WO2017065219A1 - フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 - Google Patents
フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 Download PDFInfo
- Publication number
- WO2017065219A1 WO2017065219A1 PCT/JP2016/080392 JP2016080392W WO2017065219A1 WO 2017065219 A1 WO2017065219 A1 WO 2017065219A1 JP 2016080392 W JP2016080392 W JP 2016080392W WO 2017065219 A1 WO2017065219 A1 WO 2017065219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- group
- compound
- phenacene
- represented
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 189
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 39
- 125000003118 aryl group Chemical group 0.000 claims abstract description 28
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 18
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 15
- 125000005843 halogen group Chemical group 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 45
- 238000003786 synthesis reaction Methods 0.000 claims description 45
- 125000002252 acyl group Chemical group 0.000 claims description 34
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 30
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 28
- -1 R 21 Chemical compound 0.000 claims description 25
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 229910052799 carbon Inorganic materials 0.000 claims description 21
- 239000003223 protective agent Substances 0.000 claims description 17
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 14
- 239000012351 deprotecting agent Substances 0.000 claims description 13
- 238000010511 deprotection reaction Methods 0.000 claims description 13
- 229910052796 boron Inorganic materials 0.000 claims description 11
- 230000002194 synthesizing effect Effects 0.000 claims description 11
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 10
- 125000002541 furyl group Chemical group 0.000 claims description 9
- 125000001544 thienyl group Chemical group 0.000 claims description 8
- RNFNDJAIBTYOQL-UHFFFAOYSA-N chloral hydrate Chemical compound OC(O)C(Cl)(Cl)Cl RNFNDJAIBTYOQL-UHFFFAOYSA-N 0.000 claims description 7
- 229960002327 chloral hydrate Drugs 0.000 claims description 7
- 230000009918 complex formation Effects 0.000 claims description 6
- 239000012425 OXONE® Substances 0.000 claims description 5
- OKBMCNHOEMXPTM-UHFFFAOYSA-M potassium peroxymonosulfate Chemical compound [K+].OOS([O-])(=O)=O OKBMCNHOEMXPTM-UHFFFAOYSA-M 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 78
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 65
- 239000002904 solvent Substances 0.000 description 47
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 30
- 239000000243 solution Substances 0.000 description 22
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- 239000002243 precursor Substances 0.000 description 17
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 16
- 238000005481 NMR spectroscopy Methods 0.000 description 14
- 238000004809 thin layer chromatography Methods 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 150000001721 carbon Chemical group 0.000 description 10
- 125000000524 functional group Chemical group 0.000 description 10
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- 238000010898 silica gel chromatography Methods 0.000 description 9
- FFNRKAWQIXXMNB-UHFFFAOYSA-N 1-phenanthren-1-ylethanone Chemical compound C1=CC2=CC=CC=C2C2=C1C(C(=O)C)=CC=C2 FFNRKAWQIXXMNB-UHFFFAOYSA-N 0.000 description 8
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 229910000104 sodium hydride Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229940125904 compound 1 Drugs 0.000 description 5
- 229940125782 compound 2 Drugs 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000012312 sodium hydride Substances 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- JKVNPRNAHRHQDD-UHFFFAOYSA-N 1-phenanthren-3-ylethanone Chemical compound C1=CC=C2C3=CC(C(=O)C)=CC=C3C=CC2=C1 JKVNPRNAHRHQDD-UHFFFAOYSA-N 0.000 description 3
- 229920003026 Acene Polymers 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KZMGYPLQYOPHEL-UHFFFAOYSA-N Boron trifluoride etherate Chemical compound FB(F)F.CCOCC KZMGYPLQYOPHEL-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000006482 condensation reaction Methods 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000006239 protecting group Chemical group 0.000 description 3
- 238000006862 quantum yield reaction Methods 0.000 description 3
- 238000001308 synthesis method Methods 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- VDEAMZDXUCYOQJ-UHFFFAOYSA-N 2-acetylbenzaldehyde Chemical compound CC(=O)C1=CC=CC=C1C=O VDEAMZDXUCYOQJ-UHFFFAOYSA-N 0.000 description 2
- XSAYZAUNJMRRIR-UHFFFAOYSA-N 2-acetylnaphthalene Chemical compound C1=CC=CC2=CC(C(=O)C)=CC=C21 XSAYZAUNJMRRIR-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- HDJLSECJEQSPKW-UHFFFAOYSA-N Methyl 2-Furancarboxylate Chemical compound COC(=O)C1=CC=CO1 HDJLSECJEQSPKW-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000007239 Wittig reaction Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical group C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 229940095102 methyl benzoate Drugs 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- 238000006349 photocyclization reaction Methods 0.000 description 2
- 125000001388 picenyl group Chemical group C1(=CC=CC2=CC=C3C4=CC=C5C=CC=CC5=C4C=CC3=C21)* 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- 229940031723 1,2-octanediol Drugs 0.000 description 1
- CWILMKDSVMROHT-UHFFFAOYSA-N 1-(2-phenanthrenyl)ethanone Chemical compound C1=CC=C2C3=CC=C(C(=O)C)C=C3C=CC2=C1 CWILMKDSVMROHT-UHFFFAOYSA-N 0.000 description 1
- DQFWGPPCMONVDS-UHFFFAOYSA-N 1-anthracen-2-ylethanone Chemical compound C1=CC=CC2=CC3=CC(C(=O)C)=CC=C3C=C21 DQFWGPPCMONVDS-UHFFFAOYSA-N 0.000 description 1
- UIFAWZBYTTXSOG-UHFFFAOYSA-N 1-phenanthren-9-ylethanone Chemical compound C1=CC=C2C(C(=O)C)=CC3=CC=CC=C3C2=C1 UIFAWZBYTTXSOG-UHFFFAOYSA-N 0.000 description 1
- DBTGFWMBFZBBEF-UHFFFAOYSA-N 2,4-dimethylpentane-2,4-diol Chemical compound CC(C)(O)CC(C)(C)O DBTGFWMBFZBBEF-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004179 3-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(Cl)=C1[H] 0.000 description 1
- WDBQJSCPCGTAFG-QHCPKHFHSA-N 4,4-difluoro-N-[(1S)-3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-pyridin-3-ylpropyl]cyclohexane-1-carboxamide Chemical compound FC1(CCC(CC1)C(=O)N[C@@H](CCN1CCC(CC1)N1C(=NN=C1C)C(C)C)C=1C=NC=CC=1)F WDBQJSCPCGTAFG-QHCPKHFHSA-N 0.000 description 1
- BWGRDBSNKQABCB-UHFFFAOYSA-N 4,4-difluoro-N-[3-[3-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octan-8-yl]-1-thiophen-2-ylpropyl]cyclohexane-1-carboxamide Chemical compound CC(C)C1=NN=C(C)N1C1CC2CCC(C1)N2CCC(NC(=O)C1CCC(F)(F)CC1)C1=CC=CS1 BWGRDBSNKQABCB-UHFFFAOYSA-N 0.000 description 1
- 229910015900 BF3 Inorganic materials 0.000 description 1
- 238000003512 Claisen condensation reaction Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PGBFYLVIMDQYMS-UHFFFAOYSA-N Methyl thiophene-2-carboxylate Chemical compound COC(=O)C1=CC=CS1 PGBFYLVIMDQYMS-UHFFFAOYSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000005882 aldol condensation reaction Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 150000004662 dithiols Chemical class 0.000 description 1
- ZITKDVFRMRXIJQ-UHFFFAOYSA-N dodecane-1,2-diol Chemical compound CCCCCCCCCCC(O)CO ZITKDVFRMRXIJQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- YCWSUKQGVSGXJO-NTUHNPAUSA-N nifuroxazide Chemical group C1=CC(O)=CC=C1C(=O)N\N=C\C1=CC=C([N+]([O-])=O)O1 YCWSUKQGVSGXJO-NTUHNPAUSA-N 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000001209 o-nitrophenyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])[N+]([O-])=O 0.000 description 1
- AEIJTFQOBWATKX-UHFFFAOYSA-N octane-1,2-diol Chemical compound CCCCCCC(O)CO AEIJTFQOBWATKX-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- WCVRQHFDJLLWFE-UHFFFAOYSA-N pentane-1,2-diol Chemical compound CCCC(O)CO WCVRQHFDJLLWFE-UHFFFAOYSA-N 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- VNKOWRBFAJTPLS-UHFFFAOYSA-N tributyl-[(z)-2-tributylstannylethenyl]stannane Chemical compound CCCC[Sn](CCCC)(CCCC)\C=C\[Sn](CCCC)(CCCC)CCCC VNKOWRBFAJTPLS-UHFFFAOYSA-N 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/022—Boron compounds without C-boron linkages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/322—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/77—Preparation of chelates of aldehydes or ketones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/782—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
- C07C49/784—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/782—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
- C07C49/788—Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with keto groups bound to a condensed ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/92—Ketonic chelates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1096—Heterocyclic compounds characterised by ligands containing other heteroatoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/55—Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups
Definitions
- the present invention relates to a phenacene compound, a method for producing a phenacene compound, and an organic light-emitting device.
- organic aromatic compounds that can emit fluorescence as the light-emitting layer of organic electroluminescent devices are being promoted worldwide. In these organic aromatic compounds, it is indispensable to emit fluorescent light with high efficiency, and at the same time, fastness to an external environment such as high voltage, oxygen, light and moisture is required.
- a boron-diketone-diaryl complex having a naphthalene skeleton or an anthracene skeleton is known (for example, Inorg. Chem. 2013, 52, 3597-3610 (hereinafter referred to as “Document 1”). See also)).
- Document 1 a compound used in an organic electroluminescent (hereinafter referred to as EL) element having high efficiency, high luminance, and high durability
- EL organic electroluminescent
- naphthalene and anthracene constituting the aryl part of the boron-diketone-diaryl complex of Document 1 are known to have low fastness, which is particularly important for luminous efficiency.
- fluorescence yield which is one of the physical properties, greatly depends on the environment.
- phenacene having a structure in which benzene rings are condensed in a zigzag manner is more robust against external factors than acene having a structure in which benzene rings are linearly arranged. Is known to be expensive.
- the phenacene compound that forms a boron-diaryl-diketone complex can be expected as a compound that can solve the above-mentioned problems, and at the same time, an efficient synthesis method thereof is considered necessary. That is, there is a need for a method for efficiently introducing a functional group necessary for forming a boron-diaryl diketone complex (ie, a boron-aryl-diketone group) into a phenacene compound. It is considered that a phenacene compound having a functional group that can be converted into a functional group is also necessary.
- JP 2008-308467 A does not describe any method for synthesizing a phenacene compound having a functional group and no method for synthesizing a phenacene compound having a functional group convertible to a functional group.
- the document 2 is useful knowledge for efficiently synthesizing a phenacene compound having no functional group, it does not describe a method for synthesizing a phenacene compound having a functional group. For this reason, it is unclear whether or not a phenacene compound having a functional group such as the above boron-aryl-diketone group can be synthesized.
- a phenacene compound having a boron-aryl-diketone group an efficient method for producing the phenacene compound, and an efficient method for producing a phenacene compound having a functional group convertible to a boron-aryl-diketone group. It was desired.
- an object of the present disclosure is to provide a phenacene compound that is not easily affected by the environment and has a high fluorescence yield, an efficient method for producing the phenacene compound, and an organic light-emitting device.
- R 1 to R 10 each independently represents a hydrogen atom or a group represented by the following general formula (2), and any one of R 3 , R 5 and R 6 is to be a group .
- R 11 to R 22 each independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms or an acyl group having 1 to 12 carbon atoms, and at least one of R 11 to R 22 is the .R 21 and R 22 representing an acyl group having 1 to 12 carbon atoms, with the carbon atom to which R 21 and R 22 are bonded, may form a fused ring bond to each other.
- R 23 ⁇ R 32 each independently represent a hydrogen atom, an alkyl group or an acyl group having 1 to 12 carbon atoms having 6 or less carbon atoms, at least one of R 23 ⁇ R 32 is the .R 31 and R 32 representing an acyl group having 1 to 12 carbon atoms, with the carbon atom to which R 31 and R 32 are bonded, may form a fused ring bond to each other.
- ⁇ 4> The method for producing a phenacene compound according to ⁇ 3>, wherein the protecting agent is a diol compound.
- the deprotection material is any one selected from chloral hydrate and potassium peroxymonosulfate.
- a ⁇ -diketone derivative synthesis step for synthesizing a ⁇ -diketone derivative represented by the following general formula (5) by reacting the compound obtained in the deprotection step with a carbonyl group-containing compound.
- R 33 ⁇ R 42 each independently represent a hydrogen atom, a group represented by the number 6 an alkyl group or the following general formula carbons (6), the R 33 ⁇ R 42 at least one, and is .
- R 41 and R 42 represents a group represented by the following general formula (6), together with the carbon atom to which R 41 and R 42 are attached, to form a condensed ring bonded to each other May be.
- ⁇ 7> Further includes a complex formation step of forming a complex represented by the following general formula (7) by reacting the compound obtained in the ⁇ -diketone derivative synthesis step with boron halide ⁇ 6> It is a manufacturing method of the phenacene compound as described in>.
- R 43 ⁇ R 52 each independently represent a hydrogen atom, a group represented by the number 6 an alkyl group or the following general formula carbons (2), the R 43 ⁇ R 52 at least one, and is .
- R 51 and R 52 represents a group represented by the following general formula (2), together with the carbon atom to which R 51 and R 52 are attached, to form a condensed ring bonded to each other May be.
- Y 2 represents a phenyl group, a furyl group, or a thienyl group.
- Z 1 represents zero or more condensed benzene rings.
- An organic light-emitting device comprising the phenacene compound according to ⁇ 1> or ⁇ 2>.
- a phenacene compound that is not easily affected by the environment and has a high fluorescence yield, an efficient method for producing the phenacene compound, and an organic light-emitting device.
- FIG. 1 shows the absorption spectrum and fluorescence spectrum of each boron fluoride-diaryl-diketone complex.
- FIG. 2A is a graph showing fluorescence photophysical characteristics of each phenacene compound having a boron fluoride-aryl-diketone group in chloroform and acetonitrile.
- FIG. 2B is a diagram showing the photophysical properties of fluorescence of each phenacene compound having a boron fluoride-aryl-diketone group in chloroform and acetonitrile.
- a “phenacene compound” is a polycyclic aromatic compound in which three or more benzene rings are condensed, and a compound in which the benzene ring is condensed in zigzag, and the phenanthrene skeleton is expanded.
- a general term for a group of compounds in a condensed-ring manner For example, [J. Amer. Chem. Soc. , 119, 2119 (1997), J. MoI. Org. Chem. , 70, 2509 (2005)].
- halogenated boron-aryl-diketone group refers to a group represented by the general formula (2), and the group represented by the general formula (6) may be referred to as an aryl-diketone group.
- a phenacene compound or acene compound having a halogenated boron-aryl-diketone group may be referred to as a boron-diaryl-diketone complex.
- a compound used for producing a phenacene compound having a halogenated boron-aryl-diketone group for example, a phenacene compound having an aryl-diketone group (also referred to as a ⁇ -diketone derivative) or an acyl group is used.
- the phenacene compounds possessed may be collectively referred to as phenacene precursor compounds.
- the aryls of “boron-aryl-diketone complex”, “halogenated boron-aryl-diketone group” and “aryl-diketone group” include not only aryl groups but also heteroaryl groups. .
- fluorescence yield has the same meaning as fluorescence quantum yield.
- R 1 to R 10 each independently represent a hydrogen atom or a group represented by the following general formula (2), and any one of R 3 , R 5 and R 6 is the following: It is group represented by General formula (2).
- the R 9 and R 10, together with the carbon atom to which R 9 and R 10 are bonded, may form a fused ring bond to each other.
- * indicates a bonding position with the compound represented by the general formula (1).
- X represents a halogen group, and Y 1 represents an aryl group or a heteroaryl group.
- the phenacene compound is a boron-diaryl-diketone complex, and one or two of two aryls (ie, diaryl) is phenacene.
- This has excellent photophysical characteristics in fluorescence (for example, fluorescence yield, fluorescence lifetime, and rate constant), and in particular, the fluorescence yield, which is an important physical property when using a light emitting device or an electronic material, has a high value. Can be secured.
- the characteristics of the phenacene compound are not easily affected by the environment, it is considered that the phenacene compound has not only chemical stability but also stability to light, heat and temperature, that is, fastness as a compound. .
- Whether or not the photophysical properties of the fluorescence of a compound are easily influenced by the environment can be determined by, for example, measuring each physical property of the fluorescence of each solution in a solution in which the compound is dissolved in a solvent having different properties and having different properties.
- the difference in the physical property value in the solvent can be confirmed by comparing with the difference in the physical property value in other compounds.
- the solvent include a combination of a nonpolar solvent and a polar solvent, and a combination of an aprotic solvent and a protic solvent.
- a combination of a nonpolar solvent and a polar solvent is preferable.
- nonpolar solvents include chloroform, diethyl ether, dichloromethane, hexane, and toluene.
- polar solvents examples include acetonitrile, ethyl acetate, tetrahydrofuran (THF), alcohols having 1 to 4 carbon atoms, dimethylformamide (DMF). ) And dimethyl sulfoxide (DMSO).
- a condensed ring refers to a 6-membered ring (that is, a benzene ring). That is, in the general formula (1), the number of benzene rings in forming a condensed ring is not particularly limited as long as the effects of the present invention are not significantly impaired. However, from the viewpoint of easy synthesis of the phenacene compound, the number of condensed rings is preferably 0 or more and 13 or less, and more preferably 0 or more and 8 or less. Particularly preferably, the number of rings is 0 or more and 6 or less. More preferably, the number of rings is 0 or more and 1 or less, and most preferably the number of rings is 0.
- R 1 to R 10 are groups in which any one of R 3 , R 5 and R 6 is represented by the general formula (2) (that is, boron halide-aryl-diketone). Group), the others may be hydrogen atoms or may have a group represented by the general formula (2).
- R 3 , R 5 and R 6 R 5 is preferably a group represented by the general formula (2) from the viewpoint of being hardly affected by the environment and exhibiting a high fluorescence yield.
- the number having a halogenated boron-aryl-diketone group is appropriately adjusted, but is preferably 4 or less, more preferably 2 or less, and particularly preferably 1 for ease of synthesis. .
- X is not particularly limited as long as it is a halogen group, but is preferably a fluorine group from the viewpoint of being hardly affected by the environment and having a high fluorescence yield.
- Y 1 is not particularly limited as long as it is an aryl group or a heteroaryl group.
- the aryl group or heteroaryl group is a phenyl group, a naphthyl group, a furyl group because it is hardly affected by the environment and has a high fluorescence yield. It is preferably a group, thienyl group, pyridyl group, phenanthryl group or picenyl group. Among these, a phenyl group, a furyl group, or a thienyl group is particularly preferable.
- the fluorescence of the photophysical properties of Fenasen compounds i.e. fluorescence yield ([Phi f), fluorescence lifetime (tau f) and rate constants can be measured by a known measurement method.
- fluorescence yield can be measured by using an absolute PL photon yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.) as a sample in which the phenacene compound is dissolved in an organic solvent such as chloroform.
- the fluorescence lifetime and rate constant are obtained by measuring the fluorescence lifetime ( ⁇ f ) of the above compound in chloroform and acetonitrile using a small fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics Co., Ltd.). From the relationship between the obtained fluorescence quantum yield ( ⁇ f ) and the fluorescence lifetime ( ⁇ f ), the rate constant (k f ) in the emission process can be calculated.
- the maximum absorption wavelength in the phenacene compound is not particularly limited, but is preferably 280 nm to 600 nm from the viewpoint of usability as an organic EL.
- the maximum fluorescence wavelength is preferably set as appropriate, but is preferably from 300 nm to 500 nm from the viewpoint of being less affected by the environment and further enhancing the fluorescence yield.
- the method for producing a phenacene compound according to an embodiment of the present invention includes a carbonyl of a compound represented by the following general formula (3) (hereinafter also referred to as 1,2-diallylethene compound or acylated 1,2-diallylethene compound).
- a protecting step for protecting a group with a protecting agent, a photo-condensing step for forming a 6-membered ring newly condensed by a photo-condensation reaction of the compound obtained by the protecting step, and the photo-condensed ring A deprotection step of synthesizing a phenacene compound represented by the following general formula (4) by deprotecting the compound obtained by the step with a deprotecting agent.
- R 11 to R 22 each independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms or an acyl group having 1 to 12 carbon atoms, and at least one of R 11 to R 22 is Represents an acyl group having 1 to 12 carbon atoms.
- the R 21 and R 22, together with the carbon atom to which R 21 and R 22 are bonded, may form a fused ring bond to each other. Further, R 13 and R 14 may similarly form a condensed ring.
- the wavy line in the general formula (3) indicates that the compound represented by the general formula (3) has two isomers as in the following general formula (3a) and general formula (3b). Show.
- R 11 ⁇ R 22 in are each synonymous with R 11 ⁇ R 22 in the general formula (3).
- acyl group having 1 to 12 carbon atoms of R 11 ⁇ R 22 the other is a hydrogen atom, an alkyl group and having 1 to 12 carbon atoms of 6 or less carbon atoms
- Any number of acyl groups may be used, but among R 11 to R 22 , the number having an acyl group having 1 to 12 carbon atoms is preferably 4 or less, more preferably 2 or less, for ease of synthesis. It is preferable.
- the portion other than the carbonyl group of the acyl group having 1 to 12 carbon atoms that is, the substituent R 100 represented by —C ( ⁇ O) —R 100 is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, and an alkenyl group. A aralkyl group.
- the hydrogen of these substituents may be substituted with a halogen and a nitro group.
- the preferred carbon number and type as the acyl group having 1 to 12 carbon atoms are preferably 2 to 6 carbon atoms, and more preferably 2 carbon atoms, from the viewpoint of ease of synthesis operation.
- the R 100 of the acyl group include a methyl group, an ethyl group, n- propyl group, i- propyl, n- butyl, t- butyl group, n- pentyl group, n- hexyl, n- Octyl group, cyclopropyl group, cyclohexyl group, vinyl group, phenyl, benzyl group, phenethyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-nitrophenyl group, p-nitrophenyl group, etc. It is done.
- a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and a t-butyl group are preferable, and a methyl group is particularly preferable.
- the alkyl group having 6 or less carbon atoms may have a linear structure or a branched structure as long as it has 6 or less carbon atoms.
- Examples of the alkyl group having 6 or less carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-pentyl group and n-hexyl group. Of these, a methyl group and an ethyl group are particularly preferable.
- the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of said General formula (1).
- a method for producing a phenacene compound first, in the protection step, a compound having an acyl group on an aromatic ring and a 1,2-diallylethene compound which synthesizes a transannular structure is protected with a protecting agent is synthesized. To do. Next, in the photocondensation step, a new condensed ring is formed on the protected compound by a photocondensation reaction, and in the deprotection step, the protecting group is deprotected with a deprotecting agent, The method includes a step of synthesizing a phenacene precursor having an acyl group. Hereinafter, each step will be described.
- the acyl group of the compound represented by the general formula (3) is protected with a protecting agent.
- “protecting” means that the acyl group of the compound represented by the general formula (3) is converted into a group that can be deprotected by a deprotecting agent described later by a protecting agent.
- the protecting agent include diol compounds, dithiol compounds, and disilyl ether compounds. Among these, it is preferable to use a diol compound as a protective agent from the viewpoint of ease of synthesis operation and yield.
- diol compound examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,2-pentanediol, 2,4-pentanediol, 2,4-dimethyl-2,4-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,2-octanediol, 1,2-decane And diol and 1,2-dodecanediol.
- ethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferable.
- Protecting the carbonyl group in the acyl group with the above-described protecting agent can be performed by a known general method.
- the protecting agent is a diol or dithiol
- the protecting catalyst includes methanesulfonic acid, p-toluenesulfonic acid, sulfuric acid, phosphoric acid, trifluoroacetic acid, trichloroacetic acid, oxalic acid, boron trifluoride and It can be selected from the group consisting of these combinations, but is not limited thereto.
- the solvent used for the reaction examples include, but are not limited to, chloroform, dichloromethane, benzene, toluene, chlorobenzene, xylene, diethyl ether, and ethyl acetate.
- the conditions such as the temperature, time, the concentration of the substrate, the protective agent, the catalyst, etc. for the protection are appropriately adjusted depending on the type of the protective agent used.
- the method for preparing the acylated 1,2-diallylethene compound used in the protection step is not particularly limited, and it may be prepared by a known general synthesis method, or a commercially available one may be used.
- the acylated 1,2-diallylethene compound refers to a 1,2-diallylethene compound in which an acyl group is bonded to at least one of carbon forming an aromatic ring and carbon forming ethene.
- Examples of the preparation method by the synthesis method include a general Wittig reaction method and a right rice-Kosugi-styrene coupling method.
- a general Wittig reaction for example, a 1,2-diallylethene compound having an acyl group at a desired position can be obtained by reacting a bromobenzyltriallylphosphonium salt with acetylbenzaldehyde.
- a 1,2-diallylethene compound can also be obtained by a method using allene halide and trans-1,2-bis (tributylstannyl) ethene. Can do.
- the protected 1,2-diallylethene compound obtained in the above-described protection step is formed into a new condensed benzene ring by a photocondensation reaction in the presence of an oxidizing agent. Synthesize protected phenacene precursor compounds.
- the new condensed benzene ring is a compound obtained by protecting the 1,2-diallylethene compound obtained in the above-mentioned protection step, and the carbon at the 2- or 6-position of one allyl group to which the ethene group is bonded.
- Photocondensation reaction means that a 1,2-diallylethene compound is irradiated with light in the presence of an oxidant to form a new condensed benzene ring between the two benzene rings of the 1,2-diallylethene compound. Refers to a reaction.
- the type of light is not particularly limited as long as the phenacene precursor compound can be synthesized by the photocondensation reaction in this step, but for example, ultraviolet rays and visible rays are mentioned from the viewpoint of ease of the synthesis operation, and among them, ultraviolet rays are preferable. .
- the ultraviolet region is preferably 280 nm to 390 nm, more preferably 300 nm to 330 nm.
- the type of light source that generates ultraviolet rays is not particularly limited, and examples thereof include a mercury lamp and a metal halide lamp.
- the oxidizing agent include iodine, oxygen, and iron chloride. Among them, iodine is preferable because of easy synthesis operation.
- a "Malory photocyclization reaction” is mentioned preferably.
- the Mallory photocyclization reaction is performed, Yamaji et al. [Chem. Lett. (2014), 43, 994-996], the phenacene precursor compound can be efficiently synthesized.
- Conditions for the synthesis of a protected phenacene precursor compound using the flow reactor that is, the concentration of the raw material, the concentration of the oxidizing agent, the supply rate of the raw material, the type of solvent to be dissolved, the type and setting of the light source used It is preferable that the wavelength to be adjusted is appropriately adjusted with reference to the conditions described in the above document.
- the protecting group of the protected phenacene precursor compound obtained in the photocondensation step is deprotected with a deprotecting agent, so that the phenacene represented by the following general formula (4) is obtained.
- a precursor is synthesized.
- R 23 to R 32 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or an acyl group having 1 to 12 carbon atoms, and at least one of R 23 to R 32 is Represents an acyl group having 1 to 12 carbon atoms.
- the R 31 and R 32, together with the carbon atom to which R 31 and R 32 are bonded, may form a fused ring bond to each other.
- R 25 and R 26 may similarly form a condensed ring.
- the preferred range of the number of benzene rings in the case of forming the condensed ring is the same as the condensed ring of the general formula (1).
- the alkyl group and acyl group represented by R 23 to R 32 are synonymous with the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). This is the same as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). Further, the preferred number of the acyl groups among R 23 to R 32 is the same as that in the general formula (3).
- the deprotecting agent is appropriately selected according to the type of protecting group.
- examples of the deprotecting agent include chloral hydrate; potassium peroxymonosulfate; hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, and paratoluenesulfonic acid.
- chloral hydrate and potassium peroxymonosulfate are preferable from the viewpoint of ease of synthesis operation.
- the deprotection conditions are preferably adjusted as appropriate depending on the type of deprotecting agent.
- the protecting agent is ethylene glycol, 1, It is preferably at least one selected from 2-propanediol and 1,3-propanediol, and the deprotecting agent is chloral hydrate.
- 1-acetylphenanthrene is useful as a compound used for the synthesis of a ⁇ -diketone derivative described later, that is, a phenacene having an aryl-diketone group.
- the method for producing a phenacene compound preferably further includes a ⁇ -diketone derivative synthesis step.
- the phenacene precursor compound represented by the following general formula (5) is reacted with the carbonyl group-containing compound by reacting the acyl group of the phenacene precursor compound obtained in the deprotection step. This is advantageous since ( ⁇ -diketone derivatives) can be synthesized more efficiently.
- R 33 to R 42 are each independently a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a group represented by the following general formula (6), and at least one of R 33 to R 42 One represents a group represented by the following general formula (6).
- the R 41 and R 42, together with the carbon atom to which R 41 and R 42 are bonded, may form a fused ring bond to each other. Further, R 35 and R 36 may similarly form a condensed ring.
- the preferable range of the number of benzene rings in the case of forming the condensed ring in the general formula (5) is the same as the condensed ring of the general formula (1).
- alkyl group and acyl group represented by R 33 to R 42 have the same meanings as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). This is the same as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3).
- Y 1 represents an aryl group or a heteroaryl group.
- Y 1 in the general formula (6) has the same meaning as Y 1 in the general formula (2), and the types of preferable substituents are also the same.
- the carbonyl group-containing compound refers to a carbonyl compound having an aryl group, and a compound having a ⁇ diketone group is synthesized by reacting with the compound represented by the general formula (4). It is a compound that can be used.
- the carbonyl group-containing compound include an aldehyde having an aryl group, a ketone having an aryl group, and a carboxylic acid ester having an aryl group. Among these, carboxylic acid esters having an aryl group are preferable.
- R of the compound (Ar—C ( ⁇ O) —O—R) is not particularly limited, and is preferably adjusted as appropriate.
- the aryl group (Ar) has the same meaning as Y 1 in the general formula (2), is the same type of preferred substituents.
- the reaction used in the deprotection step is not particularly limited, but from the viewpoint of ease of synthesis operation, for example, the condensation reaction includes general aldol condensation reaction and Claisen condensation reaction. preferable. Methods for synthesizing ⁇ -diketone compounds using these condensation reactions are known, and it is preferable that the conditions for carrying out the reaction are appropriately adjusted.
- a ⁇ -diketone derivative represented by the following general formula (8) that is, a phenacene precursor compound in which the aryl moiety is a phenyl group, a furyl group, or a thienyl group can be synthesized.
- Y 2 represents a phenyl group, a furyl group, or a thienyl group.
- Z 1 represents zero or more condensed benzene rings.
- the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of the said General formula (1).
- the phenacene precursor compound represented by the general formula (8) is useful as a compound used for the synthesis of the phenacene compound represented by the general formula (1).
- R 43 to R 52 are each independently a hydrogen atom, an alkyl group having 6 or less carbon atoms or a group represented by the following general formula (2), and at least one of R 43 to R 52 One represents a group represented by the following general formula (2).
- the R 51 and R 52, together with the carbon atom to which R 51 and R 52 are bonded, may form a fused ring bond to each other.
- R 45 and R 46 may similarly form a condensed ring.
- the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of said General formula (1).
- the alkyl group represented by R 43 to R 52 has the same meaning as the alkyl group represented by R 11 to R 22 in the general formula (3), and the preferred carbon number and type are also those of the general formula (3). This is the same as the alkyl group represented by R 11 to R 22 .
- the number having a group represented by the following general formula (2) is appropriately adjusted, but is preferably 4 or less, and more preferably 2 or less, for ease of synthesis.
- * indicates a bonding position with the compound represented by the general formula (7).
- X represents a halogen group, and Y 1 represents an aryl group or a heteroaryl group.
- X is not particularly limited as long as it is a halogen group, but is preferably a fluorine group from the viewpoint of being hardly affected by the environment and having a high fluorescence yield.
- Y 1 is not particularly limited as long as it is an aryl group or a heteroaryl group.
- the aryl group or heteroaryl group is a phenyl group, a naphthyl group, a furyl group because it is hardly affected by the environment and has a high fluorescence yield. It is preferably a group, thienyl group, pyridyl group, phenanthryl group or picenyl group. Among these, a phenyl group, a furyl group, or a thienyl group is particularly preferable.
- the phenacene compound represented by the general formula (7) is obtained from the compound represented by the general formula (5) obtained by the ⁇ -diketone derivative synthesis step, for example, Sakai et al. [Tetrahedron Letters (2012), 53, 4138. -4141] as a reference.
- the phenacene compound and the phenacene compound obtained by the method for producing the phenacene compound are considered to have fastness because they are hardly affected by the environment, and have a high light emission yield, so that they can be applied to a wide range of fields. I can expect. Specifically, for example, application to a two-photon absorption material, a conjugated polymer material, a semiconductor material, a photochromic material, a near infrared detection device, an oxygen sensor, an organic light emitting element, and the like can be expected.
- an organic light emitting element it can be used as a charge transport layer of the organic light emitting element, a constituent material of the light emitting layer, preferably a constituent material of the light emitting layer. Thereby, it can be expected as a device having high luminous efficiency and robust against an external environment such as high voltage, oxygen, light, and moisture.
- the “%” of the yield is a ratio (mass basis) of the amount of the product actually obtained with respect to the case where the raw materials are theoretically converted into all desired products.
- ⁇ Preparation of phenacene compound ⁇ (Reagent and compound identification method) Commercially available reagents were used for the preparation of the phenacene compound. Further, the synthesized product was confirmed by thin layer chromatography and NMR measurement. Thin layer chromatography was confirmed with a UV detector using TLC silica gel 60F 254 (product number: 1.0571.0001) manufactured by Millipore. In the NMR measurement, ECS400 and ECS600 manufactured by JEOL Ltd. were used.
- a solution obtained by adding ethyl acetate to the product was washed twice with an aqueous ammonium chloride solution, then further washed twice with a saturated saline solution, and the washed solution was concentrated under reduced pressure.
- the concentrated solution was subjected to TLC using hexane: ethyl acetate (9: 1, v / v) as a developing solvent, and a new spot was confirmed around an Rf value of 0.32.
- the product was subjected to NMR measurement and the following results were obtained.
- Comparative compound 1 was prepared in the same manner as in the synthesis of A-1, except that 2-acetylphenanthrene manufactured by Aldrich was used instead of 1-acetylphenanthrene as a raw material.
- Comparative compound 2 was prepared in the same manner as in the synthesis of A-1, except that 9-acetylphenanthrene manufactured by Aldrich was used instead of 1-acetylphenanthrene as a raw material.
- Comparative compounds 3 to 5 having the following structures are known, and in the same manner as in the synthesis of compound A-1, except that commercially available acetylphenyl, 2-acetylnaphthalene and 2-acetylanthracene were used. 3-5 were prepared.
- the value of the fluorescence lifetime ( ⁇ f ) has a value inherent to the molecule, and the value of the rate constant (k f ) in the radiation process is a value obtained by dividing the fluorescence yield ( ⁇ f ) by the fluorescence lifetime ( ⁇ f ). is there.
- Table 1 shows the measurement results of the above physical properties for the solution in which each compound was dissolved. Further, in Table 1, the fluorescence yields ( ⁇ f ), fluorescence lifetimes ( ⁇ f ), and rate constants (k f ) in the emission process of the compounds A-1 to A-4 and the comparative compounds 1 and 2 in chloroform The difference between the values in acetonitrile and acetonitrile is shown in FIGS. 2A and 2B.
- the comparative example shows a low fluorescence yield compared to the examples in either solvent, or shows a low fluorescence yield in the other solvent even if the fluorescence yield is high in either solvent. It was. Also, referring to FIGS. 2A and 2B, when compared with the same phenanthrene compound, the phenanthene compound according to one embodiment of the present invention in which a boron fluoride-aryl-diketone group is bonded to the 1-position or 3-position of the phenanthrene.
- Comparative Compound 2 has a fluorescence yield close to that of Compounds A-1 to A-4, but was shown to have a slightly inferior fluorescence lifetime.
- any of the substituents of phenyl, furyl, and thiophene as the aryl group has a high fluorescence intensity regardless of the solvent. It has also been shown to have a rate.
- the phenacene compound according to one embodiment of the present invention is hardly affected by the environment and has a high fluorescence yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electroluminescent Light Sources (AREA)
- Fats And Perfumes (AREA)
Abstract
Description
また、高効率、高輝度かつ高耐久性である有機電子発光(以下、ELという)素子に用いられる化合物としては、蛍光発光基を有するフェナントレン誘導体が報告されている(例えば、特開2008-308467号公報参照)。
さらに、フェナントレンについては、1,2-ジアリルエテンを光縮環反応させることによって、効率的に合成できることが報告されている(例えば、Chem.Lett.2014,43,994-996(以下「文献2」ともいう)参照)。
<1>下記一般式(1)で表されるフェナセン化合物である。
<3>下記一般式(3)で表される化合物のカルボニル基を保護化剤よって保護する保護化工程と、前記保護化工程によって得られた化合物を、光縮環反応によって縮環したベンゼン環を形成する光縮環工程と、前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、を含むフェナセン化合物の製造方法である。
<5>前記脱保護材は、抱水クロラール、及びペルオキシ一硫酸カリウムから選ばれるいずれか1つである<3>又は<4>に記載のフェナセン化合物の製造方法である。
<6>更に、前記脱保護化工程によって得られた化合物とカルボニル基含有化合物とを反応させることにより下記一般式(5)で表されるβ-ジケトン誘導体を合成するβ-ジケトン誘導体合成工程を含む<3>~<5>のいずれか一つに記載のフェナセン化合物の製造方法である。
数値範囲を表す「~」はその上限及び下限の数値を含む範囲を表す。
また、本明細書中、ハロゲン化ボロン-アリール-ジケトン基を有するフェナセン化合物を製造するために用いられる化合物、例えば、アリール-ジケトン基を有するフェナセン化合物(β-ジケトン誘導体とも称する)やアシル基を有するフェナセン化合物を、総称してフェナセン前駆体化合物と称することもある。また、本明細書中において、「ボロン-アリール-ジケトン錯体」、「ハロゲン化ボロン-アリール-ジケトン基」及び「アリール-ジケトン基」のアリールには、アリール基だけでなくヘテロアリール基を含むものとする。
また、本明細書中、「蛍光収率」は、蛍光量子収率と同じ意味である。
本発明の一実施形態に係るフェナセン化合物は、下記一般式(1)で表される。
加えて、理由は不明であるが、前記フェナセン化合物においては、ハロゲン化ボロン-アリール-ジケトン基をフェナセンの特定の位置に配置することで、外部からの環境に影響されにくくかつ高い蛍光収率を有するようになる。
非極性溶剤としては、クロロホルム、ジエチルエーテル、ジクロロメタン、ヘキサン及びトルエン等を挙げることができ、極性溶剤としては、アセトニトリル、酢酸エチル、テトラヒドロフラン(THF)、炭素数1~4のアルコール、ジメチルホルムアミド(DMF)及びジメチルスルホオキシド(DMSO)が挙げられる。
蛍光寿命及び速度定数は、小型蛍光寿命測定装置(C11367-01、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物の蛍光寿命(τf)を測定し、上記で得られた蛍光量子収率(Φf)と蛍光寿命(τf)との関係から、放射過程における速度定数(kf)を算出することができる。
本発明の一実施形態に係るフェナセン化合物の製造方法は、下記一般式(3)表される化合物(以下、1,2-ジアリルエテン化合物又はアシル化された1,2-ジアリルエテン化合物ともいう)のカルボニル基を保護化剤よって保護する保護化工程と、前記保護化工程によって得られた化合物を、光縮環反応によって新たに縮環した6員環を形成する光縮環工程と、前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、を含む。
また、一般式(3)中の波線は、一般式(3)で表される化合物には、下記一般式(3a)及び一般式(3b)のように、2つの異性体が存在することを示す。
なお、一般式(3a)及び一般式(3b)中のR11~R22は、それぞれ一般式(3)中のR11~R22と同義である。
炭素数1~12のアシル基としての好ましい炭素数及び種類は、合成操作の容易さから、炭素数2~6が好ましく、さらに炭素数2が特に好ましい。
また、一般式(3)中の縮環について、縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記の一般式(1)の縮環と同様である。
保護化工程では、前記一般式(3)で表される化合物のアシル基を、保護化剤によって、保護する。ここで、保護するとは、前記一般式(3)で表される化合物のアシル基を、保護化剤によって、後述する脱保護化剤によって脱保護が可能な基に変換することを意味する。保護化剤としては、ジオール化合物、ジチオール化合物及びジシリルエーテル化合物が挙げられる。これらの中でも、合成操作の容易さ及び収率の優位さから、ジオール化合物を保護化剤として用いることが好ましい。ジオール化合物としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、2,4-ペンタンジオール、2,4-ジメチル-2,4-ペンタンジオール、1,2-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,2-オクタンジオール、1,2-デカンジオール及び1,2-ドデカンジオール等が挙げられる。これらの中でもエチレングリコール、1,2-プロパンジオール及び1,3-プロパンジオールがさらに好ましい。
また、前記保護化工程において、保護化を行う温度、時間、基質、保護化剤あるいは触媒等の濃度といった条件は、用いる保護化剤の種類によって、適宜、調整されることが好ましい。
前記保護化工程に用いるアシル化した1,2-ジアリルエテン化合物の調製方法は特に限定されず、公知の一般的な合成方法によって調製してもよいし、市販のものを用いてもよい。ここで、アシル化した1,2-ジアリルエテン化合物とは、アシル基が芳香環を形成する炭素及びエテンを形成する炭素の少なくともいずれかに結合した1,2-ジアリルエテン化合物のことをさす。
光縮環工程では、上記の保護化工程で得られた、保護化された1,2-ジアリルエテン化合物を、酸化剤存在下、光縮環反応によって新たな縮環したベンゼン環を形成させることで、保護化されたフェナセン前駆体化合物を合成する。新たな縮環したベンゼン環とは、前記保護化工程で得られた1,2-ジアリルエテン化合物を保護化した化合物においては、エテン基が結合する一方のアリル基の2位又は6位の炭素と、他方のエテン基が結合するアリル基の2位又は6位の炭素との結合によって形成されるベンゼン環をいう。
光縮環反応とは、酸化剤存在下、1,2-ジアリルエテン化合物に光を照射することで、1,2-ジアリルエテン化合物の2つのベンゼン環の間に新たな縮環したベンゼン環を形成する反応をいう。
紫外線を発生させる光源の種類は特に限定されないが、例えば、水銀ランプやメタルハライドランプなどが挙げられる。
酸化剤としては、ヨウ素、酸素及び塩化鉄が挙げられ、中でも合成操作の容易さからヨウ素が好ましい。
光縮環工程に用いる光縮環反応としては特に限定されないが、合成操作の容易さの観点から、「マロリー光環化反応」が好ましく挙げられる。また、前記マロリー光環化反応を行う場合には、山路らの文献[Chem.Lett.(2014),43,994-996]に記載されたフローリアクターを用いることで、効率よく前記フェナセン前駆体化合物を合成することができる。
脱保護化工程では、前記光縮環工程で得られた保護化されたフェナセン前駆体化合物の保護基を、脱保護化剤によって脱保護することにより、下記一般式(4)で表されるフェナセン前駆体を合成する。
以上の工程によって、例えば、以下の式(1-1)で表される化合物、すなわち1-アセチルフェナントレンが合成できる。
前記フェナセン化合物の製造方法においては、更にβ-ジケトン誘導体合成工程を有していることが好ましい。β-ジケトン誘導体合成工程では、前記脱保護化工程によって得られたフェナセン前駆体化合物のアシル基を、カルボニル基含有化合物と反応させることにより、下記一般式(5)で表されるフェナセン前駆体化合物(β-ジケトン誘導体)をより効率的に合成することができるので有利である。
前記フェナセン化合物の製造方法においては、更に錯体形成工程を有していることが好ましい。錯体形成工程では、前記β-ジケトン誘導体合成工程によって得られた一般式(5)で表される化合物とハロゲン化ほう素とを反応させることにより、下記一般式(7)で表される錯体をより効率的に合成することができるので有利である。
前記フェナセン化合物及び前記フェナセン化合物の製造方法によって得られたフェナセン化合物は、環境に影響されにくいために堅牢性を有するものと考えられ、かつ高い発光収率を有することから、広い分野への応用が期待できる。具体的には、例えば、二光子吸収材料、共役ポリマー材料、半導体材料、フォトクロミック材料、近赤外検出デバイス、酸素センサー及び有機発光素子等への応用が期待できる。有機発光素子としては、有機発光素子の電荷輸送層、発光層の構成材料、好ましくは発光層の構成材料として用いることができる。これにより、高い発光効率を有し、かつ高電圧、酸素、光、水分等の外部環境に対して堅牢なデバイスとして期待できる。
≪フェナセン化合物の調製≫
(試薬及び化合物の同定方法)
フェナセン化合物の調製に試薬は、すべて市販のものを用いた。また、合成した生成物については、薄層クロマトグラフィー及びNMR測定によって確認した。薄層クロマトグラフィーはミリポア社製のTLCシリカゲル60F254(製品番号:1.05715.0001)を用いUV検出器にて確認した。NMR測定においては日本電子社製のECS400およびECS600を用いた。
光縮環工程に用いる光反応装置は、上記非特許文献2に記載の反応装置(すなわち、マイクロリアクター)を用いた。条件を以下に示す。
<条件>
光源:中圧水銀(Hg)燈
波長:314nm
流速:1ml/min~3ml/min
温度:20℃
溶媒:シクロヘキサン
フッ化ボロン-アリル-ジケトン基を有するフェナセン化合物(化合物A-1)の合成スキームにおける一例の概略を下記に示す。
α-ブロモベンジルトリアリルホスホニウム塩2.5g(5.77mmol)、2-アセチルベンズアルデヒド780mg(5.25 mmol)を、クロロホルム60mlに加え、撹拌しながら50質量%のKOH水溶液を30ml滴下した。窒素雰囲気下、室温で1.5 時間反応させクロロホルムで抽出し、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1、v/v)を展開溶媒として用いたTLCでRf値0.37付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、913mgの化合物1が収率76%で得られた。
1.3gの化合物1(5.85mmol)、エチレングリコール1当量以上、p-トルエンスルホン酸0.77g(4.0mmol)、をベンゼン200mlに加え、ディーン・スターク装置を用いて85℃で48時間還流した。水と飽和食塩水で1回ずつ洗浄して溶媒を留去した。ヘキサン:酢酸エチル(3:1、v/v)を展開溶媒として用いたTLCで、Rf値0.45付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、1.42gの化合物2が収率91%で得られた。
600mgの化合物2(2.26mmol)を1000mlのシクロヘキサンに溶解させ、ヨウ素(I2)を2,3粒加えて、マイクロリアクターに投入し、上記の条件にて反応させた。反応終了後に得られた反応混合物を、チオ硫酸ナトリウム水溶液で2回、飽和食塩水で2回洗浄し溶媒を留去した。ヘキサン:酢酸エチル(9:1、v/v)を用いたTLCでRf=0.32付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、500mgの生成物が得られた。NMR測定によって得られた下記の結果により、化合物3が収率83%で得られたことを確認した。
1H-NMR (CDCl3, 400 MHz) δH:8.75-8.71 (m, 3H), 8.01 (d, 1H, J = 7.33), 7.95-7.92 (m, 1H), 7.85 (d, 1H, J = 9.39), 7.69-7.63 (m, 3H), 4.14-4.13 (m,2H), 3.85-3.83 (m, 2H),2.04 (s, 3H).
1.0gの化合物3(3.78mmol)及びCl3CCH(OH2)(抱水クロラール)3.8g(22.7mmol)をn-ヘキサン6ml、ジクロロメタン0.5mlの混合溶媒に加え、窒素雰囲気下、室温で2時間反応させた。ジクロロメタンで抽出し、有機層を水で2回、飽和食塩水で2回洗浄し、さらに溶媒を除去することで600mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, CDCl3) δH:8.88 (brd, 1H, J = 8.5 Hz), 8.69 (d, 1H, J = 8.1 Hz), 8.51 (d, 1H, J = 9.2 Hz), 7.96 (d, 1H, J = 7.5 Hz), 7.91 (d, 1H, J = 7.7 Hz), 7.86 (d, 2H, J = 9.2 Hz), 7.71-7.66 (m, 2H), 7.64 (ddd, 1H, 8.1, 7.5, 1.0 Hz).
13C-NMR (150 MHz, CDCl3) δC:202.9, 137.1, 131.8, 131.2, 130.1, 129.6, 129.1, 128.7, 128.0, 127.3, 127.0, 126.7, 125.3, 123.8, 122.9, 30.6.
以上の測定結果によって、化合物4である1-アセチルフェナントレン(1-AcPhe)が収率72%で得られたことを確認した。
550mgの1-AcPhe(2.5 mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で5分間撹拌した。反応溶液に安息香酸メチル0.40ml(3.0mmol)を加えて5時間還流した。その後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCでRf値0.33付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、390mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, CDCl3) δH:16.80 (brs, 1H), 8.85 (d, 1H, J = 8.3 Hz), 8.71 (d, 1H, J = 8.3 Hz), 8.38 (d, 1H, J = 9.1 Hz), 7.99 (d, 2H, J = 7.6 Hz), 7.91 (d, 1H, J = 7.3 Hz), 7.88 (d, 1H, J = 7.3 Hz), 7.83 (d, 1H, J = 9.1 Hz), 7.72-7.66 (two triplets overlapped, 2H), 7.63 (t, 1H, J = 7.3 Hz), 7.56 (t, 1H, J = 7.6 Hz), 7.48 (t, 2H, J = 7.6 Hz), 6.72 (s, 1H).
13C-NMR (150 MHz, CDCl3) δC:191.0, 184.6, 136.0, 135.1, 132.8, 131.9, 131.0, 130.2, 129.2, 128.9, 128.7, 128.4, 127.4, 127.2, 127.1, 125.9, 125.8, 123.8, 123.0, 98.8.
以上の測定結果によって、フェナントレンの1位にフェニル-ジケトン基を有するフェナセン前駆体化合物(化合物5)が収率48%で得られたことを確認した。
240mgの化合物5(0.74mmol)、BF3/Et2O(三フッ化ホウ素ジエチルエーテル錯体)0.3ml(2.2mmol)をベンゼン7mlに加え、1時間還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1、v/v)を展開溶媒として用いたTLCでRf値0.20付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、130mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, CDCl3) δH:8.97 (d, 1H, J = 8.4 Hz), 8.70 (d, 1H, J = 8.2 Hz), 8.38 (d, 1H, J = 9.3 Hz), 8.17 (m, 2H), 8.04 (dd, 1H, J = 7.3, 1.0 Hz), 7.95 (dd, 1H, J = 7.8, 1.0 Hz), 7.91 (d, 1H, J = 9.3 Hz), 7.77-7.68 (m, 4H), 7.57 (m, 2H), 7.11 (s, 1H).
13C-NMR (150 MHz, CDCl3) δC:187.8, 183.3, 135.7, 132.0, 131.8, 131.4, 130.0, 129.9, 129.8, 129.4, 129.34, 129.29, 128.9, 128.6, 127.7, 127.5, 125.7, 123.04, 122.95, 99.0.
以上の測定結果によって、化合物A-1が収率47%で得られたことを確認した。
<3-フェニル-ジケトンを有するフェナントレン(3-PheDKPh)の合成>
原料である3-アセチルフェナントレン(アルドリッチ社製)507mg(2.3mmol)及び水素化ナトリウム(NaH)700mg(29 mmol)を脱水したTHF20mlに加え、室温で5分間撹拌した。その後安息香酸メチル0.34ml(2.5mmol)を加えて5時間、撹拌しながら、66℃で還流した後、塩化アンモニウム水溶液100mlを滴下した。生成物に酢酸エチルを加えた溶液を、塩化アンモニウム水溶液で2回洗浄した後、飽和食塩水でさらに2回洗浄し、洗浄後の溶液を減圧濃縮した。濃縮した溶液について、ヘキサン:酢酸エチル(9:1、v/v)を展開溶媒として用いたTLCを行い、Rf値0.32付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、444mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H NMR (600 MHz, CDCl3) δH:17.1 (s, 1H), 8.83 (d, 2H J = 8.3 Hz), 8.13 (dd, 1H, J= 8.2, 1.5 Hz), 8.08-8.05 (m, 2H), 7.97 (d, 1H, J = 8.2 Hz), 7.93 (brd, 1H, J = 7.9 Hz), 7.85 (d, 2H, J = 8.7 Hz), 7.78 (d, 2H, J = 8.7 Hz), 7.74 (ddd, 1H, J = 8.3, 7.1, 1.3 Hz), 7.65 (ddd, 1H, J = 7.9, 7.1, 1.3 Hz), 7.61-7.56 (m, 1H), 7.57-7.51 (m, 2H), 7.07 (s, 1H).
13C NMR (150 MHz, CDCl3) δC:186.0, 185.8, 135.8, 134.8, 133.4, 132.7, 132.4, 130.7, 130.2, 129.6, 129.1, 129.0, 128.9 (overlapped), 127.40, 127.35, 126.5, 124.5, 123.0, 122.7, 93.7.
以上の測定結果によって、フェナントレンの3位にフェニル-ジケトン基を有するフェナセン前駆体化合物(3-PheDKPh)が収率60%で得られたことを確認した。
324mgの3-PheDKPh(1.0 mmol)、0.41mlのBF3/Et2O(3.0mmol)をベンゼン10mlに加え、1時間還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCでRf値0.26付近に、反応後の溶液に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、180mgの生成物が得られた。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, DMSO-d6) δH:9.80 (d, 1H, J = 1.2 Hz), 9.21 (d, 1H, J = 8.3 Hz), 8.51-8.48 (m, 3H). 8.30 (s, 1H), 8.25 (d, 1H, J = 8.5 Hz), 8.12 (d, 1H, J = 8.5 Hz), 8.10 (d, 1H, J = 8.7 Hz), 8.00 (d, 1H, J = 7.7 Hz), 7.90-7.84 (two trip-lets overlapped, 2H), 7.78 (t, 1H, J = 7.7 Hz), 7.34, t, 2H, J = 7.7 Hz).
13C-NMR (150 MHz, DMSO-d6) δC:182.5, 182.3, 136.3, 135.9, 131.9, 131.5, 131.4, 130.0, 129.8, 129.6, 129.50, 129.47, 129.27, 129.0, 127.9, 126.3, 125.9, 125.5, 123.7, 95.0.
以上の測定結果によって、化合物A-2が収率48%で得られたことを確認した。
<3-PheDKFの合成>
3-アセチルフェナントレン 500 mg(2.3 mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で5min撹拌した。反応溶液にメチル-2-フロエート0.40ml(3.9mmol)を加えて5時間、66℃で還流した後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、抽出した有機層を塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して有機層を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCで、Rf値0.20付近に新たなスポットが確認された。これをシリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、358mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, CDCl3) δH:16.40(brs, 1H), 9.31 (s, 1H), 8.79 (d, 1H, J = 8.3 Hz), 8.08 (dd, 1H, J = 8.3, 1.6 Hz), 7.92 (d, 1H, J = 8.4), 7.90 (d, 1H, J = 7.8 Hz), 7.82 (d, 1H, J = 7.8 Hz), 7.75-7.70 (m, 2H), 7.68-7.62 (m, 2H), 7.30 (d, 1H, J = 3.4 Hz), 6.95 (s, 1H), 6.95(s, 2H).
13C-NMR (150 MHz, CDCl3) δC:182.5.0, 177.7, 151.2, 146.3, 134.7, 132.4, 132.3, 130.6, 130.1, 129.5, 129.0, 128.9, 127.32, 127.28, 126.4, 124.3, 122.9, 122.4,116.0, 122.9, 93.2.
以上の測定結果によって、フェナントレンの3位にフリル-ジケトン基を有するフェナセン前駆体化合物(3-PheDKF)が収率50%で得られたことを確認した。
3-PheDKF300mg(0.95mmol)、BF3/Et2O(三フッ化ホウ素ジエチルエーテル錯体)0.3ml(2.2mmol)をベンゼン6mlに加え、1時間、80℃で還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCで、Rf値0.11付近に新たなスポットが観測された。析出した固体の溶媒を除去することで、320mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, DMSO-d6) δH:9.69 (bs, 1H), 9.15 (d, 1H, J = 8.4 Hz), 8.44 (m, 1H), 8.41 (dd, 1H, J = 8.3, 1.3 Hz), 8.28 (d, 1H, J = 3.6 Hz), 8.24 (d, 1H, J = 8.5 Hz), 8.10 (two doublets, 2H), 8.00 (two doublets, 2H), 7.85 (ddd, J = 8.4, 7.2, 1.1 Hz), 7.77 (t, 1H, J = 7.6 Hz), 7.06 (dd, 1H, 3.6, 1.5 Hz).
13C-NMR (150 MHz, DMSO-d6) δC:180.7, 170.8, 152.5, 147.3, 136.0, 131.9, 131.2, 129.9, 129.8, 129.6, 129.3, 129.0, 127.90, 127.88, 126.3, 125.24, 125.18, 124.9, 123.6, 115.1, 93.9.
以上の測定結果によって、化合物A-3が収率92%で得られたことを確認した。
〈3-PheDKTの合成〉
3-アセチルフェナントレン500mg(2.3mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で15min撹拌した。反応溶液にメチル-2-チオフェンカルボキシレート0.35ml(3.0mmol)を加えて3時間、66℃で還流した。その後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、抽出した有機層を塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCで、Rf値0.24付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、426mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, CDCl3) δH:16.54(brs, 1H), 9.27 (s, 1H), 8.02 (dd, 1H, J = 8.5, 1.2 Hz), 7.92-786 (m, 2H), 7.86 (dd, 1H, J = 3.7, 0.8 Hz), 7.81 (d, 1H, J = 8.7 Hz), 7.74-7.69 (m, 3H), 7.66-7.61 (m, 2H), 7.19 (dd, 1H, J = 4.9, 3.8 Hz), 6.84 (s, 1H).
13C-NMR (150 MHz, CDCl3) δC:183.1, 180.7, 142.5, 134.6, 132.8, 132.3, 132.1, 130.5, 130.1, 129.4, 129.0, 128.9, 128.4, 127.30, 127.27, 126.4, 124.1, 122.9, 122.2, 93.6.
以上の測定結果によって、フェナントレンの3位にチオフェン-ジケトン基を有するフェナセン前駆体化合物(3-PheDKT)が収率56%で得られたことを確認した。
3-PheDKT376mg(1.14mmol)、BF3/Et2O(三フッ化ホウ素ジエチルエーテル錯体)0.4 ml(3.0mmol)をベンゼン10mlに加え、1時間、80℃で還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCで、Rf値0.13付近に新たなスポットが観測された。析出した固体から溶媒を除去することで、309mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
1H-NMR (600 MHz, DMSO-d6) δH:9.71 (bs, 1H), 9.16 (d, 1H, J = 8.3 Hz), 8.86 (d, 1H, J = 4.1 Hz), 8.46 (dd, 1H, J = 4.8, 1.2 Hz), 8.44 (dd, 1H, J = 8.5, 1.2 Hz), 8.25 (d, 1H, J = 8.5 Hz), 8.19 (s, 1H), 8.11 (two doublets, 2H), 8.00 (d, J = 7.8 Hz), 7.86 (t, 1H, J = 7.6 Hz), 7.77 (t, 1H, 7.3 Hz), 7.56 (dd, 1H, J = 4.8, 4.1 Hz).
13C-NMR (150 MHz, DMSO-d6) δC:180.7, 170.8, 152.5, 147.3, 136.0, 131.9, 131.1, 129.9, 129.8, 129.6, 129.3, 129.0, 127.89, 127.88, 126.3, 125.24, 125.18, 124.9, 123.6, 115.1, 93.9.
以上の測定結果によって、化合物A-4が収率72%で得られたことを確認した。
上記A-1の合成において、原料である1-アセチルフェナントレンの代わりにアルドリッチ社製の2-アセチルフェナントレンを用いた以外は同様にして、比較化合物1を調製した。
上記A-1の合成において、原料である1-アセチルフェナントレンの代わりにアルドリッチ社製の9-アセチルフェナントレンを用いた以外は同様にして、比較化合物2を調製した。
上記にて調製したフェナセン化合物(A-1~A-4、比較化合物1及び2)並びにアセン化合物(比較化合物3~5)それぞれを含む各溶液(クロロホルム及びアセトニトリル)に対する蛍光の光物理特性(蛍光収率、蛍光寿命及び速度定数)を測定した。なお、表1にあるように、上記のそれぞれの化合物を含む溶液を、実施例1~4、比較例1~5とした。
<各物性の測定方法>
(蛍光収率の測定)
紫外可視分光光度計(V-550、日本分光(株)製)を用いて吸収スペクトル及び最大吸収波長(λabs/nm)を測定した。絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物のモル吸光定数、最大蛍光波長及び蛍光収率(Φf)を測定した。結果を図1に示す。図1中、各化合物における吸収スペクトルを実線で示し、蛍光スペクトルを破線で示す。
小型蛍光寿命測定装置(C11367-01、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物の蛍光寿命(τf)を測定し、上記で得られた蛍光収率(Φf)と蛍光寿命(τf)との関係から、放射過程における速度定数(kf)を算出した。蛍光収率、すなわち蛍光量子収率(Φf)とは、物質が吸収した光子のうち、蛍光として放出される光子の割合を表す。このため、蛍光収率が高いほど発光効率が良いことを示す。
また、蛍光寿命(τf)の値は分子固有の値を有し、放射過程における速度定数の値(kf)は蛍光収率(Φf)を蛍光寿命(τf)で除した値である。
また、表1中の、化合物A-1~A-4、比較化合物1及び2の蛍光収率(Φf)、蛍光寿命(τf)、及び放射過程における速度定数(kf)におけるクロロホルム中とアセトニトリル中での値の違いを、図2A及び図2Bに示す。
また、図2A及び図2Bを参照すると、同じフェナントレン化合物で比較した場合には、フェナントレンの1位又は3位にフッ化ボロン-アリール-ジケトン基が結合した本発明の一実施形態に係るフェナセン化合物が溶媒の違いによらずに、他の位置にフッ化ボロン-アリール-ジケトン基が結合したフェナセン化合物より高い蛍光収率を有することが示された。一方、比較化合物2は、化合物A-1~A-4に近い蛍光収率を有するものの、蛍光寿命がやや劣ることが示された。
また、図2Bの結果から、フッ化ボロン-アリール-ジケトン基が結合したフェナセン化合物のうち、アリール基としてフェニル、フリル及びチオフェンのいずれの置換基でも、溶媒の違いによらずに、高い蛍光収率を有することも示された。
このように、本発明の一実施形態に係るフェナセン化合物は、環境に影響されにくく、かつ高い蛍光収率を有することが示された。
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (10)
- 前記一般式(1)中、R5が前記一般式(2)で表される基である請求項1に記載のフェナセン化合物。
- 下記一般式(3)で表される化合物のカルボニル基を保護化剤よって保護する保護化工程と、
前記保護化工程によって得られた化合物を、光縮環反応によって縮環したベンゼン環を形成する光縮環工程と、
前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、
を含むフェナセン化合物の製造方法。
(一般式(3)中、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、及びR22は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、及びR22の少なくとも1つは、炭素数1~12のアシル基を表す。R21とR22とは、R21及びR22が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
(一般式(4)中、R23、R24、R25、R26、R27、R28、R29、R30、R31及びR32は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R23、R24、R25、R26、R27、R28、R29、R30、R31及びR32の少なくとも1つは、炭素数1~12のアシル基を表す。R31とR32とは、R31及びR32が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。) - 前記保護化剤は、ジオール化合物である請求項3に記載のフェナセン化合物の製造方法。
- 前記脱保護化剤は、抱水クロラール及びペルオキシ一硫酸カリウムから選ばれるいずれか1つである請求項3又は請求項4に記載のフェナセン化合物の製造方法。
- 更に、前記脱保護化工程によって得られた化合物とカルボニル基含有化合物とを反応させることにより下記一般式(5)で表されるβ-ジケトン誘導体を合成するβ-ジケトン誘導体合成工程を含む請求項3~請求項5のいずれか一項に記載のフェナセン化合物の製造方法。
(一般式(5)中、R33、R34、R35、R36、R37、R38、R39、R40、R41及びR42は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(6)で表される基であり、R33、R34、R35、R36、R37、R38、R39、R40、R41及びR42の少なくとも1つは、下記一般式(6)で表される基を表す。R41とR42とは、R41及びR42が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
(一般式(6)中、*は前記一般式(5)で表される化合物との結合位置を示す。Y1はアリール基又はヘテロアリール基を表す。) - 更に、前記β-ジケトン誘導体合成工程によって得られた化合物とハロゲン化ほう素とを反応させることにより、下記一般式(7)で表される錯体を形成する錯体形成工程を含む請求項6に記載のフェナセン化合物の製造方法。
(一般式(7)中、R43、R44、R45、R46、R47、R48、R49、R50、R51及びR52は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(2)で表される基であり、R43、R44、R45、R46、R47、R48、R49、R50、R51及びR52の少なくとも1つは、下記一般式(2)で表される基を表す。R51とR52とは、R51及びR52が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
(一般式(2)中、*は前記一般式(7)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Y1はアリール基又はヘテロアリール基を表す。) - 請求項1又は請求項2に記載のフェナセン化合物を含む有機発光素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187013574A KR102110059B1 (ko) | 2015-10-16 | 2016-10-13 | 페나센 화합물, 페나센 화합물의 제조 방법 및 유기 발광 소자 |
JP2017545458A JP6811487B2 (ja) | 2015-10-16 | 2016-10-13 | フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 |
CN201680060326.0A CN108137619B (zh) | 2015-10-16 | 2016-10-13 | 菲烯化合物、菲烯化合物的制造方法以及有机发光元件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015205045 | 2015-10-16 | ||
JP2015-205045 | 2015-10-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017065219A1 true WO2017065219A1 (ja) | 2017-04-20 |
Family
ID=58517290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/080392 WO2017065219A1 (ja) | 2015-10-16 | 2016-10-13 | フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6811487B2 (ja) |
KR (1) | KR102110059B1 (ja) |
CN (1) | CN108137619B (ja) |
WO (1) | WO2017065219A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61176537A (ja) * | 1985-02-01 | 1986-08-08 | Mitsubishi Chem Ind Ltd | 芳香族化合物のアシル化方法 |
JP2015178474A (ja) * | 2014-03-19 | 2015-10-08 | 国立大学法人群馬大学 | カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法 |
-
2016
- 2016-10-13 WO PCT/JP2016/080392 patent/WO2017065219A1/ja active Application Filing
- 2016-10-13 JP JP2017545458A patent/JP6811487B2/ja active Active
- 2016-10-13 KR KR1020187013574A patent/KR102110059B1/ko active IP Right Grant
- 2016-10-13 CN CN201680060326.0A patent/CN108137619B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61176537A (ja) * | 1985-02-01 | 1986-08-08 | Mitsubishi Chem Ind Ltd | 芳香族化合物のアシル化方法 |
JP2015178474A (ja) * | 2014-03-19 | 2015-10-08 | 国立大学法人群馬大学 | カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法 |
Non-Patent Citations (10)
Title |
---|
ADAMS J. CHRISTOPHER ET AL.: "Friedel-crafts reactions in room temperature ionic liquids", CHEMICAL COMMUNICATIONS, 1998, pages 2097 - 2098, XP002172928 * |
BACHMANN W. E. ET AL.: "Phenanthrene derivatives. V. Beckmann rearrangement of the oximes of acetylphenanthrenes and benzoylphenanthrenes", JOURNAL OF THE AMERICA CHEMSICAL SOCIETY, vol. 58, 1936, pages 2097 - 2101 * |
BACHMANN W. E. ET AL.: "The preparation of phenanthryl amines and phenanthryl halides", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 58, May 1936 (1936-05-01), pages 857 - 858, XP055378196 * |
BALO C. ET AL.: "1H NMR spectra of monosubstituted phenanthrenes", SPECTROCHIMICA ACTA, vol. 50 A, no. 5, 1994, pages 937 - 940, XP055378189 * |
BUU-HOÏ N. P. ET AL.: "Les réactions de friedel-crafts d'acylation des hydrocarbures aromatiques polycycliques. II. Effets de solvant dans l'acétylation du phénanthrène", BULLETIN DE LA SOCIÉTÉ CHIMIQUE DE FRANCE, 1966, pages 180 - 184 * |
CHANDRASEKHAR SOSALE ET AL.: "Chloral hydrate as a water carrier for the efficient deprotection of acetals, dithioacetals, and tetrahydropyranyl ethers in organic solvents", SYNTHETIC COMMUNICATIONS, vol. 44, no. 13, 2014, pages 1904 - 1913, XP055378197 * |
FU WAI CHUNG ET AL.: "Exploiting aryl mesylates and tosylates in catalytic mono-alpha-arylation of aryl- and heteroarylketones", ORGANIC LETTERS, vol. 18, no. 8, 15 April 2016 (2016-04-15), pages 1872 - 1875, XP055378200 * |
JIANG XUEZHONG ET AL.: "Efficient emission from a europium complex containing dendron- substituted diketone ligands", THIN SOLID FILMS, vol. 416, no. 1-2, 2 September 2002 (2002-09-02), pages 212 - 217, XP004389755 * |
LEVY LIRON ET AL.: "Reversible Friedel-crafts acylations of phenanthrene: rearrangements of acetylphenanthrenes", LETTERS IN ORGANIC CHEMISTRY, vol. 4, no. 5, 2007, pages 314 - 318 * |
OTA E.: "Some aromatic reactions using aluminum chloride-rich molten salts", PROCEEDINGS- ELECTROCHEMICAL SOCIETY, vol. 87, no. 7, 1987, pages 1002 - 1010 * |
Also Published As
Publication number | Publication date |
---|---|
CN108137619B (zh) | 2021-04-20 |
JPWO2017065219A1 (ja) | 2018-08-02 |
KR20180069029A (ko) | 2018-06-22 |
KR102110059B1 (ko) | 2020-05-12 |
CN108137619A (zh) | 2018-06-08 |
JP6811487B2 (ja) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170069855A1 (en) | Chiral metal complexes as emitters for organic polarized electroluminescent devices | |
JP6675758B2 (ja) | ホスファフルオレセイン化合物若しくはその塩、又はそれを用いた蛍光色素 | |
JP2022045366A (ja) | インダンジオン骨格を有する希土類錯体 | |
JP2019214584A (ja) | ハロゲン化化合物およびフラーレン誘導体の製造方法 | |
JP5803025B2 (ja) | フォトクロミック分子 | |
JP7222517B2 (ja) | 新規化合物及びその製造方法 | |
WO2017065219A1 (ja) | フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 | |
JP6249210B2 (ja) | 有機蛍光材料 | |
JP6598573B2 (ja) | 新規なベンゾインデノフルオレノピラン類及びその製造方法 | |
JP6869524B2 (ja) | アミノベンゾピラノキサンテン系(abpx)色素化合物の製造方法 | |
JP2015178474A (ja) | カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法 | |
WO2015199141A1 (ja) | 発光性・半導体性能を発現するクマリン系縮環化合物およびその製造方法 | |
JP2012176928A (ja) | ピレン誘導体、ピレン誘導体の製造方法、錯体、触媒、電子材料、発光材料および色素 | |
KR101478884B1 (ko) | 비스인돌일말레이미드계 화합물 및 이의 제조방법 | |
JP5408822B2 (ja) | 5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体及びその製造方法 | |
JP5521210B2 (ja) | トリアリールアミン部位及び縮合環部位を有する化合物、及びその製造方法 | |
JP6682115B2 (ja) | フルオレン化合物、フルオレン化合物の製造方法及び有機発光素子 | |
US11866393B2 (en) | 7,7′-dihalo-3,3,3′,3′-tetramethyl-1,1′-spirobiindane and preparation method thereof | |
JP6516272B2 (ja) | カーボンナノベルト及びその製造方法 | |
JP2008106037A (ja) | インドール化合物の製造方法およびインドール化合物 | |
CN118005601A (zh) | 一种具有聚集诱导发光性能的化合物及其制备方法 | |
EP3822277A1 (en) | Rare-earth complex, light-emitting material, light-emitting object, light-emitting device, interlayer for laminated glass, laminated glass, windshield for vehicle, wavelength conversion material, and security material | |
KR101511235B1 (ko) | 2,6-다이아미노-9,10-다이하이드로안트라센을 고순도로 정제하는 방법 | |
JP5487815B2 (ja) | ピロメテン誘導体の製造方法 | |
JP2021127298A (ja) | ジケトピロロピロール化合物および蛍光プローブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16855472 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017545458 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187013574 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16855472 Country of ref document: EP Kind code of ref document: A1 |