WO2017068969A1 - 駐車経路算出装置、駐車支援装置および駐車経路算出方法 - Google Patents

駐車経路算出装置、駐車支援装置および駐車経路算出方法 Download PDF

Info

Publication number
WO2017068969A1
WO2017068969A1 PCT/JP2016/079487 JP2016079487W WO2017068969A1 WO 2017068969 A1 WO2017068969 A1 WO 2017068969A1 JP 2016079487 W JP2016079487 W JP 2016079487W WO 2017068969 A1 WO2017068969 A1 WO 2017068969A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
axis
vehicle
curve
parking route
Prior art date
Application number
PCT/JP2016/079487
Other languages
English (en)
French (fr)
Inventor
達紀 原井
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201680059428.0A priority Critical patent/CN108136988B/zh
Priority to US15/769,937 priority patent/US10449969B2/en
Priority to EP16857285.7A priority patent/EP3366525B1/en
Publication of WO2017068969A1 publication Critical patent/WO2017068969A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/027Parking aids, e.g. instruction means
    • B62D15/0285Parking performed automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas
    • G08G1/141Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces
    • G08G1/143Traffic control systems for road vehicles indicating individual free spaces in parking areas with means giving the indication of available parking spaces inside the vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/168Driving aids for parking, e.g. acoustic or visual feedback on parking space

Definitions

  • the present invention relates to a parking route calculation device, a parking assistance device, and a parking route calculation method.
  • the parking route for parallel parking is a curve based on one-way steering.
  • Patent Document 1 An example related to the technique described above is described in Patent Document 1.
  • An object of the present invention is to provide a parking route calculation device, a parking assistance device, and a parking route calculation method capable of improving the degree of freedom in calculating a parking route.
  • a virtual parking position having a predetermined positional relationship with the parking completion position is calculated when the vehicle is guided from the own vehicle position to the parking completion position with the minimum turning radius, and the virtual parking position and the parking completion position are calculated. According to the positional relationship, a parking route is calculated in which the steering wheel is steered across the neutral position when the host vehicle is guided.
  • the degree of freedom in calculating the parking route can be improved.
  • FIG. 5 is a control block diagram of a vehicle speed control unit 55.
  • FIG. 4 is a control block diagram of a steering angle control unit 56.
  • FIG. The parking completion position Pe set in the parking frame PA is set as the origin O, the Y axis is set in the front-rear direction of the host vehicle from the origin O at the parking completion position Pe, and the X axis is set in the direction orthogonal to the Y axis 2 Dimensional coordinates.
  • 5 is a flowchart showing a parking route calculation process in a parking route calculation unit 51. It is a figure which shows the relationship between the travel distance, steering angle, and 0 at the time of making a parking path into the curve based on 1 direction steering. It is a figure which shows the relationship between the travel distance and steering angle at the time of making a parking path into an S-shaped curve.
  • FIG. 1 is a configuration diagram of a vehicle to which a parking assistance device is applied.
  • the driver instructs the vehicle to move forward, backward, and stop with the shift lever 8, and instructs the driving force of the driving motor 1 with the accelerator pedal 6.
  • the drive motor 1 may be an engine.
  • the drive motor 1 can generate a driving force and a braking force regardless of the driver's accelerator pedal operation and shift operation.
  • the depressing force of the brake pedal 7 is boosted by the brake booster 15, and a hydraulic pressure corresponding to the force is generated in the master cylinder 16.
  • the generated hydraulic pressure is supplied to the wheel cylinders 21 to 24 via the electric hydraulic brake 2. In this way, the driver controls the braking force with the brake pedal 7.
  • the electric hydraulic brake 2 includes a pump driven by a motor, a solenoid valve, and the like, and can independently control the braking force of the four wheels (hydraulic pressure of the wheel cylinders 21 to 24) regardless of the driver's brake pedal operation. There is no left-right difference in the braking force of the four wheels due to the driver's operation of the brake pedal.
  • the electric power steering 3 generates assist torque corresponding to the steering torque input by the driver via the steering wheel 9, and the left and right front wheels (steering wheels) 41, by the driver's steering torque and the assist torque of the electric power steering 3 42 is steered and the vehicle turns while the vehicle is running.
  • the electric power steering 3 generates a steering torque irrespective of the driver's steering operation, and can steer the left and right front wheels 41 and 42.
  • four cameras 11 to 14 that shoot around the vehicle and recognize objects around the vehicle are attached to the front, rear, left and right of the vehicle. The images from the four cameras 11 to 14 are combined and displayed on the touch panel 18 as an overhead view of the vehicle and the vehicle periphery from above. The driver can park the vehicle while looking at this overhead view regardless of the parking assistance control.
  • the parking position is recognized based on the parking frames on the images of the cameras 11 to 14 and the positions of other parked vehicles, and the drive motor 1 so that the vehicle reaches the recognized parking position,
  • the electric hydraulic brake 2 and electric power steering 3 are automatically controlled. It is also possible for the driver to instruct a parking position using the touch panel 18 on which the overhead view is displayed.
  • a steering angle sensor 4 and wheel speed sensors 31 to 34 are attached to control the parking route.
  • the electro-hydraulic brake 2 performs vehicle slip prevention and anti-lock brake control based on sensor signals from the vehicle motion detection sensor 17, the steering angle sensor 4, and the wheel speed sensors 31 to 34 that detect longitudinal acceleration, lateral acceleration, and yaw rate.
  • the signals of the steering angle sensor 4 and the wheel speed sensors 31 to 34 are shared with the parking assist control. All the electric devices mentioned above are controlled by the electronic control unit 5, and all the sensor signals are also input to the electronic control unit 5.
  • Each sensor signal includes an operation amount of the driver, an accelerator pedal operation amount, a brake pedal operation amount, a shift position, and a steering torque.
  • the function of the electronic control unit 5 may be divided, an electronic control unit may be attached to each electric device, and necessary information may be communicated between the electronic control units.
  • the drive motor 1, the electric hydraulic brake 2, the wheel cylinders 21 to 24, the wheels 41 to 44, and the electronic control unit 5 constitute an automobile speed control device that automatically controls the vehicle speed.
  • the electric power steering 3 and the electronic control unit 5 constitute an automatic steering control device that automatically steers the left and right front wheels 41 and 42.
  • FIG. 2 is a configuration diagram of the parking assistance device.
  • the vehicle operation is automatically controlled by the drive motor 1, the electric hydraulic brake 2, and the electric power steering 3.
  • the driver's operation amount is monitored and the driver can be overridden.
  • the vehicle is temporarily stopped, and the parking operation by automatic control is resumed after the driver releases the brake.
  • the parking operation by the automatic control is resumed.
  • parking assistance can be restarted automatically.
  • the parking operation by the automatic control is stopped.
  • the vehicle can be driven with priority given to the driver's shift operation or steering operation.
  • the automatic control can be stopped by displaying an automatic control stop button on the touch panel 18 and pressing this automatic control stop button.
  • FIG. 3 is a configuration diagram of parking assist control in the electronic control unit 5.
  • the electronic control unit 5 includes a parking route calculation unit 51, a travel distance calculation unit 52, a vehicle speed calculation unit 53, a route control unit 54, a vehicle speed control unit (vehicle control unit) 55, and a steering angle as a configuration that realizes parking assist control.
  • a control unit (vehicle control unit) 56 is provided.
  • the parking position is recognized by the cameras 11 to 14 at the parking operation start position. As described above, the driver may specify the parking position by the touch panel 18 on which the overhead view is displayed.
  • the parking route calculation unit 51 calculates the parking route based on the parking position. The calculation of the parking route is performed at the start of the parking operation.
  • the parking route is sequentially corrected during the parking operation.
  • the calculation and correction of the parking route will be described later.
  • the wheel speed sensors 31 to 34 generate a plurality of wheel speed pulses per rotation of the wheel.
  • the number of occurrences of the wheel speed pulse is integrated, and the movement distance calculation unit 52 calculates the movement distance of the vehicle.
  • the vehicle speed V is calculated by the vehicle speed calculation unit 53 using the generation cycle of the wheel speed pulse.
  • the average value of the moving distance and the wheel speed of the left and right rear wheels 43 and 44 is the calculated moving distance and the vehicle speed V.
  • the route control unit 54 obtains a vehicle speed command (target value of vehicle speed) V * and a steering angle command (target value of steering angle) ⁇ h * from the parking route and the moving distance of the vehicle.
  • the vehicle speed command V * during forward and reverse as guidance is fixed.
  • the vehicle speed control unit 55 performs vehicle speed control based on the vehicle speed command V * and the vehicle speed V, and obtains a drive torque command Tac * to the drive motor 1 and a hydraulic pressure command Pwc * to the electric hydraulic brake 2 as operation amounts.
  • the drive motor 1 and the electric hydraulic brake 2 generate driving force and braking force according to these commands.
  • Both the driving force and the braking force may be generated only by the driving motor 1, or the driving force may be generated by the driving motor 1 and the braking force may be generated by the electric hydraulic brake 2.
  • the drive motor 1 is replaced with an engine, the latter method may be adopted.
  • the driving motor 1 is used instead of the engine, but the driving force is generated by the driving motor 1 and the braking force is generated by the electric hydraulic brake 2.
  • the steering angle control unit 56 performs steering angle control based on the steering angle command ⁇ h * and the steering angle ⁇ h measured by the steering angle sensor 4, and obtains a steering torque command Tst * as an operation amount.
  • the electric power steering 3 generates a steering torque by this command.
  • FIG. 4 is a control block diagram of the vehicle speed control unit 55.
  • the subtracter 100 outputs a vehicle speed deviation (V * -V) obtained by subtracting the vehicle speed V from the vehicle speed command V *.
  • the multiplier 101 multiplies the vehicle speed deviation by a proportional gain Kp_a.
  • the integrator 102 integrates the vehicle speed deviation.
  • Multiplier 103 multiplies the integral value of the vehicle speed deviation by integral gain Ki_a.
  • Adder 104 outputs the sum of the outputs of both multipliers 101 and 103 as drive torque command Tac *.
  • the multiplier 105 inverts the sign of the vehicle speed deviation.
  • the multiplier 106 multiplies the vehicle speed deviation after inversion of positive and negative by a proportional gain Kp_b.
  • the integrator 107 integrates the vehicle speed deviation after the positive / negative reversal.
  • the multiplier 108 multiplies the integral value of the deviation after the positive / negative determination by the integral gain Ki_b.
  • the adder 109 outputs the sum of the outputs of both multipliers 106 and 108 as a hydraulic pressure command Pwc *.
  • the switch 111 outputs a drive torque command Tac * when the link operation selection command output from the determiner 110 is 1, and outputs a hydraulic pressure command Pwc * when it is 0.
  • the plant model (vehicle model) 112 inputs the drive torque command Tac * or the hydraulic pressure command Pwc * and outputs the vehicle speed V.
  • the vehicle speed control unit 55 uses the drive motor 1 and the electric hydraulic brake 2 properly depending on whether the vehicle speed deviation (V * -V) is positive or negative by PI control.
  • the drive motor 1 is driven by the drive torque command Tac * calculated using the proportional gain Kp_a and the integral gain Ki_a, and the vehicle speed V is changed to the vehicle speed command V * by the drive force of the drive motor 1. Get closer.
  • the hydraulic pressure command Pwc * to the electric hydraulic brake 2 is set to 0, and no braking force is generated.
  • the electric hydraulic brake 2 is driven by the hydraulic pressure command Pwc * calculated using the proportional gain Kp_b and the integral gain Ki_b, and the vehicle speed V is increased by the braking force generated by the electric hydraulic brake 2. Approach the command V *.
  • the drive torque command Tac * to the drive motor 1 is set to 0 and no drive force is generated.
  • FIG. 5 is a control block diagram of the steering angle control unit 56. This is a two-degree-of-freedom control using a disturbance observer that cancels the disturbance d, and the steering angle response can be freely set by the target response G.
  • the subtractor 120 outputs a steering angle deviation ( ⁇ h * ⁇ h) obtained by subtracting the steering angle ⁇ h from the steering angle command ⁇ h *.
  • the model matching compensator 121 is a feedback compensator that inputs a steering angle deviation and outputs an ideal steering torque that matches a desired target response G given in advance.
  • the subtractor 122 outputs the steering torque command Tst * obtained by subtracting the estimated disturbance torque from the ideal steering torque.
  • the adder 123 adds the disturbance d to the steering torque command Tst *.
  • the plant model (vehicle model) 124 inputs a steering torque command including a disturbance and outputs a steering angle ⁇ h.
  • the noise filter unit 125 filters the steering torque command Tst * with a low-pass filter.
  • the reverse plant model 126 filters the steering torque command for obtaining the steering angle ⁇ h with the same low-pass filter as the low-pass filter of the noise filter unit 125.
  • the subtractor 127 subtracts the output of the noise filter unit 125 from the output of the inverse plant model 126 and outputs a disturbance estimated torque.
  • the parking completion position (parking position) Pe set in the parking frame PA is set as the origin O
  • the Y axis is set from the origin O to the front-rear direction of the host vehicle at the parking completion position Pe, and is orthogonal to the Y axis. It is a two-dimensional coordinate with the X axis set in the direction.
  • the vehicle position (parking start position Ps) side of the X axis is the Y axis positive direction position
  • the opposite side is the Y axis negative direction position
  • the vehicle position (parking start position Ps) side of the Y axis is the X axis.
  • the parking route calculation unit 51 recognizes the surrounding obstacles, the parking start position Ps, the position and shape of the parking frame PA from the images of the cameras 11 to 14 on the two-dimensional coordinates, and the center position of the parking frame PA. Set the parking completion position Pe to.
  • the parking start position Ps and the parking completion position Pe are positions (coordinates) at the center of the rear wheel axle at each position.
  • the parking route calculation unit 51 uses the virtual parking position calculation unit 51a to move back from the parking start position Ps toward the parking completion position Pe with the maximum steering angle (minimum turning radius R). Is calculated as a virtual parking position Pv that becomes 0 (may be substantially 0).
  • the yaw angle is the angle formed by the direction in which the vehicle is facing at the parking completion position Pe (Y-axis positive direction) and the direction in which the vehicle is facing at the vehicle position (the parking start position Ps at the start of parking). It is possible to detect from the images of cameras 11 to 14 or dead reckoning information.
  • the maximum steering angle is the steering angle of the left and right front wheels 41 and 42 when the steering angle control unit 56 sets the steering angle command ⁇ h * as an upper limit value. When the upper limit value is not set, the physical upper limit steering angle of the left and right front wheels 41, 42 by the rack stopper is used.
  • the parking route calculation unit 51 calculates a parking route PT for retreating the host vehicle from the parking start position Ps to the parking completion position Pe based on the comparison result between the virtual parking position Pv and the origin O.
  • a parking route PT for retreating the host vehicle from the parking start position Ps to the parking completion position Pe based on the comparison result between the virtual parking position Pv and the origin O.
  • the virtual X distance Xv ⁇ the origin O and the virtual Y distance Yv ⁇ the origin O the virtual X distance Xv that is the X coordinate of the virtual parking position Pv is equal to or less than the X coordinate 0 of the origin O and the virtual parking position Pv
  • the virtual Y distance Yv that is the Y coordinate is greater than or equal to the Y coordinate 0 of the origin O
  • a parking route PT as shown in FIG. 7 is calculated.
  • the parking route PT in FIG. 7 is a combination of a straight line L1 parallel to the X axis, a curve L2 of the minimum turning radius R, and a straight line L3 parallel to the Y axis in order from the parking start position Ps to the parking completion position Pe. It is. A curve of the turning radius larger than the minimum turning radius R and a straight line parallel to the Y axis may be combined. (II) When the virtual X distance Xv ⁇ the origin O and the virtual Y distance Yv ⁇ the origin O, the virtual X distance Xv is smaller than the X coordinate 0 of the origin O, and the virtual Y distance Yv is the Y coordinate 0 of the origin O.
  • a parking route PT as shown in FIG. 8 is calculated.
  • the parking path PT in FIG. 8 is, in order from the parking start position Ps to the parking completion position Pe, a straight line L2 parallel to the first S-curve L1 and the X axis, a curve L3 of the minimum turning radius R, and a straight line parallel to the Y axis.
  • This is a combination of L4, the second S-shaped curve L5, and a straight line L6 parallel to the Y axis.
  • the first S-shaped curve L1 is a combination of a first curve l11 based on right steering and a second curve l12 based on left steering, and both curves l11 and l12 may be connected in a straight line.
  • the second S-shaped curve L5 is a combination of the second curve l22 based on left steering and the first curve l21 based on right steering, and the two curves l21 and l22 may be connected in a straight line.
  • the S-shaped curve L2 is a combination of a first curve l21 based on left steering and a second curve l22 based on right steering, and both curves l21 and l22 may be connected in a straight line.
  • Each of the above curves is an arc, a clothoid curve, or an arc and a clothoid curve, or a clothoid curve or a combination of an arc, a clothoid curve, and a straight line.
  • the parking route calculation unit 51 sequentially monitors the position and shape of the parking frame PA on the two-dimensional coordinates from the images of the cameras 11 to 14, and the newly recognized parking frame PA. If the position and shape are different from those stored, the position and shape of the parking frame PA are updated. In addition, when the position and shape of the parking frame PA are updated, the parking route calculation unit 51 resets the parking completion position Pe, and sets the parking start position Ps according to the logic shown in the above (I) to (III). Sequential correction is performed in which the parking route PT is recalculated and updated by replacing the vehicle position Pc.
  • the parking route calculation unit 51 calculates the parking route PT where the own vehicle position Pc at the completion of parking coincides with the parking completion position Pe and the yaw angle ⁇ is 0 based on the above logic, but the yaw angle ⁇ is corrected. If it is not possible, a parking route PT is calculated such that at least one of the X coordinate or the Y coordinate of the host vehicle position Pc when the vehicle stops in the parking frame PA matches the coordinate of the parking completion position Pe. Therefore, in this case, the vehicle is parked obliquely with respect to the parking frame.
  • the parking route calculation unit 51 determines whether or not the parking route PT can be calculated based on the relationship between the own vehicle position Pc and the parking completion position Pe by the parking route calculation determination unit 51b before calculating the parking route PT. Judging.
  • the parking route calculation unit 51 calculates the parking route PT according to the above logic, and when it is determined that the parking route PT cannot be calculated, From the parking start position Ps), a turn-back parking route PT ′ for moving the vehicle forward to a position where the parking route PT can be calculated is calculated and output to the route control unit 54.
  • a method for determining whether or not the parking route PT can be calculated will be described with reference to FIG.
  • the required X distance Xn that is the distance in the X axis direction between the host vehicle position Pc and the virtual parking position Pv and the required Y distance Yn that is the distance in the Y axis direction are calculated. To do.
  • the table is set to obtain the necessary X distance Xn and the necessary Y distance Yn with respect to the yaw angle change amount when the vehicle moves backward with the maximum rudder angle through experiments or the like.
  • the necessary X distance Xn and the necessary Y distance Yn are obtained by referring to the table with the yaw angle ⁇ at the host vehicle position Pc as the yaw angle change amount. Subsequently, a relative X distance Xr that is a distance in the X-axis direction between the host vehicle position Pc and the origin O and a relative Y distance Yr that is a distance in the Y-axis direction between the host vehicle position Pc and the origin O are calculated ( Calculate relative XY distance).
  • the difference between the required X distance Xn and the relative X distance Xr and the difference between the required Y distance Yn and the relative Y distance Yr are obtained. If both the differences are smaller than 0, it is determined that the parking route PT can be calculated. When at least one of the differences is 0 or less, it is determined that the parking route PT cannot be calculated.
  • FIG. 10 is a flowchart showing a parking route calculation process in the parking route calculation unit 51. This flowchart is repeated at a predetermined calculation cycle from the start to the end of the parking operation.
  • step S1 it is determined whether or not parking is completed. If yes, go to step S2, if no, go to return.
  • step S2 it is determined whether or not the position and shape of the parking frame PA have been updated. If YES, the process proceeds to step S3. If NO, the process returns to step S1.
  • step S3 the yaw angle ⁇ is calculated.
  • the parking route calculation determination unit 51b calculates the required X distance and the required Y distance based on the yaw angle ⁇ (calculates the required XY distance).
  • step S5 the parking route calculation determination unit 51b determines whether the required XY distance is smaller than the relative XY distance. If YES, the process proceeds to step S6. If NO, the process proceeds to step S12. In step S6, the virtual parking position calculation unit 51a calculates the virtual parking position Pv. In step S7, it is determined whether or not the virtual X distance Xv that is the X coordinate of the virtual parking position Pv is equal to or less than the X coordinate 0 of the origin O. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S11.
  • step S8 it is determined whether or not the virtual Y distance Yv, which is the Y coordinate of the virtual parking position Pv, is greater than or equal to the Y coordinate 0 of the origin O. If YES, the process proceeds to step S9. If NO, the process proceeds to step S10.
  • step S9 the parking route PT including the straight line L1 as shown in FIG. 7 is calculated.
  • step S10 a parking route PT including the first S-shaped curve L1 and the second S-shaped curve L5 as shown in FIG. 8 is calculated.
  • step S11 a parking route PT including the S-shaped curve L2 as shown in FIG. 9 is calculated.
  • step S12 a parking route PT ′ for moving the vehicle forward (for turning back) is calculated.
  • step S13 whether or not the amount of deviation between the stop position and the parking completion position Pe in the parking frame when the vehicle is traveling along the parking route PT calculated in steps S9 to S11 is equal to or less than the allowable deviation amount. Determine. If YES, the process proceeds to step S14.
  • step S14 the amount of deviation between the stop position and the parking completion position Pe in the parking frame when the host vehicle is driven along the parking route PT calculated in steps S9 to S11 is determined along the current parking route PT. It is determined whether or not it is smaller than the amount of deviation between the stop position and the parking completion position Pe in the parking frame when the host vehicle is driven. If YES, the process proceeds to step S15. If NO, the process proceeds to return. In step S15, the parking route PT is updated to the parking route PT calculated in steps S9 to S11 or the parking route PT ′ calculated in step S12.
  • the parking route for parallel parking is a curve based on one-way steering. For this reason, depending on the positional relationship between the parking start position and the parking completion position, it may not be possible to calculate a parking route for parking the vehicle in parallel with the parking frame and in the center of the parking frame, which requires reversal.
  • the yaw angle ⁇ is 0 when the Y coordinate of the vehicle position coincides with the Y coordinate 0 of the origin O only with the curve of the left turn based on the leftward steering.
  • the parking route cannot be calculated, and switching is necessary.
  • X distance Xv and virtual Y distance Yv are calculated.
  • the parking route PT including the first S-shaped curve L1 and the second S-shaped curve L5 is calculated.
  • the parking route PT including the S-shaped curve L2 is calculated.
  • the Y-axis direction distance between the parking start position Ps and the parking completion position Pe is 0. It means that it is shorter than the Y-axis direction distance required for Therefore, by setting the first S-shaped curve L1 as the parking route PT and moving the own vehicle in the positive Y-axis direction, the Y-axis direction distance necessary for setting the yaw angle ⁇ to 0 can be obtained.
  • the increase in the yaw angle ⁇ by the second curve l22 based on the left steering is the first curve l21 based on the right steering.
  • the yaw angle ⁇ when the vehicle reaches the origin O can be set to 0.
  • the vehicle has reached the origin O only with the left curve based on the leftward steering as described above. It means that it is impossible to set the yaw angle to zero.
  • the S-shaped curve L2 as the parking route PT, the yaw angle when reaching the origin O can be set to zero.
  • the degree of freedom for calculating the parking locus is improved as compared with the conventional parking route calculation device. This can reduce the number of scenes that need to be cut back.
  • the parking frame can be found from far away by the cameras 11 to 14, the cameras 11 to 14 have a problem such as lens distortion, so the coordinates of the parking frame acquired from a long distance are not necessarily high in accuracy.
  • the cameras 11 to 14 are close to the parking frame, the coordinates of the parking frame can be acquired with high accuracy.
  • the accuracy of the coordinates of the parking frame determines the own vehicle position and angle (yaw angle) at the time of parking completion, it is desirable to move the own vehicle backward using as high accuracy coordinates as possible. Therefore, in the first embodiment, when the coordinates of the parking frame are continuously acquired even during the parking operation, and the acquired coordinates are higher-accuracy coordinates and the parking route PT can be corrected, the higher-accuracy is obtained. The parking route PT is corrected based on the coordinates. Thereby, the calculation accuracy of the parking route PT to the parking completion position Pe can be improved.
  • Example 1 has the following effects. (1) Calculate a virtual parking position Pv that is parallel or substantially parallel to the parking position recognized when guiding at the maximum steering angle from the host vehicle position Pc, and the positional relationship between the virtual parking position Pv and the recognized parking position Accordingly, the first curve based on the first direction steering with respect to the neutral position of the steering device and the second curve based on the second direction steering with respect to the neutral position opposite to the first direction steering (S-shaped steering). ) Is used to calculate a parking route PT for guiding the host vehicle. Therefore, by including the S-shaped curve using the first direction steering and the second direction steering in the parking route PT, the degree of freedom in calculating the parking route PT for the parallel parking from the own vehicle position Pc to the recognized parking position. Can be improved.
  • the recognized parking position is the parking completion position Pe. Therefore, by including an S-shaped curve in the parking route PT, the degree of freedom in calculating the parking route PT for parallel parking from the own vehicle position Pc to the parking completion position Pe can be improved. In addition, by calculating the parking route PT during the parking operation, the parallel parking parking route PT from the own vehicle position Pc to the parking completion position Pe can be calculated with high accuracy.
  • the parking route calculation unit 51 calculates the first curve l11 and the second curve Parking completed from the vehicle position Pc using the first S-shaped curve L1 combined with the curve l12, the second curved line L22 connected to the first S-shaped curve L1 and the second S-shaped curve L5 combined with the first curved line l21
  • the parking route to the position Pe is calculated.
  • the parking route calculation unit 51 calculates the second curve l21 and the first curve.
  • the parking route PT is calculated using the S-shaped curve L2 combined with l22. Therefore, by including the S-shaped curve L2 in the parking route PT, the parking route PT for parallel parking can be calculated even in the above scene where the parking route for parallel parking cannot be calculated only with the curve based on the one-way steering. , The time required to complete parking can be shortened.
  • the parking route calculation unit 51 includes a parking route calculation determination unit 51b that determines whether or not the parking route PT can be calculated based on the positional relationship between the host vehicle position Pc and the recognized parking position. Therefore, by calculating in advance whether the parking route PT can be calculated, unnecessary calculation of the parking route PT can be suppressed.
  • the parking route calculation determination unit 51b parks the required X distance Xn and the required Y distance Yn, which are distances between the virtual parking position Pv and the own vehicle position Pc in the X axis direction and the Y axis direction, and the own vehicle position Pc.
  • the parking route calculation unit 51 calculates the parking route PT using a clothoid curve, an arc, a clothoid curve and an arc, or a clothoid curve or a combination of an arc, a clothoid curve and a straight line. By using the clothoid, the vehicle operation is smooth and easy for the driver to expect, and the uncomfortable feeling given to the driver can be reduced.
  • a virtual parking position calculation unit 51a that calculates a virtual parking position Pv that has a predetermined positional relationship with the parking completion position Pe when the own vehicle guides from the own vehicle position Pc with the minimum turning radius R, and the calculated virtual In accordance with the positional relationship between the parking position Pv and the parking completion position Pe, the first direction across the first curve and the neutral position based on the first direction steering in the steering direction on one side with respect to the neutral position of the left and right front wheels 41 and 42
  • a parking route calculation unit 51 that calculates a parking route PT for guiding the vehicle by combining a second curve based on the second direction steering in a steering direction opposite to the steering, and the vehicle along the calculated parking route PT
  • a vehicle speed control unit 55 and a steering angle control unit 56 that move the vehicle.
  • the parking route PT for parallel parking from the own vehicle position Pc to the recognized parking position is calculated.
  • the degree of freedom can be improved.
  • by calculating the parking route PT during the parking operation it is possible to calculate and correct the parallel parking parking route PT from the own vehicle position Pc to the recognized parking position. (9)
  • a virtual parking position Pv having a predetermined positional relationship with the parking completion position Pe is calculated, and the virtual parking position Pv and the parking completion position Pe are calculated.
  • a parking route PT in which the left and right front wheels 41 and 42 are steered across the neutral position when the host vehicle is guided is calculated. Therefore, by including an S-shaped curve (curve using the first direction steering and the second direction steering) in the parking route PT, the parking route PT for parallel parking from the own vehicle position Pc to the recognized parking position is calculated. The degree of freedom can be improved. Further, by calculating the parking route PT during the parking operation, it is possible to calculate and correct the parallel parking parking route PT from the own vehicle position Pc to the recognized parking position.
  • the parking route PT when the parking route PT is calculated, the Y coordinate of the virtual parking position Pv and the Y coordinate 0 of the origin O are compared, but when other vehicles are parked on the left and right of the parking frame PA, that is, When it is necessary to match the vehicle yaw angle before the origin O, the planned parking position Pe to be compared with the virtual parking position Pv is a point where the yaw angles should be matched, for example, in the direction in which the front end of the vehicle is facing. It is good also as a parking frame front end.
  • the relative Y distance Yr for determining whether the parking route PT can be calculated is also a point where the vehicle position Pc and the yaw angle coincide, for example, the front end of the parking frame.
  • the backward movement of the own vehicle has been described as an example of the guidance, but the own vehicle may be advanced as the guidance.
  • the present invention may be configured as follows.
  • the vehicle position side is defined as the Y axis positive direction position
  • the opposite side is defined as the Y axis negative direction position
  • the vehicle position side across the Y axis is defined as the X axis negative direction position
  • the opposite side is defined as the X axis positive direction position.
  • the parking route calculation unit when the coordinates of the virtual parking position are in the X-axis negative direction position and the Y-axis negative direction position, a first S-shaped curve combining the first curve and the second curve; A parking route from a coordinate corresponding to the vehicle position to a coordinate corresponding to the parking completion position using the second curve connected to the first S curve and the second S curve combined with the first curve.
  • the parking route calculation device characterized by calculating. Therefore, by including two S-shaped curves in the parking route, it is possible to calculate the parallel parking parking route even in the above scene where the parallel parking parking route cannot be calculated only with the curve based on one-way steering, so there is no need to switch back, The time required to complete parking can be shortened.
  • the parking route calculation unit combines the second curve and the first curve when the coordinates of the virtual parking position are in the X-axis positive direction position and the Y-axis positive direction position.
  • the parking route may be calculated using an S-shaped curve.
  • the vehicle position side is defined as the Y axis positive direction position
  • the opposite side is defined as the Y axis negative direction position
  • the vehicle position side across the Y axis is defined as the X axis negative direction position
  • the opposite side is defined as the X axis positive direction position.
  • (c) In the above parking route calculation method, Set the two-dimensional coordinates with the coordinate corresponding to the parking completion position as the origin, the front-rear direction of the vehicle at the parking completion position as the Y-axis, and the direction perpendicular to the Y-axis as the X-axis.
  • the vehicle position side is defined as the Y axis positive direction position
  • the opposite side is defined as the Y axis negative direction position
  • the vehicle position side across the Y axis is defined as the X axis negative direction position
  • the opposite side is defined as the X axis positive direction position.
  • the first S-curve combined with the first curve and the second curve is connected to the first S-curve.
  • a parking route from a coordinate corresponding to the vehicle position to a coordinate corresponding to the parking completion position is calculated using a second S-shaped curve obtained by combining the second curve and the first curve. Parking route calculation method to do. Therefore, by including two S-shaped curves in the parking route, it is possible to calculate the parallel parking parking route even in the above scene where the parallel parking parking route cannot be calculated only with the curve based on one-way steering, so there is no need to switch back, The time required to complete parking can be shortened.
  • (d) In the above parking route calculation method, Set the two-dimensional coordinates with the coordinate corresponding to the parking completion position as the origin, the front-rear direction of the vehicle at the parking completion position as the Y-axis, and the direction perpendicular to the Y-axis as the X-axis.
  • the vehicle position side is defined as the Y axis positive direction position
  • the opposite side is defined as the Y axis negative direction position
  • the vehicle position side across the Y axis is defined as the X axis negative direction position
  • the opposite side is defined as the X axis positive direction position.
  • the parking route is calculated using an S-shaped curve combining the second curve and the first curve.
  • the parking route calculation method characterized by this. Therefore, by including an S-shaped curve in the parking route, it is not possible to calculate the parking route for parallel parking only with the curve based on one-way steering. Can be shortened.

Abstract

駐車経路の算出自由度を向上できる駐車経路算出装置、駐車支援装置および駐車経路算出方法を提供する。 駐車経路算出部51は、自車位置から駐車完了位置まで最小旋回半径で後退したときに駐車完了位置と所定の位置関係にある仮想駐車位置を算出し、仮想駐車位置と駐車完了位置との位置関係に応じて、自車の誘導時に操舵輪が中立位置を跨いで操舵される駐車経路を算出する。

Description

駐車経路算出装置、駐車支援装置および駐車経路算出方法
 本発明は、駐車経路算出装置、駐車支援装置および駐車経路算出方法に関する。
 この種の駐車経路算出装置では、並列駐車の駐車経路を1方向操舵に基づく曲線としている。上記説明の技術に関係する一例は、特許文献1に記載されている。
特開2008-201177号公報
 上記駐車経路算出装置において、駐車経路の算出自由度をより高めて欲しいとのニーズがある。
  本発明の目的は、駐車経路の算出自由度を向上できる駐車経路算出装置、駐車支援装置および駐車経路算出方法を提供することにある。
 本発明の一実施形態では、自車位置から駐車完了位置まで最小旋回半径で誘導したときに駐車完了位置と所定の位置関係にある仮想駐車位置を算出し、仮想駐車位置と駐車完了位置との位置関係に応じて、自車の誘導時に操舵輪が中立位置を跨いで操舵される駐車経路を算出する。
 よって、本発明の一実施形態によれば、駐車経路の算出自由度を向上できる。
駐車支援装置を適用した車両の構成図である。 駐車支援装置の構成図である。 駐車支援の制御の構成図である。 車速制御部55の制御ブロック図である。 操舵角制御部56の制御ブロック図である。 駐車枠PA内に設定された駐車完了位置Peを原点Oとし、原点Oから駐車完了位置Peにおける自車の前後方向にY軸を設定し、Y軸と直交する方向にX軸を設定した2次元座標である。 仮想X距離Xv≦原点O、かつ、仮想Y距離Yv≧原点Oの場合の駐車経路PTの一例である。 仮想X距離Xv<原点O、かつ、仮想Y距離Yv<原点Oの場合の駐車経路PTの一例である。 仮想X距離Xv>原点O、かつ、仮想Y距離Yv>原点Oの場合の駐車経路PTの一例である。 駐車経路算出部51における駐車経路算出処理を示すフローチャートである。 駐車経路を1方向操舵に基づく曲線とした場合の走行距離と舵角と0の関係を示す図である。 駐車経路をS字曲線とした場合の走行距離と舵角との関係を示す図である。
 〔実施例1〕
  [車両の構成]
  図1は、駐車支援装置を適用した車両の構成図である。
  運転者はシフトレバー8によって車両の前進、後退、停止を指示し、アクセルペダル6によって駆動モータ1の駆動力を指示する。駆動モータ1はエンジンとしてもよい。駆動モータ1は運転者のアクセルペダル操作、シフト操作とは無関係に駆動力、制動力を発生可能である。
  ブレーキペダル7の踏力はブレーキブースタ15によって倍力され、その力に応じた油圧がマスタシリンダ16に発生する。発生した油圧は、電動油圧ブレーキ2を介してホイルシリンダ21~24に供給される。このように、運転者はブレーキペダル7によって制動力を制御する。電動油圧ブレーキ2はモータで駆動するポンプや電磁弁等を内蔵し、運転者のブレーキペダル操作とは無関係に4輪の制動力(ホイルシリンダ21~24の油圧)を独立に制御可能である。なお、運転者のブレーキペダル操作による4輪の制動力に左右差はない。
  電動パワーステアリング3は、運転者がステアリングホイール9を介して入力した操舵トルクに応じたアシストトルクを発生し、運転者の操舵トルクと電動パワーステアリング3のアシストトルクによって左右前輪(操舵輪)41,42が操舵され、車両走行中には車両が旋回する。また、電動パワーステアリング3は運転者のステア操作とは無関係にステアトルクを発生し、左右前輪41,42を操舵可能である。
  また、車両周辺を撮影し、車両周辺の対象物を認識する4つのカメラ11~14が車両の前後左右に取り付けられている。4つのカメラ11~14の映像は合成され、車両と車両周辺を上方から見下ろした俯瞰図としてタッチパネル18に表示される。運転者は駐車支援の制御によらず、この俯瞰図を見ながら駐車を行うこともできる。
 実施例1の駐車支援装置では、カメラ11~14の映像上の駐車枠や他の駐車車両の位置に基づいて駐車位置を認識し、認識した駐車位置に車両が到達するように駆動モータ1、電動油圧ブレーキ2、電動パワーステアリング3を自動制御する。俯瞰図が表示されたタッチパネル18を用いて、運転者が駐車位置を指示することも可能である。
  また、駐車経路を制御するため、操舵角センサ4と車輪速センサ31~34が取り付けられている。電動油圧ブレーキ2は、前後加速度、横加速度、ヨーレートを検出する車両運動検出センサ17と操舵角センサ4と車輪速センサ31~34からのセンサ信号によって、車両の横滑り防止やアンチロックブレーキ制御を行うが、操舵角センサ4と車輪速センサ31~34の信号は駐車支援の制御と共用される。
  以上挙げた電動装置は全て電子制御ユニット5によって制御され、各センサ信号も全て電子制御ユニット5に入力される。各センサ信号には運転者の操作量である、アクセルペダル操作量、ブレーキペダル操作量、シフト位置、操舵トルクも含まれる。また、電子制御ユニット5の機能を分割し、各電動装置に電子制御ユニットを取り付け、各電子制御ユニット間で必要な情報を通信する構成とすることもできる。
  駆動モータ1、電動油圧ブレーキ2、各ホイルシリンダ21~24、各車輪41~44および電子制御ユニット5により、車速を自動的にコントロールする自動車速制御装置が構成される。また、電動パワーステアリング3、および電子制御ユニット5により、左右前輪41,42を自動的に操舵する自動操舵制御装置が構成される。
 [駐車支援装置の構成]
  図2は、駐車支援装置の構成図である。
  駐車動作中は車両動作が駆動モータ1、電動油圧ブレーキ2、電動パワーステアリング3によって自動的に制御されるが、運転者操作量は監視されており、運転者のオーバーライドが可能である。運転者がブレーキペダル7を操作した場合は車両を一時停止させ、運転者がブレーキを解除した後に自動制御による駐車動作を再開する。これにより、駐車経路上に障害物が進入した場合には、運転者のブレーキ操作を優先し、障害物との接触を回避できる。その後、ブレーキペダル7の操作が解除された場合は、自動制御による駐車動作を再開する。これにより、障害物が駐車経路から離れた場合は、自動的に駐車支援を再開できる。また、運転者がシフト位置を変更するか、運転者の操舵トルクが所定値以上になった場合は自動制御による駐車動作を中止する。これにより、運転者のシフト操作またはステア操作を優先して車両を走行させることができる。なお、タッチパネル18に自動制御中止ボタンを表示し、この自動制御中止ボタンを押すことで自動制御を中止することもできる。
 [駐車支援制御]
  図3は、電子制御ユニット5における駐車支援の制御の構成図である。
  電子制御ユニット5は、駐車支援の制御を実現する構成として、駐車経路算出部51、移動距離計算部52、車速計算部53、経路制御部54、車速制御部(車両制御部)55および操舵角制御部(車両制御部)56を備える。
  まず、駐車動作開始位置でカメラ11~14によって駐車位置を認識する。駐車位置は前述の通り、俯瞰図が表示されたタッチパネル18によって運転者が指定してもよい。次に、駐車位置を基に駐車経路算出部51で駐車経路を算出する。駐車経路の算出は駐車動作開始時に行われる。駐車経路は、駐車動作中逐次補正される。駐車経路の算出および補正については後述する。
  車輪速センサ31~34は車輪1回転に付き複数回の車輪速パルスを発生する。この車輪速パルスの発生回数を積算し、移動距離計算部52にて車両の移動距離を計算する。また、車輪速パルスの発生周期を用いて、車速計算部53で車速Vを計算する。実施例1では、移動距離と車速Vは後輪車軸中心の移動距離と車速とするので、左右後輪43,44の移動距離と車輪速の平均値を、求める移動距離と車速Vとする。
  経路制御部54は駐車経路と車両の移動距離から車速指令(車速の目標値)V*と操舵角指令(操舵角の目標値)δh*を求める。誘導としての前進、後退中の車速指令V*はそれぞれ一定とする。
  車速制御部55は車速指令V*と車速Vを基に車速制御を行い、操作量として駆動モータ1への駆動トルク指令Tac*と電動油圧ブレーキ2への液圧指令Pwc*を求める。駆動モータ1と電動油圧ブレーキ2はこれらの指令によって駆動力と制動力を発生する。駆動力と制動力は共に駆動モータ1のみで発生させてもよいし、駆動力は駆動モータ1で発生させ、制動力は電動油圧ブレーキ2で発生させるというように分担させてもよい。駆動モータ1をエンジンに置き換えた場合は後者の方法を採ればよい。実施例1ではエンジンではなく駆動モータ1を用いているが、駆動力は駆動モータ1、制動力は電動油圧ブレーキ2で発生させる。
  操舵角制御部56は操舵角指令δh*と操舵角センサ4で計測した操舵角δhを基に操舵角制御を行い、操作量としてステアトルク指令Tst*を求める。電動パワーステアリング3はこの指令によってステアトルクを発生する。
 [車速制御]
  図4は、車速制御部55の制御ブロック図である。
  減算器100は、車速指令V*から車速Vを減じた車速偏差(V*-V)を出力する。
  乗算器101は、車速偏差に比例ゲインKp_aを乗じる。
  積分器102は、車速偏差を積分する。
  乗算器103は、車速偏差の積分値に積分ゲインKi_aを乗じる。
  加算器104は、両乗算器101,103の出力の和を駆動トルク指令Tac*として出力する。
  乗算器105は、車速偏差の正負を反転させる。
  乗算器106は、正負反転後車速偏差に比例ゲインKp_bを乗じる。
  積分器107は、正負反転後車速偏差を積分する。
  乗算器108は、正負判定後偏差の積分値に積分ゲインKi_bを乗じる。
  加算器109は、両乗算器106,108の出力の和を液圧指令Pwc*として出力する。
  判定器110は、車速偏差が0以上である場合にはリンク運転選択指令=1(true)を出力し、0未満である場合にはリンク運転選択指令=0(false)を出力する。
  スイッチ111は、判定器110から出力されたリンク運転選択指令が1のときは駆動トルク指令Tac*を出力し、0のときは液圧指令Pwc*を出力する。
  プラントモデル(車両モデル)112は、駆動トルク指令Tac*または液圧指令Pwc*を入力し、車速Vを出力する。
  以上のように、車速制御部55は、PI制御により、車速偏差(V*-V)の正負によって駆動モータ1と電動油圧ブレーキ2を使い分ける。車速偏差が0以上の場合には、比例ゲインKp_a、積分ゲインKi_aを用いて演算した駆動トルク指令Tac*により駆動モータ1を駆動し、駆動モータ1による駆動力で車速Vを車速指令V*に近付ける。このとき、電動油圧ブレーキ2への液圧指令Pwc*は0として制動力を発生させない。一方、車速偏差が0未満の場合には、比例ゲインKp_b、積分ゲインKi_bを用いて演算した液圧指令Pwc*により電動油圧ブレーキ2を駆動し、電動油圧ブレーキ2による制動力で車速Vを車速指令V*に近付ける。このとき、駆動モータ1への駆動トルク指令Tac*は0として駆動力を発生させない。
 [操舵角制御]
  図5は、操舵角制御部56の制御ブロック図である。外乱dを打ち消す外乱オブザーバを用いた二自由度制御であり、目標応答Gによって操舵角応答を自由に設定できる。
  減算器120は、操舵角指令δh*から操舵角δhを減じた操舵角偏差(δh*-δh)を出力する。
  モデルマッチング補償器121は、操舵角偏差を入力し、あらかじめ与えた所望の目標応答Gに一致させる理想ステアトルクを出力するフィードバック補償器である。
  減算器122は、理想ステアトルクから外乱推定トルクを減じたステアトルク指令Tst*として出力する。
  加算器123は、ステアトルク指令Tst*に外乱dを加算する。
  プラントモデル(車両モデル)124は、外乱を含むステアトルク指令を入力し、操舵角δhを出力する。
  ノイズフィルタ部125は、ステアトルク指令Tst*をローパスフィルタでフィルタ処理する。
  逆プラントモデル126は、操舵角δhを得るステアトルク指令をノイズフィルタ部125のローパスフィルタと同一のローパスフィルタでフィルタ処理する。
  減算器127は、逆プラントモデル126の出力からノイズフィルタ部125の出力を減じて外乱推定トルクを出力する。
 [駐車経路の算出]
  次に、並列駐車における駐車経路の算出および逐次補正について説明する。図6は、駐車枠PA内に設定された駐車完了位置(駐車位置)Peを原点Oとし、原点Oから駐車完了位置Peにおける自車の前後方向にY軸を設定し、Y軸と直交する方向にX軸を設定した2次元座標である。X軸を挟んで自車位置(駐車開始位置Ps)側をY軸正方向位置、反対側をY軸負方向位置とし、Y軸を挟んで自車位置(駐車開始位置Ps)側をX軸負方向位置、反対側をX軸正方向位置とする。
  駐車開始時、駐車経路算出部51は、カメラ11~14の映像から周囲の障害物、駐車開始位置Ps、駐車枠PAの位置および形状を2次元座標上で認識し、駐車枠PAの中央位置に駐車完了位置Peを設定する。なお、駐車開始位置Psや駐車完了位置Peは、各位置での後輪車軸中心の位置(座標)とする。続いて、駐車経路算出部51は、仮想駐車位置算出部51aにより、駐車開始位置Psから駐車完了位置Pe側に向かって最大舵角(最小旋回半径R)で後退したときに自車のヨー角が0(略0でもよい。)となる仮想駐車位置Pvを算出する。ここで、ヨー角とは、駐車完了位置Peにおいて自車が向く方向(Y軸正方向)と自車位置(駐車開始時は駐車開始位置Ps)において自車が向く方向とがなす角度であり、カメラ11~14の映像またはデッドレコニング情報等から検出可能である。また、最大舵角は、操舵角制御部56において操舵角指令δh*を上限値としたときの左右前輪41,42の舵角である。なお、上限値が設定されていない場合には、ラックストッパーによる左右前輪41,42の物理的な上限舵角とする。
 次に、駐車経路算出部51は、仮想駐車位置Pvと原点Oとの比較結果に基づき、駐車開始位置Psから駐車完了位置Peまで自車を後退させる駐車経路PTを算出する。以下、比較結果別に説明する。
  (I) 仮想X距離Xv≦原点O、かつ、仮想Y距離Yv≧原点Oの場合
  仮想駐車位置PvのX座標である仮想X距離Xvが原点OのX座標0以下、かつ、仮想駐車位置PvのY座標である仮想Y距離Yvが原点OのY座標0以上の場合には、図7に示すような駐車経路PTを算出する。図7の駐車経路PTは、駐車開始位置Psから駐車完了位置Peに向かって順に、X軸に平行な直線L1と最小旋回半径Rの曲線L2とY軸に平行な直線L3とを組み合わせたものである。なお、最小旋回半径Rよりも大きな旋回半径の曲線とY軸に平行な直線とを組み合わせてもよい。
  (II) 仮想X距離Xv<原点O、かつ、仮想Y距離Yv<原点Oの場合
  仮想X距離Xvが原点OのX座標0よりも小さく、かつ、仮想Y距離Yvが原点OのY座標0よりも小さい場合には、図8に示すような駐車経路PTを算出する。図8の駐車経路PTは、駐車開始位置Psから駐車完了位置Peに向かって順に、第1S字曲線L1とX軸に平行な直線L2と最小旋回半径Rの曲線L3とY軸に平行な直線L4と第2S字曲線L5とY軸に平行な直線L6とを組み合わせたものである。第1S字曲線L1は、右操舵に基づく第1曲線l11と左操舵に基づく第2曲線l12とを組み合わせたものであり、両曲線l11,l12が直線で接続されていてもよい。第2S字曲線L5は、左操舵に基づく第2曲線l22と右操舵に基づく第1曲線l21とを組み合わせたものであり、両曲線l21,l22が直線で接続されていてもよい。
  (III) 仮想X距離Xv>原点O、かつ、仮想Y距離Yv>原点Oの場合
  仮想X距離Xvが原点OのX座標0よりも大きく、かつ、仮想Y距離Yvが原点OのY座標よりも大きい場合には、図9に示すような駐車経路PTを算出する。図9の駐車経路PTは、駐車開始位置Psから駐車完了位置Peに向かって順に、最小旋回半径Rの曲線L1とS字曲線L2とY軸に平行な直線L3とを組み合わせたものである。S字曲線L2は、左操舵に基づく第1曲線l21と右操舵に基づく第2曲線l22とを組み合わせたものであり、両曲線l21,l22が直線で接続されていてもよい。
  なお、上記の各曲線は、円弧、クロソイド曲線または円弧とクロソイド曲線、または、クロソイド曲線または円弧とクロソイド曲線と直線を組み合わせた曲線とする。
 駐車経路算出部51は、駐車動作開始から終了までの駐車動作中、カメラ11~14の映像から2次元座標上における駐車枠PAの位置および形状を逐次監視し、新たに認識した駐車枠PAの位置および形状が記憶したものと異なる場合には、駐車枠PAの位置および形状を更新する。また、駐車経路算出部51は、駐車枠PAの位置および形状を更新した場合、駐車完了位置Peを再設定し、上記(I)~(III)に示したロジックに従い駐車開始位置Psを現在の自車位置Pcに置き換えて駐車経路PTを再算出、更新する逐次補正を行う。
  駐車経路算出部51は、上記ロジックに基づき駐車完了時の自車位置Pcが駐車完了位置Peと一致し、かつ、ヨー角θが0となる駐車経路PTを算出するが、ヨー角θが補正不能である場合には、駐車枠PA内で停車したときの自車位置PcのX座標またはY座標の少なくとも一方が駐車完了位置Peの座標と一致するような駐車経路PTを算出する。よって、この場合は駐車枠に対して自車が斜めに駐車される。
 [駐車経路算出判断]
  自車位置Pc(駐車開始時には駐車開始位置Ps)と駐車枠PAとの位置関係によっては、駐車経路PTの算出(補正を含む。)が不可能な場合がある。そこで、駐車経路算出部51は、駐車経路PTを算出する前に、駐車経路算出判断部51bにより自車位置Pcと駐車完了位置Peとの関係に基づき駐車経路PTが算出可能であるか否かを判断する。駐車経路算出部51は、駐車経路PTが算出可能と判断された場合には、上記ロジックに従い駐車経路PTを算出し、算出不可能と判断された場合には、自車位置Pc(駐車開始時には駐車開始位置Ps)から駐車経路PTを算出可能な位置まで自車を前進させる切り返し用の駐車経路PT'を算出し、経路制御部54へ出力する。以下、図6を用いて駐車経路PTが算出可能か否かの判断方法を説明する。
  まず、ヨー角θに基づきテーブルを参照して自車位置Pcと仮想駐車位置PvとのX軸方向の距離である必要X距離Xnと、Y軸方向の距離である必要Y距離Ynとを算出する。テーブルは、最大舵角で後退したときのヨー角変更量に対する必要X距離Xnおよび必要Y距離Ynを予め実験等により求めたものが設定されている。仮想駐車位置Pvにおけるヨー角θは0であるから、自車位置Pcにおけるヨー角θをヨー角変更量としてテーブルを参照することにより必要X距離Xnおよび必要Y距離Ynが求まる。
  続いて、自車位置Pcと原点OとのX軸方向の距離である相対X距離Xrと、自車位置Pcと原点OとのY軸方向の距離である相対Y距離Yrとを算出する(相対XY距離を算出)。
  次に、必要X距離Xnと相対X距離Xrとの差分および必要Y距離Ynと相対Y距離Yrとの差分を求め、両差分が0よりも小さい場合には駐車経路PTが算出可能と判断し、両差分の少なくとも一方が0以下である場合には駐車経路PTが算出不可能と判断する。
 [駐車経路算出処理]
  図10は、駐車経路算出部51における駐車経路算出処理を示すフローチャートである。このフローチャートは、駐車動作開始から終了まで所定の演算周期で繰り返される。
  ステップS1では、駐車が完了したか否かを判定する。YESの場合はステップS2へ進み、NOの場合はリターンへ進む。
  ステップS2では、駐車枠PAの位置および形状が更新されたか否かを判定する。YESの場合はステップS3へ進み、NOの場合はステップS1に戻る。
  ステップS3では、ヨー角θを算出する。
  ステップS4では、駐車経路算出判断部51bにおいて、ヨー角θに基づき必要X距離および必要Y距離を算出する(必要XY距離を算出)。
  ステップS5では、駐車経路算出判断部51bにおいて、必要XY距離が相対XY距離よりも小さいか否かを判定する。YESの場合はステップS6へ進み、NOの場合はステップS12へ進む。
  ステップS6では、仮想駐車位置算出部51aにおいて、仮想駐車位置Pvを算出する。
  ステップS7では、仮想駐車位置PvのX座標である仮想X距離Xvが原点OのX座標0以下であるか否かを判定する。YESの場合はステップS8へ進み、NOの場合はステップS11へ進む。
  ステップS8では、仮想駐車位置PvのY座標である仮想Y距離Yvが原点OのY座標0以上であるか否かを判定する。YESの場合はステップS9へ進み、NOの場合はステップS10へ進む。
 ステップS9では、図7に示したような直線L1を含む駐車経路PTを算出する。
  ステップS10では、図8に示したような第1S字曲線L1、第2S字曲線L5を含む駐車経路PTを算出する。
  ステップS11では、図9に示したようなS字曲線L2を含む駐車経路PTを算出する。
  ステップS12では、自車を前進させる(切り返し用)の駐車経路PT'を算出する。
  ステップS13では、ステップS9~S11で算出した駐車経路PTに沿って自車を走行させた場合の駐車枠内における停車位置と駐車完了位置Peとのズレ量が許容ズレ量以下であるか否かを判定する。YESの場合はステップS14へ進み、NOの場合はリターンへ進む。許容ズレ量は、X座標、Y座標、ヨー角θでそれぞれ設定し、例えば、X座標許容ズレ量=0.1m、Y座標許容ズレ量=0m、ヨー角ズレ量=±2°とする。
  ステップS14では、ステップS9~S11で算出した駐車経路PTに沿って自車を走行させた場合の駐車枠内における停車位置と駐車完了位置Peとのズレ量が、現在の駐車経路PTに沿って自車を走行させた場合の駐車枠内における停車位置と駐車完了位置Peとのズレ量よりも小さいか否かを判定する。YESの場合はステップS15へ進み、NOの場合はリターンへ進む。
  ステップS15では、駐車経路PTをステップS9~S11で算出した駐車経路PTまたはステップS12で算出した駐車経路PT'に更新する。
 [駐車経路の算出自由度の向上]
  従来の駐車経路算出装置では、並列駐車の駐車経路を1方向操舵に基づく曲線としている。このため、駐車開始位置と駐車完了位置との位置関係によっては、車両を駐車枠と平行、かつ、駐車枠の中央に駐車するための駐車経路を算出できないことがあり、切り返しが必要となる。例えば、図8および図9に示したシーンにおいて、左方向操舵に基づく左曲がりの曲線のみでは、自車位置のY座標が原点OのY座標0と一致したときにヨー角θが0となる駐車経路を算出できず、切り返しが必要となる。
  これに対し、実施例1では、駐車開始位置Psから駐車完了位置Peまで最大舵角(最小旋回半径R)で後退したときにヨー角θが0となる仮想駐車位置PvのXY座標である仮想X距離Xvおよび仮想Y距離Yvを算出する。そして、図8のように仮想X距離Xv<原点O、かつ、仮想Y距離Yv<原点Oの場合には、第1S字曲線L1と第2S字曲線L5とを含む駐車経路PTを算出する。また、図9のように仮想X距離Xv>原点O、かつ、仮想Y距離Yv>原点Oの場合には、S字曲線L2を含む駐車経路PTを算出する。
 図8のように仮想X距離Xv<原点O、かつ、仮想Y距離Yv<原点Oとなる場合は、駐車開始位置Psと駐車完了位置PeとのY軸方向距離が、ヨー角θを0とするために必要なY軸方向距離よりも短いことを意味する。よって、駐車経路PTとして第1S字曲線L1を設定し、自車をY軸正方向へ移動させることにより、ヨー角θを0とするために必要なY軸方向距離が得られる。自車が算出された駐車経路PT上を移動すると、直線L4に到達したとき、ヨー角θは0となるが、自車のX座標は駐車完了位置PeのX座標に対してX軸正方向側にずれている。よって、自車のX座標を修正するための曲線(経路)が必要となる。このとき、左方向操舵に基づく左曲がりの曲線のみでは、図11に示すように、走行経路を伸長した分だけヨー角の増大を伴うため、自車が原点Oに到達したときのヨー角を0とすることは不可能である。実施例1では、駐車経路PTに第2S軸曲線S5を設定することにより、図12に示すように、左操舵に基づく第2曲線l22によるヨー角θの増大を右操舵に基づく第1曲線l21で打ち消すことができ、自車が原点Oに到達したときのヨー角θを0にできる。
  図9のように仮想X距離Xv>原点O、かつ、仮想Y距離Yv>原点Oとなる場合は、上述のように左方向操舵に基づく左曲がりの曲線のみでは自車が原点Oに到達したときのヨー角を0とすることが不可能であることを意味する。よって、駐車経路PTとしてS字曲線L2を設定することにより、原点Oに到達したときのヨー角を0にできる。
  以上のように、実施例1では、図8および図9のようなシーンにおいても並列駐車の駐車経路PTを算出できるため、従来の駐車経路算出装置と比較して駐車軌跡の算出自由度を向上でき、切り返しが必要となるシーンを低減できる。
 [駐車動作中逐次補正による駐車経路算出精度の向上]
  駐車枠はカメラ11~14によってかなり遠方からでも発見しうるが、カメラ11~14にはレンズ歪み等の問題があるため、遠距離から取得した駐車枠の座標は必ずしも精度が高くない。また、車両の後退誤差もある。例えば、精度の悪い駐車枠の座標に対して自車を後退すると、自車が駐車枠の一方に寄った状態や駐車枠に対して傾いた状態で駐車が完了する。一方、カメラ11~14と駐車枠とが近接した際は駐車枠の座標を高精度に取得できる。駐車枠の座標の精度は、駐車完了時の自車位置および角度(ヨー角)を決めるため、出来るだけ高精度の座標を用いて自車を後退するのが望ましい。
  そこで、実施例1では、駐車動作中も継続して駐車枠の座標を取得し、取得した座標がより高精度の座標であって、駐車経路PTを補正し得る場合には、より高精度の座標に基づき駐車経路PTを補正する。これにより、駐車完了位置Peまでの駐車経路PTの算出精度を向上できる。
 実施例1にあっては、以下の効果を奏する。
  (1) 自車位置Pcから最大舵角で誘導したときに認識された駐車位置と平行または略平行となる仮想駐車位置Pvを算出し、仮想駐車位置Pvと認識された駐車位置との位置関係に応じて、ステアリング装置の中立位置に対し第1方向操舵に基づく第1曲線および中立位置に対し第1方向操舵とは反対の操舵方向である第2方向操舵に基づく第2曲線(S字操舵)を用いて自車を誘導させる駐車経路PTを算出する駐車経路算出部51を備えた。
  よって、駐車経路PTに上記第1方向操舵および第2方向操舵を用いたS字の曲線を含めることにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTの算出自由度を向上できる。また、駐車動作中に駐車経路PTを算出することにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTを高精度に算出、補正できる。
  (2) 認識された駐車位置は、駐車完了位置Peである。
  よって、駐車経路PTにS字の曲線を含めることにより、自車位置Pcから駐車完了位置Peまでの並列駐車の駐車経路PTの算出自由度を向上できる。また、駐車動作中に駐車経路PTを算出することにより、自車位置Pcから駐車完了位置Peまでの並列駐車の駐車経路PTを高精度に算出できる。
  (3) 駐車経路算出部51は、仮想X距離Xvが原点OのX座標0よりも小さく、かつ、仮想Y距離Yvが原点OのY座標0よりも小さい場合、第1曲線l11と第2曲線l12とを組み合わせた第1S字曲線L1と、第1S字曲線L1と接続する第2曲線l22と第1曲線l21とを組み合わせた第2S字曲線L5とを用いて自車位置Pcから駐車完了位置Peまでの駐車経路を算出する。
  よって、駐車経路PTに2つのS字曲線L1,L2を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路PTを算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
 (4) 駐車経路算出部51は、仮想X距離Xvが原点OのX座標0より大きく、かつ、仮想Y距離Yvが原点OのY座標0よりも大きい場合、第2曲線l21と第1曲線l22とを組み合わせたS字曲線L2を用いて駐車経路PTを算出する。
  よって、駐車経路PTにS字曲線L2を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路PTを算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
  (5) 駐車経路算出部51は、自車位置Pcと認識された駐車位置との位置関係に基づき駐車経路PTが算出可能か否かを判断する駐車経路算出判断部51bを備えた。
  よって、駐車経路PTが算出可能か否かを事前に判断することにより、不要な駐車経路PTの算出を抑制できる。
  (6) 駐車経路算出判断部51bは、仮想駐車位置Pvと自車位置PcとのX軸方向およびY軸方向の距離である必要X距離Xnおよび必要Y距離Ynと、自車位置Pcと駐車完了位置PeとのX軸方向およびY軸方向の距離である相対X距離Xrおよび相対Y距離Yrとの関係に基づき、駐車経路PTが算出可能か否かを判断する。
  よって、駐車経路PTが算出可能か否かを容易かつ正確に判断できる。
  (7) 駐車経路算出部51は、クロソイド曲線、円弧、クロソイド曲線と円弧、または、クロソイド曲線または円弧とクロソイド曲線と直線の組み合わせを用いて駐車経路PTを算出する。
  クロソイドを用いることによって、滑らかで運転者が予期しやすい車両動作となり、運転者に与える違和感を軽減できる。
 (8) 自車が自車位置Pcから最小旋回半径Rで誘導したときに駐車完了位置Peと所定の位置関係にある仮想駐車位置Pvを算出する仮想駐車位置算出部51aと、算出された仮想駐車位置Pvと駐車完了位置Peとの位置関係に応じて、左右前輪41,42の中立位置に対して一方側の操舵方向の第1方向操舵に基づく第1曲線と中立位置を跨ぎ第1方向操舵とは反対の操舵方向の第2方向操舵に基づく第2曲線とを組み合わせて自車を誘導させる駐車経路PTを算出する駐車経路算出部51と、算出された駐車経路PTに沿って自車を移動させる車速制御部55および操舵角制御部56と、を備えた。
  よって、駐車経路PTにS字の曲線(第1方向操舵および第2方向操舵を用いた曲線)を含めることにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTの算出自由度を向上できる。また、駐車動作中に駐車経路PTを算出することにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTを高精度に算出、補正できる。
  (9) 自車が自車位置Pcから最小旋回半径Rで誘導したときに駐車完了位置Peと所定の位置関係にある仮想駐車位置Pvを算出し、仮想駐車位置Pvと駐車完了位置Peとの位置関係に応じて、自車の誘導時に左右前輪41,42が中立位置を跨いで操舵される駐車経路PTを算出する。
  よって、駐車経路PTにS字の曲線(第1方向操舵および第2方向操舵を用いた曲線)を含めることにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTの算出自由度を向上できる。また、駐車動作中に駐車経路PTを算出することにより、自車位置Pcから認識された駐車位置までの並列駐車の駐車経路PTを高精度に算出、補正できる。
 〔他の実施例〕
  以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  例えば、実施例では、駐車経路PTを算出する際、仮想駐車位置PvのY座標と原点OのY座標0とを比較したが、駐車枠PAの左右に他車が駐車している場合、すなわち、原点Oよりも手前で車両ヨー角を一致させる必要性のある場合は、仮想駐車位置Pvと比較する予定駐車位置Peを、ヨー角を一致させるべき点、例えば車両前端が向いている方向の駐車枠前端としてもよい。このとき、駐車経路PTが算出可能か否かを判断するための相対Y距離Yrも、自車位置Pcとヨー角が一致する点、たとえば駐車枠前端とする。さらに、実施例1では、誘導として自車の後退を例に説明したが、誘導として自車を前進させてもよい。
 本発明は、下記のように構成してもよい。
  (a) 上記駐車支援装置において、
  駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
  前記駐車経路算出部は、前記仮想駐車位置の座標がX軸負方向位置、かつ、Y軸負方向位置にある場合、前記第1曲線と前記第2曲線とを組み合わせた第1S字曲線と、前記第1S字曲線と接続する前記第2曲線と前記第1曲線とを組み合わせた第2S字曲線とを用いて前記自車位置に対応する座標から前記駐車完了位置に対応する座標までの駐車経路を算出することを特徴とする駐車経路算出装置。
  よって、駐車経路に2つのS字曲線を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路を算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
 上記駐車支援装置において、前記駐車経路算出部は、前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出してもよい。
  (b) 上記駐車支援装置において、
  駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
  前記駐車経路算出部は、前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車経路算出装置。
  よって、駐車経路にS字曲線を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路を算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
 (c) 上記駐車経路算出方法において、
  駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
  前記仮想駐車位置の座標がX軸負方向位置、かつ、Y軸負方向位置にある場合、前記第1曲線と前記第2曲線とを組み合わせた第1S字曲線と、前記第1S字曲線と接続する前記第2曲線と前記第1曲線とを組み合わせた第2S字曲線とを用いて前記自車位置に対応する座標から前記駐車完了位置に対応する座標までの駐車経路を算出することを特徴とする駐車経路算出方法。
  よって、駐車経路に2つのS字曲線を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路を算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
  (d) 上記駐車経路算出方法において、
  駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
  前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車経路算出方法。
  よって、駐車経路にS字曲線を含めることにより、1方向操舵に基づく曲線のみでは並列駐車の駐車経路を算出できない上記シーンでも並列駐車の駐車経路を算出できるため、切り返しが不要であり、駐車完了に要する時間を短縮できる。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。上記実施形態を任意に組み合わせても良い。
 本願は、2015年10月21日付出願の日本国特許出願第2015-207112号に基づく優先権を主張する。2015年10月21日付出願の日本国特許出願第2015-207112号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
41,42 左右前輪(操舵輪)51 駐車経路算出部51a 仮想駐車位置算出部51b 駐車経路算出判断部55 車速制御部(車両制御部)56 操舵角制御部(車両制御部)O 原点Pc 自車位置Pe 駐車完了位置(認識された駐車位置)PT 駐車経路Pv 仮想駐車位置Xn 必要X距離Xr 相対X距離Yn 必要Y距離Yr 相対Y距離

Claims (14)

  1.  自車が駐車可能な駐車位置を認識し、自車位置から前記認識された駐車位置までの駐車経路を算出する駐車経路算出装置であって、
     前記自車位置から最大舵角で誘導したときに前記認識された駐車位置と略平行となる仮想駐車位置を算出し、前記仮想駐車位置と前記認識された駐車位置との位置関係に応じて、ステアリング装置の中立位置に対し第1方向操舵に基づく第1曲線および前記中立位置に対し前記第1方向操舵とは反対の操舵方向である第2方向操舵に基づく第2曲線を用いて前記自車を誘導させる駐車経路を算出する駐車経路算出部を備えたことを特徴とする駐車経路算出装置。
  2.  請求項1に記載の駐車経路算出装置において、
     前記認識された駐車位置は、駐車完了位置であることを特徴とする駐車経路算出装置。
  3.  請求項2に記載の駐車経路算出装置において、
     前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記駐車経路算出部は、前記仮想駐車位置の座標がX軸負方向位置、かつ、Y軸負方向位置にある場合、前記第1曲線と前記第2曲線とを組み合わせた第1S字曲線と、前記第1S字曲線と接続する前記第2曲線と前記第1曲線とを組み合わせた第2S字曲線とを用いて前記自車位置に対応する座標から前記駐車完了位置に対応する座標までの駐車経路を算出することを特徴とする駐車経路算出装置。
  4.  請求項3に記載の駐車経路算出装置において、
     前記駐車経路算出部は、前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車経路算出装置。
  5.  請求項2に記載の駐車経路算出装置において、
     駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記駐車経路算出部は、前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車経路算出装置。
  6.  請求項1に記載の駐車経路算出装置において、
     前記駐車経路算出部は、前記自車位置と前記認識された駐車位置との位置関係に基づき前記駐車経路が算出可能か否かを判断する駐車経路算出判断部を備えたことを特徴とする駐車経路算出装置。
  7.  請求項6に記載の駐車経路算出装置において、
     前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定したとき、
     前記駐車経路算出判断部は、前記仮想駐車位置に対応する座標と前記自車位置に対応する座標とのX軸方向およびY軸方向の距離である必要X距離および必要Y距離と、前記自車位置に対応する座標と前記駐車完了位置に対応する座標とのX軸方向およびY軸方向の距離である相対X距離および相対Y距離との関係に基づき、前記駐車経路が算出可能か否かを判断することを特徴とする駐車経路算出装置。
  8.  請求項1に記載の駐車経路算出装置において、
     前記駐車経路算出部は、クロソイド曲線、円弧、またはクロソイド曲線と円弧との組み合わせを用いて前記駐車経路を算出することを特徴とする駐車経路算出装置。
  9.  設定された駐車完了位置へ自車を駐車するための駐車経路を算出する駐車支援装置であって、
     前記自車が自車位置から最小旋回半径で誘導したときに前記駐車完了位置と所定の位置関係にある仮想駐車位置の座標を算出する仮想駐車位置算出部と、
     前記算出された仮想駐車位置と前記駐車完了位置との位置関係に応じて、操舵輪の中立位置に対して一方側の操舵方向の第1方向操舵に基づく第1曲線と前記中立位置を跨ぎ前記第1方向操舵とは反対の操舵方向の第2方向操舵に基づく第2曲線とを組み合わせて前記自車を誘導させる駐車経路を算出する駐車経路算出部と、
     前記算出された駐車経路に沿って前記自車を移動させる車両制御部と、
     を備えたことを特徴とする駐車支援装置。
  10.  請求項9に記載の駐車支援装置において、
     前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記駐車経路算出部は、前記仮想駐車位置の座標がX軸負方向位置、かつ、Y軸負方向位置にある場合、前記第1曲線と前記第2曲線とを組み合わせた第1S字曲線と、前記第1S字曲線と接続する前記第2曲線と前記第1曲線とを組み合わせた第2S字曲線とを用いて前記自車位置に対応する座標から前記駐車完了位置に対応する座標までの駐車経路を算出することを特徴とする駐車支援装置。
  11.  請求項9に記載の駐車支援装置において、
     前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記駐車経路算出部は、前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車支援装置。
  12.  自車が自車位置から最小旋回半径で誘導したときに駐車完了位置と所定の位置関係にある仮想駐車位置を算出し、前記仮想駐車位置と前記駐車完了位置との位置関係に応じて、前記自車の誘導時に操舵輪が中立位置を跨いで操舵される駐車経路を算出することを特徴とする駐車経路算出方法。
  13.  請求項12に記載の駐車経路算出方法において、
      前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記仮想駐車位置の座標がX軸負方向位置、かつ、Y軸負方向位置にある場合、前記第1曲線と前記第2曲線とを組み合わせた第1S字曲線と、前記第1S字曲線と接続する前記第2曲線と前記第1曲線とを組み合わせた第2S字曲線とを用いて前記自車位置に対応する座標から前記駐車完了位置に対応する座標までの駐車経路を算出することを特徴とする駐車経路算出方法。
  14.  請求項12に記載の駐車経路算出方法において、
      前記駐車完了位置に対応する座標を原点とし、前記駐車完了位置における前記自車の前後方向をY軸、前記Y軸と直交する方向をX軸とする2次元座標を設定し、前記X軸を挟んで前記自車位置側をY軸正方向位置、反対側をY軸負方向位置、前記Y軸を挟んで前記自車位置側をX軸負方向位置、反対側をX軸正方向位置と定義したとき、
     前記仮想駐車位置の座標がX軸正方向位置、かつ、Y軸正方向位置にある場合、前記第2曲線と前記第1曲線とを組み合わせたS字曲線を用いて前記駐車経路を算出することを特徴とする駐車経路算出方法。
PCT/JP2016/079487 2015-10-21 2016-10-04 駐車経路算出装置、駐車支援装置および駐車経路算出方法 WO2017068969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680059428.0A CN108136988B (zh) 2015-10-21 2016-10-04 停车路径计算装置、停车辅助装置以及停车路径计算方法
US15/769,937 US10449969B2 (en) 2015-10-21 2016-10-04 Parking path calculation device, parking assist device and parking path calculation method
EP16857285.7A EP3366525B1 (en) 2015-10-21 2016-10-04 Parking path calculation device, parking support device and parking path calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-207112 2015-10-21
JP2015207112A JP6642820B2 (ja) 2015-10-21 2015-10-21 駐車経路算出装置、駐車支援装置および駐車経路算出方法

Publications (1)

Publication Number Publication Date
WO2017068969A1 true WO2017068969A1 (ja) 2017-04-27

Family

ID=58557416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079487 WO2017068969A1 (ja) 2015-10-21 2016-10-04 駐車経路算出装置、駐車支援装置および駐車経路算出方法

Country Status (5)

Country Link
US (1) US10449969B2 (ja)
EP (1) EP3366525B1 (ja)
JP (1) JP6642820B2 (ja)
CN (1) CN108136988B (ja)
WO (1) WO2017068969A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113658450A (zh) * 2021-08-31 2021-11-16 中关村科学城城市大脑股份有限公司 一种停车位管理方法及相关设备
US20220121203A1 (en) * 2017-10-02 2022-04-21 Toyota Jidosha Kabushiki Kaisha Managing apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906530B2 (en) * 2015-11-10 2021-02-02 Hyundai Motor Company Automatic parking system and automatic parking method
US10919574B2 (en) * 2015-11-10 2021-02-16 Hyundai Motor Company Automatic parking system and automatic parking method
JP6544348B2 (ja) 2016-12-22 2019-07-17 トヨタ自動車株式会社 車両運転支援装置
JP6515912B2 (ja) * 2016-12-22 2019-05-22 トヨタ自動車株式会社 車両運転支援装置
JP2018203218A (ja) * 2017-06-09 2018-12-27 アイシン精機株式会社 駐車支援システム
WO2019225289A1 (ja) * 2018-05-21 2019-11-28 株式会社ジェイテクト モータ制御装置
CN109471432B (zh) * 2018-11-08 2021-09-28 南京农业大学 一种自主导航农用车最短避障路径规划方法
DE102018220328A1 (de) * 2018-11-27 2020-05-28 Continental Teves Ag & Co. Ohg Verfahren zum Planen eines von einem Parkassistenzsystem unterstützten Parkvorgangs
CN110440824A (zh) * 2019-08-27 2019-11-12 广州小鹏汽车科技有限公司 一种路径规划方法及路径规划系统
CN110440823B (zh) * 2019-08-27 2021-04-13 广州小鹏汽车科技有限公司 一种路径规划方法及路径规划系统
JP2021098402A (ja) * 2019-12-20 2021-07-01 トヨタ自動車株式会社 電動車両および電動車両の制御方法
US11541875B2 (en) 2020-06-19 2023-01-03 Aptiv Technologies Limited System and method for path planning in vehicles
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
CN113781830B (zh) * 2021-09-15 2023-01-24 兰昀正 一种自动化智能停车管理系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210172A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 駐車支援装置
DE102012216753A1 (de) * 2012-09-19 2014-03-20 Robert Bosch Gmbh Verfahren zur Unterstützung eines Fahrmanövers eines Fahrzeugs und Fahrassistenzsystem

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2518300B2 (ja) * 1987-09-04 1996-07-24 日本電装株式会社 車両の誘導方法
JP2676971B2 (ja) * 1989-07-04 1997-11-17 株式会社デンソー 車両の車庫誘導装置
JP4342146B2 (ja) * 2002-04-08 2009-10-14 アイシン精機株式会社 駐車補助装置
US6827695B2 (en) * 2002-10-25 2004-12-07 Revivant Corporation Method of determining depth of compressions during cardio-pulmonary resuscitation
JP3911492B2 (ja) * 2003-06-26 2007-05-09 トヨタ自動車株式会社 車両用走行支援装置
JP4058389B2 (ja) * 2003-06-26 2008-03-05 トヨタ自動車株式会社 車両用走行支援装置
JP2008201177A (ja) 2007-02-16 2008-09-04 Toyota Motor Corp 駐車支援装置
JP2011016405A (ja) * 2009-07-07 2011-01-27 Honda Motor Co Ltd 駐車支援装置
US9021376B2 (en) * 2012-07-02 2015-04-28 International Business Machines Corporation Task timer
JP6000693B2 (ja) * 2012-07-03 2016-10-05 日立オートモティブシステムズ株式会社 駐車支援装置
US20140057237A1 (en) * 2012-08-27 2014-02-27 Stephen Chen Method for parking a vehicle by using a parking assistant system
JP2014189097A (ja) * 2013-03-26 2014-10-06 Honda Motor Co Ltd 駐車支援装置
KR102170286B1 (ko) * 2013-08-13 2020-10-26 현대모비스 주식회사 조향 휠 제어 방법 및 이를 위한 위한 시스템
JP6067634B2 (ja) * 2014-09-12 2017-01-25 アイシン精機株式会社 駐車支援装置および経路決定方法
CN107111954B (zh) * 2015-01-05 2020-10-09 日产自动车株式会社 目标路径生成装置及行驶控制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210172A (ja) * 2003-01-07 2004-07-29 Toyota Industries Corp 駐車支援装置
DE102012216753A1 (de) * 2012-09-19 2014-03-20 Robert Bosch Gmbh Verfahren zur Unterstützung eines Fahrmanövers eines Fahrzeugs und Fahrassistenzsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3366525A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220121203A1 (en) * 2017-10-02 2022-04-21 Toyota Jidosha Kabushiki Kaisha Managing apparatus
US11614738B2 (en) 2017-10-02 2023-03-28 Toyota Jidosha Kabushiki Kaisha Managing apparatus
US11782441B2 (en) * 2017-10-02 2023-10-10 Toyota Jidosha Kabushiki Kaisha Managing apparatus
CN113658450A (zh) * 2021-08-31 2021-11-16 中关村科学城城市大脑股份有限公司 一种停车位管理方法及相关设备

Also Published As

Publication number Publication date
JP2017077811A (ja) 2017-04-27
US20180312169A1 (en) 2018-11-01
JP6642820B2 (ja) 2020-02-12
EP3366525B1 (en) 2020-03-04
CN108136988A (zh) 2018-06-08
US10449969B2 (en) 2019-10-22
EP3366525A1 (en) 2018-08-29
CN108136988B (zh) 2020-08-04
EP3366525A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017068969A1 (ja) 駐車経路算出装置、駐車支援装置および駐車経路算出方法
JP6251940B2 (ja) 駐車軌跡算出装置および駐車軌跡算出方法
JP6000693B2 (ja) 駐車支援装置
WO2017056770A1 (ja) 駐車支援装置
US9771101B2 (en) Vehicular steering control device
JP5620951B2 (ja) 車両のパワーステアリング制御装置
JP5278031B2 (ja) 駐車支援装置及び駐車支援方法
EP3124361B1 (en) Parking assistance device, parking assistance method, and non-transitory computer readable medium storing program
JP5418705B2 (ja) 駐車支援装置及び駐車支援方法
CN109641617B (zh) 出库辅助装置
EP3597501B1 (en) Vehicle control device, and vehicle control method
JP5855555B2 (ja) 駐車支援装置
JP2016142612A (ja) 車両制御装置、距離算出装置および距離算出方法
JP2009274688A (ja) 車両用操舵制御装置
JP2014234111A (ja) 車両のレーンキープ制御装置
CN113260553B (zh) 转向控制装置和转向控制方法
WO2019244490A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15769937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016857285

Country of ref document: EP