硬質部43内に収納される例で説明したが、収納する際に他の構成部位が障害となる場合には、適宜、電磁駆動源13を傾けて設定することも可能である。
 [第2の実施形態] 
 次に第2の実施形態に係る光調節装置について説明する。 
 図7は、第2の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図、図8は、光調節装置の駆動電源部の構成を示す図である。本実施形態の説明において、前述した第1の実施形態と同等の構成部位には同じ参照符号を付して、詳細な説明は省略する。
 前述した第1の実施形態では、電磁駆動源13のコイル14に高周波電流を重畳した駆動電流I3を供給して、回転軸体7を回動方向に微細な揺れを発生させて、回動アーム部8を微振動していた。本実施形態の光調節装置では、ストッパ15を用いて上側基板3及びストッパ15に当接状態にある回動アーム部8を振動させることにより、回転軸体7と上側基板3との間の摺動箇所を靜摩擦に代わって動摩擦を生じさせるものである。
 図1に示した金属材料や硬質樹脂等で形成されたストッパ15a,15bに代わって、圧電体により形成された圧電体ストッパ26(26a,26b)を用いる。本実施形態の以下の説明において、圧電体により形成されたストッパを圧電体ストッパと称している。その圧電体としては、圧電セラミックス材料等が利用可能である。この圧電体ストッパ26は、ヘッド部を金属材料からなる上部電極24(24a,24b)により形成する。また共に図示していないが、圧電体ストッパ26の先端が接触する下側基板2の一部に導電体材料により下部電極を形成する又は、圧電体ストッパ26の先端に下部電極を設ける。
 この構成により、圧電体ストッパ26を圧電素子として機能させて、高周波電力を印加し、微振動を発生させる。この微振動は、上側基板3に伝達されて、上側基板3と回転軸体7との間の摺動箇所を振動させる。本実施形態の圧電素子では、上部電極と下部電極により圧電体を挟む構造を提案しているが、電極の配置や形状は適宜、設定してもよく、例えば、ストッパの圧電体を円柱形状から角柱形状に変更し、電極を両側面から挟む構造であってもよい。電極の配置を変えることで、振動方向は適宜、設定可能である。又、複数の圧電体を積層する構造であってもよい。
 また、回動アーム部8に装着される光調節部材の中には、振動によって通過する光束に影響を与えるものある。この対策として、本実施形態の回動アーム部8は、光調節部材を嵌着する孔8aの周辺部分に、軟性な樹脂又はゴム等により形成される振動減衰部8bを設けている。この振動減衰部8bは、回動アーム部8から光調節部材へ伝達される微振動が減衰されるように作用する。また、回動アーム部8が圧電体ストッパ26に当てつけられている状態であれば、発生した微振動は、直接回動アーム部8に伝達される。
 図8に示す電磁駆動源13は、ヨーク11と、ヨーク11に巻回するコイル14と、駆動回路23と、圧電体ストッパ26と、光学機器等の外部に設けられた操作部45とで構成される。駆動回路23は、定電流(定電力)を供給する定電流電源部21と、定電流の供給を受けて、図5に示すような矩形波電流をコイル14に出力する切換スイッチ27と、圧電体ストッパ26へ微振動を発生させるための高周波電流を発生する高周波発生部25とで構成されている。この高周波発生部25は、プリント基板に実装可能な小型部品として製品化されている。
 この構成において、操作部45の操作指示により、高周波発生部25から出力された高周波電流により圧電体ストッパ26a,26bが微振動し、微振動が伝達された上側基板3と回転軸体7との間の摺動箇所には、靜摩擦に変わって動摩擦が発生する。操作指示により微振動開始指示と同時に回動指示が出されており、切換スイッチ27から出力される矩形波電流により前述したコイル14から磁束Hが発生して磁石6に作用し、磁石6の反発力で回転軸体7が回動されて、回動アーム部8が揺動される。この揺動により反対側の圧電体ストッパ26に当てつけられる。
 さらに、操作部45において、回動アーム部8が停止状態から起動して反対側の圧電体ストッパ26に当てつけられるまでの期間を想定又は実測して、予め設定しておき、高周波発生部25から高周波電流が出力される期間を制御してもよい。この期間制御により、当てつけられた後、回動アーム部8の振動がなくなるため、振動状態に適さない光調節部材に対して好適する。尚、この高周波電流の出力期間の設定は、前述した第1の実施形態における重畳用高周波発生部19に適用することも可能である。
 本実施形態によれば、回動アーム部8を停止状態から起動する際に、微振動が伝達された上側基板3と回転軸体7との間の摺動箇所に動摩擦が発生していることで、少ない摩擦抵抗により、回転軸体7が敏捷に起動し回動される。また、本実施形態の微振動の発生源を既に実装しているストッパに適用することにより、新たな追加部品による実装スペースの確保が不要であり、装置の小型化が維持される。
 [第3の実施形態] 
 次に第3の実施形態に係る光調節装置について説明する。 
 図9は、第3の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図、図10は、光調節装置の正面から見た外観構成を示す図、及び図11は、光調節装置の分解構成図である。図12は、図9に示す光調節装置における駆動電源部の構成を示す図である。本実施形態の説明において、前述した第1の実施形態と同等の構成部位には同じ参照符号を付して、詳細な説明は省略する。
 本実施形態は、前述した第1の実施形態に係る光調節装置の駆動機構における回転軸体7の保持構造が異なっている。この回転軸体7は、支持基板32に立設されたシャフトに嵌装されて、導電体材料や透磁性(軟質磁性)材料からなるヨークにより形成される磁気回路内に配置され、磁力により回動可能に保持される構成である。
 支持基板32は、前述した下側基板2とスペーサ4とが一体的となった構造であり、スペーサ4に相当するコの字形のスペース部位32aを有し、スペース部位32aの上面の両方の側面側には、ヨーク31の固定位置を位置決めするための突起部32bがそれぞれに設けられている。支持基板32の一段低いベース面32dの中央には、細径の真っ直ぐのシャフト33が、垂直に立設されている。また、スペース部位32aの正面の両方の内側角部32cは丸められて、回動アーム部8が回動した際に当て付けて、光路位置に停止させるストッパとして機能する。
 回転軸体7は、金属材料で形成される中空な筒形を成し、内部には、円筒形状の磁石35が嵌装され、底面側には回動アーム部8が固定されている。この磁石35は、前述した磁石6と同様に、円柱形状の中心軸を通る平面を磁壁として2分極化されて、一方の半円柱形状にN極(N極部35a)に帯磁され、他方の半円柱形状にS極(S極部35b)に帯磁されている。さらに、磁石35は、中心軸の位置にシャフト33を嵌入するための孔35cが形成されている。
 ヨーク31は、前述した第1の実施形態のキャップ形状のヨーク11の開放側の両端部から内側に向かい、回転軸体7に近接するように張り出し部31a,31bを設けた、切り欠きを有する枠形状に形成されている。それぞれの張り出し部31a,31bは、回転軸体7の外周面に均一な距離(ギャップ)で近接して対向する対向曲面36を有している。
 これらの張り出し部31a,31bは、スペース部位32a上にヨーク11が立設するように固定される。その際、ヨーク11の位置決めとして、スペース部位32a上には突起部32bが形成され、張り出し部31a,31bの立設面(下面)には、突起部32bに嵌合する凹部31cがそれぞれに形成されている。
 このように構成された駆動機構30を有する光調節装置には、図12に示す駆動回路17が設けられている。駆動回路17は、定電流の駆動用電力(定電流出力)を出力する定電流電源部28と、図4にて前述したものと同等な重畳用高周波発生部19と、混合器20と、矩形波発生部29と、光学機器等の外部に設けられた操作部45とで構成されている。矩形波発生部29は、入力した定電流出力に対して、図5に示すような正負のパルス波形の矩形波電流を生成する。本実施形態で生成される矩形波電流のパルス長やパルス幅は、第1の実施形態と同等である。
 この駆動回路17においては、定電流電源部28が出力した定電流出力に、重畳用高周波電流I2を混合器20で混合させて重畳させる。高周波電流I2が重畳された定電流出力は、矩形波発生部29により正負の矩形波に生成され、図5に示したと同じ駆動電流I3がコイル14に出力される。
 以降は、前述した第1の実施形態と同様に、駆動電流I3によりコイル14が発生させた磁束Hは、回転軸体7を回動方向に微細な揺れを生じさせて、常時、回動アーム部8を振動させる。振動する回動アーム部8がストッパ32cに当て付けられている停止状態において、回転軸体7における磁石35の孔35cの内面とシャフト33の外周面との間には、靜摩擦ではなく、動摩擦が発生している。尚、本実施形態の電磁駆動源13の駆動回路は、前述した図4に示した第1の実施形態の電磁駆動源13の駆動回路17と同等であってもよい。
 従って、本実施形態においても前述した第1の実施形態と同様に、回動アーム部8を反復的な揺動駆動させるために、微振動されている回転軸体7を回動させる際に、停止状態から敏捷に起動して、回動させることができる。また、従来に比べて駆動用電流の低減も可能であり、駆動回路の小型化や消費電力の低減も実現することができる。さらに、本実施形態においても、さらなる構成部品を追加せずに、駆動電流I3に高周波電流を重畳させた電気的処理により振動を発生させて摩擦抵抗の低下を実現しているため、現状の小型サイズが維持される。
 [第4の実施形態] 
 次に第4の実施形態に係る光調節装置について説明する。 
 図13は、第4の実施形態に係る光調節装置を斜め上から見た外観構成を示す斜視図、図14は、光調節装置の正面から見た外観構成を示す図である。本実施形態の光調節装置1は、前述した第3の実施形態の駆動機構30を有し、前述した駆動回路23を含む電磁駆動源13が組み合わされた構成である。
 本実施形態において、支持基板32に立設されるシャフト33は、金属等の導電体により形成され、回転軸体7を回転可能に嵌合して保持する保持部材となると共に、圧電素子の電極としても利用される。シャフト33の上端には、圧電体37を設け、その圧電体37の上面に上部電極24を形成している。即ち、シャフト33を下部電極として利用する圧電素子を構成する。
 駆動回路23は、図8に示す構成と同等であり、高周波発生部25から出力された高周波電流によりシャフト33が振動し、シャフト33と磁石35の孔35cの内面との間の摺動箇所に微振動が生じる。この微振動により、シャフト33と孔35cの摺動箇所が靜摩擦ではなく、動摩擦が発生している。
 本実施形態によれば、圧電素子により発生したシャフト33の振動が回転軸体7(磁石35)に伝達され、シャフト33と回転軸体7とが動摩擦となり、靜摩擦に比べて摩擦抵抗が低減される。回動アーム部8を反復的な揺動駆動させる際に、微振動する回転軸体7が停止状態から敏捷に起動して、回動させることができる。また、従来に比べて駆動用電流の低減も可能であり、駆動回路の小型化や消費電力の低減も実現することができる。さらに、圧電素子がシャフト33の上端に配置されることにより、シャフト33からの回転軸体7の抜け防止としても機能することができる。また、圧電素子は、シャフト33の上端に配置することから、使用されていないスペースを利用しており、現状の小型サイズが維持できる。
 本発明は、前述した実施形態のみに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示される複数の構成要素の適宜な組み合せにより種々の発明を形成できる。
1…光調節装置、2…下側基板、3…上側基板、4…スペーサ、5…揺動部、6…磁石、7…回転軸体、7a…軸体、8…回動アーム部、8a…孔、8b…振動減衰部、9…光調節部、10…枠体、11…ヨーク、13…電磁駆動源、14…コイル、15,15a,15b…ストッパ、16…基板、17…駆動回路、18…矩形波発生部、19…重畳用高周波発生部、20…混合器、21…定電流電源部、23…駆動回路、24…上部電極、25…高周波発生部、26…圧電体ストッパ、27…切換スイッチ、28…定電流電源部、29…矩形波発生部、30…駆動機構、32…支持基板、33…シャフト、35…磁石、35c…孔、36…対向曲面、37…圧電体、41…挿入部、42…湾曲部、43…硬質部、44…撮像用窓、45…操作部、50…駆動機構。

Claims (7)

  1.  少なくとも1つの光路上に配置され、通過する光束に作用する光調節部と、
     支持部材に回動可能に設けられ、前記光調節部を揺動して前記光路に出入させる回動アーム部及び、該回動アーム部を延出させて支持し、磁石を内設する回転軸体を有する揺動部と、
     前記回転軸体を回転駆動させるための駆動電流を生成する駆動電流生成部と、前記駆動電流に重畳する高周波電流を生成する高周波電流生成部と、前記高周波電流が重畳された駆動電流が供給されて前記回転軸体を通過する磁束を発生する磁気回路とを有し、前記磁束により前記磁石に作用して前記回転軸体への回動力と共に、前記回転軸体と前記支持部材との間の摺動箇所に微振動を与える電磁駆動源と、
    を備えることを特徴とする光調節装置。
  2.  前記電磁駆動源は、前記高周波電流生成部が生成した高周波電流により発生させた磁束が前記磁石に作用し、前記回転軸体の回動方向に反復する微振動を発生して、該微振動が前記回転軸体と前記支持部材との間の摺動箇所における摩擦抵抗を靜摩擦から動摩擦に変えて、前記回転軸体が回動する起動時に、前記摺動箇所の摩擦抵抗を減少させることを特徴とする請求項1に記載の光調節装置。
  3.  前記駆動電流生成部は、前記駆動電流である交互に正負となる矩形波電流を出力する矩形波発生部であることを特徴とする請求項1に記載の光調節装置。
  4.  前記揺動部の前記回転軸体は、円筒形状を成し、該円筒形状の外周面上に、前記支持部材を回動可能に挟持するための間隔を空けて配置される2つの環形状のフランジ部を有することを特徴とする請求項1に記載の光調節装置。
  5.  前記揺動部の前記回転軸体は、円筒形状を成して、内設する前記磁石の中心軸を貫通する孔を有し、前記支持部材は、立設されたシャフトからなり、前記シャフトに前記孔が嵌入されて前記磁気回路上に前記回転軸体が配置され、
     前記電磁駆動源は、前記支持部材に微振動を与えることを特徴とする請求項1に記載の光調節装置。
  6.  請求項1に記載される前記光調節装置を搭載することを特徴とする光学機器。
  7.  請求項1に記載される前記光調節装置を搭載することを特徴とする内視鏡。
PCT/JP2015/080427 2015-10-28 2015-10-28 光調節装置及び光調節装置を搭載する光学機器 WO2017072883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017547255A JPWO2017072883A1 (ja) 2015-10-28 2015-10-28 光調節装置及び光調節装置を搭載する光学機器
PCT/JP2015/080427 WO2017072883A1 (ja) 2015-10-28 2015-10-28 光調節装置及び光調節装置を搭載する光学機器
US15/964,325 US20180246319A1 (en) 2015-10-28 2018-04-27 Light adjustment apparatus and optical equipment mounting light adjustment apparatus thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/080427 WO2017072883A1 (ja) 2015-10-28 2015-10-28 光調節装置及び光調節装置を搭載する光学機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/964,325 Continuation US20180246319A1 (en) 2015-10-28 2018-04-27 Light adjustment apparatus and optical equipment mounting light adjustment apparatus thereon

Publications (1)

Publication Number Publication Date
WO2017072883A1 true WO2017072883A1 (ja) 2017-05-04

Family

ID=58630005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080427 WO2017072883A1 (ja) 2015-10-28 2015-10-28 光調節装置及び光調節装置を搭載する光学機器

Country Status (3)

Country Link
US (1) US20180246319A1 (ja)
JP (1) JPWO2017072883A1 (ja)
WO (1) WO2017072883A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530078B2 (ja) * 2015-10-28 2019-06-12 オリンパス株式会社 光調節装置及び光調節装置を搭載する光学機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147117A (ja) * 1990-10-09 1992-05-20 Kyocera Corp 絞り駆動制御装置
JP2003029315A (ja) * 2001-07-16 2003-01-29 Sony Corp 撮像装置に用いられる制御装置および方法
JP2010113092A (ja) * 2008-11-05 2010-05-20 Seiko Precision Inc アクチュエータ、羽根駆動装置及び光学機器
JP2012145648A (ja) * 2011-01-07 2012-08-02 Olympus Corp 光調節装置
JP2013178558A (ja) * 2013-04-25 2013-09-09 Canon Electronics Inc 磁気駆動装置及び光量絞り装置及び光学機器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295771A (ja) * 2006-04-27 2007-11-08 Nidec Copal Corp 電磁アクチュエータ及びカメラ用羽根駆動装置
JP2012014035A (ja) * 2010-07-02 2012-01-19 Shicoh Engineering Co Ltd レンズ駆動装置、オートフォーカスカメラ及びカメラ付きモバイル端末
JP5576729B2 (ja) * 2010-07-05 2014-08-20 オリンパス株式会社 光調節装置
US8331076B2 (en) * 2010-07-16 2012-12-11 Ut-Battelle, Llc Clad fiber capacitor and method of making same
JP2012203019A (ja) * 2011-03-23 2012-10-22 Fujifilm Corp レンズ装置、撮影装置及びレンズ制御方法
JP6010895B2 (ja) * 2011-11-14 2016-10-19 ソニー株式会社 撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147117A (ja) * 1990-10-09 1992-05-20 Kyocera Corp 絞り駆動制御装置
JP2003029315A (ja) * 2001-07-16 2003-01-29 Sony Corp 撮像装置に用いられる制御装置および方法
JP2010113092A (ja) * 2008-11-05 2010-05-20 Seiko Precision Inc アクチュエータ、羽根駆動装置及び光学機器
JP2012145648A (ja) * 2011-01-07 2012-08-02 Olympus Corp 光調節装置
JP2013178558A (ja) * 2013-04-25 2013-09-09 Canon Electronics Inc 磁気駆動装置及び光量絞り装置及び光学機器

Also Published As

Publication number Publication date
JPWO2017072883A1 (ja) 2018-08-16
US20180246319A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP6921601B2 (ja) 振れ補正機能付き光学ユニット
JP5536672B2 (ja) 画像投影用振動ミラーを用いる装置及び方法
JP6414396B2 (ja) レンズホルダ駆動装置およびカメラ付き携帯端末
US20140009631A1 (en) Vcm ois actuator module
JP2009288770A (ja) 振れ補正機能付き光学ユニット
JP2008225158A (ja) ステージ装置、及びステージ装置を利用したカメラの手振れ補正装置
JP2011066580A (ja) カメラの手振れ補正装置
JP6515631B2 (ja) 画像表示装置、及び調整用デバイス
WO2018066425A1 (ja) アクチュエータ及びカメラ装置
JP2011252989A (ja) 手振れ補正装置
JP2010107995A (ja) 投写型画像表示装置
WO2017072883A1 (ja) 光調節装置及び光調節装置を搭載する光学機器
US20070076098A1 (en) Anti-vibration device and camera apparatus using the same
JP2010048897A (ja) 光走査装置および画像形成装置
WO2017072882A1 (ja) 光調節装置及び光調節装置を搭載する光学機器
JP2022018273A (ja) 光量調節装置および携帯端末
JP2018205480A (ja) 振れ補正機能付き光学ユニット
JP2014044361A (ja) カメラモジュール
WO2017009904A1 (ja) 光調節装置及び光調節装置を搭載する光学機器
JP2012145648A (ja) 光調節装置
JP5387222B2 (ja) 光偏向器
JP2006208702A (ja) ステージ装置及びこのステージ装置を利用したカメラの手振れ補正装置
JP2022021474A (ja) 電磁アクチュエータおよび光量調節装置
US11061246B2 (en) Laser pointer with shake correction mechanism
JP2006178324A (ja) 光学部品保持装置および光学部品保持方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15907247

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017547255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15907247

Country of ref document: EP

Kind code of ref document: A1