WO2017071561A1 - 可调光学镜头和摄像模组及其制造方法和应用 - Google Patents

可调光学镜头和摄像模组及其制造方法和应用 Download PDF

Info

Publication number
WO2017071561A1
WO2017071561A1 PCT/CN2016/103253 CN2016103253W WO2017071561A1 WO 2017071561 A1 WO2017071561 A1 WO 2017071561A1 CN 2016103253 W CN2016103253 W CN 2016103253W WO 2017071561 A1 WO2017071561 A1 WO 2017071561A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
optical lens
camera module
adjustment
Prior art date
Application number
PCT/CN2016/103253
Other languages
English (en)
French (fr)
Inventor
王明珠
赵波杰
蒋恒
丁亮
陈飞帆
刘春梅
郭楠
王守杰
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510873537.3A external-priority patent/CN105445885B/zh
Priority claimed from CN201510968893.3A external-priority patent/CN105445888B/zh
Priority claimed from CN201511009093.5A external-priority patent/CN105487191B/zh
Priority to KR1020187015325A priority Critical patent/KR102111869B1/ko
Priority to JP2018522693A priority patent/JP7084305B2/ja
Priority to US15/772,512 priority patent/US11099353B2/en
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to KR1020217000570A priority patent/KR20210006025A/ko
Priority to KR1020207002497A priority patent/KR102202780B1/ko
Priority to EP22205684.8A priority patent/EP4180852A1/en
Priority to EP16858996.8A priority patent/EP3370098B1/en
Publication of WO2017071561A1 publication Critical patent/WO2017071561A1/zh
Priority to US17/377,343 priority patent/US20230012466A9/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras

Definitions

  • the invention relates to the field of camera modules, and further relates to an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the camera module includes an optical lens and a photosensitive chip.
  • the optical lens is disposed on a photosensitive path of the photosensitive chip, and light reflected by the object can enter the interior of the camera module from the optical lens and is
  • the photosensitive chip receives and performs photoelectric conversion, so that the image associated with the object can be obtained by the camera module.
  • the optical lens is generally made up of a plurality of lenses that are stacked one on another, in which the position of the central axis of each lens affects the optical lens as a whole set of lens sets.
  • the central axis ideally, the central axes of each lens are coincident.
  • the glue and the soldering substance also affect the position and inclination of each lens, so that the optical lens formed by the lens housing is superimposed after each lens is overlapped with each other. There is a large deviation in the central axis.
  • the camera module includes an optical lens and a photosensitive chip.
  • the optical lens is disposed on a photosensitive path of the photosensitive chip, and light reflected by the object can enter the interior of the camera module from the optical lens and is
  • the photosensitive chip receives and performs photoelectric conversion, so that the image associated with the object can be obtained by the camera module.
  • the optical lens is generally made up of a plurality of lenses that are stacked one on another, in which the position of the central axis of each lens affects the optical lens as a whole set of lens sets.
  • the central axis ideally, the central axes of each lens are coincident.
  • the glue and the soldering substance also affect the position and inclination of each lens, so that the optical lens formed by the lens housing is superimposed after each lens is overlapped with each other. There is a large deviation in the central axis.
  • Conventional mobile phone camera modules usually have a smudge due to assembly or material tilt.
  • a mode is obtained by adjusting one or a group of lenses in the lens.
  • the group adjusts the optical path of the lens by adjusting at least one of the horizontal, vertical, tilting and rotating directions of the movable portion of the lens, and finally the lens optical axis is perpendicular to the chip or within a range allowed by the deviation, and finally reaches Solve the purpose of module paste, but how to adjust the lens and how to fix it after adjustment to ensure good image quality becomes a problem in the field of camera module in the case of simple assembly and low cost of camera module. .
  • the lens is an independently assembled component, which includes a lens barrel (including a diaphragm), a lens, a spacer, a stopper, and the like, and the assembly process includes: the spacer and the spacer
  • the lenses are loaded into the lens barrel in order, and the last lens is fixed with glue or a pressure ring to assemble the lens.
  • Assembly tolerances for the above assembly methods include: assembly tolerances of the lens and spacer, and assembly tolerances of the lens and lens. Therefore, the assembly tolerance chain of the assembly method is too long, the assembly cost is high, and the assembly position accuracy of the lens is relatively poor, which affects the quality of the lens, and thus affects the quality of the entire camera module and its application products.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the adjustable optical lens comprises an optical structural member and at least two optical lenses, each of the optical lenses being overlapped with each other Positioned in an inner space of the optical structural member, and at least one of the optical lenses is adjustable in position of an inner space of the optical structural member.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the adjustable optical lens can be adjusted by changing a position of the optical lens in an inner space of the optical structural member
  • the central axis for example, after adjusting the position of the optical lens in the inner space of the optical structural member, enables the central axis of the lens group formed for each of the optical lenses to be
  • the center axes of the tuned optical lenses coincide to improve the product yield of the tunable optical lens.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens of the adjustable optical lens can be at least in a position of an inner space of the optical structural member Adjustment in one direction.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens of the adjustable optical lens can be adjusted in a horizontal position of an internal space of the optical structural member .
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens of the adjustable optical lens can be adjusted at a height position of an inner space of the optical structural member .
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens of the adjustable optical lens can be adjusted at an inclined position of an inner space of the optical structural member .
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens of the adjustable optical lens can be adjusted for rotational motion in an internal space of the optical structural member. .
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical structural member is provided with at least one adjustment channel, when the optical lens is encapsulated in the optical structural member
  • the optical structural member is provided with at least one adjustment channel, when the optical lens is encapsulated in the optical structural member
  • the optical lens corresponds to the adjustment channel in an inner space of the optical structural member, and the adjustment channel can adjust the external environment of the optical structural member The position of the optical lens in the internal space of the optical structural member is facilitated for operation.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein in the process of manufacturing the camera module by packaging the adjustable optical lens and a photosensitive chip, Positioning at least one of the optical lenses of the tunable optical lens at an inner space of the optical structural member to ensure a center axis of the tunable optical lens of the camera module and a center of the photographic chip The axes coincide.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein when the position of the optical lens in the internal space of the optical structural member is adjusted, the adjusted device
  • the optical lens is first packaged in the optical structural member, and then the tunable optical lens and the photosensitive chip are packaged, in such a manner that the tunable optical lens and the photosensitive chip are packaged During the process, the position of the adjusted optical lens and the photosensitive chip can be prevented from shifting, thereby ensuring the reliability of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein a central axis of the tunable optical lens and the sensitization are obtained during packaging of the camera module
  • the central axis of the chip is adjusted to an allowable deviation range, which can provide product yield of the camera module and improve the imaging quality of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the adjustable optical lens includes an aperture, and the aperture is disposed at a top position of an optical structural member, The position of the optical structural member is adjustable.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical lens is pre-assembled into the optical structural member, adjusted to meet the resolution requirement, and then fixed to form a fixed imaging module.
  • the manufacturing method of the current camera module is changed, the processing procedure of the entire camera module is reduced, and the process defects of the assembly module in the current assembly method of the camera module are too large, and the assembly tolerance chain is too long.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the subsequent testing process is reduced, the testing cost is reduced, and the production cost is low and the efficiency is high.
  • An object of the present invention is to provide a tunable optical lens and a camera module, and a method and apparatus for manufacturing the same, wherein the optical lens of the tunable optical lens and/or the aperture is opposite to the optical structure
  • the position can be adjusted in at least one direction.
  • An object of the present invention is to provide a tunable optical lens and a camera module, and a method and apparatus for manufacturing the same, wherein the optical lens of the tunable optical lens and/or the aperture is opposite to the optical structure The horizontal position can be adjusted.
  • An object of the present invention is to provide a tunable optical lens and a camera module, and a method and apparatus for manufacturing the same, wherein the optical lens of the tunable optical lens and/or the aperture is opposite to the optical structure The height position can be adjusted.
  • An object of the present invention is to provide a tunable optical lens and a camera module, and a method and apparatus for manufacturing the same, wherein the optical lens of the tunable optical lens and/or the aperture is opposite to the optical structure The tilt position can be adjusted.
  • the spatial position of the piece can be adjusted for rotational movement.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the optical structural member is provided with at least one adjustment channel, when the optical lens is encapsulated in the optical structural member
  • the optical structural member is provided with at least one adjustment channel, when the optical lens is encapsulated in the optical structural member
  • the optical lens corresponds to the adjustment channel in an inner space of the optical structural member, and the adjustment channel can adjust the external environment of the optical structural member The position of the optical lens in the internal space of the optical structural member is facilitated for operation.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein in the process of manufacturing the camera module by packaging the adjustable optical lens and a photosensitive chip, Positioning at least one of the optical lenses of the tunable optical lens at an inner space of the optical structural member to ensure a center axis of the tunable optical lens of the camera module and a center of the photographic chip The axes coincide.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein when the position of the optical lens in the internal space of the optical structural member is adjusted, the adjusted device
  • the optical lens and the aperture are first packaged on the optical structural member, and then the tunable optical lens and the photosensitive chip are packaged, in such a manner that the tunable optical lens and the photosensitive chip are packaged
  • the position of the adjusted optical lens and the photosensitive chip can be prevented from shifting, thereby ensuring the reliability of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein a central axis of the tunable optical lens and the sensitization are obtained during packaging of the camera module
  • the central axis of the chip is adjusted to an allowable deviation range, which can provide product yield of the camera module and improve the imaging quality of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the camera module manufactured by the method is more compact in structure and simple in manufacturing method.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the imaging position of the camera module is used as a standard to calibrate the assembly position of the adjustable optical component, so that the camera module can be owned Higher imaging quality.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, which mainly solve the design of the lens and the optical structural part, so that one or a group of optical lenses therein can be adjusted and adjusted. A good fixed problem.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a method for manufacturing the same By adjusting one or a group of lenses in the optical system of the camera module to solve the tilt problem caused by the material or assembly of the module, the product yield of the camera module can be improved.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the lens By adjusting the lens to form an adjustable optical lens, the lens itself can be effectively avoided, thereby reducing the unit price of the lens, which is beneficial to the manufacturer to reduce the camera.
  • the manufacturing cost of the module increases the competitiveness of the product in the same industry.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the end surface of the optical structural member is provided with at least one adjusting passage, and the end face of the optical structural member is taken by a vacuum suction lens or a jig.
  • the lenses are optically adjusted to improve the accuracy of the calibration.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the top of the optical structural member is provided with at least one adjusting channel, and the lens has an adjusting groove corresponding to the adjusting channel, so as to be easily grasped from the outside. Take the lens to adjust, the adjustment is simple and easy to operate.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the side of the optical structural member is provided with at least one adjusting channel for facilitating adjustment of any one or a group of lenses in the optical structural member. Increase the number and range of adjustments of the adjustable lens to more accurately correct the optical path of the adjustable optical lens.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the position of the lens and the position of the fixed lens are adapted to be selected at the same position, and the adjusted optical lens is fixedly adjusted by adjusting the channel. Reduce manufacturing costs.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein at least one fixed channel is disposed on the optical structural member to fix the adjusted optical lens through the fixed channel, wherein the fixed channel and the adjustment Channels are not in the same location, increasing selectivity and making it easier.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein an adjustment passage connects an internal space of the optical structural member with an external environment to adjust the optical structural member from the outside of the optical structural member.
  • the internal optical lens ensures the accuracy of the adjustment.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the fixed passage connects the internal space of the optical structural member with the external environment, and the adjusted after the glue is injected into the fixed passage.
  • the optical lens is fixed.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a method for manufacturing the same
  • the adjustment method is simple and convenient, by pre-assembling the adjustable lens on the top of the optical structural member and adjusting the incident position of the light beam from the top of the optical structural member.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the first optical lens is used as an adjustment lens, and is adjusted by vacuum adsorption or mechanical grasping, and then fixed. It is not necessary to provide an adjustment channel or/and a fixed channel on the optical structural member, and the adjustment method is relatively simple.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, which can shorten the lens assembly tolerance chain, reduce the assembly cost, and improve the imaging quality of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the internal optical lenses are assembled and assembled, the processing precision of the lens barrel components, and the optical lens and the lens barrel component are Low assembly accuracy requirements are beneficial to reduce costs.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the internal optical lenses are assembled and assembled in the lens barrel member, thereby changing the traditional monolithic assembly process. Shorten the assembly tolerance chain and improve assembly efficiency.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • the optical lens is not mounted in the lens barrel component, but is external to the lens barrel component and the mirror.
  • the connection between the bottoms of the barrel parts can effectively reduce the processing precision of the barrel parts and the assembly precision between the optical lens and the barrel parts, reduce the cost, and improve the image quality.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • a light blocking layer is disposed outside the optical lens, which can prevent external light from entering from the non-beam incident channel. It can prevent the lens from leaking light, can ensure the lens has high quality, and the light blocking layer is thin, which is beneficial to reduce the weight of the camera module lens.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the external optical lens is not mounted inside the lens barrel component, but directly bears on the lens holder, and therefore, the lens barrel component
  • the assembly tolerance with the lens holder does not affect the imaging quality of the camera module, and shortens the assembly tolerance chain of the lens, which is beneficial to increase production efficiency.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the lens can be reduced between the lens and the lens by placing the last optical lens between the outside of the lens barrel and the lens holder.
  • the distance of the lens can achieve a smaller lens back focal length, which is beneficial to the development of the camera module in the direction of thinning.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein at least one internal optical lens is used as an adjustable lens, and the central axis of the lens of the camera module and the central axis of the photosensitive chip are adjusted. Coincidence or within the range allowed by the deviation, to calibrate the imaging quality of the camera module, to ensure that the camera module has a higher imaging quality after the completion of manufacturing.
  • the lens barrel component adjusts the optical path of the camera module lens, and then aligns the imaging module imaging to improve the imaging quality and manufacturing yield of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof.
  • an adjustable lens By setting an adjustable lens, the back focus of the lens can be calibrated and the imaging quality of the camera module can be adjusted, and the calibration is completed during the assembly process. It can greatly improve the manufacturing yield and product performance of the camera module.
  • An object of the present invention is to provide an adjustable optical lens and a camera module, and a manufacturing method and application thereof, wherein the camera module is calibrated during the manufacturing process by setting the adjustable lens, and the subsequent focusing step is omitted. Reduce processes, save costs, and increase efficiency.
  • An object of the present invention is to provide a tunable optical lens and a camera module, and a manufacturing method and application thereof.
  • the assembly method is simple, feasible, and easy to operate, and is suitable for popularization and application.
  • an aspect of the present invention provides a camera module, including:
  • An adjustable optical lens the adjustable optical lens is located in a photosensitive path of the photosensitive chip
  • the adjustable optical lens comprises
  • At least two optical lenses each of which is disposed in an interior space of the optical structural member along a height direction of the optical structural member, wherein at least one lens is adapted to be pre-assembled to the optical structure in an adjusted manner
  • the inner side of the optical structural member is provided with at least one adjusting passage, the adjusting passage is communicated with the inner space and the outer environment of the optical structural member, and the adjusting passage and the pre-assembled optical lens
  • the position of the optical lens is adjusted by the adjustment channel such that the adjustable optical lens and the central axis of the photosensitive chip coincide.
  • the optical lens pre-assembled in the camera module is assembled into the optical structural member by glue
  • the glue is a mixed glue of UV glue and thermosetting glue, and passes through the ultraviolet After the exposure, the glue is semi-cured to achieve pre-assembly, and after the baking treatment, the glue is completely fixed. To fix the entire adjustable optical lens.
  • the tunable optical lens of the camera module includes an aperture pre-assembled on top of the optical structure, in the same optical path as the optical lens, wherein The assembly position of the diaphragm is adapted to be adjusted, and the diaphragm is pre-assembled by semi-curing the glue.
  • the aperture of the camera module is provided with at least one glue injection channel corresponding to the optical lens adapted to be adjusted to be injected through the injection channel Glue is used to fix the adjusted optical lens.
  • a camera module including:
  • a photosensitive device comprising a photosensitive chip
  • An adjustable optical lens is disposed on a photosensitive path of the photosensitive chip, wherein the adjustable optical lens comprises five optical lenses, respectively a first optical lens, a second optical lens, and a a third optical lens, a fourth optical lens and a fifth optical lens, wherein the five optical lenses are mounted in an overlapping manner along the photosensitive chip photosensitive path inside the optical structural member, and the first lens and The second lens is adjustably pre-assembled inside the optical structural member;
  • the optical structural member is provided with two adjustment channels respectively communicating with the inner space and the external environment of the optical structural member, and respectively opposite to the first lens and the second lens for adjusting through the adjustment channel
  • the first lens and the second lens are in a spatial position inside the optical structural member.
  • the inner wall of the optical component in the camera module is respectively provided with five limiting structures, which are respectively a first limiting structure, a second limiting structure, and a third limit.
  • the bit structure, a fourth limit structure and a fifth limit structure respectively carry the first lens, the second lens, the third lens, the fourth lens and the fifth lens.
  • the tunable optical lens of the camera module includes an aperture pre-assembled on top of the optical structure, in the same optical path as the optical lens, wherein The assembly position of the diaphragm is adapted to be adjusted, and the diaphragm is pre-assembled by semi-curing the glue.
  • the aperture of the camera module is provided with at least one glue injection channel corresponding to the optical lens adapted to be adjusted to be injected through the injection channel Glue is used to fix the adjusted optical lens.
  • a camera module including:
  • a photosensitive device wherein the photosensitive device is provided with a photosensitive chip, and the adjustable optical lens is set a photosensitive path of the photosensitive chip;
  • the adjustable optical lens includes
  • a four optical lens which is a first optical lens, a second optical lens, a third optical lens and a fourth optical lens
  • An optical structure member four optical lenses are sequentially disposed in an inner space of the optical structural member, wherein a top portion of the optical structural member is provided with at least one adjustment channel, and the adjustment channel is to be the optical structure
  • the internal space of the piece is in communication with the external environment, and the adjustment channel is opposite to the first optical lens, so as to adjust the first optical lens through the adjustment channel, and inject glue through the adjustment channel,
  • the first optical lens is fixed.
  • the camera module injects glue between the side surface of the first optical lens and the corresponding inner wall of the optical structural member through the adjusting channel, by using the first optical A side of the lens is fixedly coupled to an inner wall of the optical structural member to secure the first optical lens.
  • the camera module injects glue into the top surface of the first optical lens through the adjustment channel, through the top surface of the first optical lens and the inner wall of the optical structural member. Fixed to fix the first optical lens.
  • the photosensitive device includes a filter, a circuit board and a lens holder.
  • the filter is mounted on the inside of the lens holder and disposed on the Above the photosensitive chip, the photosensitive chip is mounted above the wiring board, and the wiring board is mounted on the bottom of the lens holder such that the photosensitive chip is located in a cavity of an inner wall of the lens holder.
  • the top of the optical structural member is provided with three adjustment channels along a circumferential direction, which are separated from each other by 120°.
  • the top surface of the first optical lens in the camera module is provided with at least two adjustment grooves opposite to the adjustment channel.
  • a camera module including:
  • a photosensitive device wherein the photosensitive device is provided with a photosensitive chip, and the adjustable optical lens is disposed on a photosensitive path of the photosensitive chip;
  • the adjustable optical lens includes
  • a four optical lens which is a first optical lens, a second optical lens, a third optical lens and a fourth optical lens
  • An optical structure member four optical lenses are sequentially disposed in an inner space of the optical structural member, wherein at least one adjustment channel is disposed on a side of the optical structural member, and at least a top portion of the optical structural member is disposed a fixed channel, the adjustment channel and the fixed channel communicating an inner space of the optical structural member and an external environment, and the adjustment channel is opposite to a side of the first optical lens to facilitate passage through the adjustment channel
  • the first optical lens is adjusted, the fixed channel being opposite to a top surface of the first optical lens to facilitate injecting glue through the fixed channel to fix the first optical lens.
  • the adjustment channel in the camera module is disposed in three circumferential directions along the outer side of the optical structure corresponding to the first optical lens, and is separated from each other by 120°.
  • the photosensitive device includes a filter, a circuit board and a lens holder.
  • the filter is mounted on the inside of the lens holder and disposed on the Above the photosensitive chip, the photosensitive chip is mounted above the wiring board, and the wiring board is mounted on the bottom of the lens holder such that the photosensitive chip is located in a cavity of an inner wall of the lens holder.
  • a camera module including:
  • the photosensitive device comprises a photosensitive chip, and the lens of the camera module is disposed on a photosensitive path of the photosensitive chip;
  • the camera module lens comprises
  • At least one external optical lens At least one external optical lens
  • the three inner optical lenses are a first inner optical lens, a second inner optical lens and a third optical lens
  • the lens barrel component has a receiving cavity
  • the three inner optics a lens is disposed in the receiving cavity
  • the outer optical lens is disposed at a bottom of the lens barrel component and located outside the lens barrel component
  • the lens component side wall has at least one adjustment channel
  • the first inner optical lens corresponds to the first inner optical lens being adjustably pre-assembled to the barrel component.
  • each of the outer optical lenses in the camera module has a light blocking layer on the outer side, and the light blocking layer completely covers the entire side surface of the outer optical lens.
  • the camera module has at least one fixed channel at the top of the lens assembly corresponding to the first internal optical lens, so as to dispense the first interior through the fixed channel.
  • Optical lenses are provided.
  • the lens barrel component of the camera module has four fixed channels spaced 90° apart from each other.
  • the second inner optical lens and the third inner optical lens are combined in the camera module to form an integral lens assembly.
  • the photosensitive device further includes a filter, a circuit board and a lens holder, wherein the filter is mounted inside the lens holder and is disposed on Above the photosensitive chip, the photosensitive chip is mounted on the circuit board, and the circuit board is mounted on the bottom of the lens holder and the photosensitive chip is located in the internal cavity of the lens holder.
  • the outer optical lens is disposed between the barrel member and the mirror holder.
  • Another aspect of the present invention provides a tunable optical lens comprising:
  • At least two optical lenses each of the optical lenses being disposed in an inner space of the optical structural member along a height direction of the optical structural member, wherein at least one of the optical lenses is in an inner space of the optical structural member
  • the position is adjustable.
  • the optical structural member is provided with at least one adjustment passage to communicate with an inner space and an outer environment of the optical structural member, and the optical lens corresponds to an inner space of the optical structural member. And adjusting the channel to adjust a position of the optical lens in an inner space of the optical structural member through the adjustment channel.
  • the present invention further provides a camera module, including:
  • an adjustable optical lens disposed on a photosensitive path of the photosensitive chip, wherein the adjustable optical lens includes an optical structural member and at least two optical lenses, each of the optical lenses being along The height direction of the optical structural member is disposed in an inner space of the optical structural member, and at least one of the optical lenses is adjusted inside the optical structural member before encapsulating the adjustable optical lens and the photosensitive chip The position of the space coincides with the central axis of the optical lens and the central axis of the photosensitive chip to improve the imaging quality of the camera module.
  • the optical structural member is provided with at least one adjustment passage to communicate with an inner space and an outer environment of the optical structural member, and the optical lens corresponds to an inner space of the optical structural member. And adjusting the channel to adjust a position of the optical lens in an inner space of the optical structural member through the adjustment channel.
  • a gap is formed between the outer wall of the optical lens and the inner wall of the optical structural member.
  • the gap formed between the outer wall of the optical lens and the inner wall of the optical structural member has a size greater than or equal to 3 micrometers.
  • the present invention also provides a method of manufacturing a camera module, the manufacturing method comprising the steps of:
  • the central axis of the tunable optical lens and the sensitization are adjusted by adjusting the position of one of the optical lenses of the tunable optical lens
  • the center axes of the chips coincide.
  • the center axis of the tunable optical lens and the photosensitive chip are adjusted by adjusting the position of the optical lens at the outermost side of the tunable optical lens.
  • the center axes coincide.
  • At least one of a horizontal direction, a vertical direction, an oblique direction, and a circumferential position of the optical lens is adjusted.
  • the package is adjusted to the optical lens and the optical structural member.
  • At least one adjustment passage is provided at a side of the optical structural member to correspond to the optical lens disposed in an inner space of the optical structural member,
  • the adjustment channel adjusts a position of the optical lens disposed in an inner space of the optical structural member in an outer environment of the optical structural member.
  • the present invention also provides a method of manufacturing a camera module, wherein the manufacturing method comprises the following steps:
  • the manufacturing method further comprises the steps of:
  • the optical lens and the optical structure are fixed by dispensing.
  • the optical structural member is disposed in the photosensitive path of the photosensitive chip in the step (A), and in the step (B), each of the optical lenses is The inner space of the optical structural member is disposed to overlap each other along a height direction of the optical lens element.
  • the optical structural member semi-finished product disposed on the photosensitive path of the photosensitive chip includes one of the optical structural members and is preset to the At least one of the optical lenses of the inner space of the optical structural member, in the step (B), the remaining optical lenses are disposed in an inner space of the optical structural member.
  • an adjustable optical lens comprising:
  • At least two optical lenses each of the optical lenses being disposed in an inner space of the optical structural member along a height direction of the optical structural member, wherein at least one of the optical lenses has a spatial position inside the optical structural member It is adjusted.
  • the sidewall of the optical structural member is provided with at least one adjustment channel to communicate with the inner space and the external environment of the optical structural member, and the optical lens adapted to be adjusted is in the optical
  • An interior of the structural member corresponds to the adjustment passage to adjust a spatial position of the optical lens within the optical structural member through the adjustment passage.
  • the spatial position of the optical lens adapted to be adjusted within the optical structure is adapted to be adjusted in at least one direction.
  • the optical lens adapted to be adjusted is pre-assembled inside the optical structural member by glue, the glue being in a semi-cured state.
  • the tunable optical lens further includes an aperture pre-assembled on the top of the optical structural member and located on the same optical path as the optical lens, wherein the aperture The assembly position is adapted to be adjusted.
  • the position of the assembly of the aperture relative to the position of the optical structure is adapted to be adjusted in at least one direction.
  • the diaphragm is pre-assembled by semi-curing the glue.
  • the glue used for pre-assembly is a mixed glue of UV glue and thermosetting glue, and the glue is semi-cured after UV exposure to achieve pre-assembly, after the baking process, the glue Will be fully cured to secure the entire tunable optical lens.
  • At least one glue injection channel is provided at the pupil position, and the glue injection channel corresponds to the optical lens adapted to be adjusted to inject glue through the injection channel to fix The adjusted optical lens.
  • the present invention provides an adjustable optical lens comprising:
  • At least one optical lens disposed in an inner space of the optical structural member along a height direction of the optical structural member and fixed;
  • a diaphragm pre-assembled on top of the optical structure and located on a top side of the optical lens, wherein a position of the assembly of the aperture relative to a spatial position of the optical structure is adapted to be Adjustment.
  • the diaphragm is pre-assembled by semi-curing the glue.
  • the glue used for pre-assembly is a mixed glue of UV glue and thermosetting glue, and the glue is semi-cured after UV exposure to achieve pre-assembly, after the baking process, the glue Will be fully cured to fix the aperture.
  • the assembly position of the diaphragm is adapted to be adjusted in at least one direction.
  • the inner wall of the optical structural member is provided with at least one limiting structure adapted to carry the optical lens.
  • the present invention provides a camera module, including:
  • a photosensitive device comprising a photosensitive chip
  • an adjustable optical lens disposed on a photosensitive path of the photosensitive chip, wherein the adjustable optical lens comprises an optical structural member, at least one optical lens, and an aperture, each of the optical a lens is mounted in an inner space of the optical structural member along a height direction of the optical structural member, the aperture is disposed on a top of the optical structural member and located on a top side of the optical lens, at least one of The optical lens is pre-assembled in an inner space of the optical structural member, and the assembled position of the pre-assembled optical lens inside the optical structural member is suitable before packaging the adjustable optical lens and the photosensitive device After being adjusted and adjusted, the imaging module is imaged to meet the resolution requirement.
  • the sidewall of the optical structural member is provided with at least one adjustment channel to communicate
  • the pre-assembled optical lens corresponds to the adjustment passage inside the optical structural member, and is adapted to adjust the optical lens through the adjustment passage in the The spatial position inside the optical structural member.
  • the spatial position of the pre-assembled optical lens inside the optical structure is adapted to be adjusted in at least one direction, and the central axis of the tunable optical lens is adjusted to the sensitization
  • the center axis of the chip coincides or is within the range allowed by the deviation.
  • the side walls of the optical structural member corresponding to each of the pre-assembled optical lenses are provided with three of the adjustment channels, which are spaced apart from each other by 120°, and are adapted to adjust the pre-assembly.
  • the pre-assembled optical lens is pre-assembled by semi-curing the glue.
  • the glue used for pre-assembly is a mixed glue of UV glue and thermosetting glue, and the glue is semi-cured after UV exposure to achieve pre-assembly, after the baking process, the glue Will be fully cured to secure the entire tunable optical lens.
  • the photosensitive device further includes a color filter, a lens holder and a circuit board, the color filter is fixedly mounted on the lens holder, and the photosensitive chip is mounted on the circuit a top side of the board and located on a bottom side of the color filter, wherein the optical structure is fixed to a top side of the lens holder.
  • the photosensitive device further includes a color filter and a circuit board, the color filter is fixedly mounted on the optical structural member and located on a bottom side of the optical lens, the photosensitive A chip is mounted on a top side of the circuit board and located on a bottom side of the color filter, wherein a spatial distance between the optical structural member and the photosensitive chip is fixed.
  • the present invention provides a camera module, including:
  • a photosensitive device comprising a photosensitive chip
  • an adjustable optical lens disposed on a photosensitive path of the photosensitive chip, wherein the adjustable optical lens comprises an optical structural member, at least one optical lens, and an aperture, wherein each of the optical a lens is mounted in an inner space of the optical structural member along a height direction of the optical structural member, the aperture being pre-assembled on a top of the optical structural member, wherein the tunable optical lens and the Before the photosensitive device, the assembly position of the aperture is adapted to be adjusted relative to the spatial position of the optical structure, and the imaging module is imaged to meet the resolution requirement after adjustment.
  • At least one of the optical lenses is pre-assembled in the optical structural member a space in which the spatial position of the pre-assembled optical lens inside the optical structure is adapted to be adjusted before encapsulating the tunable optical lens and the photosensitive device.
  • the assembly position of the optical lens is adapted to be adjusted in at least one direction, such that the central axis of the tunable optical lens coincides with the central axis of the photosensitive chip or is allowed to be biased.
  • the sidewall of the optical structural member is provided with at least one adjustment channel to communicate with the inner space and the external environment of the optical structural member, and the pre-assembled optical lens is in the optical structural member.
  • the interior corresponds to the adjustment channel and is adapted to adjust the spatial position of the optical lens inside the optical structure by the adjustment channel.
  • the side walls of the optical structural member corresponding to each of the pre-assembled optical lenses are provided with three of the adjustment channels, which are spaced apart from each other by 120°, and are adapted to adjust the pre-assembly.
  • At least one glue injection channel is provided at the pupil position, and the glue injection channel corresponds to the optical lens adapted to be adjusted to inject glue through the injection channel for curing
  • the fixed optical lens is fixed.
  • the assembly position of the aperture is adapted to be adjusted in at least one direction, such that the central axis of the adjustable optical lens coincides with the central axis of the photosensitive chip or is allowed to be biased.
  • the diaphragm is pre-assembled on top of the optical structure by semi-curing the glue.
  • the pre-assembled optical lens is pre-assembled into the inner space of the optical structural member by semi-curing the glue.
  • the glue used for pre-assembly is a mixed glue of UV glue and thermosetting glue, and the glue is semi-cured after UV exposure to achieve pre-assembly, after the baking process, the glue Will be fully cured to secure the entire tunable optical lens.
  • the photosensitive device further includes a color filter, a lens holder and a circuit board, the color filter is fixedly mounted on the lens holder, and the photosensitive chip is mounted on the circuit a top side of the board and located on a bottom side of the color filter, wherein the optical structure is fixed to a top side of the lens holder.
  • the photosensitive device further includes a color filter and a circuit board, the color filter is fixedly mounted on the optical structural member and located on a bottom side of the optical lens, the photosensitive Core The sheet is mounted on the top side of the circuit board and on the bottom side of the color filter, wherein the optical structure is fixed relative to the spatial distance between the photosensitive chips.
  • a method for manufacturing a camera module includes the following steps:
  • the tunable optical element is at least one optical lens
  • at least one of the optical lenses is pre-assembled to the tunable optical lens by adjusting pre-assembled
  • the optical lens is assembled such that a central axis of the tunable optical lens coincides with a central axis of the photosensitive chip or within a range allowed by the deviation.
  • the tunable optical element is an aperture
  • the aperture is pre-assembled on the top of the tunable optical lens, and the aperture is adjusted
  • the assembly position is such that the central axis of the tunable optical lens coincides with the central axis of the photosensitive chip or within a range allowed by the deviation.
  • the tunable optical element is a diaphragm and at least one optical lens
  • the aperture and the at least one optical lens are pre-assembled in the The tunable optical lens adjusts the assembly position of the optical lens and the pre-assembled optical lens such that a central axis of the tunable optical lens coincides with a central axis of the photosensitive chip or within a range allowed by the deviation.
  • the sidewall of an optical structural member included in the tunable optical lens is provided with at least one adjustment channel to communicate with the internal space and the external environment of the optical structural member.
  • the pre-assembled optical lens corresponds to the adjustment channel inside the optical structure and is adapted to adjust a spatial position of the optical lens inside the optical structure by the adjustment channel.
  • the adjusting passage is sealed by dispensing in the adjusting passage, and baking is performed to cure the glue for pre-assembly and the glue for dispensing.
  • the adjusted optical lens is fixed, thereby fixing the entire camera module.
  • step (D) by means of dispensing in the adjustment channel
  • the adjusting passage is sealed and baked, and the glue for pre-assembly and the glue for dispensing are solidified to fix the adjusted optical lens and the diaphragm, thereby fixing the entire camera module.
  • step (D) at least one glue injection channel is disposed at the pupil position, and the glue injection channel corresponds to the pre-assembled optical lens,
  • the glue injection channel is filled with glue, and baked, and the pre-assembled glue and the glued glue are solidified to fix the adjusted optical lens, thereby fixing the entire camera module.
  • At least one glue injection channel is disposed at the pupil position, and the glue injection channel corresponds to the pre-assembled optical lens,
  • the glue injection channel is filled with glue and baked to cure the pre-assembled glue and the glued glue to fix the adjusted optical lens and the aperture, thereby fixing the entire camera module.
  • the assembly position of the tunable optical element is adjusted at least by adjusting at least one of a horizontal direction, a vertical direction, an oblique direction, and a circumferential direction of the tunable optical element.
  • the tunable optical element is pre-assembled by glue, wherein the glue for pre-assembly is a mixed glue of UV glue and thermosetting glue, after ultraviolet exposure
  • the glue may be semi-cured to achieve pre-assembly of the tunable optical element in the step (B), in the step (D), after the baking treatment, the glue is completely cured to fix the entire Camera module.
  • the step (C) comprises the following steps:
  • the step (C) if the imaging module does not meet the resolution requirement after adjusting the adjustable optical component, the step (C1)-(C3) needs to be repeated. ), until the adjusted imaging module image meets the resolution requirements.
  • the pre-assembled camera module is powered on, and the camera module is imaged, wherein the camera module imaging acquisition is based on the camera module.
  • the MTF value is used to characterize the imaging quality of the module. The larger the MTF value, the higher the imaging quality of the camera module.
  • the MTF value of the corresponding image is checked to see if the MTF value is greater than the standard requirement, and if the MTF value is greater than or equal to the standard The acquisition is completed; if the MTF value is less than the standard requirement, it needs to be collected again.
  • the shooting environment parameters of the camera module are strictly controlled, including the distance between the MTF test plate and the camera module and the light source parameters, to ensure image collection. Accuracy and consistency make it easy to perform subsequent adjustment steps.
  • the adjustment of the assembly position of the tunable optical element by software is adapted to study the sensitivity of the optical design of the lens, and the tunable optical element is implemented by software.
  • the calculation method of the assembly position adjustment amount includes: (1) measuring optical characteristics of the camera module before calibration, including MTF value, optical axis eccentric amount, optical axis tilt angle, and field curvature; and (2) according to the The assembly position of the tunable optical element is calculated for the eccentricity of the optical axis, the tilt angle of the optical axis, and the sensitivity of the field curvature, respectively, to calculate the adjustment of the assembly position required for the tunable optical element.
  • a fixed assembly of a part of the optical components included in the camera module is realized by assembling the adjustable optical lens and the photosensitive device, wherein the photosensitive device further comprises a a color filter, a lens holder and a circuit board, the color filter being fixedly mounted on the lens holder, the photosensitive chip being mounted on a top side of the circuit board and located at a bottom of the color filter The side, wherein the adjustable optical lens is fixed to the top side of the lens holder except for the adjustable optical element, and the assembly tolerance of the above components is controlled within an allowable range during assembly and fixing.
  • a fixed assembly of a part of the optical components included in the camera module is realized by assembling the adjustable optical lens and the photosensitive device, wherein the photosensitive device further comprises a a color filter and a circuit board fixedly mounted on the optical structural member included in the adjustable optical lens, and located on a bottom side of the optical lens, the photosensitive chip being mounted on the circuit board a top side, and located at a bottom side of the color filter, wherein a spatial distance between the optical structural member and the photosensitive chip is fixed, and assembly tolerances of the above components are controlled during assembly and fixation.
  • the photosensitive device further comprises a a color filter and a circuit board fixedly mounted on the optical structural member included in the adjustable optical lens, and located on a bottom side of the optical lens, the photosensitive chip being mounted on the circuit board a top side, and located at a bottom side of the color filter, wherein a spatial distance between the optical structural member and the photosensitive chip is fixed, and assembly tolerances of the above components are controlled during assembly and fixation.
  • an adjustable optical lens comprising:
  • At least one optical lens At least one optical lens
  • each of the optical lenses is disposed in an overlapping manner in an inner space of the optical structural member, wherein the at least one piece of the optical lens serves as an adjustable lens, and an assembly position thereof is adapted to be adjusted, the optical
  • the structural member is provided with at least one adjustment channel and at least one fixed channel adapted to adjust and fix the adjustable lens through the adjustment channel and the fixed channel, respectively.
  • the fixing channel and the adjusting channel are disposed in the optical structural member Positioned the same, both the adjustment channel and the fixed channel correspond to the adjustment lens, and communicate the internal space of the optical structure with the external environment, such that the adjustable lens passes through the adjustment channel and
  • the fixed channel is in communication with the external environment of the optical structural member, thereby being adjusted and fixed.
  • the fixed channel and the adjustment channel are different in the position of the optical structure, and the adjustment channel and the fixed channel respectively correspond to the adjustment lens, and the optical
  • the inner space of the structural member is in communication with the external environment such that the adjustable lens communicates with the external environment of the optical structural member through the adjustment passage and the fixed passage, thereby being adjusted and fixed.
  • the adjustable lens is the first piece of the optical lens of the adjustable optical lens, and is disposed on the top of the optical structural member.
  • the adjustable lens is any one or several pieces of the optical lens, and is disposed at a central position of the optical structural member.
  • the adjustment channel and the fixed channel are both disposed at the top of the optical structural member.
  • the adjustment channel and the fixed channel are both disposed on a side of the optical structural member.
  • the adjustment channel is disposed at a side of the optical structural member, and the fixed channel is disposed at a top of the optical structural member.
  • the adjustment channel is disposed at a top of the optical structural member, and the fixed channel is disposed at a side of the optical structural member.
  • an external adjustment device is inserted into the adjustment channel to contact the adjustable lens to adjust an assembly position of the adjustable lens, wherein the adjustable lens is assembled at a position suitable for being At least one direction adjustment is made to calibrate the optical path of the tunable optical lens.
  • the external adjustment device has an automatic function, which is suitable for recording the adjustment mode and the adjustment amount of the adjustable lens, or is adapted to input the adjustment mode of the adjustable lens in the external adjustment device. And the amount of adjustment.
  • glue is injected into the edge of the adjustable lens through the fixed channel using a dispensing device, and the adjusted lens is fixed after curing.
  • the glue is adapted to be injected into the top surface of the tunable lens, and the adjustable lens is fixed by fixing the top surface of the tunable lens to the inner wall of the optical structural member.
  • the glue is adapted to be injected into the side of the adjustable lens, by fixing
  • the adjustable lens is fixed to the side of the adjustable lens and the inner wall of the optical structural member.
  • the adjustable lens has at least one adjusting groove, and the adjusting groove is disposed at an edge of the adjustable lens, and is adapted to extend an external adjusting device into the The adjustment slot adjusts the assembly position of the adjustable lens.
  • the present invention further provides a camera module, including:
  • an adjustable optical lens disposed on a photosensitive path of the photosensitive chip, wherein the adjustable optical lens comprises at least one optical lens and an optical structural member, and each of the optical lenses is sequentially laminated Positioned in an inner space of the optical structural member, wherein the at least one piece of the optical lens serves as an adjustable lens, the assembly position thereof is adapted to be adjusted, and the optical structural member is provided with at least one adjustment channel and at least one fixed channel Suitable for adjusting and fixing the adjustable lens through the adjustment channel and the fixed channel, respectively.
  • the fixed channel and the adjustment channel are disposed at the same position of the optical structural member, and the adjustment channel and the fixed channel respectively correspond to the adjustment lens, and the optical
  • the inner space of the structural member is in communication with the external environment such that the adjustable lens communicates with the external environment of the optical structural member through the adjustment passage and the fixed passage, thereby being adjusted and fixed.
  • the fixed channel and the adjustment channel are different in the position of the optical structure, and the adjustment channel and the fixed channel respectively correspond to the adjustment lens, and the optical
  • the inner space of the structural member is in communication with the external environment such that the adjustable lens communicates with the external environment of the optical structural member through the adjustment passage and the fixed passage, thereby being adjusted and fixed.
  • the adjustable lens is the first piece of the optical lens of the adjustable optical lens, and is disposed on the top of the optical structural member.
  • the adjustable lens is any one or several pieces of the optical lens, and is disposed at a central position of the optical structural member.
  • the present invention also provides a calibration method of a camera module, the method comprising the following steps:
  • the pre-assembled adjustable optical lens is assembled with a photosensitive device, or the optical structural member is assembled after the photosensitive device is assembled.
  • the optical lenses are assembled with a photosensitive device, or the optical structural member is assembled after the photosensitive device is assembled.
  • the step (B) comprises the steps of: (B1) energizing the pre-assembled camera module, acquiring imaging module imaging; (B2) imaging calculation according to the camera module Adjusting the adjustment mode and the adjustment amount of the adjustable lens; and (B3) adjusting the adjustable lens according to the adjustment amount.
  • an external adjustment device is inserted into the adjustment passage and contacts the adjustable lens to at least one direction of the assembly position of the adjustable lens.
  • the adjustment is made such that the central axis of the tunable optical lens coincides with the central axis of a photosensitive chip or within a range allowed by the deviation.
  • the external adjustment device has an automatic function, and is adapted to record an adjustment mode and an adjustment amount of the adjustable lens, or is adapted to input the The adjustable lens and the adjustment amount are used to quantitatively adjust the adjustable lens.
  • the external adjustment device adjusts the adjustable lens by mechanical grasping or vacuum adsorption.
  • step (C) glue is injected into the edge of the adjustable lens through the fixed passage by using a glue device, and the adjusted adjustable lens is fixed after curing. .
  • step (C) glue is injected into the top surface of the adjustable lens, and the top surface of the adjustable lens and the inner wall of the optical structural member are fixed by fixing. Adjustable lenses.
  • step (C) glue is injected into the side of the adjustable lens, and the adjustable lens side and the inner wall of the optical structural member are fixed by fixing. Adjust the lens.
  • the present invention also provides a calibration method of a camera module, the method package Including the following steps:
  • the step (d) comprises the steps of: (d1) energizing the pre-assembled camera module, acquiring imaging module imaging; (d2) imaging calculation according to the camera module The adjustment method and the adjustment amount of the adjustable lens; and (d3) adjusting the adjustable lens according to the adjustment amount, thereby calibrating the camera module.
  • an adjustment device is used to adjust the assembly position of the adjustable lens by at least one direction by using an external adjustment device to contact the adjustable lens through a beam incident position at the top of the optical structure.
  • the external adjustment device adjusts the adjustable lens by mechanical grasping or vacuum adsorption.
  • the glue is injected through the incident position of the light beam at the top of the optical structural member, and the adjustable lens is fixed to the inner space of the optical structural member by glue curing.
  • a camera module lens including:
  • At least one internal optical lens At least one internal optical lens
  • At least one external optical lens At least one external optical lens
  • each of the inner optical lenses being disposed in an inner space of the barrel member in a predetermined order, and each of the outer optical lenses is disposed on the barrel member along a height direction of the barrel member The outer portion, wherein each of the inner optical lens and each of the outer optical lenses are located on an optical path of the camera module lens.
  • each of the inner optical lenses is fitted to each other and assembled as a whole, and is fixed in the barrel member.
  • spacers are used between adjacent inner optical lenses by using spacers or The fitting is performed directly by glue.
  • At least one of the inner optical lenses is pre-assembled in the lens barrel member, as an adjustable lens, the assembled position of the adjustable lens is adapted to the spatial position of the lens barrel member It is adjusted in at least one direction.
  • At least one adjustment passage is provided along an outer circumferential direction of the barrel member, each of the adjustment passages connecting an inner space of the barrel member and an external environment, wherein each of the adjustments
  • Each of the channels corresponds to each of the adjustable lenses, and is adapted to adjust an assembly position of the adjustable lens through the adjustment channel to adjust an optical path of the lens of the camera module.
  • the adjustable lens is fixed to the inner wall of the barrel member by injecting glue through the adjustment passage using a dispensing device while sealing the adjustment passage.
  • the top of the lens barrel member is provided with at least one fixed channel.
  • the fixed channel corresponds to the edge of the adjustable lens, and the edge of the adjustable lens is connected to the external environment, and is adapted to be filled with glue through the fixed channel to fix the adjustable lens.
  • the outer optical lens is fixed to the bottom of the barrel member, and the top surface edge of the outer optical lens is coupled to the bottom surface of the barrel member.
  • the outer optical lens is pre-assembled as a tunable lens at the bottom of the barrel component, and the top surface edge of the outer optical lens is connected to the bottom surface of the barrel component, wherein The assembly position of the outer optical lens relative to the barrel member is adapted to be adjusted in at least one direction.
  • each of the outer optical lenses has a light blocking layer on the outer side, and the light blocking layer completely covers the entire side surface of the outer optical lens.
  • the light blocking layer is formed by coating black glue on the outer side of each of the outer optical lenses.
  • the present invention further provides a camera module, including:
  • a photosensitive device comprising a photosensitive chip and a lens holder
  • the camera module lens is disposed on a photosensitive path of the photosensitive chip, wherein the camera module lens comprises at least one internal optical lens, at least one external optical lens, and a lens barrel component, each The inner optical lenses are disposed in an inner space of the barrel member in a predetermined order, and each of the outer optical lenses is disposed between the barrel member and the mirror holder, wherein each of the internal lights The lens and each of the outer optical lenses are located on a photosensitive path of the photosensitive chip.
  • the outer optical lens is fixed between the barrel member and the lens holder, and a top surface edge and a bottom surface edge of the outer optical lens respectively correspond to a bottom surface of the barrel member A fixed connection is made between the top surface of the mirror base.
  • the outer optical lens is pre-assembled as an adjustable lens between the lens barrel component and the lens holder, and the top surface edge and the bottom surface edge of the outer optical lens are respectively
  • the bottom surface of the lens barrel member is connected to the top surface of the lens holder, and is not fixed, wherein the outer optical lens and the assembled position of the lens barrel member relative to the photosensitive chip are adapted to be subjected to at least one direction
  • the adjustment is adjusted such that the central axis of the camera module lens coincides with the central axis of the photosensitive chip or within a range allowed by the deviation.
  • the outer optical lens is pre-assembled between the barrel member and the lens holder, and a top surface edge of the outer optical lens is fixed between the bottom surface of the barrel member and the bottom surface of the barrel member.
  • the adjustment of one direction is adjusted so that the central axis of the camera module lens coincides with the central axis of the photosensitive chip or within a range allowed by the deviation.
  • the external optical lens is pre-assembled on the lens holder by glue
  • the glue used for pre-assembly is a mixed glue of UV glue and thermosetting glue, and pre-assembled by UV exposure semi-curing, and adjusted.
  • the glue is then fully cured to secure the outer optical lens.
  • the present invention also provides a method for assembling a camera module lens, the method comprising the following steps:
  • the method further comprises a step (D): providing a light blocking layer on the outer side of the outer optical lens, wherein the light blocking is adapted to be performed before or after assembling the outer optical lens Layer settings.
  • the present invention also provides a method for assembling a camera module, the method comprising the following steps:
  • each of the inner optical lenses is previously fitted into a single body in a predetermined order and then fixed to an inner space of the barrel member.
  • each of the inner optical lenses is fixed to the inner space of the barrel member piece by piece in a predetermined order.
  • At least one piece of the inner optical lens is pre-assembled as an adjustable lens in an inner space of the barrel component, wherein the adjustable lens is assembled at a relative position
  • the interior space of the barrel component is adapted to be adjusted in at least one direction.
  • the lens barrel member is provided with at least one adjusting passage, each of the adjusting passages is connected to an inner space and an outer environment of the barrel member, and corresponds to the adjustable lens, and is adapted to Using an external adjustment device to contact the outer side of the adjustable lens through the adjustment channel to adjust an assembly position of the adjustable lens, and adjusting the central axis of the camera module lens and the central axis of the photosensitive chip Coincident or within the range allowed by the deviation.
  • the adjustable lens is fixed to the inner wall of the barrel member by injecting glue through the adjustment passage using a dispensing device while sealing the adjustment passage.
  • the top of the lens barrel member is provided with at least one fixed channel.
  • the fixed channel corresponds to the edge of the adjustable lens, and the edge of the adjustable lens is connected to the external environment, and is adapted to be filled with glue through the fixed channel to fix the adjustable lens.
  • the external optical lens is fixed between the barrel member and a lens holder, wherein the external optical lens passes through
  • the top surface edge or the bottom surface of the barrel member is coated with glue to fixedly connect the two, and the two are fixed by applying glue on the bottom surface edge of the outer optical lens or the top surface of the lens holder. connection.
  • the external optical lens is pre-assembled as an adjustable lens between the lens barrel member and a lens holder
  • the top surface edge of the outer optical lens or the bottom surface of the barrel component is coated with glue for pre-assembly between the two and passes through the bottom surface edge of the outer optical lens or the top surface of the lens holder
  • the glue is applied for pre-assembly between the two, wherein the outer optical lens and the assembled position of the barrel member relative to the photosensitive chip are adapted to be adjusted in at least one direction.
  • the external optical lens is pre-assembled as an adjustable lens between the lens barrel member and a lens holder,
  • the top surface edge of the outer optical lens or the bottom surface of the barrel member is coated with glue to securely connect the two and is coated on the bottom surface edge of the outer optical lens or the top surface of the lens holder
  • the glue is pre-assembled between the two, wherein the assembly position of the camera module lens relative to the photosensitive chip is adapted to be adjusted in at least one direction.
  • the external optical lens is pre-assembled as an adjustable lens between the lens barrel member and a lens holder,
  • the top surface edge of the outer optical lens or the bottom surface of the barrel component is coated with glue for pre-assembly between the two and passes through the bottom surface edge of the outer optical lens or the top surface of the lens holder
  • the glue is applied to securely connect the two, wherein the assembled position of the barrel member relative to the photosensitive chip is adapted to be adjusted in at least one direction.
  • the step (e) comprises the steps of: (e1) energizing the pre-assembled camera module, and acquiring imaging module imaging; (e2) adjusting and calculating the imaging module according to the imaging module Adjusting the adjustment mode and the adjustment amount of the adjustable lens; and (e3) adjusting the adjustable lens according to the adjustment amount, so that the imaging module meets the resolution requirement.
  • the adjustable lens is dispensed and fixed, and the assembly of the camera module is completed.
  • the setting of the light blocking layer is adapted to be performed before or after the assembly of the external optical lens.
  • the light blocking layer is formed by coating black rubber on the outer side of each of the outer optical lenses, the light blocking layer completely covering the outer optical lens The entire side.
  • Figure 1 is a perspective view showing the structure of a tunable optical lens according to a first preferred embodiment of the present invention.
  • Figure 2 is a cross-sectional view showing a tunable optical lens according to the above first preferred embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a camera module in accordance with the above first preferred embodiment of the present invention.
  • FIG. 4 is a flow chart showing a method of manufacturing a camera module according to the above first preferred embodiment of the present invention.
  • Figure 5 is a perspective view showing the optical structure of an adjustable optical lens according to a second preferred embodiment of the present invention.
  • Fig. 6 is a schematic view showing the manufacturing process of the camera module according to the above second preferred embodiment of the present invention.
  • Figure 7 is a second schematic diagram showing the manufacturing process of the camera module according to the above second preferred embodiment of the present invention.
  • Figure 8 is a flow chart showing a method of manufacturing the camera module according to the above second preferred embodiment of the present invention.
  • FIG. 9 is a perspective view showing the structure of a camera module according to a third preferred embodiment of the present invention.
  • Figure 10 is a cross-sectional view showing a camera module in accordance with the above third preferred embodiment of the present invention.
  • Figure 11 is a flow chart showing a method of manufacturing the camera module according to the above third preferred embodiment of the present invention.
  • Figure 12 is a perspective view showing the structure of a camera module in accordance with a fourth preferred embodiment of the present invention.
  • Figure 13 is a cross-sectional view showing a camera module according to the above fourth preferred embodiment of the present invention.
  • Figure 14 is a flow chart showing a method of manufacturing the camera module according to the above fourth preferred embodiment of the present invention.
  • Figure 15 is a perspective view showing the structure of a camera module in accordance with a fifth preferred embodiment of the present invention.
  • Figure 16 is a cross-sectional view showing a camera module in accordance with the fifth preferred embodiment of the present invention.
  • Figure 17 is a flow chart showing a method of manufacturing a camera module according to the above fifth preferred embodiment of the present invention.
  • Figure 18 is a cross-sectional view showing a camera module in accordance with a sixth preferred embodiment of the present invention.
  • Figure 19 is a cross-sectional view showing a camera module according to the above sixth preferred embodiment of the present invention.
  • Figure 20 is a cross-sectional view showing a modified embodiment of the camera module according to the sixth preferred embodiment of the present invention.
  • Figure 21 is a perspective view showing the structure of a camera module in accordance with a seventh preferred embodiment of the present invention.
  • Figure 22 is a cross-sectional view showing a camera module according to the above seventh preferred embodiment of the present invention.
  • Figure 23 is a cross-sectional view showing a camera module in accordance with an eighth preferred embodiment of the present invention.
  • Figure 24 is a cross-sectional view showing a modified embodiment of the camera module according to the eighth preferred embodiment of the present invention.
  • Figure 25 is a cross-sectional view showing another modified embodiment of the camera module according to the eighth preferred embodiment of the present invention.
  • Figure 26 is a cross-sectional view showing a camera module in accordance with a ninth preferred embodiment of the present invention.
  • Figure 27 is a partially enlarged view of a camera module in accordance with the above-described ninth preferred embodiment of the present invention.
  • 28 to 30 are schematic cross-sectional views showing the assembly process of the camera module in accordance with the tenth preferred embodiment of the present invention.
  • Figure 31 is a flow chart showing a calibration method of the camera module according to the sixth to tenth preferred embodiments of the present invention.
  • 32 is a flow chart of a calibration method of a camera module in accordance with a tenth preferred embodiment of the present invention.
  • Figure 33 is a perspective view showing the structure of a lens of a camera module according to an eleventh preferred embodiment of the present invention.
  • Figure 34 is a cross-sectional view showing the lens of the camera module according to the eleventh preferred embodiment of the present invention.
  • Figure 35 is a cross-sectional view showing a camera module in accordance with the above eleventh preferred embodiment of the present invention.
  • Figure 36 is a schematic view showing the assembly method of the camera module according to the above first preferred embodiment of the present invention.
  • Figure 37 is a variant embodiment of a camera module in accordance with the above eleventh preferred embodiment of the present invention.
  • Figure 38 is a perspective view showing a modified embodiment of the camera module lens according to the eleventh preferred embodiment of the present invention.
  • Figure 39 is a perspective view showing the structure of a lens of a camera module in accordance with a twelfth preferred embodiment of the present invention.
  • Figure 40 is a cross-sectional view showing the lens of the camera module according to the above-described twelfth preferred embodiment of the present invention.
  • Figure 41 is a cross-sectional view showing a camera module according to the above-described twelfth preferred embodiment of the present invention.
  • Figure 42 is a flow chart showing the assembly method of the camera module according to the above first preferred embodiment of the present invention.
  • Figure 43 is a flow chart showing the assembly method of the camera module according to the above-described twelfth preferred embodiment of the present invention.
  • a tunable optical lens 1010 in accordance with a preferred embodiment of the present invention will be elucidated in the following description, wherein a center axis of the tunable optical lens 1010 is at the tunable optical lens 1010.
  • the central axis of the tunable optical lens 1010 can be adjusted according to specific parameters of the imaging system.
  • the tunable optical lens 1010 includes an optical structural member 1013 and at least two optical lenses 1011, each of the optical lenses 1011 being disposed on the optical structural member along a height direction of the optical structural member 1013.
  • An internal space of 1013, and at least one of the optical lenses 1011 is tunably disposed at a position of an internal space of the optical structural member 1013, in such a manner that a central axis of the tunable optical lens 1010 that is manufactured is completed After the tunable optical lens 1010 is manufactured, it can still be adjusted according to the needs of the imaging system.
  • the optical structural member 1013 of the tunable optical lens 1010 is provided with at least one adjusting channel 10131, and each of the adjusting channels 10131 is respectively connected to an inner space and an external environment of the optical structural member 1013, wherein Each of the optical lenses 1011 is disposed on the inner space of the optical structural member 1013 so as to overlap each other along the height direction of the optical structural member 1013.
  • the outer wall of the optical lens 1011 corresponds to the adjustment channel 10131.
  • the position of the optical lens 1011 in the inner space of the optical structural member 1013 can be adjusted in the subsequent environment of the optical structural member 1013 through the adjustment channel 10131 to complete the center of the tunable optical lens 1010. Adjustment of the axis.
  • the adjustment channel 10131 is disposed on a sidewall of the optical structural member 1013, corresponding to the need to adjust the position of the optical lens 1011. More specifically, when the optical lens 1011 that needs to be adjusted is disposed inside the optical structural member, the edge of the optical lens 1011 is opposite to the adjustment channel 10131 so as to pass through the adjustment member through the The adjustment channel 10131 reaches the edge position of the optical lens 1011, and the optical lens 1011 is adjusted in accordance with the edge position of the optical lens 1011.
  • the adjustment channel 10131 Other locations of the optical structural member 1013, such as the top wall of the optical structural member 1013, may also be provided, and the invention is not limited in this regard.
  • the position and the number of the adjustment channels 10131 can be set as needed.
  • different adjustment channels are set at the installation position of the optical lens 1011 that needs to be adjusted, and the same needs to be adjusted.
  • the position of the optical lens 1011 is set to a different number of the adjustment channels 10131, such as one, two, three, and three or more.
  • the positions of the adjustment channels 10131 corresponding to the same optical lens 1011 may be set as needed. For example, when the number of the adjustment channels 10131 is two, the two adjustment channels may be disposed on the same diameter.
  • the three adjustment channels may be disposed in a centrally symmetric direction, such as a position spaced apart from each other by 120°, so that the optical lens 1011 symmetrically adjusts the components to make adjustments more Accurate and convenient, those skilled in the art will appreciate that the invention is not limited in this respect.
  • the position of the optical lens 1011 at the outermost side in the inner space of the optical structural member 1013 can be The principle of the tunable optical lens 1010 will be described by way of example.
  • the tunable optical lens 1010 includes one of the optical structural member 1013 and a plurality of the optical lenses 1011 disposed to overlap each other in an inner space of the optical structural member 1013.
  • the optical structural member 1013 has at least one of the adjustment passages 10131, and the optical lens 1011 at the outermost side is in a position corresponding to the adjustment passage 10131 in the inner space of the optical structural member 1013, and The optical lens 1011 is not in contact with the inner wall of the optical structural member 1013 to allow the position of the optical lens 1011 at the inner space of the optical structural member 1013 to be adjusted. That is, there is a gap between the outer wall of the optical lens 1011 and the inner wall of the optical structural member 1013, wherein the gap may have a size greater than or equal to 3 micrometers.
  • the adjustment passage 10131 is inserted from the outside of the optical structural member 1013 through an end of an adjustment member and extends to an inner space of the optical structural member 1013 to bear against the outer wall of the optical lens 1011 to make the optical lens
  • the position of the internal space of the optical structural member 1013 is adjusted to change the central axis of the tunable optical lens 1010, and after the central axis of the tunable optical lens 1010 is adjusted, it will be adjusted again.
  • the optical lens 1011 is fixed to the optical structural member 1013.
  • the optical lens 1011 after being adjusted can be fixed to the optical lens 1010 by glue or soldering to ensure that the adjustable optical lens 1010 is Reliability in the process of being used.
  • the optical lens 1011 is adjustable in the internal space of the optical structural member 1013 by a distance equal to or smaller than A gap between the outer wall of the optical lens 1011 and the inner wall of the optical structural member 1013.
  • the optical structure 1013 of the tunable optical lens 1010 is provided with the adjustment channel 10131 in FIG. 1 and FIG. 2 of the present invention, the optical lens 1011 is adjusted in the optical structure.
  • the embodiment of the position of the internal space of the piece 1013 it will be understood by those skilled in the art that any other manner capable of adjusting the relative position of the optical lens 1011 in the internal space of the optical structural member 1013 can be implemented. It should also be considered a variant embodiment of the tunable optical lens 1010 in accordance with the present invention.
  • the camera module further includes a camera module 1021.
  • the photosensitive chip 1021 the light reflected by the object enters the inside of the camera module from the adjustable optical lens 1010 and is received and photoelectrically converted by the photosensitive chip 1021, so that the camera module can generate an object-related image.
  • FIG. 3 of the accompanying drawings of the present invention The manufacturing process of the camera module is disclosed in FIG. 3 of the accompanying drawings of the present invention, in which the adjustable optical lens 1010 is first disposed on the photosensitive path of the photosensitive chip 1021 due to The tunable optical lens 1010 has a certain error in the process of being manufactured, so that the central axis of the tunable optical lens 1010 cannot be accurately controlled, so the tunable optical lens 1010 is placed on the sensitized light.
  • the central axis of the adjustable optical lens 1010 can be coincident with the central axis of the photosensitive chip 1021.
  • the manufacturing of the camera module is completed by encapsulating the tunable optical lens 1010 and the photosensitive chip 1021.
  • the central axis of the tunable optical lens 1010 in the present invention coincides with the central axis of the photosensitive chip 1021, which means that the central axis of the tunable optical lens 1010 is The deviation of the central axis of the photosensitive chip 1021 is kept within the allowable deviation range. In this way, the product yield of the camera module can be improved and the imaging quality of the camera module can be ensured.
  • the adjustable in adjusting the central axis of the tunable optical lens 1010, can be adjusted not only by changing the horizontal position of the optical lens 1011 in the internal space of the optical structural member 1013.
  • the central axis of the optical lens 1010, and also the central axis of the tunable optical lens 1010 can be adjusted by changing the inclination of the optical lens 1011 in the internal space of the optical structural member 1013.
  • the height position of the optical lens 1011 in the internal space of the optical structural member 1013 can also be used according to the use of the camera module. Need to be adjusted, in this way, the design of the camera module is more flexible.
  • the present invention also provides a method 400 of manufacturing a camera module, wherein the manufacturing method 400 includes the following steps:
  • Step (403) packaging the tunable optical lens 1010 and the photosensitive chip 1021 to manufacture the camera module.
  • the position of the optical lens 1011 of the tunable optical lens 1010 in the inner space of the optical structural member 1013 can be adjusted in at least one direction, such as a horizontal direction.
  • the optical lens 1011 of the tunable optical lens 1010 can be adjusted in at least one of a horizontal direction, a vertical direction, and an oblique direction of the internal space of the optical structural member 1013, in such a manner as to ensure The imaging quality of the camera module composed of the adjustable optical lens 1010 after being adjusted.
  • at least one of the optical lenses 1011 may also be adjusted to perform a rotational motion in the internal space of the optical structural member 1013 to satisfy different types of the imaging modes in the package. The use of the group is required.
  • the optical lens 1011 and the optical structural member 1013 are adjusted. In this manner, in the process of encapsulating the tunable optical lens 1010 and the photosensitive chip 1021, it is possible to avoid the situation in which the movement of the optical lens 1011 is adjusted to ensure the imaging quality of the imaging module.
  • At least one adjustment channel 10131 is disposed at a side of the optical structural member 1013 to correspond to at least one of the optical lenses 1011 disposed in an inner space of the optical structural member 1013,
  • the adjustment channel 10131 adjusts a position of the optical lens 1011 disposed in an inner space of the optical structural member 1013 in an external environment of the optical structural member 1013.
  • a tunable optical lens 1010A in accordance with a second preferred embodiment of the present invention will be illustrated, wherein the tunable optical lens 1010A includes an optical structural member 1013A and at least two optical lenses. 1011A, at least one of the optical lenses 1011A is adjustably disposed to the optical structural member 1013A.
  • the optical structural member 1013A of the tunable optical lens 1010A of the present invention and at least one of the optical lenses 1011A are separated from each other with respect to the prior art optical lens, and the tunable optical lens 1010A is
  • the optical lens 1011A is mounted on the optical structure according to the corresponding relationship between the central axis of the adjustable optical lens 1010A and the central axis of the photosensitive chip 1021A. 1013A, in such a manner, the imaging quality of the camera module composed of the tunable optical lens 1010A can be improved.
  • each of the optical lenses 1011A may be in accordance with the process of packaging the tunable optical lens 1010A and the photosensitive chip 1021A to manufacture the camera module.
  • a correspondence relationship between the central axis of the tunable optical lens 1010A and the central axis of the photosensitive chip 1021A is mounted to the optical structural member 1013A.
  • the optical lens 1011A at the outermost side of the tunable optical lens 1010A may be fabricated by encapsulating the tunable optical lens 1010A and the photosensitive chip 1021A.
  • the optical module 1013A is mounted in the process of the camera module in accordance with the correspondence between the central axis of the tunable optical lens 1010A and the central axis of the photosensitive chip 1021A.
  • the optical lens 1011A is mounted on the optical structural member 1013A, the optical lens 1011A and the optical structural member 1013A are cured. In this way, the camera module can be improved after being manufactured. Imaging quality.
  • FIG. 6 and FIG. 7 are schematic diagrams showing a manufacturing process of the camera module according to the present invention, wherein the camera module may be a fixed focus camera module or a zoom camera module, and the zoom camera module is fixed.
  • the difference between the focus camera module is that the adjustable optical lens 1010A of the fixed focus camera module is directly packaged on a lens holder for connecting the adjustable optical lens 1010A and a photosensitive device 1020A, wherein the photosensitive device 1020A includes at least one of the photosensitive chips 1021A.
  • the photosensitive device 1020A may further include a circuit board mounted by the photosensitive chip 1021A, and the adjustable optical lens 1010A of the zoom camera module is disposed in one a motor, such as a voice coil motor, is further disposed on the lens holder such that the adjustable optical lens 1010A can be driven by the motor during the use of the zoom camera module at the sensor chip 1021A
  • the displacement path corresponding to the photosensitive chip 1021A is made on the photosensitive path.
  • the optical structural member 1013A may be disposed on the photosensitive path of the photosensitive chip 1021A, either in the process of manufacturing the zoom camera module or in the process of manufacturing the fixed focus camera module, and then
  • the optical lens 1011A is disposed on the optical structural member 1013A, and after changing the position of the optical lens 1011A in the internal space of the optical structural member 1013A, the central axis of the tunable optical lens 1010A is The central axes of the photosensitive chips 1021A are coincident, and in this way, the image quality of the manufactured camera module is improved.
  • the optical lens 1011A is secured to the optical structural member 1013A.
  • the optical lens 1011A can be secured to the optical structural member 1013A by dispensing.
  • FIG. 8 a schematic diagram of another method 800 of fabricating a camera module in accordance with the present invention, wherein the method 800 includes the following steps:
  • the method further includes the steps of:
  • the optical structural member 1013A is disposed on the photosensitive path of the photosensitive chip 1021A, and in the step (802), Each of the optical lenses 1011A is disposed on the inner space of the optical structural member 1013A so as to overlap each other along the height direction of the optical structural member 1013A.
  • the optical structural member 1013A semi-finished product disposed in the photosensitive path of the photosensitive chip 1021A in the step (801) includes one of the optical structural members 1013A and is preset to the At least one optical lens 1011A of the inner space of the optical structural member 1013A, such that in the step (802), the remaining optical lens 1011A is disposed inside the optical structural member 1013A to form the adjustable Optical lens 1010A.
  • a camera module includes an adjustable optical lens 1010B and a photosensitive device 1020B, wherein the adjustable optical lens 1010B is mounted on the photosensitive path of the photosensitive device 1020B by an object.
  • the reflected light enters the photosensitive device 1020B from the optical lens 10B for photoelectric conversion, thereby enabling the camera module to generate an image related to the object.
  • the photosensitive device 1020B includes a color filter 1022B, a lens holder 1024B, a photosensitive chip 1021B, and a circuit board 1023B, wherein the color filter 1022B is fixed to a first groove of an upper portion of the inner wall of the lens holder 1024B.
  • the photosensitive chip 1021B is fixed in a second recess 10242B at the lower portion of the inner wall of the lens holder 1024B, and the photosensitive chip 1021B is mounted on the photosensitive chip 1021B.
  • the circuit board 1023B On the top side of the circuit board 1023B, the circuit board 1023B is fixed to the bottom of the lens holder 1024B, that is, the color filter 1022B, the optical lens 22B, the photosensitive chip 1021B, and the circuit board 1023B have completed each other.
  • the assembly between the two is unadjustable in the subsequent calibration, and the light reflected by the object enters the inside of the camera module from the adjustable optical lens 1010B and is received by the photosensitive chip 1021B and photoelectrically converted, thereby
  • the camera module is capable of generating an image related to an object.
  • the tunable optical lens 1010B includes an optical structural member 1013B and at least one optical lens 1011B. Each of the optical lenses 1011B is mounted inside the optical structural member 1013B along a height direction of the optical structural member 1013B.
  • the optical structural member 1013B is coupled to an upper portion of the lens mount 1024B such that the optical lens 1011B is located on a photosensitive path of the photosensitive chip 1021B, wherein at least one of the optical lenses 1011B is pre-assembled to the optical structure
  • the inside of the member 1013B, the optical lens 1011B pre-assembled inside the optical structural member 1013B is a tunable optical element in the preferred embodiment, that is, its spatial position inside the optical structural member 1013B is adapted to be Adjusted, the lens formed by it is called a tunable optical lens.
  • five optical lenses 1011B are included, which are a first optical lens 10111B, a second optical lens 10112B, a third optical lens 10113B, a fourth optical lens 10114B, and a fifth optical lens 10115B, respectively.
  • the optical lens 1011B is mounted on the inside of the optical structural member 1013B along the optical path of the photosensitive chip 1021B in an overlapping manner, wherein the third optical lens 10113B, the fourth optical lens 10114B, and the fifth
  • the optical lens 10115B has been pre-assembled and fixed in the optical structural member 1013B, and the first optical lens 10111B and the second optical lens 10112B are pre-assembled inside the optical structural member 1013B as a tunable optical element. Adjustments are made in subsequent steps to calibrate to improve the imaging quality of the camera module.
  • the five optical lenses may serve as fixed lenses, and the remaining optical lenses serve as the tunable optical elements, and the lens including the tunable optical elements is referred to as a tunable optical lens.
  • the assembled position of the tunable optical element Prior to encapsulating the tunable optical lens 1010B and the photosensitive device 1020B, the assembled position of the tunable optical element is adapted to be adjusted.
  • the second optical lens 10112B and the first optical lens 10111B are sequentially pre-assembled into the optical structural member 1013B by using glue 1040B, and the glue 1040B is not completely cured, that is, the glue 1040B is semi-cured.
  • the glue 1040B is not completely cured, that is, the glue 1040B is semi-cured.
  • the glue 1040B adopts a mixed glue of UV glue and thermosetting glue. After the UV exposure, the glue 1040B is semi-cured to achieve pre-assembly. After the baking treatment, the glue 1040B is completely cured to fix the place. The first optical lens 10111B and the second optical lens 10112B are further fixed to the entire camera module.
  • the tunable optical lens 1010B further includes a diaphragm 1014B coupled to the top of the optical structure 1013B for introducing an incident beam and limiting the size of the incident beam.
  • the optical port 1014B is fixedly assembled to the optical structure.
  • the top of the piece 1013B is located on the top side of the first optical lens 10111B, also on the photosensitive path of the photosensitive chip 1021B, and the central axis of the aperture 1014B coincides with the central axis of the photosensitive chip, or remains Within the allowable range of deviation, to ensure the imaging quality of the camera module.
  • At least two adjustment channels 10131B are provided on the optical structural member 1013B, and the internal space and the external environment of the optical structural member 1013B are communicated with the first lens 121B and the second, respectively.
  • the lens 122B corresponds to adjust the spatial position of the first lens 121B and the second lens 122B inside the optical structural member 1013B through the adjustment passage 10131B.
  • the present embodiment is implemented as six of the adjustment channels 10131B, wherein three of the adjustment channels 10131B are distributed along the sidewall of the optical structural member 10131B where the pre-assembly position of the first optical lens 10111B is located and The other three adjustment channels 10131B are distributed along the sidewalls of the optical structural member 10131B where the pre-assembly position of the second optical lens 10112B is located and are spaced apart from each other by 120°.
  • the second optical lens 10112B changes the horizontal and vertical positions of the first optical lens 10111B and the second optical lens 10112B at three positions of the corresponding adjustment channels 10131B thereof, respectively
  • the adjustment of one of the optical lens 10111B and the second optical lens 10112B in either direction includes a horizontal position, a vertical position, and an inclined position.
  • the optical structural member 1013B can be implemented as a lens barrel, and the inner wall of the optical structural member 1013B is respectively provided with five limiting structures 10133B spaced apart from each other, and the limiting structure 10133B is preferably The bosses formed by the inner wall of the optical structure member 1013B extending toward the cavity thereof are respectively carried by the five optical lenses 1011B, that is, the first limiting structure 101331B, the second limiting structure 101332B, and the third limiting structure 101333B.
  • the fourth limiting structure 101334B and the fifth limiting structure 101335B respectively carry the first optical lens 10111B, the second optical lens 10112B, the third optical lens 10113B, the fourth optical lens 10114B, and the Fifth optical lens 10115B. It can be understood by those skilled in the art that the optical structural member 1013B can also carry each of the optical lenses 1011B by other means.
  • the camera module may further comprise a driver, and the optical structural member 1013B may be a component of the driver.
  • the camera module may be a fixed focus camera module or a zoom camera module.
  • FIG. 11 is a flowchart of a method 1100 for manufacturing a camera module according to a preferred embodiment.
  • the method 1100 of manufacturing the camera module includes the following steps:
  • the color filter 1022B, the lens holder 1024B, the photosensitive chip 1021B, and the wiring board 1023B are assembled and fixed to form the photosensitive device 1020B, and the
  • the optical structural member 1013B is assembled and fixed on the lens holder 1024B, and the third optical lens 10113B, the fourth optical lens 10114B and the fifth optical lens 10115B are fixedly assembled to the corresponding optical structural member 1013B.
  • the limit structure 10133B is assembled and fixed on the lens holder 1024B, and the third optical lens 10113B, the fourth optical lens 10114B and the fifth optical lens 10115B are fixedly assembled to the corresponding optical structural member 1013B.
  • the assembly tolerance between the above components should be controlled as much as possible to keep the tolerance within the tolerance range, so as to avoid excessive assembly tolerance, increase the subsequent adjustment amount, and avoid the assembly tolerance. The situation that led to the adjustment of post-study is impossible.
  • the second optical lens 10112B and the first optical lens 10111B are sequentially pre-assembled into the optical structural member 1013B, pre-assembled using glue 1040B, and the glue 1040B is Semi-curing under ultraviolet exposure to complete pre-assembly of the second optical lens 10112B and the first optical lens 10111B, and then fixedly assembling the aperture 1014B to the top of the optical structural member 1013B,
  • the pre-assembly of the camera module assembly is completed in a partial fixed assembly, such that the lens of the camera module is an adjustable optical lens 1010B.
  • the pre-assembled camera module is powered, the acquisition module is imaged, and the first optical lens 10111B and the first are calculated according to the module imaging.
  • the imaging module acquisition is based on the camera module's MTF (Modulation Transfer Function) test plate shooting, and the MTF value is used to characterize the module's imaging quality. The larger the MTF value, the imaging of the camera module. The higher the quality.
  • MTF Modulation Transfer Function
  • the MTF value of the corresponding image needs to be calculated to check whether the MTF value is greater than the standard requirement. If the MTF value is greater than or equal to the standard requirement, the acquisition or adjustment is completed; if the MTF value is less than the standard requirement, Need to collect again and make adjustments.
  • the shooting environment parameters of the camera module must be strictly controlled, including the distance between the standard plate and the camera module, and the light source parameters to ensure the accuracy of image acquisition and Consistency makes it easy to adjust the assembly position of the tunable optical element.
  • the adjustment of the assembly position of the tunable optical element by the software is based on a study of the sensitivity of the optical design of the lens system to the assembled position of the first optical lens 10111B and the second optical lens 10112B.
  • the calculation method of the adjustment includes: measuring the imaging according to the imaging module Optical characteristics of the camera module before adjustment, including MTF value, optical axis eccentricity, optical axis tilt and curvature of field; and assembly position with the first optical lens 10111B and the second optical lens 10112B versus the optical characteristic The sensitivity of the assembly position of the first optical lens 10111B and the second optical lens 10112B is calculated.
  • the first optical lens 10111B and the The pre-assembly position of the second optical lens 10112B is adjusted such that the first optical lens 10111B and the second optical lens 10112B are properly rotated in the optical structural member 1013B, that is, along with the first optical lens
  • the horizontal position, the vertical position or the height position, and the tilt position of the 10111B and the second optical lens 10112B are appropriately adjusted, and the central axes of the first optical lens 10111B and the second optical lens 10112B are adjusted to be
  • the central axis of the photosensitive chip 1021B coincides or is within an allowable deviation range, and the imaging of the adjusted camera module satisfies the resolution requirement. If the imaging of the camera module still does not meet the resolution requirement after adjustment, the assembly position of the first optical lens 10111B and the second optical lens 10112B needs to be further adjusted.
  • the imaging module imaging satisfies the resolution requirement, that is, the central axis of the adjustable optical lens 1010B is considered to be
  • the central axis of the photosensitive chip 1021B coincides or within a range of the allowable amount of deviation, and the adjustment meets the predetermined requirement.
  • the glue 1040B is cured by baking to fix the adjusted first optical lens 10111B and the second optical lens 10112B in the optical structural member 1013B. And sealing the adjusting channel 10131B.
  • the sealing channel 10131B is preferably filled with glue or dispensing, and then baked, or baked simultaneously with the glue 1040B, thereby making the sealing
  • the glue of the adjusting channel 10131B and the glue 1040B are simultaneously cured, and the adjusting channel 10131B is sealed to further fix the first optical lens 10111B and the second optical lens 10112B, thereby being packaged.
  • the tunable optical lens 1010B and the photosensitive device 1020B further fix the entire camera module.
  • the present invention may further provide at least one glue injection channel 10141B on the diaphragm 1014B to inject glue to further fix the adjusted first optical lens.
  • 10111B can be implemented as two of the glue injection channels 10141B, that is, after adjusting the first optical lens 10111B or the first optical lens 10111B and the second optical lens 10112B, the thermosetting glue is glued Filling the glue injection channel 10141B, the first optical lens 10111B is further completely fixed after the camera module is baked, and the glue can be filled simultaneously to cure the glue injection channel 10141B. seal.
  • a camera module includes an adjustable optical lens 1010C and a photosensitive device 1020C.
  • the tunable optical lens includes an optical structural member 1013C, three optical lenses 1011C (first optical lens 10111C, second optical lens 10112C, and third optical lens 10113C, respectively) and a diaphragm 1014C, three of which are
  • the optical lens 1011C is mounted on the inside of the optical structural member 1013C along the height direction of the optical structural member 1013C, and is fixed, and the aperture 1014C is pre-assembled on the top of the optical structural member 1013C.
  • the top side of an optical lens 10111C is maintained at a certain distance, and the assembly position of the aperture 1014C can be adjusted in at least one direction with respect to the spatial position of the optical structure 1013C, for example, X, Y, and Z directions.
  • the aperture 1014C is used as a tunable optical component, and the lens formed by the aperture is a tunable optical lens;
  • the photosensitive device 1020C includes a color filter 1022C, a photosensitive chip 1021C, and a circuit board 1023C, wherein
  • the optical structural member 1013C is also a lens holder of the photosensitive device 1020C, and the color filter 1022C is fixedly mounted in the optical structural member 1013C and located in the third
  • the photosensitive chip 1021C is fixedly mounted inside the optical structural member 1013C, is mounted on the top side of the circuit board 1023C, and is located on the bottom side of the color filter 1022C.
  • the lens 12C, the aperture 1014C, and the color filter 1022C are all located on the optical path of the photosensitive chip 1021C, such that light reflected by the object enters the camera module from the adjustable optical lens 1010C.
  • the photoreceiving is performed internally and by the photosensitive chip 1021C, thereby enabling the camera module to generate an image related to the object.
  • the inner wall of the optical structural member 1013C defines a first recess 10241C and a second recess 10242C and a third recess 223C, which are sequentially disposed on the top side of the optical structural member 1013C. a central portion and a bottom side, wherein the color filter 1022C is mounted in the second recess 10242C, and the photosensitive chip 1021C is contained in the third recess 223C and on the top side of the circuit board 1023C Mounted on the circuit board 1023C, the circuit board 1023C is mounted on the bottom side of the optical structural member 1013C.
  • the first optical lens 10111C is fixedly mounted on a first limiting structure 101331C of the optical structure 1013C
  • the second optical lens 10112C is fixedly mounted on the inner wall of the optical structural component 1013C
  • the third optical lens 10113C is mounted on a third limiting structure 101333C disposed on the inner wall of the optical structural component 1013C
  • the first The second limiting structure 101332C and the third limiting structure 101333C are bosses extending from the inner wall of the optical structural member 1013C toward the cavity thereof to respectively carry the first optical lens 10111C and the second Optical lens 10112C and third optical lens 10113C.
  • the manufacturing method 1400 of the camera module of the preferred embodiment includes the following steps:
  • Step (1402) pre-assembling the aperture 1014C on the top of the adjustable optical lens 1010C;
  • Step (1404) calculating the adjustment amount of the aperture 1014C using software
  • Step (1405) adjusting an assembly position of the aperture 1014C according to an adjustment amount
  • Step (1406) When the adjustment result satisfies the resolution requirement, step (1407) is performed, and when the adjustment result does not satisfy the resolution requirement, steps (1403)-(1405) are repeated until the adjustment of the aperture is expected. Request;
  • Step (1407) The glue is solidified to fix the entire camera module.
  • step (1401) part of the module components of the camera module are assembled and fixed, that is, the color filter 1022C, the photosensitive chip 1021C, and the circuit board 1023C are mounted on the optical structural member.
  • the predetermined position of 1013C is fixed, and the third optical lens 10113C, the second optical lens 10112C, and the first optical lens 10111C are sequentially mounted inside the optical structural member 1013C according to a predetermined position, and are fixed.
  • the three lenses 12C are placed on the optical path of the photosensitive chip 1021C such that the central axes of the three lens optical lenses 1011C coincide with the central axis of the photosensitive chip 1021C or within an allowable deviation range, and are strictly
  • the assembly tolerance between the above components is controlled to ensure the imaging quality of the camera module and reduce the workload of subsequent adjustment.
  • the diaphragm 1014C is pre-assembled on the top of the optical structural member 1013C by means of glue 1040C in a semi-cured manner such that the aperture 1014C is located in the optical path of the photosensitive chip 1021C.
  • the adjustment may be performed in at least one direction with respect to the spatial position of the photosensitive chip 1021C or the optical structural member 1013C.
  • the glue 1040C is preferably A thermosetting adhesive that is semi-cured for pre-assembly under UV exposure.
  • the pre-assembled camera module is powered on, the camera module is captured, and the adjustment amount of the diaphragm 1014C is calculated according to the imaging module imaging software.
  • the assembly position of the aperture 1014C is appropriately adjusted according to the calculated adjustment amount such that its central axis coincides with the central axis of the photosensitive chip 1021C or within an allowable deviation range, that is, the tunable optical
  • the central axis of the lens 1010C coincides with the central axis of the photosensitive chip 1021C or within an allowable deviation range, and the imaging module imaging satisfies the resolution requirement. If the imaging of the camera module still does not meet the resolution requirement after the aperture 1014C is adjusted, further imaging of the camera module is required, and the aperture 1014C is readjusted until it is adjusted to an appropriate position. Fix it.
  • step (1407) when the adjustment of the aperture 1014C is such that the imaging of the camera module satisfies the resolution requirement, the camera module is baked, and the aperture 1014C is connected to the The glue 1040C of the optical structural member 1013C is completely cured, thereby fixing the entire camera module.
  • the lenses and apertures of the present invention may also be fully cured directly after position determination without undergoing a semi-curing process.
  • a camera module includes an adjustable optical lens 1010D and a photosensitive device 1020D, wherein the adjustable optical lens 1010D is mounted on the photosensitive path of the photosensitive device 1020D and is reflected by an object.
  • the light enters the photosensitive device 1020D from the tunable optical lens 1010D for photoelectric conversion, thereby enabling the camera module to generate an image related to the object.
  • the photosensitive device 1020D includes a color filter 1022D, a lens holder 1024D, a sensor chip 1021D, and a circuit board 1023D, wherein the color filter 1022D is fixed to a first groove of an upper portion of the inner wall of the lens holder 1024D.
  • the photosensitive chip 1021D is fixed in a second recess 10242D of the lower portion of the inner wall of the lens holder 1024D, and the photosensitive chip 1021D is mounted on the photosensitive path 1021.
  • the circuit board 1023D On the top side of the circuit board 1023D, the circuit board 1023D is fixed to the bottom of the lens holder 1024D, that is, the color filter 1022D, the optical lens 22D, the photosensitive chip 1021D, and the circuit board 1023D have completed each other.
  • the assembly between the two is unadjustable in the subsequent calibration, and the light reflected by the object enters the inside of the camera module from the adjustable optical lens 1010D and is received and photoelectrically converted by the photosensitive chip 1021D, thereby
  • the camera module is capable of generating an image related to an object.
  • the tunable optical lens 1010D includes an optical structural member 1013D and at least one optical lens 1011D, and each of the optical lenses 1011D is mounted on the optical structural member 1013D at intervals along a height direction of the optical structural member 1013D.
  • the optical structural member 1013D is mounted on an upper portion of the lens mount 1024D, and the optical lens 1011D is located on a photosensitive path of the photosensitive chip 1021D, wherein at least one of the optical lenses 1011D is pre-assembled in the
  • the optical lens 1011D pre-assembled inside the optical structural member 1013D is a tunable optical element, that is, its spatial position inside the structural member 11D is adapted to be subjected to at least one direction Adjusted, the lens formed by it is called a tunable optical lens.
  • five optical lenses 1011D are included, which are a first optical lens 10111D, a second optical lens 10112D, a third optical lens 10113D, a fourth optical lens 10114D, and a fifth optical lens 10115D, respectively.
  • the optical lens 1011D is mounted on the inside of the optical structural member 1013D along the optical path of the photosensitive chip 1021D in an overlapping manner at intervals, wherein the second optical lens 10112D, the third optical lens 10113D, and
  • the fourth optical lens 10114D has been pre-assembled into the optical structural member 1013D and fixed, its position is not adjustable, and the first optical lens 10111D and the fifth optical lens 10115D are pre-assembled to the optical structural member 1013D. Internally, it is adjusted as a tunable optical element in a subsequent process to calibrate, improving the imaging quality of the camera module.
  • the five lenses may be used as fixed lenses, and the remaining lenses serve as the tunable optical elements, and the lens including the tunable optical elements is referred to as a tunable optical lens.
  • the assembled position of the tunable optical element Prior to tuning the optical lens 1010D and the photosensitive device 1020D, the assembled position of the tunable optical element is adapted to be adjusted.
  • the first optical lens 10111D and the fifth optical lens 10115D are sequentially pre-assembled into the optical structural member 1013D by using glue 1040D, and the glue 1040D is not completely cured, that is, the glue 1040 is semi-cured.
  • the glue 1040D is not completely cured, that is, the glue 1040 is semi-cured.
  • the tunable optical lens 1010D further includes a diaphragm 1014D that is pre-assembled on the top of the optical structure 1013D using glue 1040D for introducing an incident beam and limiting the size of the incident beam.
  • the assembly position of the aperture 1014D with respect to the photosensitive chip 1021D is adapted to be adjusted in at least one direction, mainly in the horizontal direction, but may also be performed. Vertical and tilt adjustment.
  • the fifth optical lens 10115D is pre-assembled, and the fourth optical lens 10114D, the third optical lens 10113D, and the second optical lens 10112D are fixedly assembled.
  • the first optical lens 10111D is pre-assembled into the optical structural member 1013D, and then the optical port 1014D is pre-assembled on the top of the optical structural member 1013D and located on the top side of the first optical lens 10111D.
  • the assembly position is adapted to be adjusted in at least one direction, wherein the adjustable direction comprises a horizontal direction, a vertical direction, an oblique direction, and a circumferential direction, after adjustment, such that a central axis of the adjustable optical lens is opposite to the photosensitive chip 1021D
  • the center axis coincides or is within the allowable range of the deviation, so that the imaging of the camera module reaches the resolution requirement, and the imaging of the camera module is ensured. the amount.
  • the glue 1040D adopts a mixed glue of UV glue and thermosetting glue. After the UV exposure, the glue 1040D is semi-cured to achieve pre-assembly. After the baking treatment, the glue 1040D is completely cured to fix the whole. The camera module.
  • At least two adjustment channels 10131D are disposed on the optical structural member 1013D, communicate with the internal space and the external environment of the optical structural member 1013D, and respectively correspond to the tunable optical components.
  • the adjustment channels 10131D are respectively disposed on sidewalls of the optical structural member 1013D corresponding to the first optical lens 10111D and the fifth optical lens 10115D to pass through the adjustment channel 10131D. A spatial position of the first optical lens 10111D and the fifth optical lens 10115D inside the optical structural member 1013D is adjusted.
  • the present embodiment is implemented as six of the adjustment channels 10131D, wherein three of the adjustment channels 10131D are distributed along the sidewall of the optical structural member 10131D where the pre-assembly position of the first optical lens 10111D is located and The other three adjustment channels 10131D are distributed along the sidewalls of the optical structural member 10131D where the pre-assembly position of the second optical lens 10112D is located and are spaced apart from each other by 120°.
  • the first optical lens 10111D and the fifth optical lens 10115D need to be adjusted, a probe is inserted into the corresponding adjustment channel 10131D, and the first optical lens 10111D is toggled by controlling the probe.
  • the fifth optical lens 10115D changes the water of the first optical lens 10111D and the fifth optical lens 10112D at three positions of their respective adjustment channels 10131D
  • the flat and vertical positions are adjusted from either the first optical lens 10111D and the fifth optical lens 10115D in either direction, including a horizontal position, a vertical position, and an inclined position.
  • the diaphragm 1014D can be adjusted in any possible manner by its pre-assembly on the top of the tunable optical lens 1010D.
  • the optical structural member 1013D can be implemented as a lens barrel, and five limiting structures 10133D are respectively disposed on the inner wall of the optical structural member 1013D, and the limiting structure 10133D is preferably The bosses of the optical structure 1013D extending toward the cavity thereof are respectively carried by the five optical lenses 1011D, that is, the first limiting structure 101331D, the second limiting structure 101332D, and the third limiting structure.
  • the 101333D, the fourth limiting structure 101334D and the fifth limiting structure 101335D respectively carry the first optical lens 10111D, the second optical lens 10112D, the third optical lens 10113D, the fourth optical lens 10114D and the The fifth optical lens 10115D is described. It can be understood by those skilled in the art that the optical structural member 1013D can also carry each of the optical lenses 1011D by other means.
  • the camera module may further comprise a driver, and the optical structural member 1013D may be a component of the driver.
  • the camera module may be a fixed focus camera module or a zoom camera module.
  • FIG. 17 is a flowchart of a method 1700 for manufacturing a camera module according to a preferred embodiment.
  • the method 1700 for manufacturing the camera module includes the following steps:
  • the color filter 1022D, the lens holder 1024D, the photosensitive chip 1021D, and the wiring board 1023D are fixedly assembled to form the photosensitive device 1020D, and the The optical structure 1013D is fixedly assembled on the lens holder 1024D, and the second light is The lens 10112D, the third optical lens 10113D and the fourth optical lens 10114D are fixedly assembled at the corresponding limiting structure 10133D of the optical structural member 1013D, and the adjustable optical lens 1010D is disposed at The photosensitive assembly of the photosensitive chip 1021D completes the fixed assembly of some components of the camera module, and the above-described components are optical elements that are not adjustable in the preferred embodiment.
  • the assembly tolerance between the above components should be controlled as much as possible to keep the tolerance within the tolerance range, so as to avoid excessive assembly tolerance between the above components and increase the subsequent adjustment amount. To avoid the situation that the adjustment of the post-study cannot be performed because the assembly tolerance is too large.
  • the first optical lens 10111D and the fifth optical lens 10115D are pre-assembled into the optical structural member 1013D, and the optical axis 1014D is pre-assembled in the optical structure.
  • pre-assembly of the first optical lens 10111D, the fifth optical lens 10115D, and the aperture 1014D is performed using glue 1040D, and the glue 1040D is semi-cured under ultraviolet exposure to complete Pre-assembly of the first optical lens 10111D, the fifth optical lens 10115D, and the aperture 1014D, thereby completing pre-assembly of the camera module, wherein the first optical lens 10111D, the fifth optical The lens 10115D and the aperture 1014D are in the preferred embodiment as the tunable optical element such that the lens of the camera module including the tunable optical element becomes the tunable optical lens 1010D.
  • the step (1703) includes the following steps:
  • step (1703) if the resolution requirement of the camera module is not met after the adjustable optical component is adjusted, the steps (17031)-(17033) need to be repeated until the camera is captured.
  • the resolution requirements of the module meet the requirements.
  • the adjustment of the assembly position of the first optical lens 10111D, the fifth optical lens 10115D, and the aperture 1014D is respectively calculated according to imaging of the camera module. And adjusting the assembly positions of the first optical lens 10111D, the fifth optical lens 10112D, and the aperture 1014D according to respective adjustment amounts.
  • the imaging of the camera module is based on the camera module to test the MTF (Modulation Transfer Function) test plate, and the MTF value is used to characterize the module. Like the quality, the larger the MTF value, the higher the imaging quality of the camera module.
  • MTF Modulation Transfer Function
  • the MTF value of the corresponding image needs to be calculated to check whether the MTF value is greater than the standard requirement. If the MTF value is greater than or equal to the standard requirement, the acquisition or adjustment is completed; if the MTF value is less than the standard requirement, Need to collect again and make adjustments.
  • the shooting environment parameters of the camera module must be strictly controlled, including the distance between the standard plate and the camera module, and the light source parameters to ensure the accuracy of image acquisition and Consistency makes it easy to adjust the assembly position of the tunable optical element.
  • the software adjusts the assembly position of the tunable optical element based on a study of the sensitivity of the optical design of the lens system to the aperture of the first optical lens 121D and the fifth optical lens 125D.
  • the calculation method of the adjustment of the assembly position of the 1014D includes: measuring, according to imaging of the camera module, optical characteristics of the camera module before adjustment, including MTF value, optical axis eccentricity, optical axis tilt and field curvature; Calculating the sensitivity of the assembly position of the first optical lens 10111D, the fifth optical lens 10115D, and the aperture 1014D to the optical characteristic, calculating the first optical lens 10111D, the fifth optical lens 10115D, and the The assembly position adjustment amount of the diaphragm 1014D.
  • the pre-assembly positions of the first optical lens 10111D, the fifth optical lens 10115D, and the aperture 1014D are respectively adjusted according to the calculated adjustment amount, and
  • the first optical lens 10111D and the fifth optical lens 10115D are appropriately rotated in the optical structural member 1013D, that is, along with the horizontal positions of the first optical lens 10111D and the fifth optical lens 10115D,
  • the vertical position or the height position and the tilt position are appropriately adjusted, and the horizontal position, the vertical position or the height position, and the tilt position of the diaphragm 1014D can be appropriately adjusted, and the center of the adjustable optical lens 1010D is adjusted.
  • the axis coincides with the central axis of the photosensitive chip 1021D or within a range allowed by the deviation, and the imaging of the adjusted camera module satisfies the resolution requirement. If the imaging of the camera module still does not meet the resolution requirements after adjustment, the assembly position of the tunable optical element needs to be further adjusted.
  • the adjusted optical component when the adjusted optical component is adjusted to a predetermined position according to the calculated adjustment amount, it is considered that the central axis of the adjustable optical lens 1010D coincides with the central axis of the photosensitive chip 1021D or Within the range of the allowable amount of deviation, the adjustment meets the predetermined requirement, and the image of the adjusted camera module satisfies the resolution requirement.
  • the glue 1040D is cured by baking to adjust the first optical lens 10111D, the fifth optical lens 10115D and the aperture 1014D that meet the requirements.
  • the optical structure 1013D is fixedly connected, and then the adjustment channel 10131D is sealed.
  • the glue is injected into the adjustment channel 10131D to seal, and the first seal can be further fixed.
  • the action of the optical lens 10111D and the second optical lens 10112D in turn, encapsulates the tunable optical lens 1010D and the photosensitive device 1020D.
  • the present invention may further provide at least one glue injection channel 10141D on the diaphragm 1014D to inject glue (for example, thermosetting glue) to further fix the adjusted first
  • glue for example, thermosetting glue
  • the optical lens 10111D and the fifth optical lens 10115D may be implemented as two of the glue injection channels 10141D, that is, after adjusting the first optical lens 10111D and the fifth optical lens 10115D, the thermosetting glue is used.
  • the glue is poured into the glue injection channel 10141D, and the first optical lens 10111D and the fifth optical lens 10115D are completely fixed after the camera module is baked, and the glue injection channel 10141D can be simultaneously seal.
  • a camera module includes an adjustable optical lens 2010 and a photosensitive device 2020.
  • the photosensitive device 2020 includes a photosensitive chip 2021, and the adjustable optical lens 2010 is disposed on the camera.
  • the photosensitive path of the photosensitive chip 2021 after the light reflected by the object enters the inside of the camera module through the adjustable optical lens 2010, it is received by the photosensitive chip 2021 and photoelectrically converted, so that in the subsequent process,
  • the camera module is capable of obtaining images related to objects.
  • the photosensitive device 2020 further includes a filter 2022, a circuit board 2023, and a lens holder 2024.
  • the filter 2022 is mounted inside the lens holder 2024 and disposed on the photosensitive chip 2021.
  • the photosensitive chip 2021 is mounted above the circuit board 2023, the circuit board 2023 is mounted on the bottom of the lens holder 2024 and the photosensitive chip 2021 is located inside the lens holder 2024.
  • a distance is maintained between the photosensitive chip 2021 and the lens holder 2024, that is, the photosensitive device 2020 is fabricated by a COB (chip on board) process.
  • the photosensitive device 2020 can also be fabricated by a flip chip, and the manufacturing method of the photosensitive device 2020 can be selected according to actual conditions.
  • the tunable optical lens 2010 includes at least one optical lens 2011 and an optical structural member 2013, wherein each of the optical lenses 2011 is sequentially disposed inside the optical structural member 2013 along the height direction of the optical structural member 2013. Space, at least one of the optical lenses 2011 as a tunable lens
  • the assembly position inside the optical structural member 2013 is adapted to be adjusted, thereby adjusting the optical path of the adjustable optical lens 2010, so that the adjusted central axis of the adjustable optical lens 2010 and the photosensitive chip
  • the central axis of 2021 coincides or is within the range allowed by the deviation, thereby ensuring the imaging quality of the camera module.
  • the optical structural member 2013 may be a conventional lens barrel component, or may be a structural module integrated with a lens barrel component and a lens holder, and the camera module may be a product with an auto-focus device or It is a structure in which the lens barrel member and the carrier in the autofocus device are integrated.
  • the four optical lenses 2011 are implemented as a first optical lens 20111, a second optical lens 20112, a third optical lens 20113, and a fourth optical lens 20114.
  • the optical lens 2011 is disposed on the inner space of the optical structural member 2013 in a stacking manner, wherein the first optical lens 20111 is disposed on the top of the optical structural member 2013, and serves as an adjustable lens.
  • the adjustable lens (this embodiment refers to the first optical lens 20111) is pre-assembled in the optical structural member 2013, and its assembly position is adapted to be adjusted in at least one direction, such as horizontal direction, vertical direction, and inclination. One or several of the direction and the circumferential direction.
  • At least one adjustment channel 20131 is disposed on the top of the optical structural member 2013, and the adjustment channel 20131 connects the internal space of the optical structural member 2013 with the external environment, and is associated with the adjustable optical lens 2011.
  • the adjustable lens can be purposefully adjusted from the outside of the optical structural member 2013.
  • an external adjustment device 2030 is inserted into the adjustment passage 20131, and the external adjustment device is reserved because a gap is reserved between the side surface of the adjustable lens and the interior of the optical structural member 2013. 2030 can adjust the assembly position of the adjustable lens by contacting the side of the adjustable lens.
  • the external adjustment device 2030 can be implemented as a probe in the preferred embodiment, the probe being inserted into the adjustment channel 20131 such that the probe contacts the side of the first optical lens 20111, Further, the first optical lens 20111 is toggled by controlling the probe to adjust the assembly position thereof, wherein the probe can be implemented as a probe equipped with an electronic component and having an automatic function, and the automatic recording can be performed.
  • the adjustment mode and the adjustment amount of the adjustable lens are used to quantitatively determine whether the adjustment is accurate, or the quantitative adjustment of the adjustable lens by inputting the adjustment mode and the adjustment amount of the adjustable lens in the probe.
  • the adjustment mode and the adjustment amount of the adjustable lens are obtained by energizing the pre-assembled camera module, capturing the imaging module, and calculating according to the imaging module imaging software. Further, it is convenient to perform targeted adjustment on the adjustable lens, and at least one adjustment can meet the expected demand, so that the calibration speed is faster, the adjustment time is saved, and the manufacturing efficiency and yield are improved.
  • the adjustable lens After the adjustable lens is adjusted, it needs to be fixed to complete the calibration and assembly of the camera module, and can be implemented to fix the adjustable lens by an external fixing device, for example, the preferred implementation
  • the first optical lens 20111 is fixed by dispensing a glue device, that is, the dispensing device injects the glue 2040 into the adjustment channel 20131, and then solidifies to fix the first optical lens 20111.
  • the glue 2040 can be selected as a thermosetting glue.
  • the glue 2040 can be injected into the side of the first optical lens 20111, that is, on the side of the first optical lens 20111 and the corresponding optical structural member.
  • the glue 2040 is injected between the inner walls of 2013, and the first optical lens 20111 is fixed by fixedly connecting the side surface of the first optical lens 20111 with the inner wall of the optical structural member 2013.
  • the glue 2040 When the glue 2040 is injected, the glue 2040 is also injected into the adjustment channel 20131, so that the adjustment channel 20131 is sealed when the adjustable lens is fixed, and of course, the glue can be fixed. After the lens is adjusted, the adjustment channel 20131 is sealed by injecting glue.
  • an adjustable optical lens 2010A as shown in FIG. 20 is a modified embodiment of the adjustable optical lens 2010.
  • the adjustable optical lens 2010A includes at least one optical lens 2011A and an optical structural member 2013A.
  • the four optical lenses 2011A are a first optical lens 20111A, a second optical lens 20112A, a third optical lens 20113A and a
  • the fourth optical lenses 20114A are respectively disposed in the inner space of the optical structural member 2013 in a superposed manner along the height direction of the optical structural member 2013A, wherein at least one adjustment is provided at the top of the optical structural member 2013.
  • the first optical lens 20111A (which is an adjustable lens) is pre-assembled by the channel 20131A, and the first optical lens 20 can be contacted by the external adjustment device 2030.
  • the first optical lens 20111A is adjusted by the top surface of the 111A.
  • the adjustment channel 20131A is also fixed as a fixed channel, that is, the glue 2040A is injected through the adjustment channel 20131A, wherein the glue 2040A is injected into the first optical.
  • the top surface of the lens 20111A is located in the adjustment channel 20131A, thereby connecting and fixing the top surface of the first optical lens 20111A and the inner wall of the optical structural member 2013A through the glue 2040A.
  • the glue 2040A when the glue 2040A is injected, it is suitable to The glue 2040A fills the adjustment passage 20131A, so that the adjustment passage 20131A is sealed while fixing the adjustable lens to prevent dust from entering, and the process can be reduced, time is saved, and efficiency is improved.
  • a seventh embodiment of the camera module provided by the present invention will be described.
  • a camera module includes an adjustable optical lens 2010B and a photosensitive device 2020.
  • the adjustable optical lens 2010B is disposed on the photosensitive device according to an optical path and an imaging requirement of the camera module.
  • the top of the device 2020 is fixed and the photosensitive device 2020 is the same as the above-described preferred embodiment, and will not be described herein.
  • the tunable optical lens 2010B includes at least one optical lens 2011B and an optical structural member 2013B, wherein the optical lens 2011B includes a first optical lens 20111B, a second optical lens 20112B, a third optical lens 20113B, and a first optical lens 2011B.
  • the optical lens 2011B includes a first optical lens 20111B, a second optical lens 20112B, a third optical lens 20113B, and a first optical lens 2011B.
  • Four optical lenses 20114B, four optical lenses 2011B are sequentially disposed in the inner space of the optical structural member 2013B along the height direction of the optical structural member 2013B, and are located on the photosensitive path of the photosensitive chip 2021, wherein
  • the first optical lens 20111B is disposed on top of the optical structural member 2013B and pre-assembled as an adjustable lens in the preferred embodiment, the assembly position of which is adapted to be adjusted in at least one direction.
  • the side surface of the optical structural member 2013B is provided with at least one adjustment channel 20131B, wherein the adjustment channel 20131B corresponds to the adjustable lens, and connects the internal space of the optical structural member 2013B with the external environment, Adjust the adjustable lens.
  • the adjustment channel 20131B may be disposed in three positions along the top of the optical structural member 2013B corresponding to the first optical lens 20111B, distributed in a circumferential direction, and separated from each other by 120°.
  • an external adjustment device 2030B can be inserted into each of the adjustment channels 20131B. Since the edge of the first optical lens 20111B is directly communicated with the outside through the adjustment channel 20131B, the external adjustment device can be The assembly position of the first optical lens 20111B is adjusted by contact with the edge of the first optical lens 20111B.
  • the top of the optical structural member 2013B is provided with three of the fixed passages 122B along a circumferential direction, wherein the three fixed passages 122B communicate the internal space of the optical structural member 2013B with the external environment to facilitate passage
  • the adjustment channel 20131B injects glue such that the glue contacts the tunable lens and optical structure 2013B to secure the tunable lens.
  • the tunable lens is secured to the optical structural member 2013B by injecting glue 2040B onto the tunable lens surface and curing, wherein each of the fixed channels 122B is 120° apart from each other, and Each of the adjustment channels 20131B They are spaced apart from each other so as to be fixed from a plurality of parts, and the fixing firmness of the adjustable lens is ensured, which is advantageous for ensuring the reliability of the operation of the camera module.
  • a camera module includes an adjustable optical lens 2010C and a photosensitive device 2020, wherein the photosensitive device 2020 is the same as the above-described preferred embodiment, and details are not described herein again.
  • the tunable optical lens 2010C includes at least one optical lens 2011C and an optical structural member 2013C, wherein the optical lens 2011C includes a first optical lens 20111C, a second optical lens 20112C, a third optical lens 20113C, and a first optical lens 2011C.
  • the optical lens 2011C includes a first optical lens 20111C, a second optical lens 20112C, a third optical lens 20113C, and a first optical lens 2011C.
  • Four optical lenses 20114C, four optical lenses 2011C are sequentially disposed in the inner space of the optical structural member 2013C along the height direction of the optical structural member 2013C, and are located on the photosensitive path of the photosensitive chip 2021, wherein
  • the first optical lens 20111C is disposed on top of the optical structural member 2013C and pre-assembled as an adjustable lens in the preferred embodiment, the assembly position of which is adapted to be adjusted in at least one direction.
  • the side surface of the optical structural member 2013C is provided with at least one adjustment channel 20131C, wherein the adjustment channel 20131C corresponds to the adjustable lens, and connects the internal space of the optical structural member 2013C with the external environment, Adjust the adjustable lens.
  • the adjustment channel 20131C can be set to three along a circumferential direction of the outer side of the optical structural member 2013C corresponding to the first optical lens 20111C, and is separated from each other by 120°, so as to facilitate The first optical lens 20111C is adjusted from a plurality of directions and angles to ensure the accuracy of the adjustment.
  • an external adjustment device 2030C can be inserted into the adjustment channel 20131C. Since the side surface of the first optical lens 20111C is directly communicated with the outside through the adjustment channel 20131C, the external adjustment device 2030C can The assembly position of the first optical lens 20111C is adjusted by contact with the side surface of the first optical lens 20111C.
  • the portion of the optical structural member 2013C in which the adjustment channel 20131C is disposed is higher than the lens holder 2024, that is, the adjustment channel 20131C provided at the side portion is disposed on the optical structural member 2013C. Portions of the lens holder 2024 are provided to facilitate adjustment of the adjustable lens from the exterior of the optical structure member 2013C to prevent the lens holder 2024 from obscuring it.
  • the glue is injected into the adjustment passage 20131C using a glue device, and the glue is brought into contact with the first optical lens 20111C, thereby fixing the first optical lens 20111C to the optical structural member 2013C.
  • some glue may be injected, and the first optical lens 20111C is fixed while the Adjust the channel 20131C seal.
  • Figure 24 is a variant implementation of the eighth preferred embodiment described above.
  • the first optical lens 20111C is fixed by providing a fixed channel 122C at the top of the optical structural member 2013C, wherein the glue 2040C is injected through the fixed channel 122C, and after curing, the first The top surface of the optical lens 20111C communicates with the external environment of the optical structural member 2013C, thereby injecting the glue 2040C into the fixed channel 122C, and solidifying the surface of the first optical lens 20111C to fix the surface.
  • the first optical lens 20111C can be sealed while sealing the fixed channel 122C.
  • the first optical lens 20111C can be fixed by the adjustment channel 20131C and the fixed channel 122C at the same time.
  • FIG. 25 is another variant of the eighth preferred embodiment described above.
  • a camera module includes a tunable optical lens 2010D and a photographic device 2020, wherein the photographic device 2020 is the same as the preferred embodiment described above, and the tunable optical lens 2010D is not described herein again. It is disposed on the photosensitive path of the photosensitive device 2020.
  • the tunable optical lens 2010D includes an at least one optical lens 2011D and an optical structural member 2013D, and each of the optical lenses 2011D is disposed in an inner space of the optical structural member 2013D along a height direction of the optical structural member 2013D.
  • the optical lens 2011D is implemented as four pieces in the present embodiment, which are a first optical lens 20111D, a second optical lens 20112D, a third optical lens 20113D, and a fourth optical lens 20114D, respectively.
  • the first optical lens 20111D and the fourth optical lens 20114D are fixed in the optical structural member 2013D, and the second optical lens 20112D and the third optical lens 20113D are pre-assembled in the optical structural member 2013D.
  • the adjustable lens it is disposed at a central position of the optical structural member 2013D, and its assembly position is adapted to be adjusted in at least one direction.
  • the central position referred to herein means a position other than the position where the first optical lens 20111D and the fourth optical lens 20114D are disposed, that is, the position other than the positions of the top and bottom of the optical structural member 2013D. Anywhere.
  • the space is in communication with the external environment to facilitate insertion of an external adjustment device 2030D into the adjustment channel 20131D to contact the edges of the second optical lens 20112D and the third optical lens 20113D, thereby adjusting the Second optical lens Assembly position of 20112D and the third optical lens 20113D.
  • the external adjustment device 2030D can be implemented as a probe equipped with an electronic component and having an automatic function, and can automatically record the adjustment mode and the adjustment amount of the adjustable lens, so as to quantitatively determine the adjustment of the adjustable lens. Whether the accuracy is correct, or the adjustable lens is quantitatively adjusted by inputting the adjustment mode and the adjustment amount of the adjustable lens in the external adjustment device 2030D, thereby increasing the efficiency of the adjustment.
  • a plurality of the adjustment channels 20131D are selectively disposed along the outer side of the optical structural member 2013D, and the adjustment channels 20131D that are circular are corresponding to the corresponding adjustable lenses.
  • three adjustment channels 20131D may be disposed along the circumferential direction of the second optical lens 20112D along the third Three adjustment channels 20131D are provided around the optical lens 20113D.
  • the second optical lens 20112D and the third optical lens 20113D are fixed by the adjustment channel 20131D.
  • the adjustment channel 20131D For example, using a dispensing device to dispense through the adjustment channel 20131D, such that the glue contacts the edge of the second optical lens 20112D and the edge of the third optical lens 20113D, thereby enabling the second optical respectively
  • the lens 20112D and the third optical lens 20113D are fixed to the inner wall of the optical structural member 2013D, and at the same time, the glue also seals the adjustment passage 12D.
  • the glue used therein is preferably a thermosetting glue which is fixed by baking to fix the second optical lens 20112D and the third optical lens 20113D, and seals the adjustment passage 12D.
  • the adjustable lens is pre-assembled by glue semi-curing, in the subsequent fixing process, the glue used for pre-assembly needs to be completely cured, and the adjustable can also be adjusted after curing.
  • the lens is fixed, and the adjustment channel 20131D is sealed by external dispensing, or the adjustable lens is further fixed by dispensing to ensure the firmness of the fixation.
  • the adjustment position of the adjustable lens is the same position as the fixed position, or may be different positions, for example, by setting the outer side of the optical structural member 2013D.
  • a fixed channel wherein the fixed channel corresponds to the adjustable lens, wherein the fixed channel is disposed at a side of the optical structure from the adjustment channel 20131E, so as to be The adjustable lens is adjusted and fixed.
  • the adjustment channel 20131D may be disposed at a portion of the position of the optical structure member 2013D, and the fixed channel may be disposed at another portion.
  • the adjustment channel 20131D and the fixed channel are not spaced apart.
  • a camera module includes an adjustable optical lens 2010E and a photosensitive device 2020, wherein the photosensitive device 2020 is the same as the above-described preferred embodiment, and is not described herein again.
  • the optical lens 2010E is disposed on the photosensitive path of the photosensitive device 2020 to be imaged and imaged.
  • the tunable optical lens 2010E includes at least one optical lens 2011E and an optical structural member 2013E, wherein each of the optical lenses 2011E is disposed in an inner space of the optical structural member 2013E along a height direction of the optical structural member 2013E. And located on the photosensitive path of the photosensitive chip 2021.
  • the four optical lenses 2011E are implemented as a first optical lens 20111E, a second optical lens 20112E, a third optical lens 20113E, and a fourth optical lens 20114E, respectively.
  • the top of the optical structural member 2013E is disposed in a direction toward the bottom thereof and the inner space thereof, that is, the first optical lens 20111E is disposed on the top of the optical structural member 2013E, pre-assembled inside the optical structural member 2013E,
  • the first optical lens 20111E is a tunable lens of the preferred embodiment, the assembly position of which is adapted to be adjusted in at least one direction to facilitate adjustment of the optical path of the tunable optical lens 2010E, such that the tunable optical is adjusted
  • the central axis of the lens 2010E coincides with the central axis of the photosensitive chip 2021 or within a range allowed by the deviation.
  • the top of the optical structural member 2013E is provided with at least one adjustment channel 20131E, which may be implemented as two, and the adjustment channel 20131E connects the internal space of the optical structural member 2013E with the external environment, so that the The surface of the first optical lens 20111E communicates with the outside through the adjustment passage 20131E, thereby adjusting its assembly position.
  • the first optical lens 20111E is provided with at least two adjustment slots 201111E, wherein the adjustment slots 201111E are disposed on the lens top surface of the first optical lens 20111E, and the top opening of the adjustment slot 201111E and the adjustment channel 20131E corresponds to, and communicates with the external environment of the optical structural member 2013E through the adjustment channel 20131E. Further, the adjustment slot 201111E is preferably disposed at a position near the edge of the first optical lens 20111E, so as to avoid Attenuating the light transmission of the first optical lens 20111E to ensure imaging of the camera module.
  • an external adjustment device 2030E is inserted into the adjustment channel 20131E and is in contact with the first optical lens 20111E, wherein the external adjustment device 2030E is inserted into the adjustment slot 201111E, thereby being able to grasp the first optical lens 20111E through the adjustment slot 201111E, the horizontal position, the vertical position, the tilt position and the circumferential position of the first optical lens 20111E At least one of the orientations Adjusting to adjust the optical path of the adjustable optical lens 2010E, so that the camera module satisfies the resolution requirement.
  • the fixed position and the adjusted position are the same position, that is, the adjustment channel 20131E.
  • a glue can be used to inject the glue into the adjustment channel 20131E, and the liquid or semi-solid glue flows into the top surface or the side of the first optical lens 20111E through the adjustment channel 20131E, and the glue is solidified.
  • the first optical lens 20111E is fixed inside the optical structural member 2013E. It is optional to inject more glue, and the adjustment channel 20131E is sealed while fixing the first optical lens 20111E.
  • a fixed channel can be additionally provided to fix the adjustable lens, and the position of the fixed channel can be The position of the adjustment channel 20131E is different.
  • the calibration method 1400 of the camera module includes the following steps:
  • Step (1404) adjusting the adjustable lens by adjusting the channel according to the adjustment amount
  • Step (1405) fixing the adjustable lens through the fixed channel to complete the calibration of the camera module.
  • At least one or more optical lenses may be disposed as the adjustable lens, and the adjustable lens is not fixed, so as to be adjusted in a subsequent process.
  • the adjustable lens is adjusted by the adjustment channel of the optical structure using an external adjustment device, wherein the adjustment channel can be disposed on the top and the side of the optical structure, with specific reference to the above four preferred embodiments. The implementation of its variants will not be repeated here.
  • the adjustable lens is fixed by providing a fixed channel on the optical structural member, and the adjustable lens can also be fixed by adjusting the channel, so that the fixed position and the adjusted position of the lens can be the same position.
  • the glue can be fixed at different positions, and the glue for fixing can be fixed by contacting the top surface or the side surface of the adjustable lens.
  • a camera module includes an adjustable optical lens 2010F and a photosensitive device 2020, wherein the photosensitive device 2020 is the same as the above-described preferred embodiment, and is not described herein again.
  • the optical lens 2010F is disposed on the photosensitive path of the photosensitive device 2020 to be imaged by imaging.
  • the tunable optical lens 2010F includes at least one optical lens 2011F and an optical structural member 2013F, wherein each of the optical lenses 2011F is disposed in an inner space of the optical structural member 2013F along a height direction of the optical structural member 2013F. And located on the photosensitive path of the photosensitive chip 2021.
  • the four optical lenses 2011F are implemented as a first optical lens 20111F, a second optical lens 20112F, a third optical lens 20113F, and a fourth optical lens 20114F, respectively.
  • the top of the optical structural member 2013F is disposed in a direction toward the bottom thereof and the inner space thereof, that is, the first optical lens 20111F is disposed on the top of the optical structural member 2013F, pre-assembled inside the optical structural member 2013F,
  • the first optical lens 20111F is a tunable lens of the preferred embodiment, the assembly position of which is adapted to be adjusted in at least one direction to facilitate adjustment of the optical path of the tunable optical lens 2010F, such that the tunable optical is adjusted
  • the central axis of the lens 2010F coincides with the central axis of the photosensitive chip 2021 or within a range allowed by the deviation.
  • the first optical lens 20111F is fixed to complete the assembly of the adjustable optical lens 2010F.
  • the calibration method 1500 of the camera module includes the following steps:
  • Step (1501) assembling the optical structural member 2013F to the photosensitive device 2020 according to an optical path;
  • the two optical lenses 20112F, the third optical lens 20113F, and the fourth optical lens 20114F may be sequentially assembled into the optical structural member 2013F in a single piece, or may be embedded. It is then assembled as a unit in the optical structural member 2013F.
  • the first optical lens 20111F is pre-assembled by placing it in the inner space at the top of the optical structural member 2013F and above the second optical lens 20112F. It is used as an adjustable lens to adjust its assembly position in subsequent processes.
  • the adjustment of the adjustable lens is adapted to be adjusted by the top of the optical structural member 2013F, and it is not necessary to provide a dedicated adjustment channel, and the process is simpler.
  • the adjustable position of the light beam incident passage 2015F from the top of the optical structural member 2013F may be adjusted.
  • the lens is adjusted, and is adapted to be used to extend from the top of the optical structural member 2013F into contact with the adjustable lens, and then adjust the adjustable lens by mechanical grasping or vacuum adsorption. .
  • the glue 2040F is injected from the beam incident passage 2015F at the top of the optical structural member 2013F, optionally as a thermosetting glue, and the glue 2040F is cured after the first
  • the optical lens 20111F is fixed, and it is not necessary to set a special fixed channel, and the structure is simpler. For example, dispensing to the edge of the tunable lens and then curing causes the tunable lens to be secured to the inner wall of the optical structural member 2013F.
  • the adjustable lens can be directly placed on the optical structural member 2013F to be pre-assembled by the optical structural member 2013F, or can be pre-assembled by using glue semi-curing, which can prevent the
  • the adjustable lens has a large offset, and is easy to adjust in the subsequent process, which is beneficial to reduce the adjustment range, reduce the number of adjustments, and improve the calibration efficiency.
  • a camera module lens 3010 includes at least one internal optical lens 3011, at least one external optical lens 3012, and a barrel member 3013, wherein each of the internal optical lenses 3011 is along the mirror.
  • the height direction of the tubular member 3013 is provided in the inner space of the barrel member 3013, and each of the outer optical lenses 3012 is disposed outside the barrel member 3013 along the height direction of the barrel member, for example, An outer space of the top or bottom of the barrel member 3013,
  • the inner optical lens 3011 is located on the same optical path of the camera module lens 3010, but the outer optical lens 3012 is not included inside the lens barrel member 3013.
  • the preferred embodiment includes three inner optical lenses 3011.
  • the inner optical lenses 3011 are fitted to each other and are fixed to a receiving cavity 30131 of the lens barrel member 3013.
  • the inner optical lens 3011 may be connected to each other by using spacers, and the edges of the inner optical lenses 3011 may be processed, for example, glued, so that the inner optical lenses 3011 are pressed from each other.
  • the order is directly fitted together by the bonding of the coated glue, and the structural members such as the spacers are omitted.
  • the processing precision of the barrel member 3013 and the assembly precision between the inner optical lens 3011 and the barrel member 3013 are low, which is advantageous for reducing the manufacturing cost, reducing the assembly process, and reducing the assembly tolerance chain. , saving assembly time, improving production efficiency and product yield.
  • the outer optical lens 3012 is mounted to the bottom of the barrel member 3013, wherein the edge of the outer optical lens 3012 and the barrel member 3013 The bottom is connected. It may be implemented to apply glue to the top surface edge of the outer optical lens 3012 and the bottom surface of the barrel member 3013 to fix the two together, such that the outer optical lens 3012 corresponds to each of the inner optical lenses 3011. Both are located on the optical path of the camera module lens 3010.
  • the barrel member 3013 is a conventional black object barrel, it has a light blocking function, which can prevent external light from entering the inside of the camera module lens 3010 from a place other than the non-beam incident passage, and can prevent entry from the beam incident passage.
  • the light inside the camera module lens 3010 is leaked out, and the external optical lens 3012 is not disposed inside the lens barrel member 3013. Therefore, the present invention provides a light blocking layer 30121 on the outer side of the outer optical lens 3012.
  • the light blocking layer 30121 must completely cover the entire side surface of the outer optical lens 3012 to prevent the camera module lens 3010 from leaking light, and prevent external stray light from entering the lens of the camera module 3010 to ensure The imaging quality of the camera module lens 3010.
  • the outer side of the outer optical lens 3012 may not have the light blocking layer 30121, that is, the The camera module lens 3010 includes the external optical lens 3012 that is not provided with a light blocking layer. Since the light blocking layer 30121 can be disposed in a subsequent process, the light blocking layer 30121 is The camera module lens 3010 is not essential.
  • the light blocking device is disposed on the external optical lens 3012 that has been assembled in the camera module.
  • the layer 30121 may also be disposed on the outer side of the outer optical lens 3012 of the camera module lens 3010 when the camera module is assembled, and then the image capturing mode of the light blocking layer 30121 may be disposed.
  • the group lens 3010 and the photosensitive device are assembled into a camera module.
  • the camera module lens 3010 may include the light blocking layer 30121 or may not include the light blocking layer 30121.
  • the light shielding layer 30121 can be set in the following three ways: (1) the gear is disposed on the outer side of the outer optical lens 3012 in advance. The light layer 30121 is then assembled to the camera module lens 3010; (2) after the external optical lens 3012 is assembled to the camera module lens 3010, the light blocking layer is further disposed. 30121; (3) After the camera module lens 3010 including the light blocking layer 30121 and the photosensitive device are assembled into a camera module, the light blocking layer 30121 is disposed outside the outer optical lens 3012.
  • the light blocking layer 30121 is disposed by coating a black glue on the outer side of the outer optical lens 3012.
  • the black glue may be a thermosetting adhesive, and the light blocking layer 30121 is formed after curing.
  • a camera module including the camera module lens 3010 described above will be explained.
  • a camera module includes the camera module lens 3010 and a photosensitive device 3020.
  • the photosensitive device 3020 includes a sensor chip 3021, and the camera module lens 3010 is disposed on the sensor chip.
  • the sensor chip 3021 On the photosensitive path of 3021, after the light reflected by the object enters the inside of the camera module through the camera module lens 3010, it is received by the sensor chip 3021 and photoelectrically converted, so that in the subsequent process, the camera mode The group is able to obtain images related to the object.
  • the photosensitive device 3020 further includes a filter 3022, a circuit board 3023, and a lens holder 3024.
  • the filter 3022 is mounted on the inside of the lens holder 3024 and disposed on the photosensitive chip 3021.
  • the photosensitive chip 3021 is mounted above the circuit board 3023, and the circuit board 3023 is mounted on the bottom of the lens holder 3024 and the photosensitive chip 3021 is located inside the lens holder 3024.
  • a distance is maintained between the photosensitive chip 3021 and the lens holder 3024, and the two are not in direct contact, that is, the photosensitive device 3020 is fabricated by a COB (chip on board) process.
  • the outer optical lens 3012 is disposed between the barrel member 3013 and the lens holder 3024, that is, a top surface edge of the outer optical lens 3012 is coupled to a bottom surface of the barrel member 3013, the outer portion The bottom surface edge of the optical lens 3012 is coupled to the top surface of the lens holder 3024, bears on the lens holder 3024, is supported by the lens holder 3024, and each of the internal optical lenses 3011 and each of the external optics The lenses 3012 are each disposed on the photosensitive path of the photosensitive chip 3021.
  • the external optical lens 3012 is disposed outside the lens barrel member 3013 and bears on the lens holder 3024, so that the distance between the camera module lens 3010 and the photosensitive chip 3021 can be reduced, which can be realized. With a smaller lens back focal length, the image quality of the camera module made with this lens is higher and the cost is greatly reduced.
  • the assembly method 1000 of the camera module includes the following steps:
  • Step (1001) mounting each of the inner optical lenses 3011 in an inner space of the barrel member 3013 and fixing it;
  • Step (1004) pre-assembling the camera module lens 3010 in the photosensitive device 3020 to complete pre-assembly of the camera module;
  • Step (1005) adjusting an assembly position of the camera module lens 3010, so that the imaging module is imaged to meet a resolution requirement;
  • Step (1006) encapsulating the camera module lens 3010 and the photosensitive device 3020 to complete assembly of the camera module.
  • the steps (1001) to (1003) are the assembly steps of the camera module lens 3010.
  • each of the internal optical lenses 3011 may be fixed to the internal space of the lens barrel member 3013 one by one, or each of the internal optical lenses 3011 may be assembled to form an integral body. The lens assembly is then fixed to the inner space of the barrel member 3013.
  • the lens barrel member 3013 and the lens barrel member 3013 may be simultaneously
  • the black plastic is coated on the interface of the outer optical lens 3012, and the light blocking layer 30121 can be formed, and the outer optical lens 3012 can be connected to the lens barrel member 3013, thereby reducing assembly steps and saving time. Improve product manufacturing efficiency and reduce costs.
  • the outer optical lens 3012 can be connected to the lens barrel member 3013, and then the outer side of the outer optical lens 3012 can be coated with black glue to set the light blocking layer 30121, and the selection is made according to actual conditions.
  • the light blocking layer 30121 can be disposed before the assembly of the external optical lens 3012, and can of course be disposed after assembly.
  • outer optical lens 3012 and the lens barrel may be joined together by applying a glue to the edge of the top surface of the outer optical lens 3012 or by applying a glue to the bottom surface of the lens barrel member 3013.
  • the components 3013 may or may not be fixedly connected, and may be pre-assembled such that the assembly positions of the lens barrel component 3013 and the outer optical lens 3012 are adapted to be subjected to at least one direction in a subsequent process. Adjustment.
  • a glue is applied to the bottom surface edge of the outer optical lens 3012 or a top surface of the lens holder 3024 is glued between the outer optical lens 3012 and the lens holder 3024.
  • the glue 3040 is fixedly connected by a glue 3040, wherein the glue 3040 is preferably a thermosetting glue, and the two can be pre-assembled so that the assembly position of the external optical lens 3012 relative to the photosensitive chip 3021 is suitable to be at least Adjustment in one direction.
  • the pre-assembly glue is suitable for pre-assembly of the mixed glue of the UV glue and the thermosetting glue, the glue is semi-cured after UV exposure to achieve pre-assembly, and is completely cured after being baked.
  • the outer optical lens 3012 is further fixed to the lens holder 3024 and the barrel member 3013.
  • the adjustment of the camera module lens 3010 can be achieved by adjusting the external optical lens 3012 and/or the lens barrel component 3013, that is, adjusting the optical of the camera module lens 3010.
  • the path is such that the central axis of the camera module lens 3010 coincides with the central axis of the photosensitive chip 3021 or within a range allowed by the deviation, thereby imaging the camera module to meet the expected resolution requirements.
  • the camera module can be calibrated in the following three manners by pre-assembly of the external optical lens 3012: (1) adjusting the assembly position of the lens barrel member 3013 The camera module performs calibration by adjusting the lens barrel member 3013 to adjust each of the internal optical lenses 3011 fixed in its internal space.
  • the optical lens 3012 calibrates the camera module, that is, adjusts the camera module lens 3010 to calibrate the camera module.
  • the outer optical lens 3012 and the lens barrel component A fixed connection between 3013 is pre-assembled with the mirror mount 3024.
  • the step (1005) includes the following steps: step (10051) energizing the pre-assembled camera module to acquire imaging of the camera module; and step (10052) calculating the camera according to an optical method according to imaging of the camera module
  • the adjustment manner and the adjustment amount of the module lens 3010 include the adjustment manner and the adjustment amount of the external optical lens 3012 and/or the adjustment manner and the adjustment amount of the lens barrel member 3013; and the step (10053) is performed according to the adjustment amount.
  • the assembly position of the camera module lens 3010 is quantitatively adjusted.
  • the outer optical lens 3012 and the lens barrel member 3013 and the outer optical lens 3012 and the lens holder 3024 are passed between the external optical lens 3012 and the lens barrel member 3013.
  • Dispensing such as thermosetting glue, is then cured to secure the pre-assembled outer optical lens 3012 to complete assembly of the camera module.
  • the external optical lens 3012 can be directly fixed between the lens barrel member 3013 and the lens holder 3024, that is, the camera module lens 3010 is fixed to the photosensitive device 3020, and can not be fixed after being fixed. Adjusting and completing the assembly of the camera module, but this assembly method will make the optical back focus of the fixed focus module have tolerances, and the obtained module quality is unstable, and the optical back focus of each module needs to be adjusted again. .
  • a camera module includes the camera module lens 3010 and a photosensitive device 3020A.
  • the photosensitive device 3020A includes a sensor chip 3021A, and the camera module lens 3010 is disposed on the sensor chip.
  • the photosensitive path of the 3021A After the light reflected by the object enters the inside of the camera module through the camera module lens 3010, it is received and photoelectrically converted by the sensor chip 3021A, so that in the subsequent process, the camera mode The group is able to obtain images related to the object.
  • the photosensitive device 3020A further includes a filter 3022A, a circuit board 3023A and a lens holder 3024A.
  • the photosensitive device 3020A adopts a flip chip, and the photosensitive chip 3021A is located at the lens holder.
  • the bottom of the 3024A is directly connected to the lens holder 3024A, and the photosensitive chip 3021A and the filter 3022A are respectively located at the top and bottom of a boss of the inner wall of the lens holder 3024A, wherein the photosensitive
  • the chip 23A maintains a distance from the circuit board 3023A.
  • the lens holder 3024A has an electrical function to ensure imaging of the camera module.
  • the height of the photosensitive device 3020A in the implementation of the present modification is small, not only can meet the assembly requirements of the module with a small back focal length, but also shorten the length of the assembled tolerance chain, and the photosensitive chip 3021A and the imaging module are
  • the group lens 3010 minimizes the tolerance of the assembly position, improving the assembly accuracy thereof.
  • the photosensitive chip 3021A is directly disposed on the lens holder 3024A, it is not required to be mounted on the circuit board 3023A, and the influence of the unevenness of the circuit board on the photosensitive chip can be eliminated, thereby further ensuring the imaging mode.
  • the imaging quality of the group since the photosensitive chip 3021A is directly disposed on the lens holder 3024A, it is not required to be mounted on the circuit board 3023A, and the influence of the unevenness of the circuit board on the photosensitive chip can be eliminated, thereby further ensuring the imaging mode. The imaging quality of the group.
  • a camera module lens 3010B includes four inner optical lenses 3011B, an outer optical lens 3012B, and a barrel member 3013B.
  • Each of the inner optical lenses 3011B is disposed along the height direction of the barrel member 3013B.
  • the outer optical lens 3012B is fixed to the barrel member 3013 at the bottom of the barrel member 3013B, and each of the inner optical lenses 3011B and the The outer optical lens 3012B is located on the optical path of the camera module lens 3010B.
  • Each of the inner optical lenses 3011B is fixed to the inner space of the barrel member 3013B piece by piece in order, wherein each of the inner optical lenses 3011B and the barrel member 3013B are connected and fixed by using a spacer.
  • the edge of the outer optical lens 3012B has a light blocking layer 30121B formed by coating black rubber on the outer side of the outer optical lens 3012B, and the black rubber is preferably a thermosetting adhesive.
  • the light blocking layer 30121B completely covers the entire side surface of the outer optical lens 3012B, and prevents the camera module lens 3010B from leaking light.
  • a camera module lens 3010C includes at least one internal optical lens 3011C, at least one external optical lens 3012C, and a lens barrel member 3013C, wherein each of the internal optical lenses 3011C is disposed in the In the housing chamber 30131C of the barrel member 3013C, the external optical lens 3012C is disposed at the bottom of the barrel member 3013C and outside the barrel member 3013C, and the internal optical lens 3011C and each The outer optical lens 3012C is located on the optical path of the camera module lens 3010C.
  • three pieces of the inner optical lens 3011C are included, respectively being a first internal An optical lens 30111C, a second inner optical lens 30112C and a third inner optical lens 30113C, wherein the first inner optical lens 30111C is pre-assembled in an inner space at the top of the lens barrel member 3013C as an adjustable lens.
  • the spatial position of the assembled position relative to the barrel member 3013C is adapted to be adjusted in at least one direction including one or more of horizontal, vertical, oblique, and circumferential directions.
  • the first internal optical lens 30111C is pre-assembled using glue, wherein the glue is preferably a mixed glue of UV glue and thermosetting glue, and the first internal optical lens 30111C is pre-assembled by UV curing and semi-curing. After the lens barrel member 3013C is adjusted later, the glue is baked and fully cured to fix the first internal optical lens 30111C. Those skilled in the art may also choose other methods to pre-assemble the adjustable lens.
  • the second inner optical lens 30112C and the third inner optical lens 30113C are combined to form an integral lens assembly, and the fitting between the two can be selected by using a spacer or direct glue, and then the lens is connected.
  • the assembly is fixed to the inner space of the middle and bottom of the barrel member 3013C, and may be fixed by welding or glue.
  • the second inner optical lens 30112C and the third inner optical lens 30113C may be fixed to the lens barrel member 3013C in a single piece.
  • one or more of the inner optical lenses 3011C may be selected as the adjustable lens, or the outer optical lens 3012C may be pre-assembled at the bottom of the lens barrel member 3013C at the same time.
  • the assembly position of the external optical lens 3012C is adjustable, and the external optical lens 3012C is also adjusted as an adjustable lens in a subsequent process, and the camera lens is calibrated by adjusting the adjustment lens assembly position.
  • the optical center of the 3010C is calibrated and then fixed to the adjustable lens to improve its manufacturing yield.
  • the lens barrel member 3013C has at least one adjustment channel 30131C, and the adjustment channel 30131C is disposed at a position of the lens barrel member 3013C where the adjustable lens is mounted, and the setting of the adjustment channel 30131C in the preferred embodiment a position corresponding to an assembled position of the first inner optical lens 30111C, wherein the adjustment passage 30131C communicates an inner space of the barrel member 3013C with an external environment to facilitate passage from the mirror through an external adjustment device An outer portion of the barrel member 3013C projects into the adjustment passage 30131C to contact the first inner optical lens 30111C to adjust an assembly position of the first inner optical lens 30111C.
  • the present preferred embodiment is provided with four adjustment passages 30131C in the outer circumferential direction of the barrel member 3013C, and each of the adjustment passages 30131C is evenly distributed on the barrel member 3013C.
  • the top portion corresponds to the first inner optical lens 30111C, and each of the adjusting channels 30131C is spaced apart from each other by 90° so as to adjust the first inner optical lens 30111C from different directions to ensure the precision of the adjustment.
  • the lens barrel member 3013C has at least one fixed passage 30132C, which is disposed at the top of the barrel member 3013C, corresponding to the first internal optical lens 30111C, and is adjusted after the first internal optical lens 30111C is used.
  • the dispensing device secures the first inner optical lens 30111C by the fixed channel 30132C.
  • the embodiment is implemented as four fixed passages 30132C, which are spaced apart from each other by 90°, and both correspond to the edges of the first inner optical lens 30111C, so as to be fixed from a plurality of places to ensure a fixed position. Firmness.
  • some glue may be injected into each of the fixed channels 30132C to facilitate sealing the fixed channel 30132C at the same time, preventing dust from entering, and preventing lens leakage.
  • the first inner optical lens 30111C can also be fixed by injecting glue through the adjusting channel 30131C, especially when the inner optical lens is to be disposed in the inner space of the middle or the bottom of the barrel member 3013C.
  • the adjustment lens corresponding to the adjustable lens is usually used to fix the adjustable lens, and more glue is injected while sealing the adjustment channel.
  • the outer optical lens 3012C When the outer optical lens 3012C is used as a tunable lens, it can be directly adjusted by the device and then fixed by dispensing or fully curing the glue for pre-assembly.
  • a light blocking layer 30121C is disposed on the edge of the outer optical lens 3012C, wherein the light blocking layer 30121C must completely cover the entire side surface of the outer optical lens 3012C to prevent the camera module lens 3010C from leaking light. And preventing external stray light from entering the inside of the camera module lens 3010C to ensure the imaging quality of the camera module lens 3010C.
  • the light blocking layer 30121 is disposed by coating a black glue on the outer side of the outer optical lens 3012.
  • the black glue may be a thermosetting adhesive, and the light blocking layer 30121C is formed after curing.
  • a camera module including the above-described camera module lens 3010C will be explained.
  • a camera module includes a camera module lens 3010C and a photosensitive device 3020C.
  • the photosensitive device 3020C includes a sensor chip 3021C, and the camera module lens 3010C is disposed on the sensor chip 3021C.
  • On the photosensitive path when the light reflected by the object enters the inside of the camera module through the camera module lens 3010C, it is received and photoelectrically converted by the sensor chip 3021C, so that in the subsequent process, the camera module Ability to obtain images related to objects.
  • the photosensitive device further includes a filter 3022C, a circuit board 3023C, and a lens holder 3024C.
  • the filter 3022C is mounted inside the lens holder 3024C and disposed above the photosensitive chip 3021C, wherein the photosensitive chip 3021C is mounted above the circuit board 3023C, the circuit board
  • the 3023C is mounted on the bottom of the lens holder 3024C such that the photosensitive chip 3021 is located in a cavity inside the lens holder 3024C, and a distance is maintained between the photosensitive chip 3021C and the lens holder 3024C. It is not in direct contact, that is, the photosensitive device 3020C is fabricated by a COB (chip on board) process.
  • the outer optical lens 3012C is disposed between the barrel member 3013C and the lens holder 3024C, that is, the top of the outer optical lens 3012C is connected to the bottom of the barrel member 3013C, and the outer optical lens 3012C
  • the bottom portion is connected to the top of the lens holder 3024C, bears on the lens holder 3024C, is supported by the lens holder 3024C, and each of the inner optical lens 3011C and each of the outer optical lenses 3012C are disposed on
  • the central axis of the camera module lens 3010C can be coincident with the central axis of the photosensitive chip 3021C or within a range allowed by the deviation to ensure the imaging quality of the camera module.
  • the other internal optical lens 3011C and the external optical lens 3012C may be used as adjustable lenses to adjust the central axis of the camera module lens 3010C.
  • the external optical lens 3012C is used as the adjustable lens, the external optical lens 3012C and the lens holder 3024C need to be pre-assembled, and the external optical lens 3012C cannot be fixed to the lens holder 3024C with respect to the mirror.
  • the assembly position of the seat 3024C is adjustable.
  • the assembly method 1100 of the camera module includes the following steps:
  • Step (1103) disposing the light blocking layer 30121C on the outer side of the outer optical lens 3012C to complete assembly of the camera module lens 3010C;
  • the step (1101) to the step (1103) are the assembly steps of the camera module lens 3010C.
  • the other inner optical lenses 3011C except the adjustable lens may be fixed to the inner space of the lens barrel member 3013C one by one, or may be fitted Forming an integral lens assembly and then fixing it to the inner space of the barrel member 3013C, wherein the first inner optical lens 30111C is pre-assembled as a tunable lens with glue, and the assembly position is adjusted in a subsequent process. .
  • the lens barrel member 3013C may be simultaneously The black plastic is coated on the interface of the outer optical lens 3012C, and the light blocking layer 30121C can be formed, and the outer optical lens 3012C can be connected to the lens barrel member 3013C, thereby reducing assembly steps and saving time. Improve product manufacturing efficiency and reduce costs.
  • the outer optical lens 3012C may be connected to the barrel member 3013C, and then the outer side of the outer optical lens 3012C may be coated with black rubber to set the light blocking layer 30121C, and the selection may be made according to actual conditions.
  • the light blocking layer 30121C may be disposed before the assembly of the external optical lens 3012C, and may of course be disposed after assembly.
  • the outer optical lens 3012C and the lens barrel may be joined together by applying a glue to the top surface edge of the outer optical lens 3012C or by applying a glue to the bottom surface of the lens barrel member 3013C.
  • the components 3013C may or may not be fixedly connected, and the two are pre-assembled, and the external optical lens 3012C is used as an adjustable lens, so that the assembly position of the lens barrel component 3013C and the external optical lens 3012C. It is suitable to be adjusted in at least one direction in a subsequent process.
  • a glue is applied to the bottom surface edge of the outer optical lens 3012C or a top surface of the lens holder 3024C is glued between the outer optical lens 3012C and the lens holder 3024C.
  • the glue is preferably a thermosetting glue, or both Pre-assembly is performed such that the assembled position of the outer optical lens 3012C relative to the photosensitive chip 3021C is adapted to be adjusted in at least one direction.
  • the pre-assembly glue is suitable for pre-assembly of the mixed glue of the UV glue and the thermosetting glue, the glue is semi-cured after UV exposure to achieve pre-assembly, and is completely cured after being baked. Further, the outer optical lens 3012C is fixed to the lens holder 3024C and the barrel member 3013C.
  • the adjustment of the camera module lens 3010C can be performed by adjusting the inner optical lens 3011C, the outer optical lens 3012C, and/or the lens barrel member 3013C as the adjustable lens.
  • the optical path of the camera module lens 3010C is adjusted such that the central axis of the camera module lens 3010C coincides with the central axis of the sensor chip 3021C or within a range allowed by the deviation, thereby enabling the camera module. Imaging meets the expected resolution requirements.
  • the camera module lens can be adjusted in the following manner by pre-assembly of the adjustable lens: (1) adjusting the assembly position of the lens barrel member 3013C
  • the camera module performs calibration, that is, adjusting the inner optical lens 3011C fixed to the inner space thereof and the pre-assembled adjustable lens by adjusting the lens barrel member 3013C, in other words, in this case
  • the outer optical lens 3012C is pre-assembled with the barrel member 3013C, and is fixedly connected with the lens holder 3024C; (2) the lens barrel member 3013C and the outer optical lens 3012C are respectively adjusted.
  • the camera module performs calibration.
  • the outer optical lens 3012C is pre-assembled with the barrel member 3013C and the lens holder 3024C; (3) the lens barrel member 3013C is simultaneously adjusted.
  • the external optical lens 3012C calibrates the camera module, that is, adjusts the camera module lens 3010C to calibrate the camera module.
  • the external optical lens 3012C and the The cylinder member 3013C is fixedly connected with each other, and pre-assembled with the lens holder 3024C; (4) adjusting the assembly position of the adjustable lens, thereby adjusting the central axis of the camera module lens 3010C;
  • the adjustment of the tunable lens is combined with the adjustment of the barrel member 3013C and the external optical lens 3012C in (1) to (3) above to calibrate the camera module.
  • the step (1105) includes the following steps: step (11051) energizing the pre-assembled camera module, and acquiring the camera module for imaging; step (11052) calculating the camera according to an optical method according to imaging of the camera module The adjustment mode and the adjustment amount of the module lens 3010C; the step (11053) quantitatively adjusts the assembly position of the camera module lens 3010C according to the adjustment amount.
  • the external optical lens 3012C and the lens barrel member 3013C and the external optical lens 3012C and the lens holder are passed.
  • the internal optical lens 3011C completes the assembly of the camera module.
  • the external optical lens 3012C may be directly fixed between the lens barrel member 3013C and the lens holder 3024C, and may not be adjusted after being fixed, only by adjusting the internal optical lens 3011C as an adjustable lens.
  • the assembly position calibrates the imaging module image, and then fixes it to complete the assembly of the camera module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一可调光学镜头(1010,2010)和摄像模组及其制造方法和应用,其中所述摄像模组包括:一感光芯片(1021,2021)和一可调光学镜头(1010,2010);其中所述可调光学镜头(1010,2010)包括一光学结构件(1013,2013)和至少两光学镜片(1011,2011),每个所述光学镜片(1011,2011)被沿着光学结构件(1013,2013)的高度方向被设置于所述光学结构件(1013,2013)的内部空间,其中至少一光学镜片(1011,2011)适于被调节地预组装于光学结构件(1013,2013)内部;其中所述光学结构件(1013,2013)的侧壁设有至少一调整通道(10131,20131),所述调整通道(10131,20131)与预组装的所述光学镜片(1011,2011)相对,以便通过所述调整通道(10131,20131)调节所述光学镜片(1011,2011)的位置,使得所述可调光学镜头(1010,2010)和所述感光芯片(1021,2021)的中心轴线重合。

Description

可调光学镜头和摄像模组及其制造方法和应用 技术领域
本发明涉及摄像模组领域,更进一步,涉及一可调光学镜头和摄像模组及其制造方法和应用。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
所述摄像模组包括一光学镜头和一感光芯片,所述光学镜头被设置于所述感光芯片的感光路径,被物体反射的光线能够自所述光学镜头进入所述摄像模组的内部并被所述感光芯片接收和进行光电转化,从而在后续所述摄像模组能够获得与物体相关的影像。随着所述摄像模组在各个行业和领域的应用的进一步深化,市场上也对所述摄像模组的成像品质提出了更为苛刻的要求。然而,由于所述摄像模组的封装工艺和所述摄像模组的所述光学镜头的制造工艺的限制,现阶段市场上的所述摄像模组很难满足市场对于高品质的所述摄像模组的使用需求。具体地说,所述光学镜头一般由多个镜片相互重叠地封装在一起制成,在所述光学镜头中,每个镜片的中心轴线的位置会影响所述光学镜头作为一组镜片集整体的中心轴线,最理想的情况是每个镜片的中心轴线重合在一起,然而由于封装工艺的限制,每个镜片的中心轴线会存在一定的偏差,另外由于每个镜片需要通过胶水或者焊接的方式被设置于镜头壳,在这个过程中,胶水和焊接物质也会影响到每个镜片的位置和倾斜度,以至于导致将每个镜片相互地重叠后封装于所述镜头壳形成的所述光学镜头的中心轴线存在较大的偏差。当将所述光学镜头和所述感光芯片封装在一起而形成所述摄像模组的过程中,很难保证所述光学镜头的中心轴线与所述感光芯片的中心轴线保持一致,而一旦所述光学镜头的中心轴线与所述感光芯片的中心轴线存在偏差,则必然导致所述摄像模组的成像品质受到较大的 影响,从而导致所述摄像模组的产品良率很难被控制和保证。因此,在所述摄像模组被制造的过程中,如何保证所述摄像模组在被制造后的成像品质以及在解决这个问题的过程克服一系列问题成为亟需解决的技术难点。
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步,并且在近年来,摄像模组在诸如医疗、安防、工业生产等诸多的领域都得到了广泛的应用。
所述摄像模组包括一光学镜头和一感光芯片,所述光学镜头被设置于所述感光芯片的感光路径,被物体反射的光线能够自所述光学镜头进入所述摄像模组的内部并被所述感光芯片接收和进行光电转化,从而在后续所述摄像模组能够获得与物体相关的影像。随着所述摄像模组在各个行业和领域的应用的进一步深化,市场上也对所述摄像模组的成像品质提出了更为苛刻的要求。然而,由于所述摄像模组的封装工艺和所述摄像模组的所述光学镜头的制造工艺的限制,现阶段市场上的所述摄像模组很难满足市场对于高品质的所述摄像模组的使用需求。具体地说,所述光学镜头一般由多个镜片相互重叠地封装在一起制成,在所述光学镜头中,每个镜片的中心轴线的位置会影响所述光学镜头作为一组镜片集整体的中心轴线,最理想的情况是每个镜片的中心轴线重合在一起,然而由于封装工艺的限制,每个镜片的中心轴线会存在一定的偏差,另外由于每个镜片需要通过胶水或者焊接的方式被设置于镜头壳,在这个过程中,胶水和焊接物质也会影响到每个镜片的位置和倾斜度,以至于导致将每个镜片相互地重叠后封装于所述镜头壳形成的所述光学镜头的中心轴线存在较大的偏差。当将所述光学镜头和所述感光芯片封装在一起而形成所述摄像模组的过程中,很难保证所述光学镜头的中心轴线与所述感光芯片的中心轴线保持一致,而一旦所述光学镜头的中心轴线与所述感光芯片的中心轴线存在偏差,出现偏心、倾斜现象,则必然导致所述摄像模组的成像品质受到较大的影响,导致摄像模组解像力不达标,从而导致所述摄像模组的产品良率很难被控制和保证。因此,在所述摄像模组被制造的过程中,如何保证所述摄像模组在被制造后的成像品质以及在解决这个问题的过程克服一系列问题成为亟需解决的技术难点。
在摄像模组领域,随着摄像头模组应用领域的扩增及摄像模组市场竞争的日益激烈,各大厂家不断改进其技术,其中较低的摄像模组制造成本、较高的生产 效率及较高的成像质量是成为摄像模组制造厂家不断追逐的目标,也是其市场竞争的关键所在。
常规手机摄像模组由于组装或者物料的倾斜,通常会存在像糊,为解决因为组装或者物料倾斜引起的像糊,提出了一种通过调节镜头中一片或者一组的方式,组装完成后的模组通过调整镜头可动部分的水平、垂直、倾斜、旋转几个方向中的至少一个方向,达到调整镜头光学径路的目的,最终使镜头光轴与芯片垂直或者在偏差允许的范围内,最终达到解决模组像糊的目的,但是如何在摄像模组组装简单、成本较低的情况下,更好的调整镜片以及调整后如何进行固定以保证良好的成像品质成为摄像模组领域亟待解决的问题。
随着摄像模组应用领域的逐渐扩大,各行各业对摄像模组的需求不断增加,同时对摄像模组的质量要求也越来越高,这就对摄像模组制造行业提出了更高的要求,以使摄像模组能够在较低的成本下获得较高的成像质量。
在常规的摄像模组组装工序中,镜头是一个独立组装的部件,其包括镜筒(包括光阑)、镜片、隔圈、压环(stopper)等结构,其组装过程包括:将隔圈与镜片按次序装入镜筒,用胶水或压环固定最后一枚镜片实现镜头的组装。上述组装方式的组装公差包括:镜片与隔圈的组装公差、镜片与镜头的组装公差。因此,这种组装方式的组装公差链过长,组装成本高,镜片的组装位置精度比较差,影响镜头质量,进而影响整个摄像模组及其应用的产品的质量。
因此,如何改进摄像模组的组装来缩短组装公差链、降低制造成本、提高其成像品质成为摄像模组领域亟待解决的问题。
发明内容
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头包括一光学结构件和至少两光学镜片,每个所述光学镜片被相互重叠地设置于所述光学结构件的内部空间,并且至少一个所述光学镜片在所述光学结构件的内部空间的位置被可调。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中通过改变所述光学镜片在所述光学结构件的内部空间的位置能够调整所述可调光学镜头的中心轴线,例如在调整所述光学镜片在所述光学结构件的内部空间的位置后,能够使得作每个所述光学镜片形成的镜片组的中心轴线与所述可 调光学镜头的中心轴线重合,从而提高所述可调光学镜头的产品良率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片在所述光学结构件的内部空间的位置能够被进行至少一个方向的调整。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片在所述光学结构件的内部空间的水平位置能够被调整。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片在所述光学结构件的内部空间的高度位置能够被调整。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片在所述光学结构件的内部空间的倾斜位置能够被调整。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片在所述光学结构件的内部空间可以被调整做旋转运动。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述光学结构件设有至少一调整通道,当所述光学镜片被封装于所述光学结构件的内部空间而形成所述可调光学镜头时,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,通过所述调整通道能够在所述光学结构件的外部环境调整所述光学镜片在所述光学结构件的内部空间的位置,以便于操作。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中在将所述可调光学镜头和一感光芯片封装而制造所述摄像模组的过程中,所述可调光学镜头的至少一个所述光学镜片在所述光学结构件的内部空间的位置被可调,以保证所述摄像模组的所述可调光学镜头的中心轴线和所述感光芯片的中心轴线重合。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中当所述光学镜片在所述光学结构件的内部空间的位置被调整之后,将被调整后的所述光学镜片首先封装于所述光学结构件,然后再封装所述可调光学镜头和所述感光芯片,通过这样的方式,在封装所述可调光学镜头和所述感光芯片 的过程中,能够防止被调整后的所述光学镜片与所述感光芯片的位置发生偏移,从而保证所述摄像模组的可靠性。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中在封装所述摄像模组的过程中,通过将所述可调光学镜头的中心轴线和所述感光芯片的中心轴线调整到允许的偏差范围内,能够提供所述摄像模组的产品良率,并改善所述摄像模组的成像品质。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头包括一光阑,所述光阑设置于一光学结构件的顶部位置,相对于所述光学结构件的位置被可调。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中通过将光学镜片预组装到光学结构件中,调节到满足解像力要求后进行固定,形成固定的摄像模组,改变了目前的摄像模组的制造方法,减少了整个摄像模组的加工工序,能够解决目前摄像模组组装方法中存在的组装公差过大,组装公差链过长的制程缺陷。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中缩减了后续的测试工序,降低了测试成本,而且生产成本低,效率高。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片和/或所述光阑相对于所述光学结构件的位置能够被进行至少一个方向的调节。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片和/或所述光阑相对于所述光学结构件的水平位置能够被调节。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片和/或所述光阑相对于所述光学结构件的高度位置能够被调节。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片和/或所述光阑相对于所述光学结构件的倾斜位置能够被调节。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述可调光学镜头的所述光学镜片和/或所述光阑相对于所述光学结构 件的空间位置可以被调节做旋转运动。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中所述光学结构件设有至少一调整通道,当所述光学镜片被封装于所述光学结构件的内部空间而形成所述可调光学镜头时,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,通过所述调整通道能够在所述光学结构件的外部环境调节所述光学镜片在所述光学结构件的内部空间的位置,以便于操作。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中在将所述可调光学镜头和一感光芯片封装而制造所述摄像模组的过程中,所述可调光学镜头的至少一个所述光学镜片在所述光学结构件的内部空间的位置被可调,以保证所述摄像模组的所述可调光学镜头的中心轴线和所述感光芯片的中心轴线重合。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中当所述光学镜片在所述光学结构件的内部空间的位置被调节之后,将被调节后的所述光学镜片和所述光阑首先封装于所述光学结构件,然后再封装所述可调光学镜头和所述感光芯片,通过这样的方式,在封装所述可调光学镜头和所述感光芯片的过程中,能够防止被调节后的所述光学镜片与所述感光芯片的位置发生偏移,从而保证所述摄像模组的可靠性。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中在封装所述摄像模组的过程中,通过将所述可调光学镜头的中心轴线和所述感光芯片的中心轴线调节到允许的偏差范围内,能够提供所述摄像模组的产品良率,并改善所述摄像模组的成像品质。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中采用该方法制得的摄像模组结构上更加紧凑,且制造方法简单。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中以摄像模组的成像质量作为标准对可调光学元件的组装位置进行校准,可以使摄像模组拥有更高的成像品质。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,主要解决镜头及光学结构件部分的设计,以使其内部的一片或者一组光学镜片可调及调整后完好的固定的问题。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应 用,通过调整摄像模组光学系统中的一片或者一组镜片,解决模组因物料或者组装引起的倾斜问题,从而可以提高摄像模组的产品良率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,通过调整镜片形成可调光学镜头,可有效避免镜头本身的不良,进而降低镜头单价,有利于厂家降低摄像模组的制造成本,提高产品在同行业的竞争力。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,光学结构件的端面设有至少一调整通道,通过真空吸取镜片或者治具夹取镜片对光学结构件端面的镜片进行光学调整,提高校准的精度。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,光学结构件的顶部开设至少一调整通道,镜片在与调整通道对应处留有调整槽,便于从外部抓取镜片进行调整,调整较为简单,易于操作。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,光学结构件的侧面设有至少一调整通道,便于对光学结构件中的任意一片或者一组镜片进行调整,增大可调镜片的调整数量及范围,以便于更加精准的校正可调光学镜头的光学路径。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,调整镜片的位置与固定镜片的位置适于选择为同一位置,通过调整通道固定校准调整后的光学镜片,降低制造成本。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,在光学结构件上设置至少一固定通道,以通过固定通道固定调整后的光学镜片,其中固定通道与调整通道不在同一位置,增加选择性,更加便捷。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中调整通道将光学结构件的内部空间和外部环境相连通,以从光学结构件的外部调整光学结构件内部的光学镜片,保证调整的精度。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中固定通道将光学结构件的内部空间和外部环境相连通,通过在固定通道中注入胶水将调整后的光学镜片进行固定。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中可通过将胶水注入到可调光学镜片的顶部表面或者侧面将其固定。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应 用,其中通过将可调镜片预组装于光学结构件的顶部,从光学结构件顶部的光束入射位置对其进行调整,调整方法简单方便。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中将第一片光学镜片设为调整镜片,通过真空吸附或机械抓取等方式进行调整,然后固定,不需在光学结构件上设置调整通道或/和固定通道,调整方法较简单。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,能够缩短镜头组装公差链,减少组装成本,提高摄像模组的成像质量。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,各内部光学镜片之间嵌合组装,对镜筒部件的加工精度以及光学镜片与镜筒部件之间的组装精度要求较低,有利于降低成本。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,各内部光学镜片之间嵌合后再组装于镜筒部件中,改变了传统的单片组装的工艺,使组装公差链变短,提高组装效率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,作为外部光学镜片的最后一片光学镜片未安装于镜筒部件中,而是在镜筒部件的外部与镜筒部件底部之间连接,可有效降低镜筒部件的加工精度以及光学镜片与镜筒部件之间的组装精度,降低了成本,提高了成像质量。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,作为外部光学镜片的最后一块光学镜片外侧设置挡光层,能够阻止外部光线从非光束入射通道进入,同时能够防止镜头漏光,能够保证镜头具有较高的质量,挡光层较薄,有利于减轻摄像模组镜头的重量。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中外部光学镜片未安装于镜筒部件内部,而是直接承靠在镜座上,因此,镜筒部件与镜座之间的组装公差不会影响摄像模组的成像质量,并且缩短了镜头的组装公差链,有利于提高生产效率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中通过将最后一片光学镜片设置于镜筒外部与镜座之间,能够减小镜头到感光芯片之间的距离,可以实现较小镜头后焦距,有利于摄像模组向轻薄化的方向发展。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中至少一片内部光学镜片作为可调镜片,调整后使得摄像模组镜头的中心轴线与感光芯片的中心轴线重合或在偏差允许的范围内,以校准摄像模组的成像质量,保证摄像模组在制造完成后具有较高的成像品质。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中将外部光学镜片预组装于镜筒部件和镜座之间,适于通过调整外部光学镜片和/或镜筒部件调整摄像模组镜头的光学路径,进而对摄像模组成像进行校准,提高摄像模组的成像质量及制造良率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,通过设置可调镜片,能够校准镜头的后焦距及调节摄像模组的成像质量,在组装过程中完成校准,可以大幅度的提升摄像模组的制造良率和产品性能。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,其中通过设置可调镜片,使得摄像模组在制造过程中完成校准,省去了后续的调焦步骤,减少工序、节约成本、提高效率。
本发明的一个目的在于提供一可调光学镜头和摄像模组及其制造方法和应用,组装方法简单可行、易操作,适于推广应用。
为了实现以上至少一目的,本发明的一方面提供一摄像模组,其包括:
一感光芯片;和
一可调光学镜头,所述可调光学镜头位于所述感光芯片的感光路径;
其中所述可调光学镜头包括
一光学结构件;和
至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,其中至少一镜片适于被调节地预组装于所述光学结构件内部;其中所述光学结构件的侧壁设有至少一调整通道,所述调整通道连通于所述光学结构件的内部空间和外部环境,且所述调整通道与预组装的所述光学镜片相对,以便于通过所述调整通道调节所述光学镜片的位置,使得所述可调光学镜头和所述感光芯片的中心轴线重合。
根据一些实施例,所述的摄像模组中预组装的所述光学镜片通过胶水于组装于所述光学结构件的内部,所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固定, 以固定整个所述可调光学镜头。
根据一些实施例,所述的摄像模组中所述可调光学镜头包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节,且所述光阑通过将胶水半固化的进行预组装。
根据一些实施例,所述的摄像模组中所述光阑设有至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调整后的所述光学镜片。
本发明的另一方面提供一摄像模组,其包括:
一感光装置,所述感光装置包括一感光芯片;和
一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径,其中所述可调光学镜头包括五个光学镜片,分别为第一光学镜片、一第二光学镜片、一第三光学镜片、一第四光学镜片和一第五光学镜片,五个所述光学镜片依次重叠地沿着所述感光芯片感光路径安装于所述光学结构件内部,且所述第一镜片和所述第二镜片可调节地预组装于所述光学结构件内部;
其中所述光学结构件设有两调整通道,分别连通于所述光学结构件的内部空间和外部环境,并分别与所述第一镜片和所述第二镜片相对,以通过所述调整通道调节所述第一镜片和所述第二镜片在所述光学结构件内部的空间位置。
根据一些实施例,所述的摄像模组中所述光学结构件的内壁分别相间隔地设有五个限位结构,分别为第一限位结构、一第二限位结构、一第三限位结构、一第四限位结构和一第五限位结构,分别承载所述第一镜片、所述第二镜片、所述第三镜片、所述第四镜片和所述第五镜片。
根据一些实施例,所述的摄像模组中所述可调光学镜头包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节,且所述光阑通过将胶水半固化的进行预组装。
根据一些实施例,所述的摄像模组中所述光阑设有至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调整后的所述光学镜片。
本发明的另一方面提供一摄像模组,其包括:
一可调光学镜头;和
一感光装置,其中所述感光装置设有一感光芯片,所述可调光学镜头被设置 于所述感光芯片的感光路径;
其中可调光学镜头包括
四光学镜片,分别为一第一光学镜片、一第二光学镜片、一第三光学镜片和一第四光学镜片;和
一光学结构件,四片所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述光学结构件的顶部设有至少一调整通道,所述调整通道将所述光学结构件的内部空间和外部环境相连通,并且所述调整通道与所述第一光学镜片相对,以便于通过所述调整通道调整所述第一光学镜片,并且通过所述调整通道注入胶水,将所述第一光学镜片固定。
根据一些实施例,所述的摄像模组中通过所述调整通道将胶水注入至所述第一光学镜片的侧面与相对应的所述光学结构件的内壁之间,通过将所述第一光学镜片的侧面与所述光学结构件的内壁进行固定连接来固定所述第一光学镜片。
根据一些实施例,所述的摄像模组中通过所述调整通道将胶水注入至所述第一光学镜片的顶部表面,通过所述第一光学镜片的顶部表面与所述光学结构件的内壁进行固定来固定所述第一光学镜片。
根据一些实施例,所述的摄像模组中所述感光装置包括一滤光片、一线路板和一镜座,所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内壁的腔体中。
根据一些实施例,所述的摄像模组中所述光学结构件顶部沿着一圆周方向设置三个调整通道,彼此相隔120°。
根据一些实施例,所述的摄像模组中所述第一光学镜片顶部表面被设置有至少二调整槽,与所述调整通道相对。
本发明的另一方面提供一摄像模组,其包括:
一可调光学镜头;和
一感光装置,其中所述感光装置设有一感光芯片,所述可调光学镜头被设置于所述感光芯片的感光路径;
其中可调光学镜头包括
四光学镜片,分别为一第一光学镜片、一第二光学镜片、一第三光学镜片和一第四光学镜片;和
一光学结构件,四片所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述光学结构件的侧面设有至少一调整通道,所述光学结构件的顶部设置至少一固定通道,所述调整通道和所述固定通道将所述光学结构件的内部空间和外部环境相连通,并且所述调整通道与所述第一光学镜片侧面相对,以便于通过所述调整通道调整所述第一光学镜片,所述固定通道与所述第一光学镜片的顶部表面相对,以便于通过所述固定通道注入胶水,将所述第一光学镜片固定。
根据一些实施例,所述的摄像模组中所述调整通道沿着所述光学结构件与所述第一光学镜片相对应的外侧的一圆周方向设置为三个,彼此相隔120°。
根据一些实施例,所述的摄像模组中所述感光装置包括一滤光片、一线路板和一镜座,所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内壁的腔体中。
本发明的另一方面提供一摄像模组,其包括:
一摄像模组镜头;和
一感光装置,其中所述感光装置包括一感光芯片,所述摄像模组镜头被设置于所述感光芯片的感光路径;
其中所述摄像模组镜头包括
三内部光学镜片;
至少一外部光学镜片;和
一镜筒部件;其中三所述内部光学镜片分别为一第一内部光学镜片、一第二内部光学镜片和一第三光学镜片,所述镜筒部件具有一收容腔,三个所述内部光学镜片被设置于所述收容腔中,所述外部光学镜片被设置于所述镜筒部件的底部并且位于所述镜筒部件的外部,其中所述镜筒部件侧壁具有至少一调整通道,与所述第一内部光学镜片相对应,所述第一内部光学镜片被可调整地预组装于所述镜筒部件。
根据一些实施例,所述的摄像模组中各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
根据一些实施例,所述的摄像模组中所述镜筒部件顶部具有至少一固定通道,与所述第一内部光学镜片相对应,以便于通过所述固定通道点胶固定所述第一内部光学镜片。
根据一些实施例,所述的摄像模组中所述镜筒部件具有四个所述固定通道,彼此间隔90°。
根据一些实施例,所述的摄像模组中所述第二内部光学镜片和所述第三内部光学镜片嵌合组成一整体的镜片组件。
根据一些实施例,所述的摄像模组中所述感光装置进一步包括一滤光片、一线路板和一镜座,其中所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内部腔体中,所述外部光学镜片被设置于所述镜筒部件与所述镜座之间。
本发明另方面提供一可调光学镜头,其包括:
一光学结构件;和
至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向设置于所述光学结构件的内部空间,其中至少一个所述光学镜片在所述光学结构件的内部空间的位置被可调。
根据本发明的一个优选的实施例,所述光学结构件设有至少一调整通道以连通于所述光学结构件的内部空间和外部环境,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,以通过所述调整通道调整所述光学镜片在所述光学结构件的内部空间的位置。
根据本发明的另一个方面,本发明还提供一摄像模组,其包括:
一感光芯片;和
一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径,其中所述可调光学镜头包括一光学结构件和至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向设置于所述光学结构件的内部空间,在封装所述可调光学镜头和所述感光芯片之前,通过调整至少一个所述光学镜片在所述光学结构件的内部空间的位置使所述光学镜头的中心轴线和所述感光芯片的中心轴线重合,以改善所述摄像模组的成像品质。
根据本发明的一个优选的实施例,所述光学结构件设有至少一调整通道以连通于所述光学结构件的内部空间和外部环境,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,以通过所述调整通道调整所述光学镜片在所述光学结构件的内部空间的位置。
根据本发明的一个优选的实施例,所述光学镜片的外壁与所述光学结构件的内壁之间形成一间隙。
根据本发明的一个优选的实施例,形成于所述光学镜片的外壁与所述光学结构件的内壁之间的所述间隙的尺寸为大于或者等于3微米。
根据本发明的另一个方面,本发明还提供一制造一摄像模组的方法,所述制造方法包括如下步骤:
(a)将一可调光学镜头设置于一感光芯片的感光路径;
(b)通过调整所述可调光学镜头的至少一光学镜片的位置,使所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合;以及
(c)封装所述可调光学镜头和所述感光芯片,以制成所述摄像模组。
根据本发明的一个优选的实施例,在所述步骤(b)中,通过调整所述可调光学镜头的一个所述光学镜片的位置,使所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合。
根据本发明的一个优选的实施例,在上述方法中,通过调整所述可调光学镜头的处于最外侧的所述光学镜片的位置,使所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合。
根据本发明的一个优选的实施例,在上述方法中,至少调整所述光学镜片的水平方向、垂直方向、倾斜方向和圆周位置中的至少一个方向。
根据本发明的一个优选的实施例,在上述方法中,在一光学结构件的内部空间调整所述光学镜片的位置之后,封装被调整所述的光学镜片与所述光学结构件。
根据本发明的一个优选的实施例,在上述方法中,在所述光学结构件的侧部设至少一调整通道以对应于被设置于所述光学结构件的内部空间的所述光学镜片,通过所述调整通道在所述光学结构件的外部环境调整被设置于所述光学结构件的内部空间的所述光学镜片的位置。
根据本发明的另一个方面,本发明还提供一制造一摄像模组的方法,其中所述制造方法包括如下步骤:
(A)将一光学结构件半成品设置于一感光芯片的感光路径;
(B)将至少一光学镜片设置于所述光学结构件半成品,以形成一可调光学镜头;
(C)调整所述光学镜片在所述光学结构件的内部空间的位置,以使所述 可调光学镜头的中心轴线与所述感光芯片的中心轴线重合。
根据本发明的一个优选的实施例,所述制造方法还包括步骤:
(D)固定所述光学镜片与所述光学结构件。
根据本发明的一个优选的实施例,通过点胶的方式固定所述光学镜片与所述光学结构件。
根据本发明的一个优选的实施例,在所述步骤(A)中将所述光学结构件设置于所述感光芯片的感光路径,在所述步骤(B)中,将每个所述光学镜片沿着所述光学镜头件的高度方向相互重叠地设置于所述光学结构件的内部空间。
根据本发明的一个优选的实施例,在所述步骤(A)中,被设置于所述感光芯片的感光路径的所述光学结构件半成品包括一个所述光学结构件和被预设于所述光学结构件的内部空间的至少一个所述光学镜片,在所述步骤(B)中,将其余的所述光学镜片设置于所述光学结构件的内部空间。
本发明的另一方面提供一可调光学镜头,包括:
一光学结构件;和
至少二光学镜片,各所述光学镜片沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,其中至少一个所述光学镜片在所述光学结构件内部的空间位置适于被调节。
根据本发明一实施例,所述光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,适于被调节的所述光学镜片在所述光学结构件的内部对应于所述调整通道,以通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
根据本发明一实施例,适于被调节的所述光学镜片在所述光学结构件内部的空间位置适于被进行至少一个方向的调节。
根据本发明一实施例,适于被调节的所述光学镜片通过胶水预组装于所述光学结构件的内部,所述胶水为半固化状态。
根据本发明一实施例,所述可调光学镜头进一步包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节。
根据本发明一实施例,所述光阑的组装位置相对于所述光学结构件的位置适于被进行至少一个方向的调节。
根据本发明一实施例,所述光阑通过将胶水半固化进行预组装。
根据本发明一实施例,预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
根据本发明一实施例,在所述光阑位置处设置至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调节后的所述光学镜片。
根据本发明的另外一方面,本发明提供一可调光学镜头,包括:
一光学结构件;
至少一光学镜片,所述光学镜片沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,并加以固定;和
一光阑,所述光阑预组装于所述光学结构件的顶部,并位于所述光学镜片的顶侧,其中所述光阑的组装位置相对于所述光学结构件的空间位置适于被调节。
根据本发明一实施例,所述光阑通过将胶水半固化进行预组装。
根据本发明一实施例,预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定所述光阑。
根据本发明一实施例,所述光阑的组装位置适于被进行至少一个方向的调节。
根据本发明一实施例,所述光学结构件的内壁设有至少一限位结构,适于承载所述光学镜片。
根据本发明的另外一方面,本发明提供一摄像模组,包括:
一感光装置,所述感光装置包括一感光芯片;和
一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括一光学结构件、至少一光学镜片和一光阑,各所述光学镜片被沿着所述光学结构件的高度方向安装于所述光学结构件的内部空间,所述光阑设置于所述光学结构件的顶部,并位于所述光学镜片的顶侧,其中至少一个所述光学镜片被预组装于所述光学结构件的内部空间,在封装所述可调光学镜头和所述感光装置之前,预组装的所述光学镜片在所述光学结构件内部的组装位置适于被调节,调节后使得所述摄像模组成像满足解像要求。
根据本发明一实施例,所述光学结构件的侧壁设有至少一调整通道,以连通 于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
根据本发明一实施例,预组装的所述光学镜片在所述光学结构件内部的空间位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,与每个预组装的所述光学镜片相对应的所述光学结构件的侧壁均设置三个所述调整通道,彼此相隔120°,适于调节预组装的所述光学镜片在各所述调整通道位置处的水平及垂直位置。
根据本发明一实施例,预组装的所述光学镜头通过将胶水半固化的方式实现预组装。
根据本发明一实施例,预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
根据本发明一实施例,所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件固定于所述镜头座的顶侧。
根据本发明一实施例,所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述光学结构件,并位于所述光学镜片的底侧,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定。
根据本发明的另外一方面,本发明提供一摄像模组,包括:
一感光装置,所述感光装置包括一感光芯片;和
一可调光学镜头,所述可调光学镜头设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括一光学结构件、至少一光学镜片和一光阑,其中各所述光学镜片被沿着所述光学结构件的高度方向安装于所述光学结构件的内部空间,所述光阑预组装于所述光学结构件的顶部,其中在封装所述可调光学镜头和所述感光装置之前,所述光阑的组装位置相对于所述光学结构件的空间位置适于被调节,调节后所述摄像模组成像满足解像要求。
根据本发明一实施例,至少一个所述光学镜片预组装于所述光学结构件的内 部空间,在封装所述可调光学镜头和所述感光装置之前,预组装的所述光学镜片的在所述光学结构件内部的空间位置适于被调节。
根据本发明一实施例,所述光学镜片的组装位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,所述光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
根据本发明一实施例,与每个预组装的所述光学镜片相对应的所述光学结构件的侧壁均设置三个所述调整通道,彼此相隔120°,适于调节预组装的所述光学镜片在各所述调整通道位置处的水平及垂直位置。
根据本发明一实施例,在所述光阑位置处设置至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水进行固化来固定调节后的所述光学镜片。
根据本发明一实施例,所述光阑的组装位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,所述光阑通过将胶水半固化的方式预组装于所述光学结构件的顶部。
根据本发明一实施例,预组装的所述光学镜片通过将胶水半固化的方式预组装于所述光学结构件的内部空间。
根据本发明一实施例,预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
根据本发明一实施例,所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件固定于所述镜头座的顶侧。
根据本发明一实施例,所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述光学结构件,并位于所述光学镜片的底侧,所述感光芯 片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定。
根据本发明的另外一方面,本发明提供一摄像模组的制造方法,包括以下步骤:
(A)将一可调光学镜头设置于一感光装置包括的一感光芯片的感光路径上;
(B)将一可调光学元件预组装于所述可调光学镜头,完成摄像模组的预组装;
(C)调节所述可调光学元件的组装位置,使得调节后的所述摄像模组成像满足解像要求;以及
(D)封装所述可调光学镜头和所述感光装置,进而得以固定所述摄像模根
根据本发明一实施例,所述可调光学元件为至少一光学镜片,在所述步骤(B)中,将至少一个所述光学镜片预组装于所述可调光学镜头,通过调节预组装的所述光学镜片的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,所述可调光学元件为一光阑,在所述步骤(B)中,将所述光阑预组装于所述可调光学镜头的顶部,通过调节所述光阑的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,其中所述可调光学元件为一光阑和至少一光学镜片,在所述步骤(B)中,将所述光阑和至少一个所述光学镜片预组装于所述可调光学镜头,通过调节所述光阑和预组装的所述光学镜片的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
根据本发明一实施例,在上述方法中,在所述可调光学镜头包括的一光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
根据本发明一实施例,在所述步骤(D)中,通过在所述调整通道点胶的方式密封所述调整通道,并进行烘烤,固化预组装用的胶水和点胶的胶水,以固定调节后的所述光学镜片,进而得以固定整个所述摄像模组。
根据本发明一实施例在所述步骤(D)中,通过在所述调整通道点胶的方式 密封所述调整通道,并进行烘烤,固化预组装用的胶水和点胶的胶水,以固定调节后的所述光学镜片和所述光阑,进而得以固定整个所述摄像模组。
根据本发明一实施例,在所述步骤(D)中,在所述光阑位置处设置至少一注胶通道,所述注胶通道与预组装的所述光学镜片相对应,通过在所述注胶通道中注入胶水,并进行烘烤,固化预组装的胶水和注胶的胶水,以固定调节后的所述光学镜片,进而得以固定整个所述摄像模组。
根据本发明一实施例,在所述步骤(D)中,在所述光阑位置处设置至少一注胶通道,所述注胶通道与预组装的所述光学镜片相对应,通过在所述注胶通道中注入胶水,并进行烘烤,固化预组装的胶水和注胶的胶水,以固定调节后的所述光学镜片和所述光阑,进而得以固定整个所述摄像模组。
根据本发明一实施例,在上述方法中,至少通过调节所述可调光学元件的水平方向、垂直方向、倾斜方向和圆周方向中的至少一个方向来调节所述可调光学元件的组装位置。
根据本发明一实施例,在上述方法中,通过胶水预组装所述可调光学元件,其中预组装用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现所述步骤(B)中的所述可调光学元件的预组装,在所述步骤(D)中,经过烘烤处理后,所述胶水会完全固化,以固定整个所述摄像模组。
根据本发明一实施例,所述步骤(C)包括以下步骤:
(C1)采集预组装的所述摄像模组成像;
(C2)根据所述摄像模组成像使用软件计算所述可调光学元件的调节量;以及
(C3)按照调节量调节所述可调光学元件的组装位置。
根据本发明一实施例,在所述步骤(C)中,如果调节所述可调光学元件后,所述摄像模组成像不符合解像要求,则需要重复所述步骤(C1)-(C3),直至调节后的所述摄像模组成像符合解像要求。
根据本发明一实施例,在所述步骤(C1)中,对预组装完成的所述摄像模组进行通电,采集所述摄像模组成像,其中所述摄像模组成像采集基于所述摄像模组对MTF测试标版的拍摄,用MTF值来表征模组的成像质量,MTF值越大,所述摄像模组的成像质量越高,每次采集完所述摄像模组成像,均需计算出相应图像的MTF值,检验MTF值是否大于标准要求,若MTF值大于或等于标准要 求,采集完成;若MTF值小于标准要求,需要再次采集。
根据本发明一实施例,每次采集图像的过程中,严格控制所述摄像模组的拍摄环境参数,包括所述MTF测试标版与所述摄像模组的距离和光源参数,以保证图像采集的精确性及一致性,便于执行后续的调节步骤。
根据本发明一实施例,在所述步骤(C2)中,采用软件对所述可调光学元件的组装位置的调节适于基于对镜头光学设计灵敏度的研究,采用软件对所述可调光学元件的组装位置调节量的计算方法包括:(1)测量出所述摄像模组校准前的光学特性,包括MTF值、光轴偏心量、光轴倾斜角度和场曲;以及(2)根据所述可调光学元件的组装位置对光轴偏心量、光轴倾斜角度、场曲的灵敏度分别计算出所述可调光学元件所需的组装位置调节量。
根据本发明一实施例,在所述步骤(A)中,通过组装所述可调光学镜头与所述感光装置实现摄像模组包括的部分光学元件的固定组装,其中所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述可调光学镜头除所述可调光学元件之外的其他元件均固定于所述镜头座的顶侧,组装固定过程中,控制上述各元件的组装公差在允许的范围内。
根据本发明一实施例,在所述步骤(A)中,通过组装所述可调光学镜头与所述感光装置实现摄像模组包括的部分光学元件的固定组装,其中所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述可调光学镜头包括的光学结构件,并位于所述光学镜片的底侧,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定,组装固定过程中,控制上述各元件的组装公差在允许的范围内。
本发明的另一方面提供一可调光学镜头,包括:
至少一光学镜片;和
一光学结构件,各所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述至少一片所述光学镜片作为可调镜片,其组装位置适于被调整,所述光学结构件设有至少一调整通道和至少一固定通道,适于分别通过所述调整通道和所述固定通道调整和固定所述可调镜片。
根据本发明一实施例,所述固定通道和所述调整通道在所述光学结构件的设 置位置相同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
根据本发明一实施例,所述固定通道和所述调整通道在所述光学结构件的设置位置不同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
根据本发明一实施例,所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
根据本发明一实施例,所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
根据本发明一实施例,所述调整通道和所述固定通道均设于所述光学结构件的顶部。
根据本发明一实施例,所述调整通道和所述固定通道均设于所述光学结构件的侧面。
根据本发明一实施例,所述调整通道设于所述光学结构件的侧面,所述固定通道设于所述光学结构件的顶部。
根据本发明一实施例,所述调整通道设于所述光学结构件的顶部,所述固定通道设于所述光学结构件的侧面。
根据本发明一实施例,将一外部调整装置伸入到所述调整通道与所述可调镜片相接触来调整所述可调镜片的组装位置,其中所述可调镜片的组装位置适于被进行至少一个方向的调整,以校准所述可调光学镜头的光学路径。
根据本发明一实施例,所述外部调整装置具有自动化功能,适于记录所述可调镜片的调整方式和调整量,或者适于在所述外部调整装置中输入所述可调镜片的调整方式及调整量。
根据本发明一实施例,使用一点胶设备通过所述固定通道将胶水注入到所述可调镜片的边缘,固化后得以固定被调整后的所述可调镜片。
根据本发明一实施例,所述胶水适于注入到所述可调镜片的顶部表面,通过固定将所述可调镜片顶部表面与所述光学结构件的内壁来固定所述可调镜片。
根据本发明一实施例,所述胶水适于注入到所述可调镜片的侧面,通过固定 将所述可调镜片侧面与所述光学结构件的内壁来固定所述可调镜片。
根据本发明一实施例,所述可调镜片具有至少一调整槽,所述调整槽被设于所述可调镜片的边缘,适于将一外部调整装置通过所述调整通道伸入到所述调整槽调整所述可调镜片的组装位置。
根据本发明的另一方面,本发明还提供一摄像模组,包括:
一感光芯片;和
一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括至少一光学镜片和一光学结构件,各所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述至少一片所述光学镜片作为可调镜片,其组装位置适于被调整,所述光学结构件设有至少一调整通道和至少一固定通道,适于分别通过所述调整通道和所述固定通道调整和固定所述可调镜片。
根据本发明一实施例,所述固定通道和所述调整通道在所述光学结构件的设置位置相同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
根据本发明一实施例,所述固定通道和所述调整通道在所述光学结构件的设置位置不同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
根据本发明一实施例,所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
根据本发明一实施例,所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
根据本发明的另一方面,本发明还提供一摄像模组的校准方法,所述方法包括以下步骤:
(A)将至少一光学镜片组装于一光学结构件的内部空间,并被设置于一感光芯片的感光路径上,其中将至少一片所述光学镜片作为可调镜片进行预组装,使其组装位置被可调,固定除所述可调镜片以外的其余所述光学镜片,完成一可调光学镜头的预组装;
(B)通过设于所述光学结构件的至少一调整通道调整所述可调镜片,使所述摄像模组成像满足解像要求;以及
(C)通过设于所述光学结构件的至少一固定通道调整所述可调镜片,完成所述摄像模组的校准。
根据本发明一实施例,在所述步骤(A)中,将预组装完成的所述可调光学镜头与一感光装置相组装,或者将所述光学结构件于所述感光装置组装后再组装各所述光学镜片。
根据本发明一实施例,所述步骤(B)包括以下步骤:(B1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(B2)根据所述摄像模组成像计算所述可调镜片的调整方式和调整量;以及(B3)根据调整量调整所述可调镜片。
根据本发明一实施例,在所述步骤(B3)中,将一外部调整装置伸入到所述调整通道并与所述可调镜片相接触对所述可调镜片的组装位置的至少一个方向进行调整,调整后使得所述可调光学镜头的中心轴线与一感光芯片的中心轴线重合或者在偏差允许的范围内。
根据本发明一实施例,在上述方法中,所述外部调整装置具有自动化功能,适于记录所述可调镜片的调整方式和调整量,或者适于在所述外部调整装置中输入所述可调镜片的调整方式及调整量对所述可调镜片进行定量调整。
根据本发明一实施例,在上述方法中,所述外部调整装置通过机械抓取或者真空吸附的方式对所述可调镜片进行调整。
根据本发明一实施例,在所述步骤(C)中,使用一点胶设备通过所述固定通道将胶水注入到所述可调镜片的边缘,固化后得以固定被调整后的所述可调镜片。
根据本发明一实施例,在所述步骤(C)中,将胶水注入到所述可调镜片的顶部表面,通过固定将所述可调镜片顶部表面与所述光学结构件的内壁来固定所述可调镜片。
根据本发明一实施例,在所述步骤(C)中,将胶水注入到所述可调镜片的侧面,通过固定将所述可调镜片侧面与所述光学结构件的内壁来固定所述可调镜片。
根据本发明的另一方面,本发明还提供一摄像模组的校准方法,所述方法包 括以下步骤:
(a)将一光学结构件组装于一感光装置;
(b)将至少一光学镜片组装于所述光学结构件的中部或底部的内部空间中,并加以固定;
(c)将一可调镜片预组装于所述光学结构件顶部的内部空间中,完成所述摄像模组的预组装;
(d)校准预组装的所述摄像模组,使所述摄像模组成像满足解像要求;以及
(e)固定所述可调镜片,完成所述摄像模组的校准。
根据本发明一实施例,所述步骤(d)包括以下步骤:(d1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(d2)根据所述摄像模组成像计算所述可调镜片的调整方法和调整量;以及(d3)根据调整量调整所述可调镜片,进而得以校准所述摄像模组。
根据本发明一实施例,在上述方法中,使用一外部调整装置通过所述光学结构件顶部的光束入射位置接触所述可调镜片,对所述可调镜片的组装位置进行至少一个方向的调整。
根据本发明一实施例,在上述方法中,所述外部调整装置通过机械抓取或者真空吸附的方式对所述可调镜片进行调整。
根据本发明一实施例,在所述步骤(e)中,通过所述光学结构件顶部的光束入射位置注入胶水,通过胶水固化将所述可调镜片固定于所述光学结构件的内部空间。本发明的另一方面提供一摄像模组镜头,包括:
至少一内部光学镜片;
至少一外部光学镜片;以及
一镜筒部件,各所述内部光学镜片按照预定次序被设置于所述镜筒部件的内部空间,各所述外部光学镜片沿着所述镜筒部件的高度方向被设置于所述镜筒部件的外部,其中各所述内部光学镜片与各所述外部光学镜片均位于所述摄像模组镜头的光学路径上。
根据本发明一实施例,各所述内部光学镜片彼此嵌合组装为一个整体,被固定于所述镜筒部件中。
根据本发明一实施例,相邻的所述内部光学镜片之间使用隔圈进行嵌合或者 通过胶水直接进行嵌合。
根据本发明一实施例,至少一片所述内部光学镜片被预组装于所述镜筒部件中,作为可调镜片,所述可调镜片的组装位置相对于所述镜筒部件的空间位置适于被进行至少一个方向的调整。
根据本发明一实施例,沿着所述镜筒部件的外侧圆周方向设有至少一调整通道,各所述调整通道将所述镜筒部件的内部空间和外部环境相连通,其中各所述调整通道均与各所述可调镜片相对应,适于通过所述调整通道调整所述可调镜片的组装位置,以调整所述摄像模组镜头的光学路径。
根据本发明一实施例,使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道。
根据本发明一实施例,第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
根据本发明一实施例,所述外部光学镜片固定于所述镜筒部件的底部,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面相连接。
根据本发明一实施例,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件的底部,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面相连接,其中所述外部光学镜片相对于所述镜筒部件的组装位置均适于被进行至少一个方向的调整。
根据本发明一实施例,各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
根据本发明一实施例,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层。
根据本发明的另一方面,本发明还提供一摄像模组,包括:
一感光装置,所述感光装置包括一感光芯片和一镜座;和
一摄像模组镜头,所述摄像模组镜头被设置于所述感光芯片的感光路径上,其中所述摄像模组镜头包括至少一内部光学镜片、至少一外部光学镜片以及一镜筒部件,各所述内部光学镜片按照预定次序被设置于所述镜筒部件的内部空间,各所述外部光学镜片被设置于所述镜筒部件和所述镜座之间,其中各所述内部光 学镜片与各所述外部光学镜片均位于所述感光芯片的感光路径上。
根据本发明一实施例,所述外部光学镜片固定于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边缘和底部表面边缘分别与所述镜筒部件的底部表面和所述镜座的顶部表面之间均固定连接。
根据本发明一实施例,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边缘和底部表面边缘分别与所述镜筒部件的底部表面和所述镜座的顶部表面相连接,均不固定,其中所述外部光学镜片及所述镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整,调整后得以使所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
根据本发明一实施例,所述外部光学镜片被预组装于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面之间固定连接,所述外部光学镜片的底部表面边缘与所述镜筒部件的底部表面之间预组装,不做固定,使得所述摄像模组镜头相对于所述感光芯片的组装位置适于被进行至少一个方向的调整,调整后得以使所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
根据本发明一实施例,所述外部光学镜片通过胶水预组装于所述镜座,预组装用的所述胶水为UV胶与热固胶的混合胶,经紫外曝光半固化实现预组装,调整后将所述胶水完全固化得以固定所述外部光学镜片。
根据本发明的另一方面,本发明还提供一摄像模组镜头的组装方法,所述方法包括以下步骤:
(A)将至少一内部光学镜片按照预定次序安装于一镜筒部件的内部空间;
(B)将至少一外部光学镜片沿着所述镜筒部件的高度方向安装于所述镜筒部件底部的外部空间;以及
(C)完成所述摄像模组镜头的组装。
根据本发明一实施例,所述方法进一步包括一步骤(D):在所述外部光学镜片的外侧设置一挡光层,其中适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
根据本发明的另一方面,本发明还提供一摄像模组的组装方法,所述方法包括以下步骤:
(a)将至少一内部光学镜片按照预定次序安装于一镜筒部件的内部空间;
(b)将至少一外部光学镜片沿着所述镜筒部件的高度方向安装于所述镜筒部件的外部空间;
(c)在所述外部光学镜片的外侧设置一挡光层,完成所述摄像模组镜头的组装;
(d)将所述摄像模组镜头设置于一感光芯片的感光路径上;
(e)完成所述摄像模组的预组装;以及
(f)封装所述摄像模组镜头和所述感光芯片,完成所述摄像模组的组装。
根据本发明一实施例,在所述步骤(a)中,预先将各所述内部光学镜片按照预定次序彼此嵌合组装为一个整体,然后固定于所述镜筒部件的内部空间。
根据本发明一实施例,在所述步骤(a)中,将各所述内部光学镜片按照预定次序逐片地固定于所述镜筒部件的内部空间。
根据本发明一实施例,在所述步骤(a)中,将至少一片所述内部光学镜片作为可调镜片预组装于所述镜筒部件的内部空间,其中所述可调镜片的组装位置相对于所述镜筒部件的内部空间适于被进行至少一个方向的调整。
根据本发明一实施例,所述镜筒部件设有至少一调整通道,各所述调整通道连通于所述镜筒部件的内部空间和外部环境,并与所述可调镜片相对应,适于使用一外部调整装置通过所述调整通道接触所述可调镜片的外侧,以调整所述可调镜片的组装位置,调整后使得所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
根据本发明一实施例,使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道。
根据本发明一实施例,第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
根据本发明一实施例,在所述步骤(b)及所述步骤(d)中,所述外部光学镜片固定于所述镜筒部件和一镜座之间,其中通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水使二者固定地连接,通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水使二者固定的连接。
根据本发明一实施例,在所述步骤(b)及所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水进行二者之间的预组装,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水进行二者之间的预组装,其中所述外部光学镜片和所述镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
根据本发明一实施例,在所述步骤(b)及所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水使二者固定的连接,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水进行二者之间的预组装,其中所述摄像模组镜头相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
根据本发明一实施例,在所述步骤(b)及所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水进行二者之间的预组装,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水使二者固定的连接,其中镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
根据本发明一实施例,所述步骤(e)包括以下步骤:(e1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(e2)根据摄像模组成像调整计算所述可调镜片的调整方式和调整量;以及(e3)按照调整量对所述可调镜片进行调整,使得所述摄像模组成像满足解像要求。
根据本发明一实施例,在所述步骤(f)中,对所述可调镜片进行点胶固定,完成所述摄像模组的组装。
根据本发明一实施例,在所述步骤(c)中,适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
根据本发明一实施例,在所述步骤(c)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
附图说明
图1是根据本发明的第一个优选实施例的可调光学镜头的立体结构示意图。
图2是根据本发明的上述第一个优选实施例的可调光学镜头的剖视示意图。
图3是根据本发明的上述第一个优选实施例的摄像模组的剖视示意图。
图4是根据本发明的上述第一个优选实施例的摄像模组的制造方法流程图。
图5是根据本发明的第二个优选实施例的可调光学镜头的光学结构件的立体结构示意图。
图6是根据本发明的上述第二个优选实施例的摄像模组的制造过程示意图之一。
图7是根据本发明的上述第二个优选实施例的摄像模组的制造过程示意图之二。
图8是根据本发明的上述第二个优选实施例的摄像模组的制造方法流程图。
图9是根据本发明的第三个优选实施例的摄像模组的立体结构示意图。
图10是根据本发明的上述第三个优选实施例的摄像模组的剖视示意图。
图11是根据本发明的上述第三个优选实施例的摄像模组的制造方法流程图。
图12是根据本发明的第四个优选实施例的摄像模组的立体结构示意图。
图13是根据本发明的上述第四个优选实施例的摄像模组的剖视示意图。
图14是根据本发明的上述第四个优选实施例的摄像模组的制造方法流程图。
图15是根据本发明的第五个优选实施例的摄像模组的立体结构示意图。
图16是根据本发明的上述第五个优选实施例的摄像模组的剖视示意图。
图17是根据本发明的上述第五个优选实施例的摄像模组的制造方法流程图。
图18是根据本发明的第六个优选实施例的摄像模组的剖视示意图。
图19是根据本发明的上述第六个优选实施例的摄像模组的剖视示意图。
图20是根据本发明的上述第六个优选实施例的摄像模组的一种变形实施方式的剖视示意图。
图21是根据本发明的第七个优选实施例的摄像模组的立体结构示意图。
图22是根据本发明的上述第七个优选实施例的摄像模组的剖视示意图。
图23是根据本发明的第八个优选实施例的摄像模组的剖视示意图。
图24是根据本发明的上述第八个优选实施例的摄像模组的一种变形实施方式的剖视示意图。
图25是根据本发明的上述第八个优选实施例的摄像模组的另一种变形实施方式的剖视示意图。
图26是根据本发明的第九个优选实施例的摄像模组的剖视示意图。
图27是根据本发明的上述第九个优选实施例的摄像模组的局部放大图。
图28至图30是根据本发明的第十个优选实施例的摄像模组组装过程中的剖视示意图。
图31是根据本发明的第六至第十个优选实施例的摄像模组的校准方法流程图。
图32是根据本发明的第十个优选实施例的摄像模组的校准方法流程图。
图33是根据本发明的第十一个优选实施例的摄像模组镜头的立体结构示意图。
图34是根据本发明的上述第十一个优选实施例的摄像模组镜头的剖视示意图。
图35是根据本发明的上述第十一个优选实施例的摄像模组的剖视示意图。
图36是根据本发明的上述第一个优选实施例的摄像模组的组装方法示意图。
图37是根据本发明的上述第十一个优选实施例的摄像模组的一种变形实施。
图38是根据本发明的上述第十一个优选实施例的摄像模组镜头的一种变形实施。
图39是根据本发明的第十二个优选实施例的摄像模组镜头的立体结构示意图。
图40是根据本发明的上述第十二个优选实施例的摄像模组镜头的剖视示意图。
图41是根据本发明的上述第十二个优选实施例的摄像模组的剖视示意图。
图42是根据本发明的上述第一个优选实施例的摄像模组的组装方法流程图。
图43是根据本发明的上述第十二个优选实施例的摄像模组的组装方法流程图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以 下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
参考图1和图2,根据本发明的一个优选实施例的可调光学镜头1010在接下来的描述中将被阐明,其中所述可调光学镜头1010的中心轴线在所述可调光学镜头1010被制造完成之后能够再次被调节,以便于在后续所述可调光学镜头1010被应用于成像系统时,能够根据成像系统的具体参数调节所述可调光学镜头1010的中心轴线。具体地说,所述可调光学镜头1010包括一光学结构件1013和至少两光学镜片1011,每个所述光学镜片1011被沿着所述光学结构件1013的高度方向设置于所述光学结构件1013的内部空间,并且至少一个所述光学镜片1011在所述光学结构件1013的内部空间的位置被设置可调,通过这样的方式,使得被制造完成的所述可调光学镜头1010的中心轴线在所述可调光学镜头1010被制造完成之后仍然能够根据成像系统的使用需要被可调。
进一步地,所述可调光学镜头1010的所述光学结构件1013设有至少一调整通道10131,每个所述调整通道10131分别连通于所述光学结构件1013的内部空间和外部环境,其中当每个所述光学镜片1011被沿着所述光学结构件1013的高度方向相互重叠地设置于所述光学结构件1013的内部空间后,所述光学镜片1011的外壁对应于所述调整通道10131,以在后续能够通过所述调整通道10131在所述光学结构件1013的外部环境调节所述光学镜片1011在所述光学结构件1013的内部空间的位置,以完成所述可调光学镜头1010的中心轴线的调节。特别地,在本发明的这个实施例中,所述调整通道10131被设置于所述光学结构件1013的侧壁,对应需要调整所述光学镜片1011的位置。更具体地,当需要被调整的所述光学镜片1011被设置于所述光学结构件的内部时,所述光学镜片1011的边缘与所述调整通道10131相对,以便于通过调节元件穿过所述调整通道10131到达所述光学镜片1011的边缘位置,依附所述光学镜片1011的边缘位置调整所述光学镜片1011。当然,在本发明的其它实施例中,所述调整通道10131 还可以被设置于所述光学结构件1013的其它位置,比如,所述光学结构件1013的顶壁,本发明在这方面并不限制。
可以理解的是,所述调整通道10131的位置和数量可以根据需要设置,举例地但不限于,在需要被调整的所述光学镜片1011安装位置设置不同的调整通道,在同一个需要被调整的所述光学镜片1011的位置设置不同数量的所述调整通道10131,比如一个、两个、三个以及三个以上。对应同一所述光学镜片1011的所述调整通道10131的位置可以根据需要设置,比如当所述调整通道10131的数量为两个时,两个所述调整通道可以被设置于同一直径上,当所述调整通道的数量为三个时,三个所述调整通道可以被设置于中心对称的方向,如相互间隔120°的位置,从而使得所述光学镜片1011对称的调整元件的作用,使得调节更加准确、方便,本领域的技术人员应当理解的是,本发明在这方面并不限制。
本领域的技术人员可以理解的是,在上述所揭露的所述可调光学镜头1010的结构中,以处于最外侧的所述光学镜片1011在所述光学结构件1013的内部空间的位置被可调为例,对所述可调光学镜头1010的原理进行描述。具体地说,在这个具体的示例中,所述可调光学镜头1010包括一个所述光学结构件1013和多个被相互重叠地设置于所述光学结构件1013的内部空间的所述光学镜片1011,其中所述光学结构件1013具有至少一个所述调整通道10131,处于最外侧的所述光学镜片1011在所述光学结构件1013的内部空间内处于对应于所述调整通道10131的位置,并且所述光学镜片1011与所述光学结构件1013的内壁不接触,以允许所述光学镜片1011在所述光学结构件1013的内部空间的位置被可调。也就是说,所述光学镜片1011的外壁与所述光学结构件1013的内壁之间具有间隙,其中该间隙的尺寸可以是大于或者等于3微米。通过一个调节元件的端部从所述光学结构件1013的外部插入所述调整通道10131并延伸至所述光学结构件1013的内部空间,以顶住所述光学镜片1011的外壁使所述光学镜片1011在所述光学结构件1013的内部空间的位置被调,从而改变所述可调光学镜头1010的中心轴线,当所述可调光学镜头1010的中心轴线被调节之后,再次将被调节之后的所述光学镜片1011与所述光学结构件1013固定,例如可以通过胶水或者焊接的方式将被调节之后的所述光学镜片1011与所述光学镜头1010固定,以确保所述可调光学镜头1010在被使用的过程中的可靠性。本领域的技术人员能够理解,所述光学镜片1011在所述光学结构件1013的内部空间被可调的距离等于或者小于 所述光学镜片1011的外壁与所述光学结构件1013的内壁之间的间隙。
尽管在本发明的图1和图2中示出了在所述可调光学镜头1010的所述光学结构件1013设有所述调整通道10131的方式来调节所述光学镜片1011在所述光学结构件1013的内部空间的位置的实施方式,本领域的技术人员可以理解的是,其他任何能够调节所述光学镜片1011在所述光学结构件1013的内部空间的相对位置的方式都可以被实施,也都应该被认为是依据本发明的所述可调光学镜头1010的变形实施方式。
如图3所示,本发明还提供了一具有所述可调光学镜头1010的摄像模组,其中所述摄像模组还包括一感光芯片1021,所述可调光学镜头1010被设置于所述感光芯片1021,被物体反射的光线自所述可调光学镜头1010进入所述摄像模组的内部并被所述感光芯片1021接收和进行光电转化,从而所述摄像模组能够生成与物体相关的图像。
在本发明的说明书附图之图3中揭露了所述摄像模组的制造过程,其中在这个过程中,首先将所述可调光学镜头1010设置于所述感光芯片1021的感光路径上,由于所述可调光学镜头1010在被制造的过程中存在一定的误差,导致所述可调光学镜头1010的中心轴线无法被精确的控制,因此在将所述可调光学镜头1010设置于所述感光芯片1021的感光路径之后,通过调节所述光学镜片1011在所述光学结构件1013的内部空间的位置,能够使所述可调光学镜头1010的中心轴线与所述感光芯片1021的中心轴线重合,后续,通过封装所述可调光学镜头1010和所述感光芯片1021完成所述摄像模组的制造。本领域的技术人员可以理解的是,本发明中的所述可调光学镜头1010的中心轴线与所述感光芯片1021的中心轴线重合,是指将所述可调光学镜头1010的中心轴线与所述感光芯片1021的中心轴线的偏差保持在允许的偏差范围内,通过这样的方式,能够提高所述摄像模组的产品良率和保证所述摄像模组的成像品质。
值得一提的是,在调节所述可调光学镜头1010的中心轴线的过程中,不仅能够通过改变所述光学镜片1011在所述光学结构件1013的内部空间的水平位置来调节所述可调光学镜头1010的中心轴线,而且还能够通过改变所述光学镜片1011的在所述光学结构件1013的内部空间的倾斜度来调节所述可调光学镜头1010的中心轴线。更进一步地,在本发明的另一个实施例中,所述光学镜片1011在所述光学结构件1013的内部空间的高度位置也能够依据所述摄像模组的使用 需要被调节,通过这样的方式,使得所述摄像模组的设计更为灵活。
如图4所示,本发明还提供一制造一摄像模组的方法400,其中所述制造方法400包括如下步骤:
步骤(401):将一可调光学镜头1010设置于一感光芯片1021的感光路径;
步骤(402):通过调节所述可调光学镜头1010的至少一光学镜片1011的位置,使所述可调光学镜头1010的中心轴线与所述感光芯片1021的中心轴线重合;以及
步骤(403):封装所述可调光学镜头1010和所述感光芯片1021,以制造完成所述摄像模组。
进一步地,在所述步骤(402)中,通过调节所述可调光学镜头1010的处于最外侧的所述光学镜片1011的位置,能够使所述可调光学镜头1010的中心轴线与所述感光芯片1021的中心轴线重合。值得一提的是,所述可调光学镜头1010的所述光学镜片1011在所述光学结构件1013的内部空间的位置可以被进行至少一个方向的调节,例如水平方向。优选地,所述可调光学镜头1010的所述光学镜片1011在所述光学结构件1013的内部空间的水平方向、垂直方向和倾斜方向中的至少一个方向能够被调节,通过这样的方式能够保证被调节之后的所述可调光学镜头1010组成的所述摄像模组的成像品质。另外,在本发明的另一个优选的实施例中,至少一个所述光学镜片1011在所述光学结构件1013的内部空间也可以被调节做旋转运动,以满足在封装不同类型的所述摄像模组时的使用需要。
进一步地,在所述步骤(402)中,在调节所述光学镜片1011在所述光学结构件1013的内部空间的位置之后,封装被调节的所述光学镜片1011与所述光学结构件1013。通过这样的方式,在封装所述可调光学镜头1010和所述感光芯片1021的过程中,能够避免被调节所述光学镜片1011出现移动的情况,以保证所述摄像模组的成像品质。
更进一步地,在上述方法中,在所述光学结构件1013的侧部设至少一调整通道10131以对应于被设置于所述光学结构件1013的内部空间的至少一所述光学镜片1011,通过所述调整通道10131在所述光学结构件1013的外部环境调节被设置于所述光学结构件1013的内部空间的所述光学镜片1011的位置。
参考图5,根据本发明的第二个优选实施例的可调光学镜头1010A将被阐明,其中所述可调光学镜头1010A包括一光学结构件1013A以及至少两光学镜片 1011A,至少一个所述光学镜片1011A被可调地设置于所述光学结构件1013A。相对于现有技术的光学镜头,本发明的所述可调光学镜头1010A的所述光学结构件1013A和至少一个所述光学镜片1011A是分离的,并且在将所述可调光学镜头1010A与一感光芯片1021A封装制造一摄像模组的过程中,所述光学镜片1011A被依据所述可调光学镜头1010A的中心轴线和所述感光芯片1021A的中心轴线的对应关系被安装于所述光学结构件1013A,通过这样的方式能够改善由所述可调光学镜头1010A组成的所述摄像模组的成像品质。
在本发明的一个优选的实施方式中,每个所述光学镜片1011A都可以在将所述可调光学镜头1010A和所述感光芯片1021A封装而制造所述摄像模组的过程中被依据所述可调光学镜头1010A的中心轴线和所述感光芯片1021A的中心轴线的对应关系被安装于所述光学结构件1013A。在本发明的另一个优选的实施方式中,处于所述可调光学镜头1010A的最外侧的所述光学镜片1011A可以在将所述可调光学镜头1010A和所述感光芯片1021A封装而制造所述摄像模组的过程中被依据所述可调光学镜头1010A的中心轴线和所述感光芯片1021A的中心轴线的对应关系被安装于所述光学结构件1013A。
在将所述光学镜片1011A安装于所述光学结构件1013A之后,将所述光学镜片1011A与所述光学结构件1013A进行固化,通过这样的方式,能够改善所述摄像模组在被制造之后的成像品质。
如图6和图7所示是根据本发明的所述摄像模组的制造流程示意图,其中所述摄像模组可以是定焦摄像模组也可以是变焦摄像模组,变焦摄像模组与定焦摄像模组的区别在于,定焦摄像模组的所述可调光学镜头1010A被直接封装于用于连接所述可调光学镜头1010A和一感光装置1020A的镜座上,其中所述感光装置1020A至少包括一个所述感光芯片1021A,优选地,所述感光装置1020A还可以包括一个被所述感光芯片1021A贴装的线路板,变焦摄像模组的所述可调光学镜头1010A被设置于一个马达,例如音圈马达,所述马达再被设置于所述镜座,从而在变焦摄像模组被使用的过程中,通过所述马达能够驱动所述可调光学镜头1010A在所述感光芯片1021A的感光路径上做相当于所述感光芯片1021A的位移运动。
无论是在制造变焦摄像模组还是在制造定焦摄像模组的过程中,都可以先将所述光学结构件1013A设置于所述感光芯片1021A的感光路径上,然后再将所 述光学镜片1011A设置于所述光学结构件1013A,并且在通过改变所述光学镜片1011A在所述光学结构件1013A的内部空间的位置之后,使所述可调光学镜头1010A的中心轴线与所述感光芯片1021A的中心轴线重合,通过这样的方式,改善被制造完成的所述摄像模组的成像品质。值得一提的是,在将所述光学镜片1011A设置于所述光学结构件1013A并将所述可调光学镜头1010A的中心轴线和所述感光芯片1021A的中心轴线调节重合之后,将所述光学镜片1011A与所述光学结构件1013A固定,例如在一些实施例中,可以通过点胶的方式将所述光学镜片1011A与所述光学结构件1013A固定。
如图8所示,是根据本发明的另一制造一摄像模组的方法800的示意图,其中所述制造方法800包括如下步骤:
步骤(801):将一光学结构件1013A半成品设置于一感光芯片1021A的感光路径;
步骤(802):将至少一光学镜片1011A设置于所述光学结构件1013A半成品,以形成一可调光学镜头1010A;以及
步骤(803):调节所述光学镜片1011A在所述光学结构件1013A的内部空间的位置,以使所述可调光学镜头1010A的中心轴线与所述感光芯片1021A的中心轴线重合。
进一步地,在所述步骤(803)之后还包括步骤:
步骤(804):固定所述光学镜片1011A与所述光学结构件1013A。值得一提的是,在本发明的一个优选实施例中,通过点胶的方式固定所述光学镜片1011A与所述光学结构件1013A。
进一步地,在本发明的一个实施方式中,在所述步骤(801)中,将所述光学结构件1013A设置于所述感光芯片1021A的感光路径,并且在所述步骤(802)中,将每个所述光学镜片1011A沿着所述光学结构件1013A的高度方向相互重叠地设置于所述光学结构件1013A的内部空间。在发明的另一个实施方式中,在所述步骤(801)中被设置于所述感光芯片1021A的感光路径的所述光学结构件1013A半成品包括一个所述光学结构件1013A和被预设于所述光学结构件1013A的内部空间的至少一个光学镜片1011A,从而在所述步骤(802)中,将其余的所述光学镜片1011A设置于所述光学结构件1013A的内部,以形成所述可调光学镜头1010A。
参考图9和图10,本发明的第三个优选实施例的光学镜头可调的摄像模组将被阐述。如图9和图10所示,一种摄像模组,包括一可调光学镜头1010B和一感光装置1020B,其中所述可调光学镜头1010B安装于所述感光装置1020B的感光路径上,被物体反射的光线自所述光学镜头10B进入所述感光装置1020B进行光电转化,从而使得所述摄像模组能够生成与物体相关的图像。
所述感光装置1020B包括一滤色片1022B、一镜头座1024B、一感光芯片1021B和一线路板1023B,其中所述滤色片1022B固定于所述镜头座1024B内壁上部具有的一第一凹槽10241B中,且位于所述感光芯片1021B顶侧的感光路径上,所述感光芯片1021B固定于所述镜头座1024B内壁下部具有的一第二凹槽10242B中,所述感光芯片1021B贴装于所述线路板1023B顶侧,所述线路板1023B固定于所述镜头座1024B的底部,即所述滤色片1022B、所述光学镜头22B、所述感光芯片1021B和所述线路板1023B已经完成彼此之间的组装固定,在后续校准中不可被调节,被物体反射的光线自所述可调光学镜头1010B进入所述摄像模组的内部并被所述感光芯片1021B接收和进行光电转化,从而使得所述摄像模组能够生成与物体相关的图像。
所述可调光学镜头1010B包括一光学结构件1013B和至少一光学镜片1011B,各所述光学镜片1011B被沿着所述光学结构件1013B的高度方向分别安装于所述光学结构件1013B的内部,所述光学结构件1013B连接于所述镜头座1024B的上部,并使得所述光学镜片1011B位于所述感光芯片1021B的感光路径上,其中至少一个所述光学镜片1011B被预组装于所述光学结构件1013B的内部,被预组装于所述光学结构件1013B内部的所述光学镜片1011B在本优选实施例中为可调光学元件,即其在所述光学结构件1013B内部的空间位置适于被调节,由其形成的镜头称为可调光学镜头。
在本优选实施例中,包括五个所述光学镜片1011B,分别为第一光学镜片10111B、第二光学镜片10112B、第三光学镜片10113B、第四光学镜片10114B和第五光学镜片10115B,五个所述光学镜片1011B依次重叠地沿着所述感光芯片1021B的光学路径安装于所述光学结构件1013B的内部,其中所述第三光学镜片10113B、所述第四光学镜片10114B和所述第五光学镜片10115B已预先组装到所述光学结构件1013B中并加以固定,所述第一光学镜片10111B和所述第二光学镜片10112B预组装到所述光学结构件1013B内部,作为可调光学元件在 后续工序中进行调节以校准,提高所述摄像模组的成像质量。
可选地,五个所述光学镜片中的若干个镜片均可以作为固定的镜片,其余光学镜片作为所述可调光学元件,包括所述可调光学元件的镜头称为可调光学镜头,在封装所述可调光学镜头1010B和所述感光装置1020B之前,所述可调光学元件的组装位置适于被调节。
具体地,用胶水1040B将所述第二光学镜片10112B、所述第一光学镜片10111B依次预组装到所述光学结构件1013B中,所述胶水1040B不完全固化,即将所述胶水1040B进行半固化以实现所述第一光学镜片10111B和所述第二光学镜片10112B的预组装,即防止其过度移动,又便于后续的调节。
其中所述胶水1040B采用一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水1040B会半固化实现预组装,经过烘烤处理后,所述胶水1040B会完全固化,以固定所述第一光学镜片10111B和所述第二光学镜片10112B,进而得以固定整个所述摄像模组。
所述可调光学镜头1010B进一步包括一光阑1014B,所述光阑1014B连接于所述光学结构件1013B的顶部,用于导入入射光束,并限制入射光束的大小。在本优选实施例中,将所述第二光学镜片10112B、所述第一光学镜片10111B依次预组装到所述光学结构件1013B内部后,将所述光阑1014B固定地组装于所述光学结构件1013B的顶部,并位于所述第一光学镜片10111B的顶侧,也位于所述感光芯片1021B的感光路径上,所述光阑1014B的中心轴线与所述感光芯片的中心轴线重合,或者保持在偏差允许范围内,以保证所述摄像模组的成像质量。
值得一提的是,在所述光学结构件1013B上设有至少二调整通道10131B,连通所述光学结构件1013B的内部空间和外部环境,并分别与所述第一镜片121B和所述第二镜片122B相对应,以通过所述调整通道10131B调节所述第一镜片121B和所述第二镜片122B在所述光学结构件1013B内部的空间位置。优选地,本实施例实施为六个所述调整通道10131B,其中三个所述调整通道10131B沿着所述第一光学镜片10111B的预组装位置所在的所述光学结构件10131B的侧壁分布并且彼此相隔120°,另外三个所述调整通道10131B沿着所述第二光学镜片10112B的预组装位置所在的所述光学结构件10131B的侧壁分布并且彼此相隔120°。
需要调节所述第一光学镜片10111B和所述第二光学镜片10112B的时候,将一探针插入相应的所述调整通道10131B,通过控制所述探针来拨动所述第一光学镜片10111B和所述第二光学镜片10112B,改变所述第一光学镜片10111B和所述第二光学镜片10112B在其相应的所述调整通道10131B三个位置处的水平及垂直位置,从实现分别对所述第一光学镜片10111B和所述第二光学镜片10112B的向任何一个方向的调节,包括水平位置、垂直位置和倾斜位置。
在本优选实施例中,所述光学结构件1013B可以实施为镜筒,在所述光学结构件1013B的内壁分别相间隔地设有五限位结构10133B,所述限位结构10133B优选为所述光学结构件1013B的内壁向其腔体方向延伸而形成的凸台,得以分别承载五个所述光学镜片1011B,即第一限位结构101331B、第二限位结构101332B、第三限位结构101333B、第四限位结构101334B和第五限位结构101335B分别承载所述第一光学镜片10111B、所述第二光学镜片10112B、所述第三光学镜片10113B、所述第四光学镜片10114B和所述第五光学镜片10115B。其中,本领域的技术人员可以理解的是,所述光学结构件1013B也可以通过其他方式来承载各所述光学镜片1011B。
值得一提的是,所述摄像模组还可以包括驱动器,所述光学结构件1013B可以是驱动器的一个部件。
在本优选实施例中,所述摄像模组可以为定焦摄像模组,也可以为变焦摄像模组。
图11所示为本优选实施例的摄像模组的制造方法1100的流程图,所述摄像模组的制造方法1100包括以下步骤:
步骤(1101):组装固定部分摄像模组组件;
步骤(1102):预组装至少一个所述光学镜片,完成摄像模组的预组装;
步骤(1103):采集预组装的摄像模组成像;
步骤(1104):使用软件计算预组装的所述光学镜片的调节量;
步骤(1105):按照调节量调节预组装的所述光学镜片的组装位置;
步骤(1106):当调节结果满足解像要求时,执行步骤(1107),当调节结果不满足解像要求时,重复步骤(1103)-(1105),直至对预组装的所述光学镜片的调节达到预期要求;以及
步骤(1107):将胶水固化,固定整个摄像模组。
在所述步骤(1101)中,将所述滤色片1022B、所述镜头座1024B、所述感光芯片1021B和所述线路板1023B进行组装固定,以形成所述感光装置1020B,并将所述光学结构件1013B组装固定于所述镜头座1024B上,将所述第三光学镜片10113B、所述第四光学镜片10114B和所述第五光学镜片10115B固定地组装于所述光学结构件1013B的相应的所述限位结构10133B处。
值得一提的是,在该步骤中,要尽量控制上述各元件之间的组装公差,使其尽量保持在公差允许范围内,以免组装公差过大,增加后续的调节量,避免因为组装公差过大导致后学的调节无法进行的情况出现。
在所述步骤(1102)中,将所述第二光学镜片10112B和所述第一光学镜片10111B依次预组装到所述光学结构件1013B内部,使用胶水1040B进行预组装,并将所述胶水1040B在紫外曝光下进行半固化,以完成所述第二光学镜片10112B和所述第一光学镜片10111B的预组装,然后将所述光阑1014B固定地组装于所述光学结构件1013B的顶部,至此完成所述摄像模组组件的预组装于部分固定组装,使得所述摄像模组的镜头为可调光学镜头1010B。
在所述步骤(1103)和所述步骤(1104)中,对预组装完成的所述摄像模组通电,采集模组成像,根据模组成像计算出所述第一光学镜片10111B和所述第二光学镜片10112B各自的组装位置的调节量。
摄像模组成像的采集基于摄像模组对MTF(Modulation Transfer Function,调制传递函数)测试标版的拍摄,用MTF值来表征模组的成像质量,MTF值越大,所述摄像模组的成像质量越高。每次采集完所述摄像模组成像,均需计算出相应图像的MTF值,检验MTF值是否大于标准要求,若MTF值大于或等于标准要求,采集或调节完成;若MTF值小于标准要求,需要再次采集并进行调节。
值得注意的是,每次采集图像的过程中,必须严格控制所述摄像模组的拍摄环境参数,包括标版与所述摄像模组的距离、光源参数等,以保证图像采集的精确性及一致性,便于调节所述可调光学元件的组装位置。
在所述摄像模组的图像采集过程中,除了计算MTF值外,还可以对所述摄像模组的其他特性进行监测,包括污坏点、失真、暗角等。
所述软件对所述可调光学元件的组装位置的调节是基于对镜头系统光学设计的灵敏度的研究,所述软件对所述第一光学镜片10111B和所述第二光学镜片10112B的组装位置的调节的计算方法包括:根据所述摄像模组成像测量出所述 摄像模组在调节前的光学特性,包括MTF值、光轴偏心、光轴倾斜和场曲;以及跟所述第一光学镜片10111B和所述第二光学镜片10112B的组装位置对所述光学特性的灵敏度,计算出所述第一光学镜片10111B和所述第二光学镜片10112B的组装位置调节量。
在所述步骤(1105)和所述步骤(1106)中,根据所述步骤(1104)中计算出来的调节量,分别通过相应的所述调整通道10131B对所述第一光学镜片10111B和所述第二光学镜片10112B的预组装位置进行调节,可以使得所述第一光学镜片10111B和所述第二光学镜片10112B在所述光学结构件1013B中进行适当的旋转,即随所述第一光学镜片10111B和所述第二光学镜片10112B的水平位置、垂直位置或高度位置、倾斜位置进行适当的调节,调节后使得所述第一光学镜片10111B和所述第二光学镜片10112B的中心轴线与所述感光芯片1021B的中心轴线重合或者在允许的偏差范围内,且调节后摄像模组的成像满足解像要求。如果调节后,所述摄像模组的成像依然不满足解像要求,则需要再进一步调节所述第一光学镜片10111B和所述第二光学镜片10112B的组装位置。
每做一次调节,均需要采集一次摄像模组成像,即重复步骤(1103)-(1105),直至摄像模组成像达到要求。
值得一提的是,当所述可调光学元件的按照计算出来的调节量调节到预定位置时,所述摄像模组成像满足解像要求,即认为所述可调光学镜头1010B的中心轴线与所述感光芯片1021B的中心轴线重合或者在偏差允许额的范围内,则调节符合预定要求。
在所述步骤(1107)中,通过烘烤将所述胶水1040B固化,以将调节后符合要求的所述第一光学镜片10111B和所述第二光学镜片10112B固定在所述光学结构件1013B中,并将所述调整通道10131B进行密封,本实施例优选为在所述调整通道10131B中注入胶水或者点胶的方式进行密封,然后烘烤,或者与所述胶水1040B同时烘烤,进而使得密封所述调整通道10131B的胶水和所述胶水1040B同时固化,密封所述调整通道10131B的同时还能起到进一步固定所述第一光学镜片10111B和所述第二光学镜片10112B的作用,进而得以封装所述可调光学镜头1010B和所述感光装置1020B,进而得以固定整个所述摄像模组。
另外,在所述步骤(1107)中,本发明还可以在所述光阑1014B上设置至少一注胶通道10141B来注入胶水以进一步固定调节后的所述第一光学镜片 10111B,可以实施为两个所述注胶通道10141B,即在对所述第一光学镜片10111B或对所述第一光学镜片10111B和所述第二光学镜片10112B进行调节后,将热固胶胶水灌入所述注胶通道10141B中,对所述摄像模组进行烘烤后将所述第一光学镜片10111B进一步完全固定,并且,灌入的胶水在固化后可以同时将所述注胶通道10141B密封。
参考图12和图13,是本发明提供的第四个优选实施例的摄像模组。如图12和图13所示,一摄像模组,包括一可调光学镜头1010C和一感光装置1020C。其中所述可调光学镜头包括一光学结构件1013C、三光学镜片1011C(分别为第一光学镜片10111C、第二光学镜片10112C和第三光学镜片10113C)和一光阑1014C,其中三个所述光学镜片1011C沿着所述光学结构件1013C的高度方向安装于所述光学结构件1013C的内部,并进行固定,所述光阑1014C预组装于所述光学结构件1013C的顶部,位于所述第一光学镜片10111C的顶侧,且保持一定间距,所述光阑1014C的组装位置相对于所述光学结构件1013C的空间位置可进行至少一个方向的调节,例如X、Y、Z方向,在本优选实施例中,所述光阑1014C作为可调光学元件,由其形成的镜头为可调光学镜头;所述感光装置1020C包括一滤色片1022C、一感光芯片1021C和一线路板1023C,其中所述光学结构件1013C同时也是所述感光装置1020C的镜座,所述滤色片1022C固定地安装于所述光学结构件1013C中,并位于所述第三光学镜片10113C的底侧,所述感光芯片1021C固定地安装于所述光学结构件1013C的内部,贴装于所述线路板1023C的顶侧,且位于所述滤色片1022C的底侧,所述镜片12C、所述光阑1014C和所述滤色片1022C均位于所述感光芯片1021C的光学路径上,这样,被物体反射的光线自所述可调光学镜头1010C进入所述摄像模组的内部并被所述感光芯片1021C接收和进行光电转化,从而使得所述摄像模组能够生成与物体相关的图像。
具体地,所述光学结构件1013C的内壁形成一第一凹槽10241C和、一第二凹槽10242C和一第三凹槽223C,依次相间隔地设置于所述光学结构件1013C的顶侧、中部和底侧,其中所述滤色片1022C安装于所述第二凹槽10242C内,所述感光芯片1021C被包容于所述第三凹槽223C内,并于所述线路板1023C的顶侧贴装于所述线路板1023C,所述线路板1023C安装于所述光学结构件1013C的底侧。
所述第一光学镜片10111C固定地安装于所述光学结构件1013C的内壁设有的一第一限位结构101331C,所述第二光学镜片10112C固定地安装于所述光学结构件1013C的内壁设有的一第二限位结构101332C,所述第三光学镜片10113C安装于所述光学结构件1013C的内壁设有的一第三限位结构101333C,所述第一限位结构101331C、所述第二限位结构101332C和所述第三限位结构101333C是由所述光学结构件1013C的内壁向其腔体方向延伸形成的凸台,以分别承载所述第一光学镜片10111C、所述第二光学镜片10112C和所述第三光学镜片10113C。
参考图14,本优选实施例的摄像模组的制造方法1400包括以下步骤:
步骤(1401):组装固定部分摄像模组组件;
步骤(1402):将所述光阑1014C预组装于所述可调光学镜头1010C的顶部;
步骤(1403):采集预组装的摄像模组成像;
步骤(1404):使用软件计算所述光阑1014C的调节量;
步骤(1405):按照调节量调节所述光阑1014C的组装位置;
步骤(1406):当调节结果满足解像要求时,执行步骤(1407),当调节结果不满足解像要求时,重复步骤(1403)-(1405),直至对所述光阑的调节达到预期要求;以及
步骤(1407):将胶水固化,固定整个摄像模组。
在所述步骤(1401)中,对所述摄像模组的部分模组组件进行组装固定,即将所述滤色片1022C、所述感光芯片1021C、所述线路板1023C安装于所述光学结构件1013C的预定位置并进行固定,将所述第三光学镜片10113C、所述第二光学镜片10112C和所述第一光学镜片10111C依次按照预定位置安装于所述光学结构件1013C内部,并加以固定,使得三个所述镜片12C位于所述感光芯片1021C的光学路径上,使得三个所述镜片光学镜片1011C的中心轴线与所述感光芯片1021C的中心轴线重合或者在允许的偏差范围内,并严格控制上述各元件之间的组装公差,以保证摄像模组的成像质量,减少后续调节的工作量。
在所述步骤(1402)中,将所述光阑1014C用胶水1040C通过半固化的方式预组装于所述光学结构件1013C的顶部,使得所述光阑1014C位于所述感光芯片1021C的光学路径上,并相对于所述感光芯片1021C或所述光学结构件1013C的空间位置而言可以被进行至少一个方向的调节。所述胶水1040C优选为 热固胶,能够在紫外曝光下实现半固化进行预组装。
在所述步骤(1403)至所述步骤(1406)中,对预组装完成的摄像模组进行通电,采集摄像模组成像,根据摄像模组成像使用软件算出所述光阑1014C的调节量,按照计算出来的调节量对所述光阑1014C的组装位置进行适当的调节,以使其中心轴线与所述感光芯片1021C的中心轴线重合或者在允许的偏差范围内,即使得所述可调光学镜头1010C的中心轴线与所述感光芯片1021C的中心轴线重合或者在允许的偏差范围内,此时所述摄像模组成像满足解像要求。如果调节所述光阑1014C后,所述摄像模组的成像仍然不满足解像要求,则需要进一步采集摄像模组成像,重新调节所述光阑1014C,直至将其调节到合适的位置后再进行固定。
在所述步骤(1407)中,当所述光阑1014C的调节使得所述摄像模组的成像满足解像要求时,对所述摄像模组进行烘烤,将所述光阑1014C连接所述光学结构件1013C的胶水1040C进行完全固化,进而将整个所述摄像模组进行固定。
可以理解的是,在另外的变形实施例中,本发明的镜片和光阑也可以不经过半固化过程,在位置确定以后直接完全固化。
参考图15和图16,是本发明的第五个优选实施例。如图15和图16所示,一摄像模组,包括一可调光学镜头1010D和一感光装置1020D,其中所述可调光学镜头1010D安装于所述感光装置1020D的感光路径上,被物体反射的光线自所述可调光学镜头1010D进入所述感光装置1020D进行光电转化,从而使得所述摄像模组能够生成与物体相关的图像。
所述感光装置1020D包括一滤色片1022D、一镜头座1024D、一感光芯片1021D和一线路板1023D,其中所述滤色片1022D固定于所述镜头座1024D内壁上部具有的一第一凹槽10241D中,且位于所述感光芯片1021D顶侧的感光路径上,所述感光芯片1021D固定于所述镜头座1024D内壁下部具有的一第二凹槽10242D中,所述感光芯片1021D贴装于所述线路板1023D顶侧,所述线路板1023D固定于所述镜头座1024D的底部,即所述滤色片1022D、所述光学镜头22D、所述感光芯片1021D和所述线路板1023D已完成彼此之间的组装固定,在后续校准中不可被调节,被物体反射的光线自所述可调光学镜头1010D进入所述摄像模组的内部并被所述感光芯片1021D接收和进行光电转化,从而使得 所述摄像模组能够生成与物体相关的图像。
所述可调光学镜头1010D包括一光学结构件1013D和至少一光学镜片1011D,各所述光学镜片1011D沿着所述光学结构件1013D的高度方向分别相间隔地安装于所述光学结构件1013D的内部,所述光学结构件1013D安装于所述镜头座1024D的上部,并使得所述光学镜片1011D位于所述感光芯片1021D的感光路径上,其中至少一个所述光学镜片1011D被预组装于所述光学结构件1013D的内部,被预组装于所述光学结构件1013D内部的所述光学镜片1011D为可调光学元件,即其在所述结构件11D内部的空间位置适于被进行至少一个方向的调节,由其形成的镜头称为可调光学镜头。
在本优选实施例中,包括五个所述光学镜片1011D,分别为第一光学镜片10111D、第二光学镜片10112D、第三光学镜片10113D、第四光学镜片10114D和第五光学镜片10115D,五个所述光学镜片1011D依次重叠地、相间隔地沿着所述感光芯片1021D的光学路径安装于所述光学结构件1013D的内部,其中所述第二光学镜片10112D、所述第三光学镜片10113D和第四光学镜片10114D已预先组装到所述光学结构件1013D中并加以固定,其位置不可被调节,所述第一光学镜片10111D和所述第五光学镜片10115D预组装到所述光学结构件1013D内部,作为可调光学元件在后续工序中进行调节以校准,提高所述摄像模组的成像质量。
可选地,五个所述镜片中的若干个镜片均可以作为固定的镜片,其余镜片作为所述可调光学元件,包括可调光学元件的镜头称为可调光学镜头,在封装所述可调光学镜头1010D和所述感光装置1020D之前,所述可调光学元件的组装位置适于被调节。
具体地,用胶水1040D将所述第一光学镜片10111D、所述第五光学镜片10115D依次预组装到所述光学结构件1013D中,所述胶水1040D不完全固化,即将所述胶水1040进行半固化以实现所述第一光学镜片10111D和所述第五光学镜片10115D的预组装,即防止其过度移动,又便于后续的调节。
所述可调光学镜头1010D进一步包括一光阑1014D,使用胶水1040D将所述光阑1014D预组装于所述光学结构件1013D的顶部,用于导入入射光束,并限制入射光束的大小,其中所述光阑1014D相对于所述感光芯片1021D的组装位置适于被进行至少一个方向的调节,主要进行水平方向的调节,但也可以进行 垂直放及倾斜方向的调节。
在本优选实施例中,依次对所述第五光学镜片10115D进行预组装,对所述第四光学镜片10114D、所述第三光学镜片10113D和所述第二光学镜片10112D进行固定组装,对所述第一光学镜片10111D进行预组装到所述光学结构件1013D中,然后将所述光阑1014D预组装于所述光学结构件1013D的顶部,并位于所述第一光学镜片10111D的顶侧,也位于所述感光芯片1021D的感光路径上,其中所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D为可调光学元件,在后续的校准或者调节过程中,其组装位置适于被进行至少一个方向的调节,其中可调的方向包括水平方向、垂直方向、倾斜方向和圆周方向,调节后,使得所述可调光学镜头的中心轴线与所述感光芯片1021D的中心轴线重合或者在偏差允许范围内,进而使得摄像模组的成像达到解像要求,得以保证所述摄像模组的成像质量。
其中所述胶水1040D采用一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水1040D会半固化实现预组装,经过烘烤处理后,所述胶水1040D会完全固化,以固定整个所述摄像模组。
值得一提的是,在所述光学结构件1013D上设有至少二调整通道10131D,连通所述光学结构件1013D的内部空间和外部环境,并分别与所述可调光学元件相对应,在本优选实施例中,所述调整通道10131D分别设置于与所述第一光学镜片10111D和所述第五光学镜片10115D相对应的所述光学结构件1013D的侧壁上,以通过所述调整通道10131D调节所述第一光学镜片10111D和所述第五光学镜片10115D在所述光学结构件1013D内部的空间位置。优选地,本实施例实施为六个所述调整通道10131D,其中三个所述调整通道10131D沿着所述第一光学镜片10111D的预组装位置所在的所述光学结构件10131D的侧壁分布并且彼此相隔120°,另外三个所述调整通道10131D沿着所述第二光学镜片10112D的预组装位置所在的所述光学结构件10131D的侧壁分布并且彼此相隔120°。
需要调节所述第一光学镜片10111D和所述第五光学镜片10115D的时候,将一探针插入相应的所述调整通道10131D,通过控制所述探针来拨动所述第一光学镜片10111D和所述第五光学镜片10115D,改变所述第一光学镜片10111D和所述第五光学镜片10112D在其相应的所述调整通道10131D三个位置处的水 平及垂直位置,从实现分别对所述第一光学镜片10111D和所述第五光学镜片10115D的向任何一个方向的调节,包括水平位置、垂直位置和倾斜位置。
所述光阑1014D由于预组装于所述可调光学镜头1010D的顶部,可以通过任何可以实施的方式对其组装位置进行调节。
在本优选实施例中,所述光学结构件1013D可以实施为镜筒,在所述光学结构件1013D的内壁分别相间隔地设有五个限位结构10133D,所述限位结构10133D优选为所述光学结构件1013D的内壁向其腔体方向延伸而形成的凸台,得以分别承载五个所述光学镜片1011D,即第一限位结构101331D、第二限位结构101332D、第三限位结构101333D、第四限位结构101334D和第五限位结构101335D分别承载所述第一光学镜片10111D、所述第二光学镜片10112D、所述第三光学镜片10113D、所述第四光学镜片10114D和所述第五光学镜片10115D。其中,本领域的技术人员可以理解的是,所述光学结构件1013D也可以通过其他方式来承载各所述光学镜片1011D。
值得一提的是,所述摄像模组还可以包括驱动器,所述光学结构件1013D可以是驱动器的一个部件。
在本优选实施例中,所述摄像模组可以为定焦摄像模组,也可以为变焦摄像模组。
图17所示为本优选实施例的摄像模组的制造方法1700的流程图,所述摄像模组的制造方法1700包括以下步骤:
步骤(1701):将所述可调光学镜头1010D设置于所述感光装置1020B包括的所述感光芯片1021D的感光路径上;
步骤(1702):将所述可调光学元件预组装于所述可调光学镜头1010D,完成摄像模组的预组装;
步骤(1703):通过调节所述可调光学元件的组装位置,使得调节后的所述摄像模组成像满足解像要求;以及
步骤(1704):封装所述可调光学镜头1010D和所述感光装置1020D,进而得以固定整个所述摄像模组。
在所述步骤(1701)中,将所述滤色片1022D、所述镜头座1024D、所述感光芯片1021D和所述线路板1023D进行固定组装,以形成所述感光装置1020D,并将所述光学结构件1013D固定的组装于所述镜头座1024D上,将所述第二光 学镜片10112D、所述第三光学镜片10113D和所述第四光学镜片10114D固定地组装于所述光学结构件1013D的相应的所述限位结构10133D处,将所述可调光学镜头1010D设置于所述感光芯片1021D的感光路径上,完成摄像模组的部分组件的固定组装,上述各元件在本优选实施例中为不可被调节的光学元件。
值得一提的是,在该步骤中,要尽量控制上述各元件之间的组装公差,使其尽量保持在公差允许范围内,以免上述各元件之间的组装公差过大,增加后续的调节量,避免因为组装公差过大导致后学的调节无法进行的情况出现。
在所述步骤(1702)中,将所述第一光学镜片10111D和所述第五光学镜片10115D预组装到所述光学结构件1013D内部,并将所述光阑1014D预组装于所述光学结构件1013D的顶部,使用胶水1040D进行所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的预组装,并将所述胶水1040D在紫外曝光下进行半固化,以完成所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的预组装,至此完成所述摄像模组的预组装,其中所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D在本优选实施例中作为所述可调光学元件,使得包括所述可调光学元件的所述摄像模组的镜头成为所述可调光学镜头1010D。
所述步骤(1703)包括以下步骤:
(17031)采集预组装的所述摄像模组成像;
(17032)根据所述摄像模组成像使用软件计算所述可调光学元件的调节量;以及
(17033)按照调节量调节所述可调光学元件的组装位置。
在所述步骤(1703)中,如果调节所述可调光学元件后,所述摄像模组的解像要求不符合要求,则需要重复所述步骤(17031)-(17033),直至所述摄像模组的解像要求符合要求。
其中,在所述步骤(17032)和步骤(17033)中,根据摄像模组成像分别计算出所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的组装位置的调节量,并按照各自的调节量分别调节所述第一光学镜片10111D、所述第五光学镜片10112D和所述光阑1014D的组装位置。
在上述步骤中,摄像模组成像的采集基于摄像模组对MTF(Modulation Transfer Function,调制传递函数)测试标版的拍摄,用MTF值来表征模组的成 像质量,MTF值越大,所述摄像模组的成像质量越高。每次采集完所述摄像模组成像,均需计算出相应图像的MTF值,检验MTF值是否大于标准要求,若MTF值大于或等于标准要求,采集或调节完成;若MTF值小于标准要求,需要再次采集并进行调节。
值得注意的是,每次采集图像的过程中,必须严格控制所述摄像模组的拍摄环境参数,包括标版与所述摄像模组的距离、光源参数等,以保证图像采集的精确性及一致性,便于调节所述可调光学元件的组装位置。
在所述摄像模组的图像采集过程中,除了计算MTF值外,还可以对所述摄像模组的其他特性进行监测,包括污坏点、失真、暗角等。
所述软件对所述可调光学元件的组装位置的调节是基于对镜头系统光学设计的灵敏度的研究,所述软件对所述第一光学镜头121D、所述第五光学镜头125D所述光阑1014D的组装位置的调节的计算方法包括:根据所述摄像模组成像测量出所述摄像模组在调节前的光学特性,包括MTF值、光轴偏心、光轴倾斜和场曲;以及跟所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的组装位置对所述光学特性的灵敏度,计算出所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的组装位置调节量。
进一步地,在所述步骤(1703)中,根据计算出来的调节量,分别对所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D的预组装位置进行调节,可以使得所述第一光学镜片10111D和所述第五光学镜片10115D在所述光学结构件1013D中进行适当的旋转,即随所述第一光学镜片10111D和所述第五光学镜片10115D的水平位置、垂直位置或高度位置、倾斜位置进行适当的调节,并可以对所述光阑1014D的水平位置、垂直位置或高度位置、倾斜位置进行适当的调节,调节后使得所述可调光学镜头1010D的中心轴线与所述感光芯片1021D的中心轴线重合或者在偏差允许的范围内,且调节后摄像模组的成像满足解像要求。如果调节后,所述摄像模组的成像依然不满足解像要求,则需要再进一步调节所述可调光学元件的组装位置。
值得一提的是,当所述可调光学元件的按照计算出来的调节量调节到预定位置时,即认为所述可调光学镜头1010D的中心轴线与所述感光芯片1021D的中心轴线重合或者在偏差允许额的范围内,则调节符合预定要求,调节后的所述摄像模组的成像满足解像要求。
在所述步骤(1704)中,通过烘烤将所述胶水1040D固化,以将调节后符合要求的所述第一光学镜片10111D、所述第五光学镜片10115D和所述光阑1014D与所述光学结构件1013D进行固定连接,然后将所述调整通道10131D进行密封,本实施例优选为在所述调整通道10131D中注入胶水的方式进行密封,密封的同时还能起到进一步固定所述第一光学镜片10111D和所述第二光学镜片10112D的作用,进而得以封装所述可调光学镜头1010D和所述感光装置1020D。
另外,另外,在所述步骤(1704)中,本发明还可以在所述光阑1014D上设置至少一注胶通道10141D来注入胶水(例如热固胶)以进一步固定调节后的所述第一光学镜片10111D和所述第五光学镜片10115D,可以实施为两个所述注胶通道10141D,即在对所述第一光学镜片10111D和所述第五光学镜片10115D进行调节后,将热固胶胶水灌入所述注胶通道10141D中,对所述摄像模组进行烘烤后将所述第一光学镜片10111D和所述第五光学镜片10115D完全固定,并可以同时将所述注胶通道10141D密封。
参考图18和图19,本发明提供的摄像模组的第六种具体实施方式将被阐述。如图18和图19所示,一摄像模组,包括一可调光学镜头2010和一感光装置2020,所述感光装置2020包括一感光芯片2021,所述可调光学镜头2010被设置于所述感光芯片2021的感光路径上,当物体反射的光线经过所述可调光学镜头2010进入所述摄像模组内部后,被所述感光芯片2021接收和进行光电转化,从而在后续过程中,所述摄像模组能够获得与物体相关的影像。
所述感光装置2020进一步包括一滤光片2022、一线路板2023和一镜座2024,其中所述滤光片2022被安装于所述镜座2024的内部,并被设置于所述感光芯片2021的上方,其中所述感光芯片2021贴装于所述线路板2023的上方,所述线路板2023安装于所述镜座2024的底部并使得所述感光芯片2021位于所述镜座2024的内部的腔体中,且所述感光芯片2021与所述镜座2024之间保持一间距,即所述感光装置2020采用COB(chip on board)工艺进行制作。此外,在本发明中,所述感光装置2020还可以采用芯片倒装工艺(flip chip)进行制作,可根据实际情况选择所述感光装置2020的制作方式。
所述可调光学镜头2010包括至少一光学镜片2011和一光学结构件2013,其中各所述光学镜片2011沿着所述光学结构件2013的高度方向依次被设置于所述光学结构件2013的内部空间,其中至少一片所述光学镜片2011作为可调镜片 在所述光学结构件2013内部的组装位置适于被调整,进而得以调整所述可调光学镜头2010的光学路径,能够使得调整后的所述可调光学镜头2010的中心轴线与所述感光芯片2021的中心轴线重合或者在偏差允许的范围内,进而得以保证所述摄像模组的成像质量。
值得一提的是,所述光学结构件2013可以是常规的镜筒部件,也可以是镜筒部件与镜座一体式的结构模组,所述摄像模组可以为带自动对焦装置的产品或者是镜筒部件与自动对焦装置中的载体一体式的结构等。
在本优选实施例中,实施为四片所述光学镜片2011,分别为一第一光学镜片20111、一第二光学镜片20112、一第三光学镜片20113和一第四光学镜片20114,四片所述光学镜片2011设置于依次叠合地设置于所述光学结构件2013的内部空间,其中将所述第一光学镜片20111设置于所述光学结构件2013的顶部,并作为可调镜片,其中所述可调镜片(本实施例指所述第一光学镜片20111)被预组装于所述光学结构件2013中,其组装位置适于被进行至少一个方向的调整,如水平方向、垂直方向、倾斜方向和圆周方向中的一个或几个。
进一步地,在所述光学结构件2013的顶部设置至少一调整通道20131,所述调整通道20131将所述光学结构件2013的内部空间和外部环境相连通,并与所述可调光学镜片2011相对应,进而得以从所述光学结构件2013的外部对所述可调镜片进行有目的的调整。
具体地,将一外部调整装置2030伸入到所述调整通道20131中,由于所述可调镜片的侧面与所述光学结构件2013的内部之间预留有间隙,因此,所述外部调整装置2030可通过与所述可调镜片的侧面相接触而得以对所述可调镜片的组装位置进行调整。例如,所述外部调整装置2030在本优选实施例中可以实施为探针,将所述探针插入到所述调整通道20131中,使得所述探针接触所述第一光学镜片20111的侧面,进而通过控制所述探针来拨动所述第一光学镜片20111,使其组装位置得到调整,其中所述探针可以实施为装有电子元件、具有自动化功能的探针,能够自动记录所述可调镜片的调整方式及调整量,以便于定量的判断调整是否准确,或者通过在所述探针中输入所述可调镜片的调整方式及调整量对所述可调镜片进行定量调整。
值得一提的是,所述可调镜片的调整方式及调整量是通过对预组装的所述摄像模组进行通电,采集摄像模组成像,并根据摄像模组成像使用软件计算出的, 进而便于对所述可调镜片进行有目标的调整,至少调整一次即可满足预期需求,使得校准速度较快,节约调整时间,提高生产制造的效率和良率。
对所述可调镜片进行调整后,需要对其进行固定,才能完成所述摄像模组的校准及组装,可实施为通过一外部固定装置对所述可调镜片进行固定,例如,本优选实施例采用一点胶设备点胶来固定所述第一光学镜片20111,即所述点胶设备将胶水2040注入到所述调整通道20131中,然后固化实现进行固定所述第一光学镜片20111,其中所述胶水2040可选为热固胶。
值得一提的是,如图19所示,可将所述胶水2040注入到所述第一光学镜片20111的侧面,即在所述第一光学镜片20111的侧面与相对应的所述光学结构件2013的内壁之间注入所述胶水2040,通过将所述第一光学镜片20111的侧面与所述光学结构件2013的内壁进行固定连接来固定所述第一光学镜片20111。
注入所述胶水2040的时候,适于将所述胶水2040也注入到所述调整通道20131中,得以在固定所述可调镜片的时候将所述调整通道20131密封,当然也可以固定好所述可调镜片后,再通过注入胶水来密封所述调整通道20131。
另外,但所述可调镜片的侧面延伸到所述光学结构件2013的内壁的时候,还可以将所述胶水2040注入到所述可调镜片的顶部表面,通过将所述可调镜片的顶部表面与所述光学结构件2013的内壁进行固定,进而得以来固定所述可调镜片,具体地,如图20所示的一可调光学镜头2010A为上述可调光学镜头2010的变形实施,所述可调光学镜头2010A包括至少一光学镜片2011A和一光学结构件2013A,四片所述光学镜片2011A分别为一第一光学镜片20111A、一第二光学镜片20112A、一第三光学镜片20113A和一第四光学镜片20114A,分别沿着所述光学结构件2013A的高度方向依次叠合地被设置于所述光学结构件2013的内部空间,其中通过在所述光学结构件2013的顶部设置至少一调整通道20131A来调整预组装的所述第一光学镜片20111A(为可调镜片),可通过所述外部调整装置2030接触所述第一光学镜片20111A的顶部表面来调整所述第一光学镜片20111A,调整后,调整通道20131A也作为固定通道,即通过所述调整通道20131A注入胶水2040A来固定,其中所述胶水2040A注入到所述第一光学镜片20111A的顶部表面,并位于所述调整通道20131A中,进而得以将所述第一光学镜片20111A的顶部表面与所述光学结构件2013A的内壁之间通过所述胶水2040A进行连接固定。其中,在注入所述胶水2040A的时候,适于将所述 胶水2040A注满所述调整通道20131A,得以在固定所述可调镜片的同时将所述调整通道20131A密封,防止灰尘进入,并可以减少工序,节约时间,提高效率。
参考图21和图22,本发明提供的摄像模组的第七种具体实施方式将被阐述。如图21和图22所示,一摄像模组,包括一可调光学镜头2010B和一感光装置2020,所述可调光学镜头2010B按照摄像模组的光学路径及成像需求被设置于所述感光装置2020的顶部,并加以固定,其中所述感光装置2020与上述优选实施例相同,本处不再赘述。
所述可调光学镜头2010B包括至少一光学镜片2011B和一光学结构件2013B,其中所述光学镜片2011B包括一第一光学镜片20111B、一第二光学镜片20112B、一第三光学镜片20113B和一第四光学镜片20114B,四片所述光学镜片2011B沿着所述光学结构件2013B的高度方向依次被设置于所述光学结构件2013B的内部空间,并位于所述感光芯片2021的感光路径上,其中所述第一光学镜片20111B被设置于所述光学结构件2013B的顶部,并进行预组装,作为本优选实施例中的可调镜片,其组装位置适于被进行至少一个方向的调整。
所述光学结构件2013B的侧面被设有至少一调整通道20131B,其中所述调整通道20131B与所述可调镜片相对应,并将所述光学结构件2013B的内部空间和外部环境相连通,以调整所述可调镜片。
在本优选实施例中,所述调整通道20131B可沿着所述光学结构件2013B的顶部与所述第一光学镜片20111B相对应的位置被设置为三个,呈圆周方向分布,彼此相隔120°,以便于从多个方向和角度对所述第一光学镜片20111B进行调整,保证调整的精度。具体地,可将一外部调整装置2030B伸入到各所述调整通道20131B中,由于所述第一光学镜片20111B的边缘通过所述调整通道20131B与外部直接相通,因此,所述外部调整装置可通过与所述第一光学镜片20111B的边缘相接触而得以对所述第一光学镜片20111B的组装位置进行调整。
所述光学结构件2013B的顶部沿着一圆周方向设置三个所述固定通道122B,其中三个所述固定通道122B将所述光学结构件2013B的内部空间和外部环境相连通,以便于通过所述调整通道20131B注入胶水使得胶水接触所述可调镜片及光学结构件2013B,以将所述可调镜片固定。在本优选实施例中,通过将胶水2040B注入到所述可调镜片表面并固化将所述可调镜片固定于所述光学结构件2013B,其中各所述固定通道122B彼此相隔120°,且与各所述调整通道20131B 彼此相间隔,以便于从多个部位进行固定,保证所述可调镜片的固定的牢固性,有利于保证所述摄像模组工作的可靠性。
参考图23,本发明提供的摄像模组的第八种具体实施方式将被阐述。如图23所示,一摄像模组,包括一可调光学镜头2010C和一感光装置2020,其中所述感光装置2020与上述优选实施例相同,本处不再赘述。
所述可调光学镜头2010C包括至少一光学镜片2011C和一光学结构件2013C,其中所述光学镜片2011C包括一第一光学镜片20111C、一第二光学镜片20112C、一第三光学镜片20113C和一第四光学镜片20114C,四片所述光学镜片2011C沿着所述光学结构件2013C的高度方向依次被设置于所述光学结构件2013C的内部空间,并位于所述感光芯片2021的感光路径上,其中所述第一光学镜片20111C被设置于所述光学结构件2013C的顶部,并进行预组装,作为本优选实施例中的可调镜片,其组装位置适于被进行至少一个方向的调整。
所述光学结构件2013C的侧面被设有至少一调整通道20131C,其中所述调整通道20131C与所述可调镜片相对应,并将所述光学结构件2013C的内部空间和外部环境相连通,以调整所述可调镜片。
在本优选实施例中,所述调整通道20131C可沿着所述光学结构件2013C与所述第一光学镜片20111C相对应的外侧的一圆周方向被设置为三个,彼此相隔120°,以便于从多个方向和角度对所述第一光学镜片20111C进行调整,保证调整的精度。具体地,可将一外部调整装置2030C伸入到所述调整通道20131C中,由于所述第一光学镜片20111C的侧面通过所述调整通道20131C与外部直接相通,因此,所述外部调整装置2030C可通过与所述第一光学镜片20111C的侧面相接触而得以对所述第一光学镜片20111C的组装位置进行调整。
其中,被设置所述调整通道20131C的所述光学结构件2013C的部分高出所述镜座2024,即设于侧部的所述调整通道20131C被设于所述光学结构件2013C凸出于所述镜座2024的部分,以便于从所述光学结构件2013C的外部对所述可调镜片进行调整,防止所述镜座2024对其进行遮挡。
调整后,使用一点胶设备将胶水注入到所述调整通道20131C中,并使胶水接触到所述第一光学镜片20111C,进而得以将所述第一光学镜片20111C固定于所述光学结构件2013C。
优选地,可多注入一些胶水,固定所述第一光学镜片20111C的同时将所述 调整通道20131C密封。
图24为上述第八个优选实施例的一种变形实施。在本变形实施中,通过在所述光学结构件2013C的顶部设置一固定通道122C来固定所述第一光学镜片20111C,其中通过所述固定通道122C注入胶水2040C,固化后,将所述第一光学镜片20111C的顶部表面与所述光学结构件2013C的外部环境相连通,进而得以将所述胶水2040C注入到所述固定通道122C中,并在所述第一光学镜片20111C的表面固化来固定所述第一光学镜片20111C,固定的同时可将所述固定通道122C密封。
在本变形实施中,可同时通过所述调整通道20131C和所述固定通道122C来固定所述第一光学镜片20111C。
图25为上述第八个优选实施例的另一种变形实施。如图25所示,一摄像模组,包括一可调光学镜头2010D和一感光装置2020,其中所述感光装置2020与上述优选实施例相同,本处不再赘述,所述可调光学镜头2010D被设置于所述感光装置2020的感光路径上。
所述可调光学镜头2010D包括一至少一光学镜片2011D和一光学结构件2013D,各所述光学镜片2011D沿着所述光学结构件2013D的高度方向被设置于所述光学结构件2013D的内部空间,其中所述光学镜片2011D在本变形实施中被实施为四片,分别为一第一光学镜片20111D、一第二光学镜片20112D、一第三光学镜片20113D和一第四光学镜片20114D,其中所述第一光学镜片20111D和所述第四光学镜片20114D固定于所述光学结构件2013D中,所述第二光学镜片20112D和所述第三光学镜片20113D预组装于所述光学结构件2013D中,作为可调镜片,被设置于所述光学结构件2013D的中部位置,其组装位置适于被进行至少一个方向的调整。本处所指的中部位置是指除所述第一光学镜片20111D及所述第四光学镜片20114D设置的位置之外的位置,即除所述光学结构件2013D的顶部和底部的位置之外的任意位置。
将所述光学结构件2013D与所述第二光学镜片20112D和所述第三光学镜片20113D相对应的位置分别设置至少一调整通道20131D,其中所述调整通道20131D将所述光学结构件2013D的内部空间和外部环境相连通,以便于将一外部调整装置2030D伸入到所述调整通道20131D中与所述第二光学镜片20112D和所述第三光学镜片20113D的边缘相接触,进而得以调整所述第二光学镜片 20112D和所述第三光学镜片20113D的组装位置。
其中所述外部调整装置2030D可以实施为装有电子元件、具有自动化功能的探针,能够自动记录所述可调镜片的调整方式及调整量,以便于定量的判断对所述可调镜片的调整是否准确,或者通过在所述外部调整装置2030D中输入所述可调镜片的调整方式及调整量对所述可调镜片进行定量调整,增加调整的效率。
在本优选实施例中,可选择性的沿着所述光学结构件2013D的外侧设置多个所述调整通道20131D,围成圆形的所述调整通道20131D与相应的所述可调镜片相对应,以便于从不同方位对所述可调镜片进行调整,保证调整的精度,例如,可以沿着所述第二光学镜片20112D的圆周方向设置三个所述调整通道20131D,沿着所述第三光学镜片20113D的周围设置三个所述调整通道20131D。
对所述第二光学镜片20112D和所述第三光学镜片20113D调整完毕后,通过所述调整通道20131D来固定所述第二光学镜片20112D和所述第三光学镜片20113D。例如,使用以点胶设备通过所述调整通道20131D进行点胶,使得胶水接触到所述第二光学镜片20112D的边缘以及所述第三光学镜片20113D的边缘,进而得以分别将所述第二光学镜片20112D和所述第三光学镜片20113D固定于所述光学结构件2013D的内壁,同时,胶水还得以将所述调整通道12D密封。其中使用的胶水优选为热固胶,通过烘烤固化后得以固定所述第二光学镜片20112D和所述第三光学镜片20113D,并密封所述调整通道12D。
值得一提的是,如果所述可调镜片是通过胶水半固化进行预组装的,则在后续固定的过程中,需要将预组装使用的胶水进行完全固化,固化后也得以将所述可调镜片固定,再通过外部的点胶将所述调整通道20131D密封,或者再通过点胶进一步对所述可调镜片进行固定,保证固定的牢靠性。
更值得一提的是,在本优选实施例中,所述可调镜片的调整位置与固定位置为同一位置,也可以为不同位置,例如,可以通过在所述光学结构件2013D的外侧设置多个固定通道,其中所述固定通道与所述可调镜片相对应,其中所述固定通道与所述调整通道20131E相间隔地设置于所述光学结构件的侧面,以便于从不同方位对所述可调镜片进行调整和固定,当然也可以选择所述光学结构件2013D的一部分位置设置所述调整通道20131D,另一部分设置所述固定通道,所述调整通道20131D和所述固定通道不相间隔。
参考图26和图27,本发明提供的摄像模组的第九种具体实施方式将被阐述。 如图26和图27所示,一摄像模组,包括一可调光学镜头2010E和一感光装置2020,其中所述感光装置2020与上述优选实施例相同,本处不再赘述,所述可调光学镜头2010E被设置于所述感光装置2020的感光路径上,进而得以摄像及成像。
所述可调光学镜头2010E包括至少一光学镜片2011E和一光学结构件2013E,其中各所述光学镜片2011E沿着所述光学结构件2013E的高度方向被设置于所述光学结构件2013E的内部空间,并位于所述感光芯片2021的感光路径上。
在本优选实施例中,实施为四片所述光学镜片2011E,分别为一第一光学镜片20111E、一第二光学镜片20112E、一第三光学镜片20113E和一第四光学镜片20114E,分别由所述光学结构件2013E的顶部向底部的方向被设置与其内部空间,即所述第一光学镜片20111E被设置于所述光学结构件2013E的顶部,预组装于所述光学结构件2013E内部,所述第一光学镜片20111E作为本优选实施例的可调镜片,其组装位置适于被进行至少一个方向的调整,以便于调整所述可调光学镜头2010E的光学路径,调整后使得所述可调光学镜头2010E的中心轴线与所述感光芯片2021的中心轴线重合或者在偏差允许的范围内。
所述光学结构件2013E的顶部被设置有至少一调整通道20131E,本实施例可实施为两个,所述调整通道20131E将所述光学结构件2013E的内部空间和外部环境相连通,使得所述第一光学镜片20111E的表面通过所述调整通道20131E与外部相连通,进而得以调整其组装位置。
所述第一光学镜片20111E上被设置有至少二调整槽201111E,其中所述调整槽201111E设于所述第一光学镜片20111E的镜片顶部表面,所述调整槽201111E的顶部开口与所述调整通道20131E相对应,并通过所述调整通道20131E与所述光学结构件2013E的外部环境相连通,进一步地,所述调整槽201111E优选地设于所述第一光学镜片20111E靠近其边缘的位置,以免影响所述第一光学镜片20111E的透光,保证所述摄像模组的成像。
对所述第一光学镜片20111E的组装位置进行调整的时候,将一外部调整装置2030E伸入到所述调整通道20131E内部,并与所述第一光学镜片20111E相接触,其中所述外部调整装置2030E通过伸入到所述调整槽201111E中,进而得以通过所述调整槽201111E抓取所述第一光学镜片20111E,对所述第一光学镜片20111E的水平位置、垂直位置、倾斜位置和圆周位置中的至少一个方位进行 调整,以调整所述可调光学镜头2010E的光学路径,进而使所述摄像模组满足解像要求。
对所述第一光学镜片20111E进行光学调整完毕后,需要将其固定才能完成所述可调光学镜头2010E的组装。在本优选实施例中,固定位置与调整位置为同一位置,即均为所述调整通道20131E。具体地,可使用一点胶设备将胶水注入到所述调整通道20131E中,液态或者半固态的胶水则通过所述调整通道20131E流入所述第一光学镜片20111E的顶部表面或者侧面,胶水固化后得以将所述第一光学镜片20111E固定于所述光学结构件2013E内部。可以选择注入较多的胶水,在固定所述第一光学镜片20111E的同时,将所述调整通道20131E密封。
值得一提的是,所述调整通道20131E和所述调整槽201111E的数量可以任意设置,并不限制本发明,也可以额外设置固定通道来固定所述可调镜片,固定通道的位置可以与所述调整通道20131E的位置不同。
参考图31,本发明的上述四个优选实施例的所述摄像模组的校准方法将被阐述,所述摄像模组的校准方法1400包括以下步骤:
步骤(1401):将各光学镜片组装于光学结构件中,并对至少一片光学镜片进行预组装,使其组装位置被可调,固定除可调镜片以外的其余光学镜片;
步骤(1402):对预组装完成的摄像模组进行通电,采集摄像模组成像;
步骤(1403):根据摄像模组成像计算可调镜片的调整方式及调整量;
步骤(1404):根据调整量通过调整通道调整可调镜片;以及
步骤(1405):通过固定通道固定可调镜片,完成摄像模组的校准。
其中在所述步骤(1401)中,可设置至少一个或者多个光学镜片作为可调镜片,对可调镜片不做固定,以便于在后续工序中进行调整。
在所述步骤(1404)中,使用外部调整装置通过光学结构件的调整通道对可调镜片进行调整,其中调整通道可设置于光学结构件的顶部和侧部,具体参考上述四个优选实施例及其变形实施,本处不再赘述。
在所述步骤(1405)中,通过在光学结构件上设置固定通道来固定可调镜片,也可以通过调整通道来固定可调镜片,即可调镜片的固定位置与调整位置可以为同一位置也可以为不同位置,而固定用的胶水可以通过接触可调镜片的顶部表面或侧面对其进行固定,具体实施如上述四个优选实施例及其变形实施,本处不再赘述。
参考图28、图29、图30和图32,本发明提供的摄像模组的第十种具体实施方式及其校准方法将被阐述。如图28至图30所示,一摄像模组,包括一可调光学镜头2010F和一感光装置2020,其中所述感光装置2020与上述优选实施例相同,本处不再赘述,所述可调光学镜头2010F被设置于所述感光装置2020的感光路径上,进而得以摄像成像。
所述可调光学镜头2010F包括至少一光学镜片2011F和一光学结构件2013F,其中各所述光学镜片2011F沿着所述光学结构件2013F的高度方向被设置于所述光学结构件2013F的内部空间,并位于所述感光芯片2021的感光路径上。
在本优选实施例中,实施为四片所述光学镜片2011F,分别为一第一光学镜片20111F、一第二光学镜片20112F、一第三光学镜片20113F和一第四光学镜片20114F,分别由所述光学结构件2013F的顶部向底部的方向被设置与其内部空间,即所述第一光学镜片20111F被设置于所述光学结构件2013F的顶部,预组装于所述光学结构件2013F内部,所述第一光学镜片20111F作为本优选实施例的可调镜片,其组装位置适于被进行至少一个方向的调整,以便于调整所述可调光学镜头2010F的光学路径,调整后使得所述可调光学镜头2010F的中心轴线与所述感光芯片2021的中心轴线重合或者在偏差允许的范围内。
调整后,对所述第一光学镜片20111F进行固定完成所述可调光学镜头2010F的组装。
参考图32,所述摄像模组的校准方法1500包括以下步骤:
步骤(1501):按照光学路径将所述光学结构件2013F组装于所述感光装置2020;
步骤(1502):将所述第二光学镜片20112F、所述第三光学镜片20113F和所述第四光学镜片20114F组装于所述光学结构件2013F的内部空间,并加以固定;
步骤(1503):将所述第一光学镜片20111F预组装于所述光学结构件2013F顶部的内部空间,作为可调镜片,完成所述摄像模组的预组装;
步骤(1504):对预组装的所述摄像模组通电,采集摄像模组成像;
步骤(1505):根据所述摄像模组成像,使用软件计算所述可调镜片的调整方式及调整量;
步骤(1506):按照调整量对所述可调镜片进行调整,使所述摄像模组成像 满足解像要求;以及
步骤(1507):固定所述可调镜片,完成所述摄像模组的组装及校准。
其中在所述步骤(1502)中,所述二光学镜片20112F、所述第三光学镜片20113F和所述第四光学镜片20114F可以单片依次组装于所述光学结构件2013F中,也可以嵌合后作为一个整体组装于所述光学结构件2013F中。
在所述步骤(1503)中,通过将所述第一光学镜片20111F放置于所述光学结构件2013F顶部的内部空间中,并位于所述第二光学镜片20112F的上方,对其进行预组装,将其作为可调镜片,以在后续工序中调整其组装位置。其中所述可调镜片的调整适于通过所述光学结构件2013F的顶部来调整,无需设置专用的调整通道,工序更加简单。
在所述步骤(1506)中,由于所述可调镜片位于所述光学结构件2013F顶部的内部空间中,可从所述光学结构件2013F的顶部的光束入射通道2015F的位置接触所述可调镜片,对其进行调整,调整的时候,适于使用设备从所述光学结构件2013F的顶部伸入接触所述可调镜片,然后通过机械抓取或真空吸附的方式来调整所述可调镜片。
在所述步骤(1507)中,调整完毕后,从所述光学结构件2013F顶部的所述光束入射通道2015F注入胶水2040F,可选为热固胶,所述胶水2040F固化后将所述第一光学镜片20111F固定,无需设置专门设置固定通道,结构更加简单。例如点胶到所述可调镜片的边缘,然后固化使所述可调镜片固定于所述光学结构件2013F的内壁。
值得一提的是,所述可调镜片可直接放置于所述光学结构件2013F通过所述光学结构件2013F设置承载部进行预组装,也可以使用胶水半固化进行预组装,既能够防止所述可调镜片有较大偏移,又便于在后续工序中进行调整,有利于降低调整幅度,减少调整次数,提高校准效率。
参考图33和图34,本发明提供的摄像模组镜头的第十一种具体实施方式将被阐述。如图33和图34所示,一摄像模组镜头3010,包括至少一内部光学镜片3011、至少一外部光学镜片3012和一镜筒部件3013,其中各所述内部光学镜片3011沿着所述镜筒部件3013的高度方向被设置于所述镜筒部件3013的内部空间,各所述外部光学镜片3012沿着所述镜筒部件的高度方向被设置于所述镜筒部件3013的外部,例如所述镜筒部件3013的顶部或底部的外部空间,与所述 内部光学镜片3011位于所述摄像模组镜头3010的同一光学路径上,但所述外部光学镜片3012并不包括在所述镜筒部件3013的内部。
本优选实施例包括三片所述内部光学镜片3011,各所述内部光学镜片3011之间彼此嵌合,嵌合后固定于所述镜筒部件3013具有的一收容腔30131中,其中相邻的所述内部光学镜片3011之间可采用隔圈进行彼此之间的连接,也可以对各所述内部光学镜片3011的边缘进行处理,例如涂胶,使得各所述内部光学镜片3011彼此之间按次序通过涂布的胶水的黏合直接嵌合在一起,省去隔圈等结构件。当各所述内部光学镜片3011组装在一起后形成一镜片组件,然后将各所述内部光学镜片3011作为一个整体安装于所述镜筒部件3013的内部,并加以固定,这种情况下,对所述镜筒部件3013的加工精度及各所述内部光学镜片3011与所述镜筒部件3013之间的组装精度要求较低,有利于降低制造成本,并减少了组装工序,降低了组装公差链,节约组装时间,提高生产效率和产品良率。
在本优选实施例中,实施为一片所述外部光学镜片3012,所述外部光学镜片3012安装于所述镜筒部件3013的底部,其中所述外部光学镜片3012的边缘与所述镜筒部件3013的底部相连接。可实施为在所述外部光学镜片3012的顶部表面边缘及所述镜筒部件3013的底部表面涂抹胶水将二者固定到一起,使得所述外部光学镜片3012与各所述内部光学镜片3011相对应,均位于所述摄像模组镜头3010的光学路径上。
由于所述镜筒部件3013为传统的黑物镜筒,具有挡光功能,能够阻止外界光线从非光束入射通道之外的地方进入所述摄像模组镜头3010内部,并能够防止从光束入射通道进入所述摄像模组镜头3010内部的光线泄露出去,而所述外部光学镜片3012并未设置于所述镜筒部件3013内部,所以本发明在所述外部光学镜片3012的外侧设置一挡光层30121,其中所述挡光层30121必须完全覆盖所述外部光学镜片3012的整个侧面,以防止所述摄像模组镜头3010漏光,并防止外部杂散光进入所述摄像模组镜头3010内部,以保证所述摄像模组镜头3010的成像品质。
在本发明的其他实施例中,针对所述摄像模组镜头3010而言,在所述摄像模组镜头3010中,所述外部光学镜片3012的外侧可以没有所述挡光层30121,即所述摄像模组镜头3010包括的是未设置挡光层的所述外部光学镜片3012,由于所述挡光层30121可以在后续工序中进行设置,因此,所述挡光层30121对于 所述摄像模组镜头3010而言并不是必须的。
当将所述摄像模组镜头3010安装于相应的摄像模组中后,为了保证所述摄像模组的成像质量,对已经组装于摄像模组中的所述外部光学镜片3012设置所述挡光层30121,也可以在组装摄像模组时,在所述摄像模组镜头3010的所述外部光学镜片3012的外侧设置所述挡光层30121,再将已经设置所述挡光层30121的摄像模组镜头3010与感光装置组装为摄像模组。
总之,所述摄像模组镜头3010既可以包括所述挡光层30121,也可以不包括所述挡光层30121。
当所述摄像模组镜头3010包括所述挡光层30121时,所述挡光层30121的设置时间可以采用以下三种方式:(1)预先在所述外部光学镜片3012的外侧设置所述挡光层30121,然后将所述外部光学镜片3012组装于所述摄像模组镜头3010;(2)将所述外部光学镜片3012组装于所述摄像模组镜头3010后,再设置所述挡光层30121;(3)将包括未设置所述挡光层30121的所述摄像模组镜头3010与感光装置组装成摄像模组后,在所述外部光学镜片3012的外侧设置所述挡光层30121。
优选地,通过在所述外部光学镜片3012的外侧涂布黑胶来设置所述挡光层30121,所述黑胶可选为热固胶,固化后形成所述挡光层30121。
参考图35,包括上述所述摄像模组镜头3010的一摄像模组将被阐述。如图35所示,一摄像模组,包括所述摄像模组镜头3010和一感光装置3020,所述感光装置3020包括一感光芯片3021,所述摄像模组镜头3010被设置于所述感光芯片3021的感光路径上,当物体反射的光线经过所述摄像模组镜头3010进入所述摄像模组内部后,被所述感光芯片3021接收和进行光电转化,从而在后续过程中,所述摄像模组能够获得与物体相关的影像。
所述感光装置3020进一步包括一滤光片3022、一线路板3023和一镜座3024,其中所述滤光片3022安装于所述镜座3024的内部,并被设置于所述感光芯片3021的上方,其中所述感光芯片3021贴装于所述线路板3023的上方,所述线路板3023安装于所述镜座3024的底部并使得所述感光芯片3021位于所述镜座3024的内部的腔体中,且所述感光芯片3021与所述镜座3024之间保持一间距,二者并不直接接触,即所述感光装置3020采用COB(chip on board)工艺进行制作。
所述外部光学镜片3012被设置于所述镜筒部件3013与所述镜座3024之间,即所述外部光学镜片3012的顶部表面边缘连接于所述镜筒部件3013的底部表面,所述外部光学镜片3012的底部表面边缘连接于所述镜座3024的顶部表面,承靠在所述镜座3024上,被所述镜座3024支撑,且各所述内部光学镜片3011及各所述外部光学镜片3012均被设置于所述感光芯片3021的感光路径上。
所述外部光学镜片3012设置于所述镜筒部件3013的外部且承靠在所述镜座3024上,可以减小所述摄像模组镜头3010到所述感光芯片3021之间的距离,可以实现较小镜头后焦距,利用这种镜头制作的摄像模组的成像质量较高,成本也会大幅度降低。
参考图36和图42,所述摄像模组的组装方法将被阐述。所述摄像模组的组装方法1000包括以下步骤:
步骤(1001):将各所述内部光学镜片3011安装于所述镜筒部件3013的内部空间,并加以固定;
步骤(1002):将所述外部光学镜片3012设置于所述镜筒部件3013底部的外部空间;
步骤(1003):在所述外部光学镜片3012的外侧设置所述挡光层30121,完成所述摄像模组镜头3010的组装;
步骤(1004):将所述摄像模组镜头3010预组装于所述感光装置3020,完成所述摄像模组的预组装;
步骤(1005):调整所述摄像模组镜头3010的组装位置,使所述摄像模组成像满足解像要求;以及
步骤(1006):封装所述摄像模组镜头3010和所述感光装置3020,完成所述摄像模组的组装。
其中所述步骤(1001)至步骤(1003)为所述摄像模组镜头3010的组装步骤。
在所述步骤(1001)中,各所述内部光学镜片3011可以逐个单片的固定于所述镜筒部件3013的内部空间,也可以将各所述内部光学镜片3011嵌合后形成一个整体的镜片组件后再固定于所述镜筒部件3013的内部空间。
在所述步骤(1002)和所述步骤(1003)中,在对所述外部光学镜片3012的外侧涂布黑胶设置所述挡光层30121时,也可以同时在所述镜筒部件3013和 所述外部光学镜片3012的交界处涂布黑胶,既可以形成所述挡光层30121,又可以将所述外部光学镜片3012与所述镜筒部件3013相连接,减少组装步骤,节约时间,提高产品生产制造效率,降低成本。当然也可以将所述外部光学镜片3012与所述镜筒部件3013进行连接后,再在所述外部光学镜片3012的外侧涂布黑胶设置所述挡光层30121,根据实际情况进行选择,其中所述挡光层30121可在组装所述外部光学镜片3012之前进行设置,当然也可在组装后进行设置。
进一步地,可通过在所述外部光学镜片3012的顶部表面边缘涂胶或者在所述镜筒部件3013的底部表面涂胶使二者连接到一起,其中所述外部光学镜片3012与所述镜筒部件3013之间可以固定连接,也可以不做固定,对二者进行预组装,使得所述镜筒部件3013和所述外部光学镜片3012的组装位置在后续工序中适于被进行至少一个方向的调整。
在所述步骤(1004)中,在所述外部光学镜片3012的底部表面边缘涂胶或者在所述镜座3024的顶部表面涂胶,将所述外部光学镜片3012与所述镜座3024之间用胶水3040进行固定地连接,其中所述胶水3040优选为热固胶,也可以将二者进行预组装,使得所述外部光学镜片3012相对于所述感光芯片3021的组装位置适于被进行至少一个方向的调整。
在上述各步骤中,预组装用的胶水适于选择UV胶与热固胶的混合胶进行预组装,所述胶水经过紫外曝光后呈半固化状态实现预组装,在后期经过烘烤进行完全固化,进而将所述外部光学镜片3012固定于所述镜座3024和所述镜筒部件3013上。
在所述步骤(1005)中,所述摄像模组镜头3010的调整可通过调整所述外部光学镜片3012和/或所述镜筒部件3013来实现,即调整所述摄像模组镜头3010的光学路径,使得所述摄像模组镜头3010的中心轴线与所述感光芯片3021的中心轴线重合或者在偏差允许的范围内,进而使摄像模组成像满足预期的解像要求。
其中,在上述组装方法中,可以通过对所述外部光学镜片3012的预组装,所述摄像模组可按照下列三种方式进行校准:(1)调整所述镜筒部件3013的组装位置对所述摄像模组进行校准,即通过调整所述镜筒部件3013得以调整固定于其内部空间的各所述内部光学镜片3011,换句话说,此种情况下,所述外部光学镜片3012与所述镜筒部件3013之间预组装,与所述镜座3024之间固定连接;(2)分别调整所述镜筒部件3013和所述外部光学镜片3012对所述摄像模组 进行校准,此种情况下,所述外部光学镜片3012与所述镜筒部件3013及所述镜座3024之间均进行预组装;和(3)同时调整所述镜筒部件3013和所述外部光学镜片3012对所述摄像模组进行校准,即调整所述摄像模组镜头3010来校准所述摄像模组,换句话说,此种情况下,所述外部光学镜片3012与所述镜筒部件3013之间固定连接,与所述镜座3024之间预组装。
所述步骤(1005)包括以下步骤:步骤(10051)对预组装的摄像模组进行通电,采集摄像模组成像;步骤(10052)根据摄像模组成像,使用软件按照光学方法计算出所述摄像模组镜头3010的调整方式及调整量,包括所述外部光学镜片3012的调整方式及调整量和/或所述镜筒部件3013的调整方式及调整量;步骤(10053)按照调整量对所述摄像模组镜头3010的组装位置进行定量调整。
在所述步骤(1006)中,调整预组装的所述摄像模组后,通过在所述外部光学镜片3012与所述镜筒部件3013之间及所述外部光学镜片3012与所述镜座3024之间进行点胶,例如热固胶,然后固化来固定预组装的所述外部光学镜片3012,完成所述摄像模组的组装。
此外,也可以直接将所述外部光学镜片3012直接固定于所述镜筒部件3013和所述镜座3024之间,即将所述摄像模组镜头3010固定于所述感光装置3020,固定后不可进行调整,完成所述摄像模组的组装,但这种组装方式会使得定焦模组的光学后焦距存在公差,得到的模组质量不稳定,需要再次对每个模组的光学后焦距进行调整。
参考图37,包括上述所述摄像模组镜头3010的另一摄像模组将被阐述。如图37所示,一摄像模组,包括所述摄像模组镜头3010和一感光装置3020A,所述感光装置3020A包括一感光芯片3021A,所述摄像模组镜头3010被设置于所述感光芯片3021A的感光路径上,当物体反射的光线经过所述摄像模组镜头3010进入所述摄像模组内部后,被所述感光芯片3021A接收和进行光电转化,从而在后续过程中,所述摄像模组能够获得与物体相关的影像。
所述感光装置3020A进一步包括一滤光片3022A、一线路板3023A和一镜座3024A,所述感光装置3020A采用的是芯片倒装工艺(flip chip),所述感光芯片3021A位于所述镜座3024A的底部,直接与所述镜座3024A相连接,并且所述感光芯片3021A与所述滤光片3022A分别位于所述镜座3024A的内壁具有的一凸台的顶部和底部,其中所述感光芯片23A与所述线路板3023A保持一间距, 所述镜座3024A具有电气功能,能够保证所述摄像模组的成像。
本变形实施中的所述感光装置3020A的高度较小,不仅可以满足小后焦距的模组的组装需求,而且进一步地缩短了组装的公差链长度,使所述感光芯片3021A与所述摄像模组镜头3010相对组装位置公差最小化,提高了其组装精度。而且有利于减小摄像模组的后焦限制,以进一步缩小模组的高度尺寸,有利于摄像模组向轻薄化的方向发展。此外,由于所述感光芯片3021A直接设置于所述镜座3024A上,不需要贴装于所述线路板3023A上,能够消除线路板的不平整对感光芯片的影响,进一步保证了所述摄像模组的成像质量。
参考图38,本发明提供的摄像模组镜头的一种变形实施将被阐述。如图38所示,一摄像模组镜头3010B,包括四内部光学镜片3011B、一外部光学镜片3012B和一镜筒部件3013B,各所述内部光学镜片3011B沿着镜筒部件3013B的高度方向被设置于所述镜筒部件3013B具有的一收容腔30131B中,所述外部光学镜片3012B于所述镜筒部件3013B的底部固定于所述镜筒部件3013上,且各所述内部光学镜片3011B与所述外部光学镜片3012B位于所述摄像模组镜头3010B的光学路径上。
各所述内部光学镜片3011B按照次序被逐片的固定于所述镜筒部件3013B的内部空间,其中各所述内部光学镜片3011B之间及与所述镜筒部件3013B使用隔圈进行连接固定。
所述外部光学镜片3012B的边缘具有一挡光层30121B,所述挡光层30121B是通过在所述外部光学镜片3012B的外侧涂布黑胶形成的,所述黑胶优选为热固胶,其中所述挡光层30121B完全覆盖所述外部光学镜片3012B的整个侧面,防止所述摄像模组镜头3010B漏光。
参考图39和图40,本发明提供的摄像模组镜头的第十二种具体实施方式将被阐述。如图39和图40所示,一摄像模组镜头3010C,包括至少一内部光学镜片3011C、至少一外部光学镜片3012C和一镜筒部件3013C,其中各所述内部光学镜片3011C被设置于所述镜筒部件3013C具有的一收容腔30131C中,所述外部光学镜片3012C被设置于所述镜筒部件3013C的底部并位于所述镜筒部件3013C的外部,且所述内部光学镜片3011C和各所述外部光学镜片3012C位于所述摄像模组镜头3010C的光学路径上。
在本优选实施例中,包括三片所述内部光学镜片3011C,分别为一第一内部 光学镜片30111C、一第二内部光学镜片30112C和一第三内部光学镜片30113C,其中所述第一内部光学镜片30111C被预组装于所述镜筒部件3013C顶部的内部空间中,作为可调镜片,其组装位置相对于所述镜筒部件3013C的空间位置适于被进行至少一个方向的调整,可调整的方向包括水平、垂直、倾斜和圆周方向中的一个或几个方向。
优选地,使用胶水预组装所述第一内部光学镜片30111C,其中所述胶水优选为UV胶与热固胶的混合胶,经过紫外曝光后半固化将所述第一内部光学镜片30111C预组装于所述镜筒部件3013C,后期经过调整后,再将所述胶水进行烘烤完全固化进行固定所述第一内部光学镜片30111C。本领域的技术人员也可以选择其他方式对所述可调镜片进行预组装。
所述第二内部光学镜片30112C和所述第三内部光学镜片30113C嵌合后组成一个整体的镜片组件,二者之间的嵌合可选择使用隔圈或者直接涂胶进行连接,然后再将镜片组件固定于所述镜筒部件3013C中部和底部的内部空间,可选择使用焊接或胶水进行固定。其中,也可以将所述第二内部光学镜片30112C和所述第三内部光学镜片30113C分别单片的固定于所述镜筒部件3013C。
值得一提的是,可以选择所述内部光学镜片3011C中的一片或者多片作为可调镜片,也可以同时通过将所述外部光学镜片3012C预组装于所述镜筒部件3013C的底部,使得所述外部光学镜片3012C的组装位置可调,也将所述外部光学镜片3012C作为可调镜片在后续工序中进行调节,通过对所述可调镜片组装位置的调节,以校准所述摄像模组镜头3010C的光心,校准后再对所述可调镜片进行固定,提高其制造良率。
所述镜筒部件3013C具有至少一调整通道30131C,所述调整通道30131C设置于所述镜筒部件3013C的安装所述可调镜片的位置处,本优选实施例中的所述调整通道30131C的设置位置与所述第一内部光学镜片30111C的组装位置相对应,其中所述调整通道30131C将所述镜筒部件3013C的内部空间和外部环境相连通,以便于从通过一外部调整装置从所述镜筒部件3013C的外部伸入到所述调整通道30131C接触所述第一内部光学镜片30111C来调整所述第一内部光学镜片30111C的组装位置。
优选地,本优选实施例在所述镜筒部件3013C的外侧圆周方向设置四个所述调整通道30131C,各所述调整通道30131C均匀地分布于所述镜筒部件3013C 的顶部与所述第一内部光学镜片30111C相对应,各所述调整通道30131C之间彼此相隔90°,以便于从不同方向对所述第一内部光学镜片30111C进行调整,保证调整的精度。
所述镜筒部件3013C具有至少一固定通道30132C,设于所述镜筒部件3013C的顶部,与所述第一内部光学镜片30111C相对应,对所述第一内部光学镜片30111C进行调整后,使用一点胶设备通过所述固定通道30132C点胶固定所述第一内部光学镜片30111C。优选地,本实施例实施为四个所述固定通道30132C,彼此相间隔90°,均与所述第一内部光学镜片30111C的边缘相对应,以便于从多处对其进行固定,保证固定的牢固性。点胶固定所述第一内部光学镜片30111C的时候,可以多注入一些胶水到各所述固定通道30132C中,便于同时密封所述固定通道30132C,防止灰尘进入,并可防止镜头漏光。
值得一提的是,也可以通过所述调整通道30131C注入胶水来固定所述第一内部光学镜片30111C,尤其是当将设置于所述镜筒部件3013C中部或者底部的内部空间中的内部光学镜片作为可调镜片时,通常使用与所述可调镜片相对应的调整通道来固定所述可调镜片,并多注入一些胶水,同时密封所述调整通道。
当所述外部光学镜片3012C作为可调镜片时,可以使用以设备直接对其进行调整,然后通过点胶或者完全固化预组装用的胶水来将其固定。
进一步地,在所述外部光学镜片3012C的边缘设置一挡光层30121C,其中所述挡光层30121C必须完全覆盖所述外部光学镜片3012C的整个侧面,以防止所述摄像模组镜头3010C漏光,并防止外部杂散光进入所述摄像模组镜头3010C内部,以保证所述摄像模组镜头3010C的成像品质。优选地,通过在所述外部光学镜片3012的外侧涂布黑胶来设置所述挡光层30121,所述黑胶可选为热固胶,固化后形成所述挡光层30121C。
参考图41,包括上述摄像模组镜头3010C的摄像模组将被阐述。如图41所示,一摄像模组,包括一摄像模组镜头3010C和一感光装置3020C,所述感光装置3020C包括一感光芯片3021C,所述摄像模组镜头3010C被设置于所述感光芯片3021C的感光路径上,当物体反射的光线经过所述摄像模组镜头3010C进入所述摄像模组内部后,被所述感光芯片3021C接收和进行光电转化,从而在后续过程中,所述摄像模组能够获得与物体相关的影像。
所述感光装置进一步包括一滤光片3022C、一线路板3023C和一镜座3024C, 其中所述滤光片3022C安装于所述镜座3024C的内部,并被设置于所述感光芯片3021C的上方,其中所述感光芯片3021C贴装于所述线路板3023C的上方,所述线路板3023C安装于所述镜座3024C的底部并使得所述感光芯片3021位于所述镜座3024C的内部的腔体中,且所述感光芯片3021C与所述镜座3024C之间保持一间距,二者并不直接接触,即所述感光装置3020C采用COB(chip on board)工艺进行制作。
所述外部光学镜片3012C被设置于所述镜筒部件3013C与所述镜座3024C之间,即所述外部光学镜片3012C的顶部连接于所述镜筒部件3013C的底部,所述外部光学镜片3012C的底部连接于所述镜座3024C的顶部,承靠在所述镜座3024C上,被所述镜座3024C支撑,且各所述内部光学镜片3011C及各所述外部光学镜片3012C均被设置于所述感光芯片3021C的感光路径上,其中所述第一内部光学镜片30111C作为所述摄像模组的可调镜片,其组装位置相对于所述感光芯片3021C的组装位置被可调,调整后,能够使得所述摄像模组镜头3010C的中心轴线与所述感光芯片3021C的中心轴线重合或者在偏差允许的范围内,以保证所述摄像模组的成像质量。
值得一提的是,在所述摄像模组中,还可以将其他所述内部光学镜片3011C、所述外部光学镜片3012C作为可调镜片来调整所述摄像模组镜头3010C的中心轴线,将所述外部光学镜片3012C作为可调镜片时,需要将所述外部光学镜片3012C与所述镜座3024C进行预组装,所述外部光学镜片3012C不能固定于所述镜座3024C,其相对于所述镜座3024C的组装位置被可调。
参考图43,所述摄像模组的组装方法将被阐述。所述摄像模组的组装方法1100包括以下步骤:
步骤(1101):将各所述内部光学镜片3011C安装于所述镜筒部件3013C的内部空间,其中将至少一片所述内部光学镜片3011C作为可调镜片进行预组装,其组装位置被可调,并固定除所述可调镜片以外的其余所述内部光学镜片3011C;
步骤(1102):将所述外部光学镜片3012C设置于所述镜筒部件3013C底部的外部空间;
步骤(1103):在所述外部光学镜片3012C的外侧设置所述挡光层30121C,完成所述摄像模组镜头3010C的组装;
步骤(1104):将所述摄像模组镜头3010C预组装于所述感光装置3020C, 完成所述摄像模组的预组装;
步骤(1105):调整所述摄像模组镜头3010C的组装位置,使所述摄像模组成像满足解像要求;以及
步骤(1106):封装所述摄像模组镜头3010C和所述感光装置3020C,完成所述摄像模组的组装。
其中所述步骤(1101)至步骤(1103)为所述摄像模组镜头3010C的组装步骤。
在所述步骤(1101)中,除所述可调镜片之外的其余各所述内部光学镜片3011C可以逐个单片的固定于所述镜筒部件3013C的内部空间,也可以将其嵌合后形成一个整体的镜片组件后再固定于所述镜筒部件3013C的内部空间,其中将所述第一内部光学镜片30111C作为可调镜片用胶水进行预组装,在后续工序中对其组装位置进行调整。
在所述步骤(1102)和所述步骤(1103)中,在对所述外部光学镜片3012C的外侧涂布黑胶设置所述挡光层30121C时,也可以同时在所述镜筒部件3013C和所述外部光学镜片3012C的交界处涂布黑胶,既可以形成所述挡光层30121C,又可以将所述外部光学镜片3012C与所述镜筒部件3013C相连接,减少组装步骤,节约时间,提高产品生产制造效率,降低成本。当然也可以将所述外部光学镜片3012C与所述镜筒部件3013C进行连接后,再在所述外部光学镜片3012C的外侧涂布黑胶设置所述挡光层30121C,根据实际情况进行选择,其中所述挡光层30121C可在组装所述外部光学镜片3012C之前进行设置,当然也可在组装后进行设置。
进一步地,可通过在所述外部光学镜片3012C的顶部表面边缘涂胶或者在所述镜筒部件3013C的底部表面涂胶使二者连接到一起,其中所述外部光学镜片3012C与所述镜筒部件3013C之间可以固定连接,也可以不做固定,对二者进行预组装,将所述外部光学镜片3012C作为可调镜片,使得所述镜筒部件3013C和所述外部光学镜片3012C的组装位置在后续工序中适于被进行至少一个方向的调整。
在所述步骤(1104)中,在所述外部光学镜片3012C的底部表面边缘涂胶或者在所述镜座3024C的顶部表面涂胶,将所述外部光学镜片3012C与所述镜座3024C之间用胶水进行固定地连接,其中所述胶水优选为热固胶,也可以将二者 进行预组装,使得所述外部光学镜片3012C相对于所述感光芯片3021C的组装位置适于被进行至少一个方向的调整。
在上述各步骤中,预组装用的胶水适于选择UV胶与热固胶的混合胶进行预组装,所述胶水经过紫外曝光后呈半固化状态实现预组装,在后期经过烘烤进行完全固化,进而将所述外部光学镜片3012C固定于所述镜座3024C和所述镜筒部件3013C上。
在所述步骤(1105)中,所述摄像模组镜头3010C的调整可通过调整作为所述可调镜片的所述内部光学镜片3011C、所述外部光学镜片3012C和/或所述镜筒部件3013C来实现,即调整所述摄像模组镜头3010C的光学路径,使得所述摄像模组镜头3010C的中心轴线与所述感光芯片3021C的中心轴线重合或者在偏差允许的范围内,进而使摄像模组成像满足预期的解像要求。
具体地,在上述组装方法中,可以通过对所述可调镜片的预组装,所述摄像模组镜头可按照下列几种方式进行调整:(1)调整所述镜筒部件3013C的组装位置对所述摄像模组进行校准,即通过调整所述镜筒部件3013C得以调整固定于其内部空间的各所述内部光学镜片3011C及预组装的所述可调镜片,换句话说,此种情况下,所述外部光学镜片3012C与所述镜筒部件3013C之间预组装,与所述镜座3024C之间固定连接;(2)分别调整所述镜筒部件3013C和所述外部光学镜片3012C对所述摄像模组进行校准,此种情况下,所述外部光学镜片3012C与所述镜筒部件3013C及所述镜座3024C之间均进行预组装;(3)同时调整所述镜筒部件3013C和所述外部光学镜片3012C对所述摄像模组进行校准,即调整所述摄像模组镜头3010C来校准所述摄像模组,换句话说,此种情况下,所述外部光学镜片3012C与所述镜筒部件3013C之间固定连接,与所述镜座3024C之间预组装;(4)对所述可调镜片的组装位置进行调整,进而得以调整所述摄像模组镜头3010C的中心轴线;(5)将所述可调镜片的调整与上述(1)至(3)中所述镜筒部件3013C及所述外部光学镜片3012C的调整相结合来校准所述摄像模组。
所述步骤(1105)包括以下步骤:步骤(11051)对预组装的摄像模组进行通电,采集摄像模组成像;步骤(11052)根据摄像模组成像,使用软件按照光学方法计算出所述摄像模组镜头3010C的调整方式及调整量;步骤(11053)按照调整量对所述摄像模组镜头3010C的组装位置进行定量调整。
在所述步骤(1106)中,调整预组装的所述摄像模组10C后,通过在所述外部光学镜片3012C与所述镜筒部件3013C之间及所述外部光学镜片3012C与所述镜座3024C之间进行点胶,例如热固胶,然后固化来固定预组装的所述外部光学镜片3012C,并通过所述调整通道30131C和/或所述固定通道30132C来固定作为可调镜片的所述内部光学镜片3011C,完成所述摄像模组的组装。
此外,也可以直接将所述外部光学镜片3012C直接固定于所述镜筒部件3013C和所述镜座3024C之间,固定后不可进行调整,仅仅通过调整作为可调镜片的所述内部光学镜片3011C的组装位置对摄像模组成像进行校准,然后将其固定,完成所述摄像模组的组装。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (225)

  1. 一摄像模组,其特征在于,包括:
    一感光芯片;和
    一可调光学镜头,所述可调光学镜头位于所述感光芯片的感光路径;
    其中所述可调光学镜头包括
    一光学结构件;和
    至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,其中至少一所述光学镜片适于被调节地预组装于所述光学结构件内部;其中所述光学结构件的侧壁设有至少一调整通道,所述调整通道连通于所述光学结构件的内部空间和外部环境,且所述调整通道与预组装的所述光学镜片相对,以便于通过所述调整通道调节所述光学镜片的位置,使得所述可调光学镜头和所述感光芯片的中心轴线重合。
  2. 根据权利要求1所述的摄像模组,其中预组装的所述光学镜片通过胶水于组装于所述光学结构件的内部,所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固定,以固定整个所述可调光学镜头。
  3. 根据权利要求2所述的摄像模组,其中所述可调光学镜头包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节,且所述光阑通过将胶水半固化的进行预组装。
  4. 根据权利要求3所述的摄像模组,其中所述光阑设有至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调整后的所述光学镜片。
  5. 一摄像模组,其特征在于,包括:
    一感光装置,所述感光装置包括一感光芯片;和
    一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径,其中所述可调光学镜头包括五个光学镜片,分别为第一光学镜片、一第二光学镜片、一第三光学镜片、一第四光学镜片和一第五光学镜片,五个所述光学镜片依次重叠地沿着所述感光芯片感光路径安装于所述光学结构件内部,且所述第一镜片和 所述第二镜片可调节地预组装于所述光学结构件内部;
    其中所述光学结构件设有两调整通道,分别连通于所述光学结构件的内部空间和外部环境,并分别与所述第一镜片和所述第二镜片相对,以通过所述调整通道调节所述第一镜片和所述第二镜片在所述光学结构件内部的空间位置。
  6. 根据权利要求5所述的摄像模组,其中预组装的所述光学镜片通过胶水预组装于所述光学结构件的内部,所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
  7. 根据权利要求6所述的摄像模组,其中所述光学结构件的内壁分别相间隔地设有五个限位结构,分别为第一限位结构、一第二限位结构、一第三限位结构、一第四限位结构和一第五限位结构,分别承载所述第一镜片、所述第二镜片、所述第三镜片、所述第四镜片和所述第五镜片。
  8. 根据权利要求7所述的摄像模组,其中所述可调光学镜头包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节,且所述光阑通过将胶水半固化的进行预组装。
  9. 根据权利要求8所述的摄像模组,其中所述光阑设有至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调整后的所述光学镜片。
  10. 一摄像模组,其特征在于,包括:
    一可调光学镜头;和
    一感光装置,其中所述感光装置设有一感光芯片,所述可调光学镜头被设置于所述感光芯片的感光路径;
    其中可调光学镜头包括
    四光学镜片,分别为一第一光学镜片、一第二光学镜片、一第三光学镜片和一第四光学镜片;和
    一光学结构件,四片所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述光学结构件的顶部设有至少一调整通道,所述调整通道将所述光学结构件的内部空间和外部环境相连通,并且所述调整通道与所述第一光学镜片相对,以便于通过所述调整通道调整所述第一光学镜片,并且通过所述调整 通道注入胶水,将所述第一光学镜片固定。
  11. 根据权利要求10所述的摄像模组,其中通过所述调整通道将胶水注入至所述第一光学镜片的侧面与相对应的所述光学结构件的内壁之间,通过将所述第一光学镜片的侧面与所述光学结构件的内壁进行固定连接来固定所述第一光学镜片。
  12. 根据权利要求10所述的摄像模组,其中通过所述调整通道将胶水注入至所述第一光学镜片的顶部表面,通过所述第一光学镜片的顶部表面与所述光学结构件的内壁进行固定来固定所述第一光学镜片。
  13. 根据权利要求11或12所述的摄像模组,其中所述感光装置包括一滤光片、一线路板和一镜座,所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内壁的腔体中。
  14. 根据权利要求13所述的摄像模组,其中所述光学结构件顶部沿着一圆周方向设置三个调整通道,彼此相隔120°。
  15. 根据权利要求14所述的摄像模组,其中所述第一光学镜片顶部表面被设置有至少二调整槽,与所述调整通道相对。
  16. 一摄像模组,其特征在于,包括:
    一可调光学镜头;和
    一感光装置,其中所述感光装置设有一感光芯片,所述可调光学镜头被设置于所述感光芯片的感光路径;
    其中可调光学镜头包括
    四光学镜片,分别为一第一光学镜片、一第二光学镜片、一第三光学镜片和一第四光学镜片;和
    一光学结构件,四片所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述光学结构件的侧面设有至少一调整通道,所述光学结构件的顶部设置至少一固定通道,所述调整通道和所述固定通道将所述光学结构件的内部空间和外部环境相连通,并且所述调整通道与所述第一光学镜片侧面相对,以便于通过所述调整通道调整所述第一光学镜片,所述固定通道与所述第一光学镜片的顶部表面相对,以便于通过所述固定通道注入胶水,将所述第一光学镜片固定。
  17. 根据权利要求15所述的摄像模组,其中所述调整通道沿着所述光学结构件与所述第一光学镜片相对应的外侧的一圆周方向设置为三个,彼此相隔120°。
  18. 根据权利要求16所述的摄像模组,其中所述感光装置包括一滤光片、一线路板和一镜座,所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内壁的腔体中。
  19. 一摄像模组,其特征在于,包括:
    一摄像模组镜头;和
    一感光装置,其中所述感光装置包括一感光芯片,所述摄像模组镜头被设置于所述感光芯片的感光路径;
    其中所述摄像模组镜头包括
    三内部光学镜片;
    至少一外部光学镜片;和
    一镜筒部件;其中三所述内部光学镜片分别为一第一内部光学镜片、一第二内部光学镜片和一第三光学镜片,所述镜筒部件具有一收容腔,三个所述内部光学镜片被设置于所述收容腔中,所述外部光学镜片被设置于所述镜筒部件的底部并且位于所述镜筒部件的外部,其中所述镜筒部件侧壁具有至少一调整通道,与所述第一内部光学镜片相对应,所述第一内部光学镜片被可调整地预组装于所述镜筒部件。
  20. 根据权利要求19所述的摄像模组,其中各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  21. 根据权利要求20所述的摄像模组,其中所述镜筒部件顶部具有至少一固定通道,与所述第一内部光学镜片相对应,以便于通过所述固定通道点胶固定所述第一内部光学镜片。
  22. 根据权利要求21所述的摄像模组,其中所述镜筒部件具有四个所述固定通道,彼此间隔90°。
  23. 根据权利要求22所述的摄像模组,其中所述第二内部光学镜片和所述第三内部光学镜片嵌合组成一整体的镜片组件。
  24. 根据权利要求23所述的摄像模组,其中所述感光装置进一步包括一滤 光片、一线路板和一镜座,其中所述滤光片安装于所述镜座的内部,并被设置于所述感光芯片的上方,所述感光芯片贴装于所述线路板上方,所述线路板安装于所述镜座的底部并使得所述感光芯片位于所述镜座的内部腔体中,所述外部光学镜片被设置于所述镜筒部件与所述镜座之间。
  25. 一可调光学镜头,其特征在于,包括:
    一光学结构件;和
    至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向设置于所述光学结构件的内部空间,其中至少一个所述光学镜片在所述光学结构件的内部空间的位置被可调。
  26. 根据权利要求25所述的可调光学镜头,其中所述光学结构件设有至少一调整通道以连通于所述光学结构件的内部空间和外部环境,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,以通过所述调整通道调整所述光学镜片在所述光学结构件的内部空间的位置。
  27. 一摄像模组,其特征在于,包括:
    一感光芯片;和
    一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径,其中所述可调光学镜头包括一光学结构件和至少两光学镜片,每个所述光学镜片被沿着所述光学结构件的高度方向设置于所述光学结构件的内部空间,在封装所述可调光学镜头和所述感光芯片之前,通过调整至少一个所述光学镜片在所述光学结构件的内部空间的位置使所述光学镜头的中心轴线和所述感光芯片的中心轴线重合,以改善所述摄像模组的成像品质。
  28. 根据权利要求27所述的摄像模组,其中所述光学结构件设有至少一调整通道以连通于所述光学结构件的内部空间和外部环境,所述光学镜片在所述光学结构件的内部空间对应于所述调整通道,以通过所述调整通道调整所述光学镜片在所述光学结构件的内部空间的位置。
  29. 一制造一摄像模组的方法,其特征在于,所述方法包括如下步骤:
    (a)将一可调光学镜头设置于一感光芯片的感光路径;
    (b)通过调整所述可调光学镜头的至少一光学镜片的位置,使所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合;以及
    (c)封装所述可调光学镜头和所述感光芯片,以制成所述摄像模组。
  30. 根据权利要求29所述的制造方法,其中所述步骤(b)中,通过调整所述可调光学镜头的一个所述光学镜片的位置,使所述可调光学镜头的中心轴线和所述感光芯片的中心轴线重合。
  31. 根据权利要求30所述的制造方法,其中所述步骤(b)中,通过调整所述可调光学镜头处于最外侧的所述光学镜片的位置,使所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合。
  32. 根据权利要求29至31中任一所述的制造方法,其中在所述步骤(b)中,至少调整所述光学镜片的水平方向、垂直方向、倾斜方向和圆周方向中的至少一个方向。
  33. 根据权利要求29至31中任一所述的制造方法,其中所述步骤(b)中,在一光学结构件的内部空间调整所述光学镜片的位置之后,封装所述光学镜片与所述光学结构件。
  34. 根据权利要求33所述的制造方法,其中所述步骤(b)中,在所述光学结构件的侧部设至少一调整通道以对应于被设置于所述光学结构件的内部空间的所述光学镜片,通过所述调整通道在所述光学结构件的外部环境调整被设置于所述光学结构件的内部空间的所述光学镜片的位置。
  35. 可调光学镜头,其特征在于,包括:
    一光学结构件;和
    至少二光学镜片,各所述光学镜片沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,其中至少一个所述光学镜片在所述光学结构件内部的空间位置适于被调节。
  36. 根据权利要求35所述的可调光学镜头,其中所述光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,适于被调节的所述光学镜片在所述光学结构件的内部对应于所述调整通道,以通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
  37. 根据权利要求36所述的可调光学镜头,其中适于被调节的所述光学镜片在所述光学结构件内部的空间位置适于被进行至少一个方向的调节。
  38. 根据权利要求35所述的可调光学镜头,其中适于被调节的所述光学镜片通过胶水预组装于所述光学结构件的内部,所述胶水为半固化状态。
  39. 根据权利要求37所述的可调光学镜头,其中适于被调节的所述光学镜 片通过胶水预组装于所述光学结构件的内部,所述胶水为半固化状态。
  40. 根据权利要求36所述的可调光学镜头,其中所述光学结构件设有至少一限位结构,所述光学镜片被承载于对应的所述限位结构。
  41. 根据权利要求35至40任一所述的可调光学镜头,其中所述可调光学镜头进一步包括一光阑,所述光阑预组装于所述光学结构件的顶部,与所述光学镜片位于同一光学路径上,其中所述光阑的组装位置适于被调节。
  42. 根据权利要求41所述的可调光学镜头,其中所述光阑的组装位置相对于所述光学结构件的位置适于被进行至少一个方向的调节。
  43. 根据权利要求42所述的可调光学镜头,其中所述光阑通过将胶水半固化进行预组装。
  44. 根据权利要求43所述的可调光学镜头,其中预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
  45. 根据权利要求43所述的可调光学镜头,其中在所述光阑位置处设置至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水来固定调节后的所述光学镜片。
  46. 一可调光学镜头,其特征在于,包括:
    一光学结构件;
    至少一光学镜片,所述光学镜片沿着所述光学结构件的高度方向被设置于所述光学结构件的内部空间,并加以固定;和
    一光阑,所述光阑预组装于所述光学结构件的顶部,并位于所述光学镜片的顶侧,其中所述光阑的组装位置相对于所述光学结构件的空间位置适于被调节。
  47. 根据权利要求46所述的可调光学镜头,其中所述光阑通过将胶水半固化进行预组装。
  48. 根据权利要求47所述的可调光学镜头,其中预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定所述光阑。
  49. 根据权利要求46至48任一所述的可调光学镜头,其中所述光阑的组装位置适于被进行至少一个方向的调节。
  50. 根据权利要求49所述的可调光学镜头,其中所述光学结构件的内壁设 有至少一限位结构,适于承载所述光学镜片。
  51. 一摄像模组,其特征在于,包括:
    一感光装置,所述感光装置包括一感光芯片;和
    一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括一光学结构件、至少一光学镜片和一光阑,各所述光学镜片被沿着所述光学结构件的高度方向安装于所述光学结构件的内部空间,所述光阑设置于所述光学结构件的顶部,并位于所述光学镜片的顶侧,其中至少一个所述光学镜片被预组装于所述光学结构件的内部空间,在封装所述可调光学镜头和所述感光装置之前,预组装的所述光学镜片在所述光学结构件内部的组装位置适于被调节,调节后使得所述摄像模组成像满足解像要求。
  52. 根据权利要求51所述的摄像模组,其中所述光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
  53. 根据权利要求51所述的摄像模组,其中预组装的所述光学镜片在所述光学结构件内部的空间位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  54. 根据权利要求52所述的摄像模组,其中预组装的所述光学镜片在所述光学结构件内部的空间位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  55. 根据权利要求52所述的摄像模组,其中与每个预组装的所述光学镜片相对应的所述光学结构件的侧壁均设置三个所述调整通道,彼此相隔120°,适于调节预组装的所述光学镜片在各所述调整通道位置处的水平及垂直位置。
  56. 根据权利要求54所述的摄像模组,其中与每个预组装的所述光学镜片相对应的所述光学结构件的侧壁均设置三个所述调整通道,彼此相隔120°,适于调节预组装的所述光学镜片在各所述调整通道位置处的水平及垂直位置。
  57. 根据权利要求56所述的摄像模组,其中预组装的所述光学镜头通过将胶水半固化的方式实现预组装。
  58. 根据权利要求57所述的摄像模组,其中预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过 烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
  59. 根据权利要求51至58任一所述的摄像模组,其中所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件固定于所述镜头座的顶侧。
  60. 根据权利要求51至58任一所述的摄像模组,其中所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述光学结构件,并位于所述光学镜片的底侧,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定。
  61. 一摄像模组,其特征在于,包括:
    一感光装置,所述感光装置包括一感光芯片;和
    一可调光学镜头,所述可调光学镜头设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括一光学结构件、至少一光学镜片和一光阑,其中各所述光学镜片被沿着所述光学结构件的高度方向安装于所述光学结构件的内部空间,所述光阑预组装于所述光学结构件的顶部,其中在封装所述可调光学镜头和所述感光装置之前,所述光阑的组装位置相对于所述光学结构件的空间位置适于被调节,调节后所述摄像模组成像满足解像要求。
  62. 根据权利要求61所述的摄像模组,其中至少一个所述光学镜片预组装于所述光学结构件的内部空间,在封装所述可调光学镜头和所述感光装置之前,预组装的所述光学镜片的在所述光学结构件内部的空间位置适于被调节。
  63. 根据权利要求62所述的摄像模组,其中所述光学镜片的组装位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  64. 根据权利要求63所述的摄像模组,其中所述光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
  65. 根据权利要求63所述的摄像模组,其中与每个预组装的所述光学镜片相对应的所述光学结构件的侧壁均设置三个所述调整通道,彼此相隔120°,适于调节预组装的所述光学镜片在各所述调整通道位置处的水平及垂直位置。
  66. 根据权利要求63所述的摄像模组,其中在所述光阑位置处设置至少一注胶通道,所述注胶通道与适于被调节的所述光学镜片相对应,以通过所述注胶通道注入胶水进行固化来固定调节后的所述光学镜片。
  67. 根据权利要求61所述的摄像模组,其中所述光阑的组装位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  68. 根据权利要求63所述的摄像模组,其中所述光阑的组装位置适于被进行至少一个方向的调节,调节后使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  69. 根据权利要求67所述的摄像模组,其中所述光阑通过将胶水半固化的方式预组装于所述光学结构件的顶部。
  70. 根据权利要求68所述的摄像模组,其中所述光阑通过将胶水半固化的方式预组装于所述光学结构件的顶部。
  71. 根据权利要求70所述的摄像模组,其中预组装的所述光学镜片通过将胶水半固化的方式预组装于所述光学结构件的内部空间。
  72. 根据权利要求71所述的摄像模组,其中预组装使用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现预组装,经过烘烤处理后,所述胶水会完全固化,以固定整个所述可调光学镜头。
  73. 根据权利要求61至72任一所述的摄像模组,其中所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件固定于所述镜头座的顶侧。
  74. 根据权利要求61至72任一所述的摄像模组,其中所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述光学结构件,并位于所述光学镜片的底侧,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定。
  75. 一摄像模组的制造方法,其特征在于,包括以下步骤:
    (A)将一可调光学镜头设置于一感光装置包括的一感光芯片的感光路径上;
    (B)将一可调光学元件预组装于所述可调光学镜头,完成摄像模组的预组装;
    (C)调节所述可调光学元件的组装位置,使得调整后的所述摄像模组成像满足解像要求;以及
    (D)封装所述可调光学镜头和所述感光装置,进而得以固定所述摄像模组。
  76. 根据权利要求75所述的摄像模组的制造方法,其中所述可调光学元件为至少一光学镜片,在所述步骤(B)中,将至少一个所述光学镜片预组装于所述可调光学镜头,通过调节预组装的所述光学镜片的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  77. 根据权利要求75所述的摄像模组的制造方法,其中所述可调光学元件为一光阑,在所述步骤(B)中,将所述光阑预组装于所述可调光学镜头的顶部,通过调节所述光阑的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  78. 根据权利要求75所述的摄像模组的制造方法,其中所述可调光学元件为一光阑和至少一光学镜片,在所述步骤(B)中,将所述光阑和至少一个所述光学镜片预组装于所述可调光学镜头,通过调节所述光阑和预组装的所述光学镜片的组装位置,使得所述可调光学镜头的中心轴线与所述感光芯片的中心轴线重合或在偏差允许的范围内。
  79. 根据权利要求76所述的摄像模组的制造方法,其中在上述方法中,在所述可调光学镜头包括的一光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
  80. 根据权利要求78所述的摄像模组的制造方法,其中在上述方法中,在所述可调光学镜头包括的一光学结构件的侧壁设有至少一调整通道,以连通于所述光学结构件的内部空间和外部环境,预组装的所述光学镜片在所述光学结构件的内部对应于所述调整通道,适于通过所述调整通道调节所述光学镜片在所述光学结构件内部的空间位置。
  81. 根据权利要求79所述的摄像模组的制造方法,其中在所述步骤(D)中,通过在所述调整通道点胶的方式密封所述调整通道,并进行烘烤,固化预组装用的胶水和点胶的胶水,以固定调节后的所述光学镜片,进而得以固定整个所述摄像模组。
  82. 根据权利要求80所述的摄像模组的制造方法,其中在所述步骤(D)中,通过在所述调整通道点胶的方式密封所述调整通道,并进行烘烤,固化预组装用的胶水和点胶的胶水,以固定调节后的所述光学镜片和所述光阑,进而得以固定整个所述摄像模组。
  83. 根据权利要求79所述的摄像模组的制造方法,其中在所述步骤(D)中,在所述光阑位置处设置至少一注胶通道,所述注胶通道与预组装的所述光学镜片相对应,通过在所述注胶通道中注入胶水,并进行烘烤,固化预组装的胶水和注胶的胶水,以固定调节后的所述光学镜片,进而得以固定整个所述摄像模组。
  84. 根据权利要求80所述的摄像模组的制造方法,其中在所述步骤(D)中,在所述光阑位置处设置至少一注胶通道,所述注胶通道与预组装的所述光学镜片相对应,通过在所述注胶通道中注入胶水,并进行烘烤,固化预组装的胶水和注胶的胶水,以固定调节后的所述光学镜片和所述光阑,进而得以固定整个所述摄像模组。
  85. 根据权利要求75至84任一所述的摄像模组的制造方法,其中在上述方法中,至少通过调节所述可调光学元件的水平方向、垂直方向、倾斜方向和圆周方向中的至少一个方向来调节所述可调光学元件的组装位置。
  86. 根据权利要求85所述的摄像模组的制造方法,其中在上述方法中,通过胶水预组装所述可调光学元件,其中预组装用的所述胶水为一种UV胶与热固胶的混合胶,经过紫外曝光后所述胶水会半固化实现所述步骤(B)中的所述可调光学元件的预组装,在所述步骤(D)中,经过烘烤处理后,所述胶水会完全固化,以固定整个所述摄像模组。
  87. 根据权利要求75至84任一所述的摄像模组的制造方法,其中所述步骤(C)包括以下步骤:
    (C1)采集预组装的所述摄像模组成像;
    (C2)根据所述摄像模组成像使用软件计算所述可调光学元件的调节量;以及
    (C3)按照调节量调节所述可调光学元件的组装位置。
  88. 根据权利要求86所述的摄像模组的制造方法,其中所述步骤(C)包括以下步骤:
    (C1)采集预组装的所述摄像模组成像;
    (C2)根据所述摄像模组成像使用软件计算所述可调光学元件的调节量;以及
    (C3)按照调节量调节所述可调光学元件的组装位置。
  89. 根据权利要求87所述的摄像模组的制造方法,其中在所述步骤(C)中,如果调节所述可调光学元件后,所述摄像模组成像不符合解像要求,则需要重复所述步骤(C1)-(C3),直至调节后的所述摄像模组成像符合解像要求。
  90. 根据权利要求88所述的摄像模组的制造方法,其中在所述步骤(C1)中,对预组装完成的所述摄像模组进行通电,采集所述摄像模组成像,其中所述摄像模组成像采集基于所述摄像模组对MTF测试标版的拍摄,用MTF值来表征模组的成像质量,MTF值越大,所述摄像模组的成像质量越高,每次采集完所述摄像模组成像,均需计算出相应图像的MTF值,检验MTF值是否大于标准要求,若MTF值大于或等于标准要求,采集完成;若MTF值小于标准要求,需要再次采集。
  91. 根据权利要求90所述的摄像模组的制造方法,其中每次采集图像的过程中,严格控制所述摄像模组的拍摄环境参数,包括所述MTF测试标版与所述摄像模组的距离和光源参数,以保证图像采集的精确性及一致性,便于执行后续的调节步骤。
  92. 根据权利要求87所述的摄像模组的制造方法,其中在所述步骤(C2)中,采用软件对所述可调光学元件的组装位置的调节适于基于对镜头光学设计灵敏度的研究,采用软件对所述可调光学元件的组装位置调节量的计算方法包括:(1)测量出所述摄像模组校准前的光学特性,包括MTF值、光轴偏心量、光轴倾斜角度和场曲;以及(2)根据所述可调光学元件的组装位置对光轴偏心量、光轴倾斜角度、场曲的灵敏度分别计算出所述可调光学元件所需的组装位置调节量。
  93. 根据权利要求90所述的摄像模组的制造方法,其中在所述步骤(C2)中,采用软件对所述可调光学元件的组装位置的调节适于基于对镜头光学设计灵敏度的研究,采用软件对所述可调光学元件的组装位置调节量的计算方法包括:(1)测量出所述摄像模组校准前的光学特性,包括MTF值、光轴偏心量、光轴倾斜角度和场曲;以及(2)根据所述可调光学元件的组装位置对光轴偏心量、光轴倾斜角度、场曲的灵敏度分别计算出所述可调光学元件所需的组装位置调节 量。
  94. 根据权利要求93所述的摄像模组的制造方法,其中在所述步骤(A)中,通过组装所述可调光学镜头与所述感光装置实现摄像模组包括的部分光学元件的固定组装,其中所述感光装置进一步包括一滤色片、一镜头座和一线路板,所述滤色片固定地安装于所述镜头座,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述可调光学镜头除所述可调光学元件之外的其他元件均固定于所述镜头座的顶侧,组装固定过程中,控制上述各元件的组装公差在允许的范围内。
  95. 根据权利要求93所述的摄像模组的制造方法,其中在所述步骤(A)中,通过组装所述可调光学镜头与所述感光装置实现摄像模组包括的部分光学元件的固定组装,其中所述感光装置进一步包括一滤色片和一线路板,所述滤色片固定地安装于所述可调光学镜头包括的光学结构件,并位于所述光学镜片的底侧,所述感光芯片贴装于所述线路板的顶侧,并位于所述滤色片的底侧,其中所述光学结构件相对于所述感光芯片之间的空间距离被固定,组装固定过程中,控制上述各元件的组装公差在允许的范围内。
  96. 一可调光学镜头,其特征在于,包括:
    至少一光学镜片;和
    一光学结构件,各所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述至少一片所述光学镜片作为可调镜片,其组装位置适于被调整,所述光学结构件设有至少一调整通道和至少一固定通道,适于分别通过所述调整通道和所述固定通道调整和固定所述可调镜片。
  97. 根据权利要求96所述的可调光学镜头,其中所述固定通道和所述调整通道在所述光学结构件的设置位置相同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
  98. 根据权利要求96所述的可调光学镜头,其中所述固定通道和所述调整通道在所述光学结构件的设置位置不同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连 通,进而得以被调整和被固定。
  99. 根据权利要求97所述的可调光学镜头,其中所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
  100. 根据权利要求98所述的可调光学镜头,其中所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
  101. 根据权利要求97所述的可调光学镜头,其中所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
  102. 根据权利要求98所述的可调光学镜头,其中所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
  103. 根据权利要求99所述的可调光学镜头,其中所述调整通道和所述固定通道均设于所述光学结构件的顶部。
  104. 根据权利要求100所述的可调光学镜头,其中所述调整通道和所述固定通道均设于所述光学结构件的顶部。
  105. 根据权利要求99所述的可调光学镜头,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  106. 根据权利要求100所述的可调光学镜头,其中所述调整通道设于所述光学结构件的侧面,所述固定通道设于所述光学结构件的顶部。
  107. 根据权利要求100所述的可调光学镜头,其中所述调整通道设于所述光学结构件的顶部,所述固定通道设于所述光学结构件的侧面。
  108. 根据权利要求101所述的可调光学镜头,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  109. 根据权利要求102所述的可调光学镜头,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  110. 根据权利要求96至109任一所述的可调光学镜头,其中将一外部调整装置伸入到所述调整通道与所述可调镜片相接触来调整所述可调镜片的组装位置,其中所述可调镜片的组装位置适于被进行至少一个方向的调整,以校准所述可调光学镜头的光学路径。
  111. 根据权利要求110所述的可调光学镜头,其中所述外部调整装置具有自动化功能,适于记录所述可调镜片的调整方式和调整量,或者适于在所述外部调整装置中输入所述可调镜片的调整方式及调整量。
  112. 根据权利要求96至99任一所述的可调光学镜头,其中使用一点胶设备通过所述固定通道将胶水注入到所述可调镜片的边缘,固化后得以固定被调整后的所述可调镜片。
  113. 根据权利要求112所述的可调光学镜头,其中所述胶水适于注入到所述可调镜片的顶部表面,通过固定将所述可调镜片顶部表面与所述光学结构件的内壁来固定所述可调镜片。
  114. 根据权利要求112所述的可调光学镜头,其中所述胶水适于注入到所述可调镜片的侧面,通过固定将所述可调镜片侧面与所述光学结构件的内壁来固定所述可调镜片。
  115. 根据权利要求99、100、103、104或107所述的可调光学镜头,其中所述可调镜片具有至少一调整槽,所述调整槽被设于所述可调镜片的边缘,适于将一外部调整装置通过所述调整通道伸入到所述调整槽调整所述可调镜片的组装位置。
  116. 一摄像模组,其特征在于,包括:
    一感光芯片;和
    一可调光学镜头,所述可调光学镜头被设置于所述感光芯片的感光路径上,其中所述可调光学镜头包括至少一光学镜片和一光学结构件,各所述光学镜片依次叠合地设置于所述光学结构件的内部空间,其中所述至少一片所述光学镜片作为可调镜片,其组装位置适于被调整,所述光学结构件设有至少一调整通道和至少一固定通道,适于分别通过所述调整通道和所述固定通道调整和固定所述可调镜片。
  117. 根据权利要求116所述的摄像模组,其中所述固定通道和所述调整通道在所述光学结构件的设置位置相同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通,进而得以被调整和被固定。
  118. 根据权利要求116所述的摄像模组,其中所述固定通道和所述调整通道在所述光学结构件的设置位置不同,所述调整通道和所述固定通道均与所述调整镜片相对应,并将所述光学结构件的内部空间和外部环境相连通,使得所述可调镜片通过所述调整通道和所述固定通道与所述光学结构件的外部环境相连通, 进而得以被调整和被固定。
  119. 根据权利要求117所述的摄像模组,其中所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
  120. 根据权利要求118所述的摄像模组,其中所述可调镜片为所述可调光学镜头的第一片所述光学镜片,被设置于所述光学结构件的顶部。
  121. 根据权利要求117所述的摄像模组,其中所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
  122. 根据权利要求118所述的摄像模组,其中所述可调镜片为任意一片或者几片所述光学镜片,被设置于所述光学结构件的中部位置。
  123. 根据权利要求119所述的摄像模组,其中所述调整通道和所述固定通道均设于所述光学结构件的顶部。
  124. 根据权利要求120所述的摄像模组,其中所述调整通道和所述固定通道均设于所述光学结构件的顶部。
  125. 根据权利要求119所述的摄像模组,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  126. 根据权利要求120所述的摄像模组,其中所述调整通道设于所述光学结构件的侧面,所述固定通道设于所述光学结构件的顶部。
  127. 根据权利要求120所述的摄像模组,其中所述调整通道设于所述光学结构件的顶部,所述固定通道设于所述光学结构件的侧面。
  128. 根据权利要求121所述的摄像模组,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  129. 根据权利要求112所述的摄像模组,其中所述调整通道和所述固定通道均设于所述光学结构件的侧面。
  130. 根据权利要求116至129任一所述的摄像模组,其中将一外部调整装置伸入到所述调整通道与所述可调镜片相接触来调整所述可调镜片的组装位置,其中所述可调镜片的组装位置适于被进行至少一个方向的调整,调整后使得所述可调光学镜头的中心轴线与所述感官芯片的中心轴线重合或者在偏差允许的范围内。
  131. 根据权利要求130所述的摄像模组,其中所述外部调整装置具有自动化功能,适于记录所述可调镜片的调整方式和调整量,或者适于在所述外部调整 装置中输入所述可调镜片的调整方式及调整量。
  132. 根据权利要求116至129任一所述的摄像模组,其中使用一点胶设备通过所述固定通道将胶水注入到所述可调镜片的边缘,固化后得以固定被调整后的所述可调镜片。
  133. 根据权利要求132所述的摄像模组,其中所述胶水适于注入到所述可调镜片的顶部表面,通过固定将所述可调镜片顶部表面与所述光学结构件的内壁来固定所述可调镜片。
  134. 根据权利要求133所述的摄像模组,其中所述胶水适于注入到所述可调镜片的侧面,通过固定将所述可调镜片侧面与所述光学结构件的内壁来固定所述可调镜片。
  135. 根据权利要求119、120、123、124或127所述的摄像模组,其中所述可调镜片具有至少一调整槽,所述调整槽被设于所述可调镜片的边缘,适于将一外部调整装置通过所述调整通道伸入到所述调整槽调整所述可调镜片的组装位置。
  136. 一摄像模组的校准方法,其特征在于,所述方法包括以下步骤:
    (A)将至少一光学镜片组装于一光学结构件的内部空间,并被设置于一感光芯片的感光路径上,其中将至少一片所述光学镜片作为可调镜片进行预组装,使其组装位置被可调,固定除所述可调镜片以外的其余所述光学镜片,完成一可调光学镜头的预组装;
    (B)通过设于所述光学结构件的至少一调整通道调整所述可调镜片,使所述摄像模组成像满足解像要求;以及
    (C)通过设于所述光学结构件的至少一固定通道调整所述可调镜片,完成所述摄像模组的校准。
  137. 根据权利要求136所述的方法,其中在所述步骤(A)中,将预组装完成的所述可调光学镜头与一感光装置相组装,或者将所述光学结构件于所述感光装置组装后再组装各所述光学镜片。
  138. 根据权利要求136所述的方法,其中所述步骤(B)包括以下步骤:(B1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(B2)根据所述摄像模组成像计算所述可调镜片的调整方式和调整量;以及(B3)根据调整量调整所述可调镜片。
  139. 根据权利要求137所述的方法,其中所述步骤(B)包括以下步骤:(B1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(B2)根据所述摄像模组成像计算所述可调镜片的调整方法和调整量;以及(B3)根据调整量调整所述可调镜片。
  140. 根据权利要求138所述的方法,其中在所述步骤(B3)中,将一外部调整装置伸入到所述调整通道并与所述可调镜片相接触对所述可调镜片的组装位置的至少一个方向进行调整,调整后使得所述可调光学镜头的中心轴线与一感光芯片的中心轴线重合或者在偏差允许的范围内。
  141. 根据权利要求139所述的方法,其中在所述步骤(B3)中,将一外部调整装置伸入到所述调整通道并与所述可调镜片相接触对所述可调镜片的组装位置的至少一个方向进行调整,调整后使得所述可调光学镜头的中心轴线与一感光芯片的中心轴线重合或者在偏差允许的范围内。
  142. 根据权利要求141所述的方法,其中在上述方法中,所述外部调整装置具有自动化功能,适于记录所述可调镜片的调整方式和调整量,或者适于在所述外部调整装置中输入所述可调镜片的调整方式及调整量对所述可调镜片进行定量调整。
  143. 根据权利要求140至142任一所述的方法,其中在上述方法中,所述外部调整装置通过机械抓取或者真空吸附的方式对所述可调镜片进行调整。
  144. 根据权利要求137至142任一所述的方法,其中在所述步骤(C)中,使用一点胶设备通过所述固定通道将胶水注入到所述可调镜片的边缘,固化后得以固定被调整后的所述可调镜片。
  145. 根据权利要求144所述的方法,其中在所述步骤(C)中,将胶水注入到所述可调镜片的顶部表面,通过固定将所述可调镜片顶部表面与所述光学结构件的内壁来固定所述可调镜片。
  146. 根据权利要求144所述的方法,其中在所述步骤(C)中,将胶水注入到所述可调镜片的侧面,通过固定将所述可调镜片侧面与所述光学结构件的内壁来固定所述可调镜片。
  147. 根据权利要求144所述的方法,其中在上述方法中,所述调整通道与所述固定通道均设于所述光学结构件的顶部。
  148. 根据权利要求144所述的方法,其中在上述方法中,所述调整通道与 所述固定通道均设于所述光学结构件的侧面。
  149. 根据权利要求144所述的方法,其中在上述方法中,所述调整通道设于所述光学结构件的侧面,所述固定通道设于所述光学结构件的顶部。
  150. 一摄像模组的校准方法,其特征在于,所述方法包括以下步骤:
    (a)将一光学结构件组装于一感光装置;
    (b)将至少一光学镜片组装于所述光学结构件的中部或底部的内部空间中,并加以固定;
    (c)将一可调镜片预组装于所述光学结构件顶部的内部空间中,完成所述摄像模组的预组装;
    (d)校准预组装的所述摄像模组,使所述摄像模组成像满足解像要求;以及
    (e)固定所述可调镜片,完成所述摄像模组的校准。
  151. 根据权利要求150所述的方法,其中所述步骤(d)包括以下步骤:(d1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(d2)根据所述摄像模组成像计算所述可调镜片的调整方法和调整量;以及(d3)根据调整量调整所述可调镜片,进而得以校准所述摄像模组。
  152. 根据权利要求150或151所述的方法,其中在上述方法中,使用一外部调整装置通过所述光学结构件顶部的光束入射位置接触所述可调镜片,对所述可调镜片的组装位置进行至少一个方向的调整。
  153. 根据权利要求152所述的方法,其中在上述方法中,所述外部调整装置通过机械抓取或者真空吸附的方式对所述可调镜片进行调整。
  154. 根据权利要求150或151所述的方法,其中在所述步骤(e)中,通过所述光学结构件顶部的光束入射位置注入胶水,通过胶水固化将所述可调镜片固定于所述光学结构件的内部空间。
  155. 根据权利要求152所述的方法,其中在所述步骤(e)中,通过所述光学结构件顶部的光束入射位置注入胶水,通过胶水固化将所述可调镜片固定于所述光学结构件的内部空间。
  156. 一摄像模组镜头,其特征在于,所述镜头包括:
    至少一内部光学镜片;
    至少一外部光学镜片;以及
    一镜筒部件,各所述内部光学镜片按照预定次序被设置于所述镜筒部件的内部空间,各所述外部光学镜片沿着所述镜筒部件的高度方向被设置于所述镜筒部件的外部,其中各所述内部光学镜片与各所述外部光学镜片均位于所述摄像模组镜头的光学路径上。
  157. 根据权利要求156所述的镜头,其中各所述内部光学镜片彼此嵌合组装为一个整体,被固定于所述镜筒部件中。
  158. 根据权利要求157所述的镜头,其中相邻的所述内部光学镜片之间使用隔圈进行嵌合或者通过胶水直接进行嵌合。
  159. 根据权利要求156所述的镜头,其中至少一片所述内部光学镜片被预组装于所述镜筒部件中,作为可调镜片,所述可调镜片的组装位置相对于所述镜筒部件的空间位置适于被进行至少一个方向的调整。
  160. 根据权利要求159所述的镜头,其中沿着所述镜筒部件的外侧圆周方向设有至少一调整通道,各所述调整通道将所述镜筒部件的内部空间和外部环境相连通,其中各所述调整通道均与各所述可调镜片相对应,适于通过所述调整通道调整所述可调镜片的组装位置,以调整所述摄像模组镜头的光学路径。
  161. 根据权利要求160所述的镜头,其中使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道。
  162. 根据权利要求159所述的镜头,其中第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
  163. 根据权利要求160所述的镜头,其中第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
  164. 根据权利要求163所述的镜头,其中所述调整通道被设置为四个,呈圆周方向分布,彼此相隔90°,所述固定通道被设置为四个,呈圆周方向分布, 彼此相隔90°。
  165. 根据权利要求156至164任一所述的镜头,其中所述外部光学镜片固定于所述镜筒部件的底部,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面相连接。
  166. 根据权利要求156至164任一所述的镜头,其中所述外部光学镜片作为可调镜片被预组装于所述镜筒部件的底部,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面相连接,其中所述外部光学镜片相对于所述镜筒部件的组装位置均适于被进行至少一个方向的调整。
  167. 根据权利要求165所述的镜头,其中各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  168. 根据权利要求166所述的镜头,其中各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  169. 根据权利要求167所述的镜头,其中通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层。
  170. 根据权利要求169所述的镜头,其中所述黑胶为热固胶。
  171. 一摄像模组,其特征在于,包括:
    一感光装置,所述感光装置包括一感光芯片和一镜座;和
    一摄像模组镜头,所述摄像模组镜头被设置于所述感光芯片的感光路径上,其中所述摄像模组镜头包括至少一内部光学镜片、至少一外部光学镜片以及一镜筒部件,各所述内部光学镜片按照预定次序被设置于所述镜筒部件的内部空间,各所述外部光学镜片被设置于所述镜筒部件和所述镜座之间,其中各所述内部光学镜片与各所述外部光学镜片均位于所述感光芯片的感光路径上。
  172. 根据权利要求171所述的摄像模组,其中各所述内部光学镜片彼此嵌合组装为一个整体,被固定于所述镜筒部件中。
  173. 根据权利要求171所述的摄像模组,其中相邻的所述内部光学镜片之间使用隔圈进行嵌合或者通过胶水直接进行嵌合。
  174. 根据权利要求171所述的摄像模组,其中至少一片所述内部光学镜片被预组装于所述镜筒部件中,作为可调镜片,所述可调镜片的组装位置相对于所述镜筒部件的空间位置适于被进行至少一个方向的调整。
  175. 根据权利要求174所述的摄像模组,其中沿着所述镜筒部件的外侧圆 周方向设有至少一调整通道,各所述调整通道将所述镜筒部件的内部空间和外部环境相连通,其中各所述调整通道均与各所述可调镜片相对应,适于通过所述调整通道调整所述可调镜片的组装位置,调整后使得所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
  176. 根据权利要求175所述的摄像模组,其中使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道。
  177. 根据权利要求174所述的摄像模组,其中第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
  178. 根据权利要求175所述的摄像模组,其中第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
  179. 根据权利要求178所述的摄像模组,其中所述调整通道被设置为四个,呈圆周方向分布,彼此相隔90°,所述固定通道被设置为四个,呈圆周方向分布,彼此相隔90°。
  180. 根据权利要求174至179任一所述的摄像模组,其中各所述外部光学镜片外侧均具有一挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  181. 根据权利要求180所述的摄像模组,其中通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层。
  182. 根据权利要求181所述的摄像模组,其中所述黑胶为热固胶。
  183. 根据权利要求180所述的摄像模组,其中所述外部光学镜片固定于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边缘和底部表面边缘分别与所述镜筒部件的底部表面和所述镜座的顶部表面之间均固定连接。
  184. 根据权利要求180所述的摄像模组,其中所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边 缘和底部表面边缘分别与所述镜筒部件的底部表面和所述镜座的顶部表面相连接,均不固定,其中所述外部光学镜片及所述镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整,调整后得以使所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
  185. 根据权利要求180所述的摄像模组,其中所述外部光学镜片被预组装于所述镜筒部件和所述镜座之间,所述外部光学镜片的顶部表面边缘与所述镜筒部件的底部表面之间固定连接,所述外部光学镜片的底部表面边缘与所述镜筒部件的底部表面之间预组装,不做固定,使得所述摄像模组镜头相对于所述感光芯片的组装位置适于被进行至少一个方向的调整,调整后得以使所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
  186. 根据权利要求184所述的摄像模组,其中所述外部光学镜片通过胶水预组装于所述镜筒部件和所述镜座之间,预组装用的所述胶水为UV胶与热固胶的混合胶,经紫外曝光半固化实现预组装,调整后将所述胶水完全固化得以固定所述外部光学镜片。
  187. 根据权利要求185所述的摄像模组,其中所述外部光学镜片通过胶水预组装于所述镜座,预组装用的所述胶水为UV胶与热固胶的混合胶,经紫外曝光半固化实现预组装,调整后将所述胶水完全固化得以固定所述外部光学镜片。
  188. 一摄像模组镜头的组装方法,其特征在于,所述方法包括以下步骤:
    (A)将至少一内部光学镜片按照预定次序安装于一镜筒部件的内部空间;
    (B)将至少一外部光学镜片沿着所述镜筒部件的高度方向安装于所述镜筒部件底部的外部空间;以及
    (C)完成所述摄像模组镜头的组装。
  189. 根据权利要求188所述的方法,其中在所述步骤(A)中,预先将各所述内部光学镜片按照预定次序彼此嵌合组装为一个整体,然后固定于所述镜筒部件的内部空间。
  190. 根据权利要求188所述的方法,其中在所述步骤(A)中,将各所述内部光学镜片按照预定次序逐片地固定于所述镜筒部件的内部空间。
  191. 根据权利要求188所述的方法,其中在所述步骤(A)中,将至少一片所述内部光学镜片作为可调镜片预组装于所述镜筒部件的内部空间,其中所述可调镜片的组装位置相对于所述镜筒部件的内部空间适于被进行至少一个方向 的调整。
  192. 根据权利要求191所述的方法,其中在上述方法中,所述镜筒部件设有至少一调整通道,各所述调整通道连通于所述镜筒部件的内部空间和外部环境,并与所述可调镜片相对应,适于使用一外部调整装置通过所述调整通道接触所述可调镜片的外侧,以调整所述可调镜片的组装位置,进而得以调整所述摄像模组镜头的光学路径。
  193. 根据权利要求192所述的方法,其中在上述方法中,使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道,完成所述摄像模组镜头的组装。
  194. 根据权利要求192所述的方法,其中在上述方法中,第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片,完成所述摄像模组镜头的组装。
  195. 根据权利要求188至194任一所述的方法,其中在所述步骤(B)中,所述外部光学镜片固定于所述镜筒部件的底部,其中通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水使二者固定地连接。
  196. 根据权利要求188至194任一所述的方法,其中在所述步骤(B)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件的底部,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水进行二者之间的预组装,其中所述外部光学镜片相对于所述镜筒部件的组装位置均适于被进行至少一个方向的调整。
  197. 根据权利要求188至194任一所述的方法,进一步包括一步骤(D):在所述外部光学镜片的外侧设置一挡光层,其中适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
  198. 根据权利要求195所述的方法,进一步包括一步骤(D):在所述外部光学镜片的外侧设置一挡光层,其中适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
  199. 根据权利要求196所述的方法,进一步包括一步骤(D):在所述外部光学镜片的外侧设置一挡光层,其中适于在组装所述外部光学镜片之前或之后进 行所述挡光层的设置。
  200. 根据权利要求197所述的方法,其中在所述步骤(D)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  201. 根据权利要求198所述的方法,其中在所述步骤(D)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  202. 根据权利要求199所述的方法,其中在所述步骤(D)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  203. 一摄像模组镜头的组装方法,其特征在于,所述方法包括以下步骤:
    (a)将至少一内部光学镜片按照预定次序安装于一镜筒部件的内部空间;
    (b)将至少一外部光学镜片沿着所述镜筒部件的高度方向安装于所述镜筒部件的外部空间;
    (c)在所述外部光学镜片的外侧设置一挡光层,完成所述摄像模组镜头的组装;
    (d)将所述摄像模组镜头设置于一感光芯片的感光路径上;
    (e)完成所述摄像模组的预组装;以及
    (f)封装所述摄像模组镜头和所述感光芯片,完成所述摄像模组的组装。
  204. 根据权利要求203所述的方法,其中在所述步骤(a)中,预先将各所述内部光学镜片按照预定次序彼此嵌合组装为一个整体,然后固定于所述镜筒部件的内部空间。
  205. 根据权利要求204所述的方法,其中在所述步骤(a)中,将各所述内部光学镜片按照预定次序逐片地固定于所述镜筒部件的内部空间。
  206. 根据权利要求204所述的方法,其中在所述步骤(a)中,将至少一片所述内部光学镜片作为可调镜片预组装于所述镜筒部件的内部空间,其中所述可调镜片的组装位置相对于所述镜筒部件的内部空间适于被进行至少一个方向的调整。
  207. 根据权利要求205所述的方法,其中在上述方法中,所述镜筒部件设有至少一调整通道,各所述调整通道连通于所述镜筒部件的内部空间和外部环境, 并与所述可调镜片相对应,适于使用一外部调整装置通过所述调整通道接触所述可调镜片的外侧,以调整所述可调镜片的组装位置,调整后使得所述摄像模组镜头的中心轴线与所述感光芯片的中心轴线重合或者在偏差允许的范围内。
  208. 根据权利要求207所述的方法,其中在上述方法中,使用一点胶设备通过所述调整通道注入胶水将所述可调镜片固定于所述镜筒部件的内壁,同时得以密封所述调整通道。
  209. 根据权利要求208所述的方法,其中在上述方法中,第一片所述内部光学镜片作为所述可调镜片被设置于所述镜筒部件顶部的内部空间中时,所述镜筒部件的顶部设有至少一固定通道,其中所述固定通道与所述可调镜片的边缘相对应,将所述可调镜片的边缘和外部环境相连通,进而适于通过所述固定通道注入胶水来固定所述可调镜片。
  210. 根据权利要求203至209任一所述的方法,其中在所述步骤(b)及所述步骤(d)中,所述外部光学镜片固定于所述镜筒部件和一镜座之间,其中通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水使二者固定地连接,通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水使二者固定的连接。
  211. 根据权利要求203至209任一所述的方法,其中在所述步骤(b)及所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水进行二者之间的预组装,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水进行二者之间的预组装,其中所述外部光学镜片和所述镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
  212. 根据权利要求203至209任一所述的方法,其中在所述步骤(b)及所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水使二者固定的连接,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水进行二者之间的预组装,其中所述摄像模组镜头相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
  213. 根据权利要求203至209任一所述的方法,其中在所述步骤(b)及 所述步骤(d)中,所述外部光学镜片作为可调镜片被预组装于所述镜筒部件和一镜座之间,通过在所述外部光学镜片的顶部表面边缘或所述镜筒部件的底部表面涂布胶水进行二者之间的预组装,并通过在所述外部光学镜片的底部表面边缘或所述镜座的顶部表面涂布胶水使二者固定的连接,其中镜筒部件相对于所述感光芯片的组装位置均适于被进行至少一个方向的调整。
  214. 根据权利要求203至209任一所述的方法,其中所述步骤(e)包括以下步骤:(e1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(e2)根据摄像模组成像调整计算所述可调镜片的调整方式和调整量;以及(e3)按照调整量对所述可调镜片进行调整,使得所述摄像模组成像满足解像要求。
  215. 根据权利要求211所述的方法,其中所述步骤(e)包括以下步骤:(e1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(e2)根据摄像模组成像调整计算所述可调镜片的调整方式和调整量;以及(e3)按照调整量对所述可调镜片进行调整,使得所述摄像模组成像满足解像要求。
  216. 根据权利要求212所述的方法,其中所述步骤(e)包括以下步骤:(e1)对预组装完成的所述摄像模组进行通电,采集摄像模组成像;(e2)根据摄像模组成像调整计算所述可调镜片的调整方式和调整量;以及(e3)按照调整量对所述可调镜片进行调整,使得所述摄像模组成像满足解像要求。
  217. 根据权利要求214所述的方法,其中在所述步骤(f)中,对所述可调镜片进行点胶固定,完成所述摄像模组的组装。
  218. 根据权利要求215所述的方法,其中在所述步骤(f)中,对所述可调镜片进行点胶固定,完成所述摄像模组的组装。
  219. 根据权利要求216所述的方法,其中在所述步骤(f)中,对所述可调镜片进行点胶固定,完成所述摄像模组的组装。
  220. 根据权利要求203至209任一所述的方法,其中在所述步骤(c)中,适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
  221. 根据权利要求215所述的方法,其中在所述步骤(c)中,适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
  222. 根据权利要求216所述的方法,其中在所述步骤(c)中,适于在组装所述外部光学镜片之前或之后进行所述挡光层的设置。
  223. 根据权利要求217所述的方法,其中在所述步骤(c)中,通过在各 所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  224. 根据权利要求221所述的方法,其中在所述步骤(c)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
  225. 根据权利要求222所述的方法,其中在所述步骤(c)中,通过在各所述外部光学镜片的外侧涂布黑胶形成所述挡光层,所述挡光层完全覆盖所述外部光学镜片的整个侧面。
PCT/CN2016/103253 2015-10-30 2016-10-25 可调光学镜头和摄像模组及其制造方法和应用 WO2017071561A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP16858996.8A EP3370098B1 (en) 2015-10-30 2016-10-25 Manufacturing method for a camera module
EP22205684.8A EP4180852A1 (en) 2015-10-30 2016-10-25 Adjustable optical lens and camera module and manufacturing method and applications thereof
KR1020207002497A KR102202780B1 (ko) 2015-10-30 2016-10-25 조정가능한 광학 렌즈 및 카메라 모듈 및 그 제조 방법 및 어플리케이션
JP2018522693A JP7084305B2 (ja) 2015-10-30 2016-10-25 調整可能な光学レンズ及びカメラモジュール並びにその製造方法及び応用
US15/772,512 US11099353B2 (en) 2015-10-30 2016-10-25 Adjustable optical lens and camera module, manufacturing method and applications thereof
KR1020187015325A KR102111869B1 (ko) 2015-10-30 2016-10-25 조절가능한 광학렌즈 및 카메라 모듈, 그 제조방법 및 어플리케이션
KR1020217000570A KR20210006025A (ko) 2015-10-30 2016-10-25 조정가능한 광학 렌즈 및 카메라 모듈 및 그 제조 방법 및 어플리케이션
US17/377,343 US20230012466A9 (en) 2015-10-30 2021-07-15 Adjustable Optical Lens and Camera Module and Manufacturing Method and Applications Thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201510726575.6 2015-10-30
CN201510726575 2015-10-30
CN201510873537.3A CN105445885B (zh) 2015-10-30 2015-12-02 可调光学镜头和摄像模组及其制造方法
CN201510873537.3 2015-12-02
CN201510968893.3 2015-12-21
CN201510968893.3A CN105445888B (zh) 2015-12-21 2015-12-21 可调光学镜头和摄像模组及其校准方法
CN201511009093.5 2015-12-29
CN201511009093.5A CN105487191B (zh) 2015-12-29 2015-12-29 摄像模组镜头和摄像模组及其组装方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/772,512 A-371-Of-International US11099353B2 (en) 2015-10-30 2016-10-25 Adjustable optical lens and camera module, manufacturing method and applications thereof
US17/377,343 Continuation US20230012466A9 (en) 2015-10-30 2021-07-15 Adjustable Optical Lens and Camera Module and Manufacturing Method and Applications Thereof

Publications (1)

Publication Number Publication Date
WO2017071561A1 true WO2017071561A1 (zh) 2017-05-04

Family

ID=58631289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103253 WO2017071561A1 (zh) 2015-10-30 2016-10-25 可调光学镜头和摄像模组及其制造方法和应用

Country Status (5)

Country Link
US (1) US11099353B2 (zh)
EP (2) EP4180852A1 (zh)
JP (1) JP7084305B2 (zh)
KR (3) KR20210006025A (zh)
WO (1) WO2017071561A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254375A (zh) * 2017-07-12 2019-01-22 先进光电科技股份有限公司 窄边框光学成像系统
CN112649933A (zh) * 2018-04-28 2021-04-13 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其组装方法
EP3761098A4 (en) * 2018-03-29 2021-09-29 Ningbo Sunny Opotech Co., Ltd. OPTICAL LENS, CAMERA MODULE AND RELATED ASSEMBLY METHOD
US11303788B2 (en) 2017-11-27 2022-04-12 Vivo Mobile Communication Co., Ltd. Electronic device and camera module thereof
US12055783B2 (en) 2018-04-28 2024-08-06 Ningbo Sunny Opotech Co., Ltd Optical lens, camera module and assembly method therefor

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230012466A9 (en) * 2015-10-30 2023-01-12 Ningbo Sunny Opotech Co., Ltd. Adjustable Optical Lens and Camera Module and Manufacturing Method and Applications Thereof
KR20210041071A (ko) 2018-08-14 2021-04-14 닝보 써니 오포테크 코., 엘티디. 렌즈 세트 조립체, 광학 렌즈, 카메라 모듈 및 렌즈 세트의 조립 방법
TWI766103B (zh) * 2018-09-21 2022-06-01 先進光電科技股份有限公司 光學成像模組
TWI769319B (zh) * 2018-09-21 2022-07-01 先進光電科技股份有限公司 光學成像模組
KR20200127756A (ko) * 2019-05-03 2020-11-11 삼성전자주식회사 광학 렌즈 시스템 및 그를 포함하는 전자 장치
KR102303145B1 (ko) 2019-12-10 2021-09-16 오필름코리아(주) 렌즈조립체 및 이것이 포함된 촬상 광학계
KR102303144B1 (ko) 2019-12-10 2021-09-16 오필름코리아(주) 렌즈조립체 및 이것이 포함된 촬상 광학계
CN111131582B (zh) * 2019-12-26 2021-04-27 Oppo广东移动通信有限公司 电子设备及其壳体组件
US11460713B2 (en) * 2020-05-13 2022-10-04 Asm Technology Singapore Pte Ltd System and method for aligning multiple lens elements
TWI748624B (zh) * 2020-08-28 2021-12-01 大立光電股份有限公司 成像鏡頭、取像裝置與電子裝置
KR20220153219A (ko) 2021-05-11 2022-11-18 오필름코리아(주) 렌즈조립체와 렌즈조립체용 스페이서의 제조방법과 그리고 벤딩된 스페이서가 포함된 촬상광학계
SE546247C2 (en) * 2022-11-17 2024-09-10 Topgolf Sweden Ab Method and arrangement for adjusting a camera lens in relation to a camera sensor
KR102675471B1 (ko) * 2023-01-09 2024-06-14 주식회사 파워로직스 카메라모듈 교정장치 및 교정 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187776A (ja) * 2006-01-12 2007-07-26 Fujinon Corp レンズ装置及びレンズ保持方法
JP2009005328A (ja) * 2007-05-24 2009-01-08 Sharp Corp 撮像装置及びその製造方法、並びに該撮像装置を搭載した携帯情報端末及び撮像機器
CN201373936Y (zh) * 2009-03-20 2009-12-30 亚洲光学股份有限公司 可调芯的光学镜头
JP2010230745A (ja) * 2009-03-26 2010-10-14 Suwa Optronics:Kk レンズ調芯装置およびレンズ調芯装置の制御方法
CN202472093U (zh) * 2012-01-09 2012-10-03 上海微电子装备有限公司 镜头
CN202956574U (zh) * 2011-04-12 2013-05-29 富士机械制造株式会社 摄像装置
CN105445885A (zh) * 2015-10-30 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN105445888A (zh) * 2015-12-21 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其校准方法
CN105467550A (zh) * 2015-12-16 2016-04-06 宁波舜宇光电信息有限公司 集成对焦机构的可调光学镜头和摄像模组及其组装方法
CN105487191A (zh) * 2015-12-29 2016-04-13 宁波舜宇光电信息有限公司 摄像模组镜头和摄像模组及其组装方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129307A (ja) * 1989-10-14 1991-06-03 Mitsubishi Electric Corp 赤外光学系の光軸調整方法
JP2002251769A (ja) * 2001-02-26 2002-09-06 Asahi Optical Co Ltd 光記録用レンズ組立体及びその製造方法
JP2003195138A (ja) * 2001-12-26 2003-07-09 Canon Inc 光学素子保持装置及びそれを有する光学機器
US7071966B2 (en) 2003-06-13 2006-07-04 Benq Corporation Method of aligning lens and sensor of camera
JP4533602B2 (ja) * 2003-07-04 2010-09-01 日本電産コパル株式会社 レンズ調芯装置及び方法
JP4468719B2 (ja) * 2004-03-11 2010-05-26 シチズンファインテックミヨタ株式会社 固体撮像装置
KR100539259B1 (ko) 2004-04-26 2005-12-27 삼성전자주식회사 자동으로 정렬되는 렌즈를 포함하는 이미지 센서 모듈, 그제조방법 및 렌즈의 자동 초점 조절방법
JP3766835B2 (ja) * 2004-09-10 2006-04-19 シャープ株式会社 レンズ系調整装置およびそれを用いたレンズ系調整方法
JP2007065017A (ja) * 2005-08-29 2007-03-15 Fujinon Corp レンズ保持鏡筒
TW200727501A (en) 2006-01-11 2007-07-16 Advanced Semiconductor Eng Image sensor module and method for manufacturing the same
WO2008146644A1 (ja) * 2007-05-24 2008-12-04 Sharp Kabushiki Kaisha 撮像装置及びその製造方法、並びに該撮像装置を搭載した携帯情報端末及び撮像機器
TW200930042A (en) 2007-12-26 2009-07-01 Altek Corp Method for capturing image
CN101634737A (zh) * 2008-07-23 2010-01-27 鸿富锦精密工业(深圳)有限公司 镜头模组
US7965454B2 (en) * 2008-08-28 2011-06-21 Konica Minolta Opto, Inc. Imaging lens and small-size image pickup apparatus using the same
WO2013063014A2 (en) 2011-10-24 2013-05-02 Magna Electronics, Inc. Vehicular camera and lens assembly and method of manufacturing same
US8405737B2 (en) * 2009-04-06 2013-03-26 Panasonic Corporation Lens unit
CN101930109A (zh) * 2009-06-25 2010-12-29 鸿富锦精密工业(深圳)有限公司 镜头模组及其组装方法
CN101937122A (zh) * 2009-07-02 2011-01-05 鸿富锦精密工业(深圳)有限公司 镜头模组及其组装方法
US8760571B2 (en) 2009-09-21 2014-06-24 Microsoft Corporation Alignment of lens and image sensor
JP2011221243A (ja) * 2010-04-08 2011-11-04 Kantatsu Co Ltd 光学系レンズ及びその製造方法
JP2012002979A (ja) * 2010-06-16 2012-01-05 Panasonic Corp レンズ鏡筒、撮像装置および携帯端末装置
WO2012004995A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 レンズユニット
JP5560149B2 (ja) * 2010-09-14 2014-07-23 富士フイルム株式会社 レンズ装置
KR101446397B1 (ko) * 2012-11-30 2014-10-01 엘지이노텍 주식회사 카메라 모듈
KR20140076761A (ko) * 2012-12-13 2014-06-23 삼성전기주식회사 렌즈 모듈
CN204666932U (zh) * 2015-06-11 2015-09-23 深圳市莫廷影像技术有限公司 一种光学透镜微调装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187776A (ja) * 2006-01-12 2007-07-26 Fujinon Corp レンズ装置及びレンズ保持方法
JP2009005328A (ja) * 2007-05-24 2009-01-08 Sharp Corp 撮像装置及びその製造方法、並びに該撮像装置を搭載した携帯情報端末及び撮像機器
CN201373936Y (zh) * 2009-03-20 2009-12-30 亚洲光学股份有限公司 可调芯的光学镜头
JP2010230745A (ja) * 2009-03-26 2010-10-14 Suwa Optronics:Kk レンズ調芯装置およびレンズ調芯装置の制御方法
CN202956574U (zh) * 2011-04-12 2013-05-29 富士机械制造株式会社 摄像装置
CN202472093U (zh) * 2012-01-09 2012-10-03 上海微电子装备有限公司 镜头
CN105445885A (zh) * 2015-10-30 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其制造方法
CN105467550A (zh) * 2015-12-16 2016-04-06 宁波舜宇光电信息有限公司 集成对焦机构的可调光学镜头和摄像模组及其组装方法
CN105445888A (zh) * 2015-12-21 2016-03-30 宁波舜宇光电信息有限公司 可调光学镜头和摄像模组及其校准方法
CN105487191A (zh) * 2015-12-29 2016-04-13 宁波舜宇光电信息有限公司 摄像模组镜头和摄像模组及其组装方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3370098A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109254375A (zh) * 2017-07-12 2019-01-22 先进光电科技股份有限公司 窄边框光学成像系统
CN109254375B (zh) * 2017-07-12 2021-06-04 先进光电科技股份有限公司 窄边框光学成像系统
US11303788B2 (en) 2017-11-27 2022-04-12 Vivo Mobile Communication Co., Ltd. Electronic device and camera module thereof
EP3761098A4 (en) * 2018-03-29 2021-09-29 Ningbo Sunny Opotech Co., Ltd. OPTICAL LENS, CAMERA MODULE AND RELATED ASSEMBLY METHOD
CN112649933A (zh) * 2018-04-28 2021-04-13 宁波舜宇光电信息有限公司 光学镜头、摄像模组及其组装方法
US12055783B2 (en) 2018-04-28 2024-08-06 Ningbo Sunny Opotech Co., Ltd Optical lens, camera module and assembly method therefor

Also Published As

Publication number Publication date
KR102111869B1 (ko) 2020-05-15
EP3370098A4 (en) 2019-06-26
US20190079262A1 (en) 2019-03-14
EP3370098A1 (en) 2018-09-05
EP3370098B1 (en) 2022-12-14
JP2018533074A (ja) 2018-11-08
JP7084305B2 (ja) 2022-06-14
KR20200011615A (ko) 2020-02-03
KR102202780B1 (ko) 2021-01-13
EP4180852A1 (en) 2023-05-17
KR20210006025A (ko) 2021-01-15
US11099353B2 (en) 2021-08-24
KR20180087272A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017071561A1 (zh) 可调光学镜头和摄像模组及其制造方法和应用
TWI724609B (zh) 可調光學鏡頭和攝像模組及其製造方法
TWI788403B (zh) 採用分體式鏡頭的攝像模組及其組裝方法
US11703654B2 (en) Camera lens module and manufacturing method thereof
TWI731262B (zh) 攝像模組鏡頭和攝像模組及其組裝方法
TWI632409B (zh) 可調光學鏡頭和攝像模組及其校準方法
WO2017129006A1 (zh) 光学镜头和摄像模组及其组装方法
TWI700526B (zh) 整合對焦機構的可調光學鏡頭和攝像模組及其組裝方法
US11874584B2 (en) Lens module and capturing module integrating focusing mechanism and assembly method therefor
US20220308310A1 (en) Adjustable Optical Lens and Camera Module and Manufacturing Method and Applications Thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16858996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018522693

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187015325

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016858996

Country of ref document: EP