WO2017065219A1 - フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 - Google Patents

フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 Download PDF

Info

Publication number
WO2017065219A1
WO2017065219A1 PCT/JP2016/080392 JP2016080392W WO2017065219A1 WO 2017065219 A1 WO2017065219 A1 WO 2017065219A1 JP 2016080392 W JP2016080392 W JP 2016080392W WO 2017065219 A1 WO2017065219 A1 WO 2017065219A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
compound
phenacene
represented
Prior art date
Application number
PCT/JP2016/080392
Other languages
English (en)
French (fr)
Inventor
稔 山路
Original Assignee
国立大学法人群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人群馬大学 filed Critical 国立大学法人群馬大学
Priority to KR1020187013574A priority Critical patent/KR102110059B1/ko
Priority to JP2017545458A priority patent/JP6811487B2/ja
Priority to CN201680060326.0A priority patent/CN108137619B/zh
Publication of WO2017065219A1 publication Critical patent/WO2017065219A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/77Preparation of chelates of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/788Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with keto groups bound to a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/92Ketonic chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a phenacene compound, a method for producing a phenacene compound, and an organic light-emitting device.
  • organic aromatic compounds that can emit fluorescence as the light-emitting layer of organic electroluminescent devices are being promoted worldwide. In these organic aromatic compounds, it is indispensable to emit fluorescent light with high efficiency, and at the same time, fastness to an external environment such as high voltage, oxygen, light and moisture is required.
  • a boron-diketone-diaryl complex having a naphthalene skeleton or an anthracene skeleton is known (for example, Inorg. Chem. 2013, 52, 3597-3610 (hereinafter referred to as “Document 1”). See also)).
  • Document 1 a compound used in an organic electroluminescent (hereinafter referred to as EL) element having high efficiency, high luminance, and high durability
  • EL organic electroluminescent
  • naphthalene and anthracene constituting the aryl part of the boron-diketone-diaryl complex of Document 1 are known to have low fastness, which is particularly important for luminous efficiency.
  • fluorescence yield which is one of the physical properties, greatly depends on the environment.
  • phenacene having a structure in which benzene rings are condensed in a zigzag manner is more robust against external factors than acene having a structure in which benzene rings are linearly arranged. Is known to be expensive.
  • the phenacene compound that forms a boron-diaryl-diketone complex can be expected as a compound that can solve the above-mentioned problems, and at the same time, an efficient synthesis method thereof is considered necessary. That is, there is a need for a method for efficiently introducing a functional group necessary for forming a boron-diaryl diketone complex (ie, a boron-aryl-diketone group) into a phenacene compound. It is considered that a phenacene compound having a functional group that can be converted into a functional group is also necessary.
  • JP 2008-308467 A does not describe any method for synthesizing a phenacene compound having a functional group and no method for synthesizing a phenacene compound having a functional group convertible to a functional group.
  • the document 2 is useful knowledge for efficiently synthesizing a phenacene compound having no functional group, it does not describe a method for synthesizing a phenacene compound having a functional group. For this reason, it is unclear whether or not a phenacene compound having a functional group such as the above boron-aryl-diketone group can be synthesized.
  • a phenacene compound having a boron-aryl-diketone group an efficient method for producing the phenacene compound, and an efficient method for producing a phenacene compound having a functional group convertible to a boron-aryl-diketone group. It was desired.
  • an object of the present disclosure is to provide a phenacene compound that is not easily affected by the environment and has a high fluorescence yield, an efficient method for producing the phenacene compound, and an organic light-emitting device.
  • R 1 to R 10 each independently represents a hydrogen atom or a group represented by the following general formula (2), and any one of R 3 , R 5 and R 6 is to be a group .
  • R 11 to R 22 each independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms or an acyl group having 1 to 12 carbon atoms, and at least one of R 11 to R 22 is the .R 21 and R 22 representing an acyl group having 1 to 12 carbon atoms, with the carbon atom to which R 21 and R 22 are bonded, may form a fused ring bond to each other.
  • R 23 ⁇ R 32 each independently represent a hydrogen atom, an alkyl group or an acyl group having 1 to 12 carbon atoms having 6 or less carbon atoms, at least one of R 23 ⁇ R 32 is the .R 31 and R 32 representing an acyl group having 1 to 12 carbon atoms, with the carbon atom to which R 31 and R 32 are bonded, may form a fused ring bond to each other.
  • ⁇ 4> The method for producing a phenacene compound according to ⁇ 3>, wherein the protecting agent is a diol compound.
  • the deprotection material is any one selected from chloral hydrate and potassium peroxymonosulfate.
  • a ⁇ -diketone derivative synthesis step for synthesizing a ⁇ -diketone derivative represented by the following general formula (5) by reacting the compound obtained in the deprotection step with a carbonyl group-containing compound.
  • R 33 ⁇ R 42 each independently represent a hydrogen atom, a group represented by the number 6 an alkyl group or the following general formula carbons (6), the R 33 ⁇ R 42 at least one, and is .
  • R 41 and R 42 represents a group represented by the following general formula (6), together with the carbon atom to which R 41 and R 42 are attached, to form a condensed ring bonded to each other May be.
  • ⁇ 7> Further includes a complex formation step of forming a complex represented by the following general formula (7) by reacting the compound obtained in the ⁇ -diketone derivative synthesis step with boron halide ⁇ 6> It is a manufacturing method of the phenacene compound as described in>.
  • R 43 ⁇ R 52 each independently represent a hydrogen atom, a group represented by the number 6 an alkyl group or the following general formula carbons (2), the R 43 ⁇ R 52 at least one, and is .
  • R 51 and R 52 represents a group represented by the following general formula (2), together with the carbon atom to which R 51 and R 52 are attached, to form a condensed ring bonded to each other May be.
  • Y 2 represents a phenyl group, a furyl group, or a thienyl group.
  • Z 1 represents zero or more condensed benzene rings.
  • An organic light-emitting device comprising the phenacene compound according to ⁇ 1> or ⁇ 2>.
  • a phenacene compound that is not easily affected by the environment and has a high fluorescence yield, an efficient method for producing the phenacene compound, and an organic light-emitting device.
  • FIG. 1 shows the absorption spectrum and fluorescence spectrum of each boron fluoride-diaryl-diketone complex.
  • FIG. 2A is a graph showing fluorescence photophysical characteristics of each phenacene compound having a boron fluoride-aryl-diketone group in chloroform and acetonitrile.
  • FIG. 2B is a diagram showing the photophysical properties of fluorescence of each phenacene compound having a boron fluoride-aryl-diketone group in chloroform and acetonitrile.
  • a “phenacene compound” is a polycyclic aromatic compound in which three or more benzene rings are condensed, and a compound in which the benzene ring is condensed in zigzag, and the phenanthrene skeleton is expanded.
  • a general term for a group of compounds in a condensed-ring manner For example, [J. Amer. Chem. Soc. , 119, 2119 (1997), J. MoI. Org. Chem. , 70, 2509 (2005)].
  • halogenated boron-aryl-diketone group refers to a group represented by the general formula (2), and the group represented by the general formula (6) may be referred to as an aryl-diketone group.
  • a phenacene compound or acene compound having a halogenated boron-aryl-diketone group may be referred to as a boron-diaryl-diketone complex.
  • a compound used for producing a phenacene compound having a halogenated boron-aryl-diketone group for example, a phenacene compound having an aryl-diketone group (also referred to as a ⁇ -diketone derivative) or an acyl group is used.
  • the phenacene compounds possessed may be collectively referred to as phenacene precursor compounds.
  • the aryls of “boron-aryl-diketone complex”, “halogenated boron-aryl-diketone group” and “aryl-diketone group” include not only aryl groups but also heteroaryl groups. .
  • fluorescence yield has the same meaning as fluorescence quantum yield.
  • R 1 to R 10 each independently represent a hydrogen atom or a group represented by the following general formula (2), and any one of R 3 , R 5 and R 6 is the following: It is group represented by General formula (2).
  • the R 9 and R 10, together with the carbon atom to which R 9 and R 10 are bonded, may form a fused ring bond to each other.
  • * indicates a bonding position with the compound represented by the general formula (1).
  • X represents a halogen group, and Y 1 represents an aryl group or a heteroaryl group.
  • the phenacene compound is a boron-diaryl-diketone complex, and one or two of two aryls (ie, diaryl) is phenacene.
  • This has excellent photophysical characteristics in fluorescence (for example, fluorescence yield, fluorescence lifetime, and rate constant), and in particular, the fluorescence yield, which is an important physical property when using a light emitting device or an electronic material, has a high value. Can be secured.
  • the characteristics of the phenacene compound are not easily affected by the environment, it is considered that the phenacene compound has not only chemical stability but also stability to light, heat and temperature, that is, fastness as a compound. .
  • Whether or not the photophysical properties of the fluorescence of a compound are easily influenced by the environment can be determined by, for example, measuring each physical property of the fluorescence of each solution in a solution in which the compound is dissolved in a solvent having different properties and having different properties.
  • the difference in the physical property value in the solvent can be confirmed by comparing with the difference in the physical property value in other compounds.
  • the solvent include a combination of a nonpolar solvent and a polar solvent, and a combination of an aprotic solvent and a protic solvent.
  • a combination of a nonpolar solvent and a polar solvent is preferable.
  • nonpolar solvents include chloroform, diethyl ether, dichloromethane, hexane, and toluene.
  • polar solvents examples include acetonitrile, ethyl acetate, tetrahydrofuran (THF), alcohols having 1 to 4 carbon atoms, dimethylformamide (DMF). ) And dimethyl sulfoxide (DMSO).
  • a condensed ring refers to a 6-membered ring (that is, a benzene ring). That is, in the general formula (1), the number of benzene rings in forming a condensed ring is not particularly limited as long as the effects of the present invention are not significantly impaired. However, from the viewpoint of easy synthesis of the phenacene compound, the number of condensed rings is preferably 0 or more and 13 or less, and more preferably 0 or more and 8 or less. Particularly preferably, the number of rings is 0 or more and 6 or less. More preferably, the number of rings is 0 or more and 1 or less, and most preferably the number of rings is 0.
  • R 1 to R 10 are groups in which any one of R 3 , R 5 and R 6 is represented by the general formula (2) (that is, boron halide-aryl-diketone). Group), the others may be hydrogen atoms or may have a group represented by the general formula (2).
  • R 3 , R 5 and R 6 R 5 is preferably a group represented by the general formula (2) from the viewpoint of being hardly affected by the environment and exhibiting a high fluorescence yield.
  • the number having a halogenated boron-aryl-diketone group is appropriately adjusted, but is preferably 4 or less, more preferably 2 or less, and particularly preferably 1 for ease of synthesis. .
  • X is not particularly limited as long as it is a halogen group, but is preferably a fluorine group from the viewpoint of being hardly affected by the environment and having a high fluorescence yield.
  • Y 1 is not particularly limited as long as it is an aryl group or a heteroaryl group.
  • the aryl group or heteroaryl group is a phenyl group, a naphthyl group, a furyl group because it is hardly affected by the environment and has a high fluorescence yield. It is preferably a group, thienyl group, pyridyl group, phenanthryl group or picenyl group. Among these, a phenyl group, a furyl group, or a thienyl group is particularly preferable.
  • the fluorescence of the photophysical properties of Fenasen compounds i.e. fluorescence yield ([Phi f), fluorescence lifetime (tau f) and rate constants can be measured by a known measurement method.
  • fluorescence yield can be measured by using an absolute PL photon yield measuring device (C9920-02, manufactured by Hamamatsu Photonics Co., Ltd.) as a sample in which the phenacene compound is dissolved in an organic solvent such as chloroform.
  • the fluorescence lifetime and rate constant are obtained by measuring the fluorescence lifetime ( ⁇ f ) of the above compound in chloroform and acetonitrile using a small fluorescence lifetime measuring device (C11367-01, manufactured by Hamamatsu Photonics Co., Ltd.). From the relationship between the obtained fluorescence quantum yield ( ⁇ f ) and the fluorescence lifetime ( ⁇ f ), the rate constant (k f ) in the emission process can be calculated.
  • the maximum absorption wavelength in the phenacene compound is not particularly limited, but is preferably 280 nm to 600 nm from the viewpoint of usability as an organic EL.
  • the maximum fluorescence wavelength is preferably set as appropriate, but is preferably from 300 nm to 500 nm from the viewpoint of being less affected by the environment and further enhancing the fluorescence yield.
  • the method for producing a phenacene compound according to an embodiment of the present invention includes a carbonyl of a compound represented by the following general formula (3) (hereinafter also referred to as 1,2-diallylethene compound or acylated 1,2-diallylethene compound).
  • a protecting step for protecting a group with a protecting agent, a photo-condensing step for forming a 6-membered ring newly condensed by a photo-condensation reaction of the compound obtained by the protecting step, and the photo-condensed ring A deprotection step of synthesizing a phenacene compound represented by the following general formula (4) by deprotecting the compound obtained by the step with a deprotecting agent.
  • R 11 to R 22 each independently represents a hydrogen atom, an alkyl group having 6 or less carbon atoms or an acyl group having 1 to 12 carbon atoms, and at least one of R 11 to R 22 is Represents an acyl group having 1 to 12 carbon atoms.
  • the R 21 and R 22, together with the carbon atom to which R 21 and R 22 are bonded, may form a fused ring bond to each other. Further, R 13 and R 14 may similarly form a condensed ring.
  • the wavy line in the general formula (3) indicates that the compound represented by the general formula (3) has two isomers as in the following general formula (3a) and general formula (3b). Show.
  • R 11 ⁇ R 22 in are each synonymous with R 11 ⁇ R 22 in the general formula (3).
  • acyl group having 1 to 12 carbon atoms of R 11 ⁇ R 22 the other is a hydrogen atom, an alkyl group and having 1 to 12 carbon atoms of 6 or less carbon atoms
  • Any number of acyl groups may be used, but among R 11 to R 22 , the number having an acyl group having 1 to 12 carbon atoms is preferably 4 or less, more preferably 2 or less, for ease of synthesis. It is preferable.
  • the portion other than the carbonyl group of the acyl group having 1 to 12 carbon atoms that is, the substituent R 100 represented by —C ( ⁇ O) —R 100 is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, and an alkenyl group. A aralkyl group.
  • the hydrogen of these substituents may be substituted with a halogen and a nitro group.
  • the preferred carbon number and type as the acyl group having 1 to 12 carbon atoms are preferably 2 to 6 carbon atoms, and more preferably 2 carbon atoms, from the viewpoint of ease of synthesis operation.
  • the R 100 of the acyl group include a methyl group, an ethyl group, n- propyl group, i- propyl, n- butyl, t- butyl group, n- pentyl group, n- hexyl, n- Octyl group, cyclopropyl group, cyclohexyl group, vinyl group, phenyl, benzyl group, phenethyl group, o-chlorophenyl group, m-chlorophenyl group, p-chlorophenyl group, o-nitrophenyl group, p-nitrophenyl group, etc. It is done.
  • a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group and a t-butyl group are preferable, and a methyl group is particularly preferable.
  • the alkyl group having 6 or less carbon atoms may have a linear structure or a branched structure as long as it has 6 or less carbon atoms.
  • Examples of the alkyl group having 6 or less carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, n-pentyl group and n-hexyl group. Of these, a methyl group and an ethyl group are particularly preferable.
  • the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of said General formula (1).
  • a method for producing a phenacene compound first, in the protection step, a compound having an acyl group on an aromatic ring and a 1,2-diallylethene compound which synthesizes a transannular structure is protected with a protecting agent is synthesized. To do. Next, in the photocondensation step, a new condensed ring is formed on the protected compound by a photocondensation reaction, and in the deprotection step, the protecting group is deprotected with a deprotecting agent, The method includes a step of synthesizing a phenacene precursor having an acyl group. Hereinafter, each step will be described.
  • the acyl group of the compound represented by the general formula (3) is protected with a protecting agent.
  • “protecting” means that the acyl group of the compound represented by the general formula (3) is converted into a group that can be deprotected by a deprotecting agent described later by a protecting agent.
  • the protecting agent include diol compounds, dithiol compounds, and disilyl ether compounds. Among these, it is preferable to use a diol compound as a protective agent from the viewpoint of ease of synthesis operation and yield.
  • diol compound examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, 1,2-pentanediol, 2,4-pentanediol, 2,4-dimethyl-2,4-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,2-octanediol, 1,2-decane And diol and 1,2-dodecanediol.
  • ethylene glycol, 1,2-propanediol and 1,3-propanediol are more preferable.
  • Protecting the carbonyl group in the acyl group with the above-described protecting agent can be performed by a known general method.
  • the protecting agent is a diol or dithiol
  • the protecting catalyst includes methanesulfonic acid, p-toluenesulfonic acid, sulfuric acid, phosphoric acid, trifluoroacetic acid, trichloroacetic acid, oxalic acid, boron trifluoride and It can be selected from the group consisting of these combinations, but is not limited thereto.
  • the solvent used for the reaction examples include, but are not limited to, chloroform, dichloromethane, benzene, toluene, chlorobenzene, xylene, diethyl ether, and ethyl acetate.
  • the conditions such as the temperature, time, the concentration of the substrate, the protective agent, the catalyst, etc. for the protection are appropriately adjusted depending on the type of the protective agent used.
  • the method for preparing the acylated 1,2-diallylethene compound used in the protection step is not particularly limited, and it may be prepared by a known general synthesis method, or a commercially available one may be used.
  • the acylated 1,2-diallylethene compound refers to a 1,2-diallylethene compound in which an acyl group is bonded to at least one of carbon forming an aromatic ring and carbon forming ethene.
  • Examples of the preparation method by the synthesis method include a general Wittig reaction method and a right rice-Kosugi-styrene coupling method.
  • a general Wittig reaction for example, a 1,2-diallylethene compound having an acyl group at a desired position can be obtained by reacting a bromobenzyltriallylphosphonium salt with acetylbenzaldehyde.
  • a 1,2-diallylethene compound can also be obtained by a method using allene halide and trans-1,2-bis (tributylstannyl) ethene. Can do.
  • the protected 1,2-diallylethene compound obtained in the above-described protection step is formed into a new condensed benzene ring by a photocondensation reaction in the presence of an oxidizing agent. Synthesize protected phenacene precursor compounds.
  • the new condensed benzene ring is a compound obtained by protecting the 1,2-diallylethene compound obtained in the above-mentioned protection step, and the carbon at the 2- or 6-position of one allyl group to which the ethene group is bonded.
  • Photocondensation reaction means that a 1,2-diallylethene compound is irradiated with light in the presence of an oxidant to form a new condensed benzene ring between the two benzene rings of the 1,2-diallylethene compound. Refers to a reaction.
  • the type of light is not particularly limited as long as the phenacene precursor compound can be synthesized by the photocondensation reaction in this step, but for example, ultraviolet rays and visible rays are mentioned from the viewpoint of ease of the synthesis operation, and among them, ultraviolet rays are preferable. .
  • the ultraviolet region is preferably 280 nm to 390 nm, more preferably 300 nm to 330 nm.
  • the type of light source that generates ultraviolet rays is not particularly limited, and examples thereof include a mercury lamp and a metal halide lamp.
  • the oxidizing agent include iodine, oxygen, and iron chloride. Among them, iodine is preferable because of easy synthesis operation.
  • a "Malory photocyclization reaction” is mentioned preferably.
  • the Mallory photocyclization reaction is performed, Yamaji et al. [Chem. Lett. (2014), 43, 994-996], the phenacene precursor compound can be efficiently synthesized.
  • Conditions for the synthesis of a protected phenacene precursor compound using the flow reactor that is, the concentration of the raw material, the concentration of the oxidizing agent, the supply rate of the raw material, the type of solvent to be dissolved, the type and setting of the light source used It is preferable that the wavelength to be adjusted is appropriately adjusted with reference to the conditions described in the above document.
  • the protecting group of the protected phenacene precursor compound obtained in the photocondensation step is deprotected with a deprotecting agent, so that the phenacene represented by the following general formula (4) is obtained.
  • a precursor is synthesized.
  • R 23 to R 32 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or an acyl group having 1 to 12 carbon atoms, and at least one of R 23 to R 32 is Represents an acyl group having 1 to 12 carbon atoms.
  • the R 31 and R 32, together with the carbon atom to which R 31 and R 32 are bonded, may form a fused ring bond to each other.
  • R 25 and R 26 may similarly form a condensed ring.
  • the preferred range of the number of benzene rings in the case of forming the condensed ring is the same as the condensed ring of the general formula (1).
  • the alkyl group and acyl group represented by R 23 to R 32 are synonymous with the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). This is the same as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). Further, the preferred number of the acyl groups among R 23 to R 32 is the same as that in the general formula (3).
  • the deprotecting agent is appropriately selected according to the type of protecting group.
  • examples of the deprotecting agent include chloral hydrate; potassium peroxymonosulfate; hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, and paratoluenesulfonic acid.
  • chloral hydrate and potassium peroxymonosulfate are preferable from the viewpoint of ease of synthesis operation.
  • the deprotection conditions are preferably adjusted as appropriate depending on the type of deprotecting agent.
  • the protecting agent is ethylene glycol, 1, It is preferably at least one selected from 2-propanediol and 1,3-propanediol, and the deprotecting agent is chloral hydrate.
  • 1-acetylphenanthrene is useful as a compound used for the synthesis of a ⁇ -diketone derivative described later, that is, a phenacene having an aryl-diketone group.
  • the method for producing a phenacene compound preferably further includes a ⁇ -diketone derivative synthesis step.
  • the phenacene precursor compound represented by the following general formula (5) is reacted with the carbonyl group-containing compound by reacting the acyl group of the phenacene precursor compound obtained in the deprotection step. This is advantageous since ( ⁇ -diketone derivatives) can be synthesized more efficiently.
  • R 33 to R 42 are each independently a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a group represented by the following general formula (6), and at least one of R 33 to R 42 One represents a group represented by the following general formula (6).
  • the R 41 and R 42, together with the carbon atom to which R 41 and R 42 are bonded, may form a fused ring bond to each other. Further, R 35 and R 36 may similarly form a condensed ring.
  • the preferable range of the number of benzene rings in the case of forming the condensed ring in the general formula (5) is the same as the condensed ring of the general formula (1).
  • alkyl group and acyl group represented by R 33 to R 42 have the same meanings as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3). This is the same as the alkyl group and acyl group represented by R 11 to R 22 in the general formula (3).
  • Y 1 represents an aryl group or a heteroaryl group.
  • Y 1 in the general formula (6) has the same meaning as Y 1 in the general formula (2), and the types of preferable substituents are also the same.
  • the carbonyl group-containing compound refers to a carbonyl compound having an aryl group, and a compound having a ⁇ diketone group is synthesized by reacting with the compound represented by the general formula (4). It is a compound that can be used.
  • the carbonyl group-containing compound include an aldehyde having an aryl group, a ketone having an aryl group, and a carboxylic acid ester having an aryl group. Among these, carboxylic acid esters having an aryl group are preferable.
  • R of the compound (Ar—C ( ⁇ O) —O—R) is not particularly limited, and is preferably adjusted as appropriate.
  • the aryl group (Ar) has the same meaning as Y 1 in the general formula (2), is the same type of preferred substituents.
  • the reaction used in the deprotection step is not particularly limited, but from the viewpoint of ease of synthesis operation, for example, the condensation reaction includes general aldol condensation reaction and Claisen condensation reaction. preferable. Methods for synthesizing ⁇ -diketone compounds using these condensation reactions are known, and it is preferable that the conditions for carrying out the reaction are appropriately adjusted.
  • a ⁇ -diketone derivative represented by the following general formula (8) that is, a phenacene precursor compound in which the aryl moiety is a phenyl group, a furyl group, or a thienyl group can be synthesized.
  • Y 2 represents a phenyl group, a furyl group, or a thienyl group.
  • Z 1 represents zero or more condensed benzene rings.
  • the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of the said General formula (1).
  • the phenacene precursor compound represented by the general formula (8) is useful as a compound used for the synthesis of the phenacene compound represented by the general formula (1).
  • R 43 to R 52 are each independently a hydrogen atom, an alkyl group having 6 or less carbon atoms or a group represented by the following general formula (2), and at least one of R 43 to R 52 One represents a group represented by the following general formula (2).
  • the R 51 and R 52, together with the carbon atom to which R 51 and R 52 are bonded, may form a fused ring bond to each other.
  • R 45 and R 46 may similarly form a condensed ring.
  • the preferable range of the number of benzene rings in the case of forming a condensed ring is the same as that of the condensed ring of said General formula (1).
  • the alkyl group represented by R 43 to R 52 has the same meaning as the alkyl group represented by R 11 to R 22 in the general formula (3), and the preferred carbon number and type are also those of the general formula (3). This is the same as the alkyl group represented by R 11 to R 22 .
  • the number having a group represented by the following general formula (2) is appropriately adjusted, but is preferably 4 or less, and more preferably 2 or less, for ease of synthesis.
  • * indicates a bonding position with the compound represented by the general formula (7).
  • X represents a halogen group, and Y 1 represents an aryl group or a heteroaryl group.
  • X is not particularly limited as long as it is a halogen group, but is preferably a fluorine group from the viewpoint of being hardly affected by the environment and having a high fluorescence yield.
  • Y 1 is not particularly limited as long as it is an aryl group or a heteroaryl group.
  • the aryl group or heteroaryl group is a phenyl group, a naphthyl group, a furyl group because it is hardly affected by the environment and has a high fluorescence yield. It is preferably a group, thienyl group, pyridyl group, phenanthryl group or picenyl group. Among these, a phenyl group, a furyl group, or a thienyl group is particularly preferable.
  • the phenacene compound represented by the general formula (7) is obtained from the compound represented by the general formula (5) obtained by the ⁇ -diketone derivative synthesis step, for example, Sakai et al. [Tetrahedron Letters (2012), 53, 4138. -4141] as a reference.
  • the phenacene compound and the phenacene compound obtained by the method for producing the phenacene compound are considered to have fastness because they are hardly affected by the environment, and have a high light emission yield, so that they can be applied to a wide range of fields. I can expect. Specifically, for example, application to a two-photon absorption material, a conjugated polymer material, a semiconductor material, a photochromic material, a near infrared detection device, an oxygen sensor, an organic light emitting element, and the like can be expected.
  • an organic light emitting element it can be used as a charge transport layer of the organic light emitting element, a constituent material of the light emitting layer, preferably a constituent material of the light emitting layer. Thereby, it can be expected as a device having high luminous efficiency and robust against an external environment such as high voltage, oxygen, light, and moisture.
  • the “%” of the yield is a ratio (mass basis) of the amount of the product actually obtained with respect to the case where the raw materials are theoretically converted into all desired products.
  • ⁇ Preparation of phenacene compound ⁇ (Reagent and compound identification method) Commercially available reagents were used for the preparation of the phenacene compound. Further, the synthesized product was confirmed by thin layer chromatography and NMR measurement. Thin layer chromatography was confirmed with a UV detector using TLC silica gel 60F 254 (product number: 1.0571.0001) manufactured by Millipore. In the NMR measurement, ECS400 and ECS600 manufactured by JEOL Ltd. were used.
  • a solution obtained by adding ethyl acetate to the product was washed twice with an aqueous ammonium chloride solution, then further washed twice with a saturated saline solution, and the washed solution was concentrated under reduced pressure.
  • the concentrated solution was subjected to TLC using hexane: ethyl acetate (9: 1, v / v) as a developing solvent, and a new spot was confirmed around an Rf value of 0.32.
  • the product was subjected to NMR measurement and the following results were obtained.
  • Comparative compound 1 was prepared in the same manner as in the synthesis of A-1, except that 2-acetylphenanthrene manufactured by Aldrich was used instead of 1-acetylphenanthrene as a raw material.
  • Comparative compound 2 was prepared in the same manner as in the synthesis of A-1, except that 9-acetylphenanthrene manufactured by Aldrich was used instead of 1-acetylphenanthrene as a raw material.
  • Comparative compounds 3 to 5 having the following structures are known, and in the same manner as in the synthesis of compound A-1, except that commercially available acetylphenyl, 2-acetylnaphthalene and 2-acetylanthracene were used. 3-5 were prepared.
  • the value of the fluorescence lifetime ( ⁇ f ) has a value inherent to the molecule, and the value of the rate constant (k f ) in the radiation process is a value obtained by dividing the fluorescence yield ( ⁇ f ) by the fluorescence lifetime ( ⁇ f ). is there.
  • Table 1 shows the measurement results of the above physical properties for the solution in which each compound was dissolved. Further, in Table 1, the fluorescence yields ( ⁇ f ), fluorescence lifetimes ( ⁇ f ), and rate constants (k f ) in the emission process of the compounds A-1 to A-4 and the comparative compounds 1 and 2 in chloroform The difference between the values in acetonitrile and acetonitrile is shown in FIGS. 2A and 2B.
  • the comparative example shows a low fluorescence yield compared to the examples in either solvent, or shows a low fluorescence yield in the other solvent even if the fluorescence yield is high in either solvent. It was. Also, referring to FIGS. 2A and 2B, when compared with the same phenanthrene compound, the phenanthene compound according to one embodiment of the present invention in which a boron fluoride-aryl-diketone group is bonded to the 1-position or 3-position of the phenanthrene.
  • Comparative Compound 2 has a fluorescence yield close to that of Compounds A-1 to A-4, but was shown to have a slightly inferior fluorescence lifetime.
  • any of the substituents of phenyl, furyl, and thiophene as the aryl group has a high fluorescence intensity regardless of the solvent. It has also been shown to have a rate.
  • the phenacene compound according to one embodiment of the present invention is hardly affected by the environment and has a high fluorescence yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Fats And Perfumes (AREA)

Abstract

下記一般式(1)で表されるフェナセン化合物。一般式(1)中、R、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子又は一般式(2)で表される基を表し、R、R及びRのいずれか1つは一般式(2)で表される基である。RとR10とは、R及びR10が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。一般式(2)中、*は前記一般式(1)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。

Description

フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子
 本発明は、フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子に関する。
 有機電子発光デバイスの発光層として、蛍光発光が可能な有機芳香族化合物の開発が世界的にすすめられている。これらの有機芳香族化合物においては、高効率に蛍光発光することが必要不可欠であると同時に、高電圧、酸素、光及び水分等の外部環境に対する堅牢性も求められる。
 高い蛍光効率を有する有機芳香族化合物としては、ナフタレン骨格やアントラセン骨格を有するボロン-ジケトン-ジアリール錯体が知られている(例えば、Inorg.Chem.2013,52,3597-3610(以下「文献1」ともいう)参照)。
 また、高効率、高輝度かつ高耐久性である有機電子発光(以下、ELという)素子に用いられる化合物としては、蛍光発光基を有するフェナントレン誘導体が報告されている(例えば、特開2008-308467号公報参照)。
 さらに、フェナントレンについては、1,2-ジアリルエテンを光縮環反応させることによって、効率的に合成できることが報告されている(例えば、Chem.Lett.2014,43,994-996(以下「文献2」ともいう)参照)。
 しかし、発光材料としての使用性を考えた場合、前記文献1のボロン-ジケトン-ジアリール錯体のアリール部分を構成するナフタレンやアントラセンは堅牢性が低いことが知られており、特に発光効率にとって重要な物性の一つである蛍光収率が環境に大きく依存するという課題を有する。一方、特開2008-308467号公報に示されるように、ベンゼン環がジグザグに縮環した構造を有するフェナセンは、ベンゼン環が直線状に配列した構造を有するアセンに比べて、外部因子に対する堅牢性が高いことが知られている。従って、ボロン-ジアリール-ジケトン錯体を形成するフェナセン化合物が上記課題を解決しうる化合物として期待でき、同時にそれらの効率的な合成方法が必要になるものと考えられる。すなわち、ボロン-ジアリールジケトン錯体を形成するために必要な機能性基(すなわち、ボロン-アリール-ジケトン基)をフェナセン化合物に効率的に導入する方法が必要であり、このためには、上記の機能性基に変換可能な官能基を有するフェナセン化合物も必要であるものと考えられる。
 しかし、特開2008-308467号公報には、機能性基を有するフェナセン化合物の合成方法及び機能性基に変換可能な官能基を有するフェナセン化合物の合成方法は何ら記載されていない。さらに、前記文献2は、官能基を有しないフェナセン化合物を効率的に合成する上では有用な知見ではあるものの、官能基を有するフェナセン化合物の合成方法については記載されていない。そのため、上記のボロン-アリール-ジケトン基のような機能性基を有したフェナセン化合物が合成できるか否かは不明である。
 このように、ボロン-アリール-ジケトン基を有するフェナセン化合物及び該フェナセン化合物の効率的な製造方法並びにボロン-アリール-ジケトン基に変換可能な官能基を有するフェナセン化合物の効率的な製造方法の提供が望まれていた。
 そこで、本開示では、環境に影響されにくくかつ高い蛍光収率を有するフェナセン化合物及び該フェナセン化合物の効率的な製造方法並びに有機発光素子の提供を課題とする。
 課題を解決するための具体的手段には、以下の形態が含まれる。
<1>下記一般式(1)で表されるフェナセン化合物である。
Figure JPOXMLDOC01-appb-C000011
(一般式(1)中、R~R10は、それぞれ独立に、水素原子又は下記一般式(2)で表される基を表し、R、R及びRのいずれか1つは下記一般式(2)で表される基である。RとR10とは、R及びR10が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000012
(一般式(2)中、*は前記一般式(1)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。)
<2>前記一般式(1)中、Rが前記一般式(2)で表される基である<1>に記載のフェナセン化合物である。
<3>下記一般式(3)で表される化合物のカルボニル基を保護化剤よって保護する保護化工程と、前記保護化工程によって得られた化合物を、光縮環反応によって縮環したベンゼン環を形成する光縮環工程と、前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、を含むフェナセン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000013
(一般式(3)中、R11~R22は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R11~R22の少なくとも1つは、炭素数1~12のアシル基を表す。R21とR22とは、R21及びR22が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000014
(一般式(4)中、R23~R32は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R23~R32の少なくとも1つは、炭素数1~12のアシル基を表す。R31とR32とは、R31及びR32が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
<4>前記保護化剤は、ジオール化合物である<3>に記載のフェナセン化合物の製造方法である。
<5>前記脱保護材は、抱水クロラール、及びペルオキシ一硫酸カリウムから選ばれるいずれか1つである<3>又は<4>に記載のフェナセン化合物の製造方法である。
<6>更に、前記脱保護化工程によって得られた化合物とカルボニル基含有化合物とを反応させることにより下記一般式(5)で表されるβ-ジケトン誘導体を合成するβ-ジケトン誘導体合成工程を含む<3>~<5>のいずれか一つに記載のフェナセン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000015
(一般式(5)中、R33~R42は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(6)で表される基であり、R33~R42の少なくとも1つは、下記一般式(6)で表される基を表す。R41とR42とは、R41及びR42が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000016
(一般式(6)中、*は前記一般式(5)で表される化合物との結合位置を示す。Yはアリール基又はヘテロアリール基を表す。)
<7>更に、前記β-ジケトン誘導体合成工程によって得られた化合物とハロゲン化ほう素とを反応させることにより、下記一般式(7)で表される錯体を形成する錯体形成工程を含む<6>に記載のフェナセン化合物の製造方法である。
Figure JPOXMLDOC01-appb-C000017
(一般式(7)中、R43~R52は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(2)で表される基であり、R43~R52の少なくとも1つは、下記一般式(2)で表される基を表す。R51とR52とは、R51及びR52が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000018
(一般式(2)中、*は前記一般式(7)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。)
<8>下記一般式(8)で表されるフェナセン化合物である。
Figure JPOXMLDOC01-appb-C000019
(一般式(8)中、Yはフェニル基、フリル基又はチエニル基を表す。Zは縮環した0個以上のベンゼン環であることを示す。)
<9>下記式(1-1)で表されるフェナセン化合物である。
Figure JPOXMLDOC01-appb-C000020
<10><1>又は<2>に記載のフェナセン化合物を含む有機発光素子である。
 本開示によれば、環境に影響されにくくかつ高い蛍光収率を有するフェナセン化合物及び該フェナセン化合物の効率的な製造方法並びに有機発光素子を提供できる。
図1は、各フッ化ボロン-ジアリール-ジケトン錯体の吸収スペクトル及び蛍光スペクトルを示す図である。 図2Aは、フッ化ボロン-アリール-ジケトン基を有する各フェナセン化合物の、クロロホルム中及びアセトニトリル中における蛍光の光物理特性を示す図である。 図2Bは、フッ化ボロン-アリール-ジケトン基を有する各フェナセン化合物の、クロロホルム中及びアセトニトリル中における蛍光の光物理特性を示す図である。
 本明細書及び特許請求の範囲を通じて示された用語について説明する。
 数値範囲を表す「~」はその上限及び下限の数値を含む範囲を表す。
 「フェナセン化合物」とは、ベンゼン環が3個以上縮環した多環状の芳香族化合物であり、そのベンゼン環の縮環様式が、ジグザグ(zigzag)に縮環した化合物で、フェナントレン骨格を拡張した縮環様式の化合物群の総称である。例えば、[J.Amer.Chem.Soc.,119、2119(1997)、J.Org.Chem.,70、2509(2005)]を参考にすることができる。
 「ハロゲン化ボロン-アリール-ジケトン基」とは、前記一般式(2)で表される基を指し、前記一般式(6)で表される基をアリール-ジケトン基と称することがある。さらに、ハロゲン化ボロン-アリール-ジケトン基を有するフェナセン化合物やアセン化合物をボロン-ジアリール-ジケトン錯体と称することもある。
 また、本明細書中、ハロゲン化ボロン-アリール-ジケトン基を有するフェナセン化合物を製造するために用いられる化合物、例えば、アリール-ジケトン基を有するフェナセン化合物(β-ジケトン誘導体とも称する)やアシル基を有するフェナセン化合物を、総称してフェナセン前駆体化合物と称することもある。また、本明細書中において、「ボロン-アリール-ジケトン錯体」、「ハロゲン化ボロン-アリール-ジケトン基」及び「アリール-ジケトン基」のアリールには、アリール基だけでなくヘテロアリール基を含むものとする。
 また、本明細書中、「蛍光収率」は、蛍光量子収率と同じ意味である。
≪フェナセン化合物≫
 本発明の一実施形態に係るフェナセン化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)中、R~R10は、それぞれ独立に、水素原子又は下記一般式(2)で表される基を表し、R、R及びRのいずれか1つは下記一般式(2)で表される基である。RとR10とは、R及びR10が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000022
 一般式(2)中、*は前記一般式(1)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。
 前記フェナセン化合物は、ボロン-ジアリール-ジケトン錯体であり、2つのアリール(すなわち、ジアリール)のうちの一つまたは二つがフェナセンである。これによって、蛍光における優れた光物理特性(例えば、蛍光収率、蛍光寿命及び速度定数)を有し、中でも、発光素子や電子材料等の使用時に重要な物性である蛍光収率を高い値で確保することができる。また、前記フェナセン化合物の特性が環境に影響されにくいために、該フェナセン化合物の化学的な安定性だけでなく、光、熱及び温度に対する安定性、すなわち化合物としての堅牢性を有するものと考えられる。
 加えて、理由は不明であるが、前記フェナセン化合物においては、ハロゲン化ボロン-アリール-ジケトン基をフェナセンの特定の位置に配置することで、外部からの環境に影響されにくくかつ高い蛍光収率を有するようになる。
 なお、化合物の蛍光における光物理特性が環境に影響されやすいか否かは、例えば、化合物を性質の異なる溶剤に溶解させた溶液について、それぞれの溶液の蛍光における各物性を測定し、性質の異なる溶媒での物性値の違いを、他の化合物における物性値の違いと比較することで確かめることができる。ここで、溶剤としては、例えば、非極性溶剤と極性溶剤の組合せ、非プロトン性溶剤とプロトン性溶剤の組合せ、などを挙げることができ、非極性溶剤と極性溶剤の組合せが好ましい。
 非極性溶剤としては、クロロホルム、ジエチルエーテル、ジクロロメタン、ヘキサン及びトルエン等を挙げることができ、極性溶剤としては、アセトニトリル、酢酸エチル、テトラヒドロフラン(THF)、炭素数1~4のアルコール、ジメチルホルムアミド(DMF)及びジメチルスルホオキシド(DMSO)が挙げられる。
 一般式(1)中、縮環とは、6員環(すなわち、ベンゼン環)をさす。すなわち、一般式(1)においては、縮環を形成する場合のベンゼン環の数は、本発明の効果を著しく損なわない限り、特に限定されない。しかし、フェナセン化合物の合成操作の容易さという観点から、縮環される環の数は0以上13以下であることが好ましく、0以上8以下であることがさらに好ましい。特に好ましくは、環の数が0以上6以下である。より好ましくは環の数が0以上1以下であり、最も好ましくは環の数が0である。
 また、一般式(1)中、R~R10は、R、R及びRのいずれか1つが前記一般式(2)で表される基(すなわち、ハロゲン化ボロン-アリール-ジケトン基)であれば、他は水素原子であっても前記一般式(2)で表される基を有していてもよい。また、R、R及びRの中でも、環境に影響されにくく高い蛍光収率を示すという観点から、Rが前記一般式(2)で表される基であることが好ましい。さらに、R~R10のうち、ハロゲン化ボロン-アリール-ジケトン基を有する数は適宜調整されるが、合成操作の容易さから、4以下が好ましく、2以下がさらに好ましく、1が特に好ましい。
 一般式(2)中、Xはハロゲン基であれば特に限定されないが、環境に影響されにくく高い蛍光収率を有するという点から、フッ素基であることが好ましい。
 また、Yは、アリール基又はヘテロアリール基であれば特に限定されないが、環境に影響されにくく高い蛍光収率を有するという点から、アリール基又はヘテロアリール基は、フェニル基、ナフチル基、フリル基、チエニル基、ピリジル基、フェナントリル基又はピセニル基であることが好ましい。中でも、フェニル基、フリル基又はチエニル基が特に好ましい。
 前記フェナセン化合物の蛍光の光物理特性、すなわち蛍光収率(Φ)、蛍光寿命(τ)及び速度定数は、公知の測定方法によって測定することができる。例えば、蛍光収率は、絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用い、前記フェナセン化合物をクロロホルム等の有機溶剤に溶解させた試料として測定することができる。
 蛍光寿命及び速度定数は、小型蛍光寿命測定装置(C11367-01、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物の蛍光寿命(τ)を測定し、上記で得られた蛍光量子収率(Φ)と蛍光寿命(τ)との関係から、放射過程における速度定数(k)を算出することができる。
 前記フェナセン化合物における最大吸収波長は、特に限定されないが、有機ELとしての使用性の観点から、280nm~600nmであることが好ましい。また、最大蛍光波長も適宜設定されることが好ましいが、環境に影響されにくくし、かつ蛍光収率をより高めるという観点から、300nm~500nmであることが好ましい。
 また、一般式(1)の具体例として、下記に列挙される化合物が挙げられるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
≪フェナセン化合物の製造方法≫
 本発明の一実施形態に係るフェナセン化合物の製造方法は、下記一般式(3)表される化合物(以下、1,2-ジアリルエテン化合物又はアシル化された1,2-ジアリルエテン化合物ともいう)のカルボニル基を保護化剤よって保護する保護化工程と、前記保護化工程によって得られた化合物を、光縮環反応によって新たに縮環した6員環を形成する光縮環工程と、前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、を含む。
Figure JPOXMLDOC01-appb-C000024
 一般式(3)中、R11~R22は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R11~R22の少なくとも1つは、炭素数1~12のアシル基を表す。R21とR22とは、R21及びR22が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。さらに、R13とR14についても同様に縮環を形成していてもよい。
 また、一般式(3)中の波線は、一般式(3)で表される化合物には、下記一般式(3a)及び一般式(3b)のように、2つの異性体が存在することを示す。
 なお、一般式(3a)及び一般式(3b)中のR11~R22は、それぞれ一般式(3)中のR11~R22と同義である。
Figure JPOXMLDOC01-appb-C000025
 一般式(3)中、R11~R22の少なくとも1つが炭素数1~12のアシル基を有していれば、他は水素原子、炭素数6以下のアルキル基及び炭素数1~12のアシル基のいずれであってもよいが、R11~R22のうち、炭素数1~12のアシル基を有する数は、合成の容易さから4以下であることが好ましく、さらに2以下であることが好ましい。
 また、炭素数1~12のアシル基のカルボニル基以外の部分、すなわち-C(=O)-R100で示される置換基R100は特に限定されず、例えば、アルキル基、シクロアルキル基、アルケニル基、アラルキル基であってよい。また、これらの置換基の水素がハロゲン及びニトロ基で置換されていてもよい。
 炭素数1~12のアシル基としての好ましい炭素数及び種類は、合成操作の容易さから、炭素数2~6が好ましく、さらに炭素数2が特に好ましい。
 上記のアシル基のR100としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、シクロプロピル基、シクロヘキシル基、ビニル基、フェニル、ベンジル基、フェネチル基、o-クロロフェニル基、m-クロロフェニル基、p-クロロフェニル基、o-ニトロフェニル基、p-ニトロフェニル基等が挙げられる。中でも、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基及びt-ブチル基が好ましく、メチル基が特に好ましい。
 また炭素数6以下のアルキル基は、炭素数6以下であれば、直鎖構造であっても分岐した構造であってもよい。炭素数6以下のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、n-ペンチル基及びn-ヘキシル基等が挙げられ、中でも、メチル基及びエチル基が特に好ましい。
 また、一般式(3)中の縮環について、縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記の一般式(1)の縮環と同様である。
 フェナセン化合物の製造方法としては、まず保護化工程において、芳香環上にアシル基を有し、かつ渡環構造を合成する1,2-ジアリルエテン化合物のアシル基を保護化剤によって保護した化合物を合成する。次に、光縮環工程において、光縮環反応によって、前記保護化した化合物に新たに縮環を形成させ、さらに脱保護化工程において、保護基を脱保護化剤によって脱保護することにより、アシル基を有するフェナセン前駆体を合成する工程を含むものである。以下、各工程について説明する。
(保護化工程)
 保護化工程では、前記一般式(3)で表される化合物のアシル基を、保護化剤によって、保護する。ここで、保護するとは、前記一般式(3)で表される化合物のアシル基を、保護化剤によって、後述する脱保護化剤によって脱保護が可能な基に変換することを意味する。保護化剤としては、ジオール化合物、ジチオール化合物及びジシリルエーテル化合物が挙げられる。これらの中でも、合成操作の容易さ及び収率の優位さから、ジオール化合物を保護化剤として用いることが好ましい。ジオール化合物としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,2-ペンタンジオール、2,4-ペンタンジオール、2,4-ジメチル-2,4-ペンタンジオール、1,2-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,2-オクタンジオール、1,2-デカンジオール及び1,2-ドデカンジオール等が挙げられる。これらの中でもエチレングリコール、1,2-プロパンジオール及び1,3-プロパンジオールがさらに好ましい。
 上記の保護化剤による前記アシル基中のカルボニル基の保護は、公知の一般的な方法を用いることができる。例えば、保護化剤がジオールやジチオールの場合には、保護化触媒としては、メタンスルホン酸、p-トルエンスルホン酸、硫酸、リン酸、トリフルオロ酢酸、トリクロロ酢酸、シュウ酸、三フッ化ホウ素およびこれらの組合せからなる群から選択され得るが、これらに限定されない。
 また、反応に用いる溶媒としては、クロロホルム、ジクロロメタン、ベンゼン、トルエン、クロロベンゼン、キシレン、ジエチルエーテル及び酢酸エチル等が挙げられるが、これらに限定されない。
 また、前記保護化工程において、保護化を行う温度、時間、基質、保護化剤あるいは触媒等の濃度といった条件は、用いる保護化剤の種類によって、適宜、調整されることが好ましい。
<アシル化した1,2-ジアリルエテン化合物>
 前記保護化工程に用いるアシル化した1,2-ジアリルエテン化合物の調製方法は特に限定されず、公知の一般的な合成方法によって調製してもよいし、市販のものを用いてもよい。ここで、アシル化した1,2-ジアリルエテン化合物とは、アシル基が芳香環を形成する炭素及びエテンを形成する炭素の少なくともいずれかに結合した1,2-ジアリルエテン化合物のことをさす。
 合成方法による調製方法としては、例えば、一般的なウィッティッヒ反応による方法や右田-小杉-スチレンカップリング法などを挙げることができる。一般的なウィッティッヒ反応としては、例えば、ブロモベンジルトリアリルホスホニウム塩とアセチルベンズアルデヒドとを反応させることによって、所望の位置にアシル基を有する1,2-ジアリルエテン化合物を得ることができる。また、右田-小杉-スティルカップリング法としては、例えば、ハロゲン化アレンとトランス-1,2-ビス(トリブチルスタニル)エテンとを用いる方法によっても、同様に1,2-ジアリルエテン化合物を得ることができる。
(光縮環工程)
 光縮環工程では、上記の保護化工程で得られた、保護化された1,2-ジアリルエテン化合物を、酸化剤存在下、光縮環反応によって新たな縮環したベンゼン環を形成させることで、保護化されたフェナセン前駆体化合物を合成する。新たな縮環したベンゼン環とは、前記保護化工程で得られた1,2-ジアリルエテン化合物を保護化した化合物においては、エテン基が結合する一方のアリル基の2位又は6位の炭素と、他方のエテン基が結合するアリル基の2位又は6位の炭素との結合によって形成されるベンゼン環をいう。
 光縮環反応とは、酸化剤存在下、1,2-ジアリルエテン化合物に光を照射することで、1,2-ジアリルエテン化合物の2つのベンゼン環の間に新たな縮環したベンゼン環を形成する反応をいう。
 光の種類は、本工程における光縮環反応によって、前記フェナセン前駆体化合物を合成することができれば特に限定されないが、合成操作の容易さから、例えば紫外線及び可視光線が挙げられ、中でも紫外線が好ましい。紫外線領域としては、280nm~390nmが好ましく、さらに300nm~330nmが好ましい。
 紫外線を発生させる光源の種類は特に限定されないが、例えば、水銀ランプやメタルハライドランプなどが挙げられる。
 酸化剤としては、ヨウ素、酸素及び塩化鉄が挙げられ、中でも合成操作の容易さからヨウ素が好ましい。
 光縮環工程に用いる光縮環反応としては特に限定されないが、合成操作の容易さの観点から、「マロリー光環化反応」が好ましく挙げられる。また、前記マロリー光環化反応を行う場合には、山路らの文献[Chem.Lett.(2014),43,994-996]に記載されたフローリアクターを用いることで、効率よく前記フェナセン前駆体化合物を合成することができる。
 前記フローリアクターを用いて、保護化されたフェナセン前駆体化合物を合成する場合の条件、すなわち、原料の濃度、酸化剤の濃度、原料の供給速度、溶解させる溶媒の種類、用いる光源の種類や設定する波長等は上記文献に記載の条件を参考に、適宜調整されることが好ましい。
(脱保護化工程)
 脱保護化工程では、前記光縮環工程で得られた保護化されたフェナセン前駆体化合物の保護基を、脱保護化剤によって脱保護することにより、下記一般式(4)で表されるフェナセン前駆体を合成する。
Figure JPOXMLDOC01-appb-C000026
 一般式(4)中、R23~R32は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R23~R32の少なくとも1つは、炭素数1~12のアシル基を表す。R31とR32とは、R31及びR32が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。さらに、R25とR26についても同様に縮環を形成していてもよい。また、一般式(4)中の「縮環」について、縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記の一般式(1)の縮環と同様である。また、R23~R32で表されるアルキル基及びアシル基は、一般式(3)のR11~R22で表されるアルキル基及びアシル基と同義であり、好ましい炭素数及び好ましい種類も前記一般式(3)のR11~R22で表されるアルキル基及びアシル基と同様である。また、R23~R32のうちの前記アシル基の好ましい数も、前記一般式(3)と同様である。
 脱保護化剤としては、保護基の種類に応じて適宜選択されることが好ましい。例えば、ジオール化合物を保護化剤として用いた場合には、脱保護化剤としては、例えば、抱水クロラール;ペルオキシ一硫酸カリウム;塩酸、硫酸、リン酸、酢酸、クエン酸、及びパラトルエンスルホン酸等の酸によってpH1~4に調整した水溶液;固体酸;並びに陽イオン交換樹脂;等が挙げられる。これらの中でも、合成操作の容易さの観点から、抱水クロラール及びペルオキシ一硫酸カリウムが好ましい。脱保護の条件は、脱保護化剤の種類によって適宜調整されることが好ましい。
 また、抱水クロラール又はペルオキシ一硫酸カリウムを用いて脱保護する場合の溶媒の種類、温度及び脱保護化剤の前記フェナセン前駆体化合物に対する使用量は、適宜調整されることが好ましい。
 前記保護化工程に用いる保護化剤及び脱保護化工程に用いる脱保護化剤の組合せとしては、合成操作の容易さと、合成におけるより高い収率の観点から、保護化剤がエチレングリコール、1,2-プロパンジオール及び1,3-プロパンジオールから選択される少なくとも1種であり、脱保護化剤が抱水クロラールであることが好ましい。
<1-アセチルフェナントレン>
 以上の工程によって、例えば、以下の式(1-1)で表される化合物、すなわち1-アセチルフェナントレンが合成できる。
Figure JPOXMLDOC01-appb-C000027
 1-アセチルフェナントレンは、後述するβジケトン誘導体、すなわちアリール-ジケトン基を有するフェナセンの合成のために用いる化合物として有用である。
(β-ジケトン誘導体合成工程)
 前記フェナセン化合物の製造方法においては、更にβ-ジケトン誘導体合成工程を有していることが好ましい。β-ジケトン誘導体合成工程では、前記脱保護化工程によって得られたフェナセン前駆体化合物のアシル基を、カルボニル基含有化合物と反応させることにより、下記一般式(5)で表されるフェナセン前駆体化合物(β-ジケトン誘導体)をより効率的に合成することができるので有利である。
Figure JPOXMLDOC01-appb-C000028
 一般式(5)中、R33~R42は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(6)で表される基であり、R33~R42の少なくとも1つは、下記一般式(6)で表される基を表す。R41とR42とは、R41及びR42が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。さらに、R35とR36についても同様に縮環を形成していてもよい。また、一般式(5)中の縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記一般式(1)の縮環と同様である。また、R33~R42で表されるアルキル基及びアシル基は、一般式(3)のR11~R22で表されるアルキル基及びアシル基と同義であり、好ましい炭素数及び好ましい種類も前記一般式(3)のR11~R22で表されるアルキル基及びアシル基と同様である。
Figure JPOXMLDOC01-appb-C000029
 一般式(6)中、*は前記一般式(5)で表される化合物との結合位置を示す。Yはアリール基又はヘテロアリール基を表す。一般式(6)中のYは、前記一般式(2)のYと同義であり、好ましい置換基の種類も同様である。
 β-ジケトン誘導体合成工程中、カルボニル基含有化合物とは、アリール基を有するカルボニル化合物をさし、前記一般式(4)で表される化合物と反応させることによって、βジケトン基を有する化合物を合成することが可能な化合物である。カルボニル基含有化合物としては、アリール基を有するアルデヒド、アリール基を有するケトン及びアリール基を有するカルボン酸エステル等が挙げられる。これらの中でも、アリール基を有するカルボン酸エステルが好ましい。また、当該化合物(Ar-C(=O)-O-R)のRは特に限定されず、適宜調整されることが好ましい。また、アリール基(Ar)としては、前記一般式(2)中のYと同義であり、好ましい置換基の種類も同様である。
 また、上記脱保護化工程で用いられる反応は特に限定されないが、合成操作の容易さから、例えば、縮合反応として、一般的なアルドール縮合反応やクライゼン縮合反応などが挙げられ、特にクライゼン縮合反応が好ましい。これらの縮合反応を利用したβジケトン化合物の合成方法は公知であり、反応を行う場合の条件は適宜調整されることが好ましい。
 以上の工程によって、例えば、以下の一般式(8)で表されるβジケトン誘導体、すなわち、アリール部分がフェニル基、フリル基又はチエニル基であるフェナセン前駆体化合物を合成できる。
Figure JPOXMLDOC01-appb-C000030
 一般式(8)中、Yはフェニル基、フリル基又はチエニル基を表す。Zは縮環した0個以上のベンゼン環であることを示す。また、縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記一般式(1)の縮環と同様である。
 上記一般式(8)で表されるフェナセン前駆体化合物は、前記一般式(1)で表されるフェナセン化合物の合成のために用いる化合物として有用である。
(錯体形成工程)
 前記フェナセン化合物の製造方法においては、更に錯体形成工程を有していることが好ましい。錯体形成工程では、前記β-ジケトン誘導体合成工程によって得られた一般式(5)で表される化合物とハロゲン化ほう素とを反応させることにより、下記一般式(7)で表される錯体をより効率的に合成することができるので有利である。
Figure JPOXMLDOC01-appb-C000031
 一般式(7)中、R43~R52は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(2)で表される基であり、R43~R52の少なくとも1つは、下記一般式(2)で表される基を表す。R51とR52とは、R51及びR52が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。さらに、R45とR46についても同様に縮環を形成していてもよい。また、一般式(7)中の縮環について、縮環を形成する場合のベンゼン環の数の好ましい範囲は、上記の一般式(1)の縮環と同様である。また、R43~R52で表されるアルキル基は、一般式(3)のR11~R22で表されるアルキル基と同義であり、好ましい炭素数及び種類も前記一般式(3)のR11~R22で表されるアルキル基と同様である。
 また、R43~R52のうち、下記一般式(2)で表される基を有する数は適宜調整されるが、合成の容易さから、4以下が好ましく、2以下がさらに好ましい。
Figure JPOXMLDOC01-appb-C000032
 一般式(2)中、*は前記一般式(7)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。
 一般式(2)中、Xはハロゲン基であれば特に限定されないが、環境に影響されにくく高い蛍光収率を有するという点から、フッ素基であることが好ましい。
 また、Yは、アリール基又はヘテロアリール基であれば特に限定されないが、環境に影響されにくく高い蛍光収率を有するという点から、アリール基又はヘテロアリール基は、フェニル基、ナフチル基、フリル基、チエニル基、ピリジル基、フェナントリル基又はピセニル基であることが好ましい。中でも、フェニル基、フリル基又はチエニル基が特に好ましい。
 一般式(7)で表されるフェナセン化合物は、前記β-ジケトン誘導体合成工程によって得られた一般式(5)で表される化合物から、例えば、Sakaiら[Tetrahedron Letters(2012),53,4138-4141]を参考に合成することができる。
≪有機発光素子≫
 前記フェナセン化合物及び前記フェナセン化合物の製造方法によって得られたフェナセン化合物は、環境に影響されにくいために堅牢性を有するものと考えられ、かつ高い発光収率を有することから、広い分野への応用が期待できる。具体的には、例えば、二光子吸収材料、共役ポリマー材料、半導体材料、フォトクロミック材料、近赤外検出デバイス、酸素センサー及び有機発光素子等への応用が期待できる。有機発光素子としては、有機発光素子の電荷輸送層、発光層の構成材料、好ましくは発光層の構成材料として用いることができる。これにより、高い発光効率を有し、かつ高電圧、酸素、光、水分等の外部環境に対して堅牢なデバイスとして期待できる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、収率の「%」は、原料が理論上、所望の生成物にすべて変換された場合に対する実際に得られた生成物の量の比率(質量基準)である。
≪フェナセン化合物の調製≫
(試薬及び化合物の同定方法)
 フェナセン化合物の調製に試薬は、すべて市販のものを用いた。また、合成した生成物については、薄層クロマトグラフィー及びNMR測定によって確認した。薄層クロマトグラフィーはミリポア社製のTLCシリカゲル60F254(製品番号:1.05715.0001)を用いUV検出器にて確認した。NMR測定においては日本電子社製のECS400およびECS600を用いた。
(光反応装置)
 光縮環工程に用いる光反応装置は、上記非特許文献2に記載の反応装置(すなわち、マイクロリアクター)を用いた。条件を以下に示す。
<条件>
光源:中圧水銀(Hg)燈
波長:314nm
流速:1ml/min~3ml/min
温度:20℃
溶媒:シクロヘキサン
<化合物A-1の合成>
 フッ化ボロン-アリル-ジケトン基を有するフェナセン化合物(化合物A-1)の合成スキームにおける一例の概略を下記に示す。
Figure JPOXMLDOC01-appb-C000033
<化合物1の合成>
 α-ブロモベンジルトリアリルホスホニウム塩2.5g(5.77mmol)、2-アセチルベンズアルデヒド780mg(5.25 mmol)を、クロロホルム60mlに加え、撹拌しながら50質量%のKOH水溶液を30ml滴下した。窒素雰囲気下、室温で1.5 時間反応させクロロホルムで抽出し、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1、v/v)を展開溶媒として用いたTLCでRf値0.37付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、913mgの化合物1が収率76%で得られた。
<化合物2の合成(保護化工程)>
 1.3gの化合物1(5.85mmol)、エチレングリコール1当量以上、p-トルエンスルホン酸0.77g(4.0mmol)、をベンゼン200mlに加え、ディーン・スターク装置を用いて85℃で48時間還流した。水と飽和食塩水で1回ずつ洗浄して溶媒を留去した。ヘキサン:酢酸エチル(3:1、v/v)を展開溶媒として用いたTLCで、Rf値0.45付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、1.42gの化合物2が収率91%で得られた。
<化合物3の合成(光縮環工程)>
 600mgの化合物2(2.26mmol)を1000mlのシクロヘキサンに溶解させ、ヨウ素(I)を2,3粒加えて、マイクロリアクターに投入し、上記の条件にて反応させた。反応終了後に得られた反応混合物を、チオ硫酸ナトリウム水溶液で2回、飽和食塩水で2回洗浄し溶媒を留去した。ヘキサン:酢酸エチル(9:1、v/v)を用いたTLCでRf=0.32付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、500mgの生成物が得られた。NMR測定によって得られた下記の結果により、化合物3が収率83%で得られたことを確認した。
 1H-NMR (CDCl3, 400 MHz) δ:8.75-8.71 (m, 3H), 8.01 (d, 1H, J = 7.33), 7.95-7.92 (m, 1H), 7.85 (d, 1H, J = 9.39), 7.69-7.63 (m, 3H), 4.14-4.13 (m,2H), 3.85-3.83 (m, 2H),2.04 (s, 3H).
<化合物4の合成(脱保護化工程)>
 1.0gの化合物3(3.78mmol)及びClCCH(OH)(抱水クロラール)3.8g(22.7mmol)をn-ヘキサン6ml、ジクロロメタン0.5mlの混合溶媒に加え、窒素雰囲気下、室温で2時間反応させた。ジクロロメタンで抽出し、有機層を水で2回、飽和食塩水で2回洗浄し、さらに溶媒を除去することで600mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, CDCl3) δ:8.88 (brd, 1H, J = 8.5 Hz), 8.69 (d, 1H, J = 8.1 Hz), 8.51 (d, 1H, J = 9.2 Hz), 7.96 (d, 1H, J = 7.5 Hz), 7.91 (d, 1H, J = 7.7 Hz), 7.86 (d, 2H, J = 9.2 Hz), 7.71-7.66 (m, 2H), 7.64 (ddd, 1H, 8.1, 7.5, 1.0 Hz).
13C-NMR (150 MHz, CDCl3) δ:202.9, 137.1, 131.8, 131.2, 130.1, 129.6, 129.1, 128.7, 128.0, 127.3, 127.0, 126.7, 125.3, 123.8, 122.9, 30.6. 
 以上の測定結果によって、化合物4である1-アセチルフェナントレン(1-AcPhe)が収率72%で得られたことを確認した。
(化合物5の合成(β-ジケトン誘導体合成工程))
 550mgの1-AcPhe(2.5 mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で5分間撹拌した。反応溶液に安息香酸メチル0.40ml(3.0mmol)を加えて5時間還流した。その後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCでRf値0.33付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、390mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, CDCl3) δ:16.80 (brs, 1H), 8.85 (d, 1H, J = 8.3 Hz), 8.71 (d, 1H, J = 8.3 Hz), 8.38 (d, 1H, J = 9.1 Hz), 7.99 (d, 2H, J = 7.6 Hz), 7.91 (d, 1H, J = 7.3 Hz), 7.88 (d, 1H, J = 7.3 Hz), 7.83 (d, 1H, J = 9.1 Hz), 7.72-7.66 (two triplets overlapped, 2H), 7.63 (t, 1H, J = 7.3 Hz), 7.56 (t, 1H, J = 7.6 Hz), 7.48 (t, 2H, J = 7.6 Hz), 6.72 (s, 1H).
13C-NMR (150 MHz, CDCl3) δ:191.0, 184.6, 136.0, 135.1, 132.8, 131.9, 131.0, 130.2, 129.2, 128.9, 128.7, 128.4, 127.4, 127.2, 127.1, 125.9, 125.8, 123.8, 123.0, 98.8. 
 以上の測定結果によって、フェナントレンの1位にフェニル-ジケトン基を有するフェナセン前駆体化合物(化合物5)が収率48%で得られたことを確認した。
(化合物A-1の合成(錯体形成工程))
 240mgの化合物5(0.74mmol)、BF/EtO(三フッ化ホウ素ジエチルエーテル錯体)0.3ml(2.2mmol)をベンゼン7mlに加え、1時間還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1、v/v)を展開溶媒として用いたTLCでRf値0.20付近に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、130mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, CDCl3) δ:8.97 (d, 1H, J = 8.4 Hz), 8.70 (d, 1H, J = 8.2 Hz), 8.38 (d, 1H, J = 9.3 Hz), 8.17 (m, 2H), 8.04 (dd, 1H, J = 7.3, 1.0 Hz), 7.95 (dd, 1H, J = 7.8, 1.0 Hz), 7.91 (d, 1H, J = 9.3 Hz), 7.77-7.68 (m, 4H), 7.57 (m, 2H), 7.11 (s, 1H). 
 13C-NMR (150 MHz, CDCl3) δ:187.8, 183.3, 135.7, 132.0, 131.8, 131.4, 130.0, 129.9, 129.8, 129.4, 129.34, 129.29, 128.9, 128.6, 127.7, 127.5, 125.7, 123.04, 122.95, 99.0.
 以上の測定結果によって、化合物A-1が収率47%で得られたことを確認した。
<化合物A-2の合成>
<3-フェニル-ジケトンを有するフェナントレン(3-PheDKPh)の合成>
 原料である3-アセチルフェナントレン(アルドリッチ社製)507mg(2.3mmol)及び水素化ナトリウム(NaH)700mg(29 mmol)を脱水したTHF20mlに加え、室温で5分間撹拌した。その後安息香酸メチル0.34ml(2.5mmol)を加えて5時間、撹拌しながら、66℃で還流した後、塩化アンモニウム水溶液100mlを滴下した。生成物に酢酸エチルを加えた溶液を、塩化アンモニウム水溶液で2回洗浄した後、飽和食塩水でさらに2回洗浄し、洗浄後の溶液を減圧濃縮した。濃縮した溶液について、ヘキサン:酢酸エチル(9:1、v/v)を展開溶媒として用いたTLCを行い、Rf値0.32付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、444mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H NMR (600 MHz, CDCl3) δ:17.1 (s, 1H), 8.83 (d, 2H J = 8.3 Hz), 8.13 (dd, 1H, J= 8.2, 1.5 Hz), 8.08-8.05 (m, 2H), 7.97 (d, 1H, J = 8.2 Hz), 7.93 (brd, 1H, J = 7.9 Hz), 7.85 (d, 2H, J = 8.7 Hz), 7.78 (d, 2H, J = 8.7 Hz), 7.74 (ddd, 1H, J = 8.3, 7.1, 1.3 Hz), 7.65 (ddd, 1H, J = 7.9, 7.1, 1.3 Hz), 7.61-7.56 (m, 1H), 7.57-7.51 (m, 2H), 7.07 (s, 1H).
13C NMR (150 MHz, CDCl3) δ:186.0, 185.8, 135.8, 134.8, 133.4, 132.7, 132.4, 130.7, 130.2, 129.6, 129.1, 129.0, 128.9 (overlapped), 127.40, 127.35, 126.5, 124.5, 123.0, 122.7, 93.7.
 以上の測定結果によって、フェナントレンの3位にフェニル-ジケトン基を有するフェナセン前駆体化合物(3-PheDKPh)が収率60%で得られたことを確認した。
<化合物A-2の合成>
 324mgの3-PheDKPh(1.0 mmol)、0.41mlのBF/EtO(3.0mmol)をベンゼン10mlに加え、1時間還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCでRf値0.26付近に、反応後の溶液に新たなスポットが観測された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(3:1、v/v)]で分離後に溶媒を除去することで、180mgの生成物が得られた。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, DMSO-d6) δ:9.80 (d, 1H, J = 1.2 Hz), 9.21 (d, 1H, J = 8.3 Hz), 8.51-8.48 (m, 3H). 8.30 (s, 1H), 8.25 (d, 1H, J = 8.5 Hz), 8.12 (d, 1H, J = 8.5 Hz), 8.10 (d, 1H, J = 8.7 Hz), 8.00 (d, 1H, J = 7.7 Hz), 7.90-7.84 (two trip-lets overlapped, 2H), 7.78 (t, 1H, J = 7.7 Hz), 7.34, t, 2H, J = 7.7 Hz).
13C-NMR (150 MHz, DMSO-d6) δ:182.5, 182.3, 136.3, 135.9, 131.9, 131.5, 131.4, 130.0, 129.8, 129.6, 129.50, 129.47, 129.27, 129.0, 127.9, 126.3, 125.9, 125.5, 123.7, 95.0.
 以上の測定結果によって、化合物A-2が収率48%で得られたことを確認した。
<化合物A-3の合成>
 <3-PheDKFの合成>
 3-アセチルフェナントレン 500 mg(2.3 mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で5min撹拌した。反応溶液にメチル-2-フロエート0.40ml(3.9mmol)を加えて5時間、66℃で還流した後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、抽出した有機層を塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して有機層を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCで、Rf値0.20付近に新たなスポットが確認された。これをシリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、358mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, CDCl3) δ:16.40(brs, 1H), 9.31 (s, 1H), 8.79 (d, 1H, J = 8.3 Hz), 8.08 (dd, 1H, J = 8.3, 1.6 Hz), 7.92 (d, 1H, J = 8.4), 7.90 (d, 1H, J = 7.8 Hz), 7.82 (d, 1H, J = 7.8 Hz), 7.75-7.70 (m, 2H), 7.68-7.62 (m, 2H), 7.30 (d, 1H, J = 3.4 Hz), 6.95 (s, 1H), 6.95(s, 2H).
13C-NMR (150 MHz, CDCl3) δ:182.5.0, 177.7, 151.2, 146.3, 134.7, 132.4, 132.3, 130.6, 130.1, 129.5, 129.0, 128.9, 127.32, 127.28, 126.4, 124.3, 122.9, 122.4,116.0, 122.9, 93.2. 
 以上の測定結果によって、フェナントレンの3位にフリル-ジケトン基を有するフェナセン前駆体化合物(3-PheDKF)が収率50%で得られたことを確認した。
〈化合物A-3の合成〉
 3-PheDKF300mg(0.95mmol)、BF/EtO(三フッ化ホウ素ジエチルエーテル錯体)0.3ml(2.2mmol)をベンゼン6mlに加え、1時間、80℃で還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCで、Rf値0.11付近に新たなスポットが観測された。析出した固体の溶媒を除去することで、320mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, DMSO-d6) δ:9.69 (bs, 1H), 9.15 (d, 1H, J = 8.4 Hz), 8.44 (m, 1H), 8.41 (dd, 1H, J = 8.3, 1.3 Hz), 8.28 (d, 1H, J = 3.6 Hz), 8.24 (d, 1H, J = 8.5 Hz), 8.10 (two doublets, 2H), 8.00 (two doublets, 2H), 7.85 (ddd, J = 8.4, 7.2, 1.1 Hz), 7.77 (t, 1H, J = 7.6 Hz), 7.06 (dd, 1H, 3.6, 1.5 Hz).
13C-NMR (150 MHz, DMSO-d6) δ:180.7, 170.8, 152.5, 147.3, 136.0, 131.9, 131.2, 129.9, 129.8, 129.6, 129.3, 129.0, 127.90, 127.88, 126.3, 125.24, 125.18, 124.9, 123.6, 115.1, 93.9.
 以上の測定結果によって、化合物A-3が収率92%で得られたことを確認した。
<化合物A-4の合成>
〈3-PheDKTの合成〉
 3-アセチルフェナントレン500mg(2.3mmol)、水素化ナトリウム(NaH)700mg(29mmol)を脱水THF25mlに加え、室温で15min撹拌した。反応溶液にメチル-2-チオフェンカルボキシレート0.35ml(3.0mmol)を加えて3時間、66℃で還流した。その後、塩化アンモニウム水溶液を滴下した。酢酸エチルで抽出し、抽出した有機層を塩化アンモニウム水溶液で2回、飽和食塩水で2回洗浄して溶媒を留去した。ヘキサン:酢酸エチル(9:1,v/v)を展開溶媒として用いたTLCで、Rf値0.24付近に新たなスポットが確認された。シリカゲルカラムクロマトグラフィー[展開溶媒;ヘキサン:酢酸エチル(9:1、v/v)]で分離後に溶媒を除去することで、426mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, CDCl3) δ:16.54(brs, 1H), 9.27 (s, 1H), 8.02 (dd, 1H, J = 8.5, 1.2 Hz), 7.92-786 (m, 2H), 7.86 (dd, 1H, J = 3.7, 0.8 Hz), 7.81 (d, 1H, J = 8.7 Hz), 7.74-7.69 (m, 3H), 7.66-7.61 (m, 2H), 7.19 (dd, 1H, J = 4.9, 3.8 Hz), 6.84 (s, 1H).
 13C-NMR (150 MHz, CDCl3) δ:183.1, 180.7, 142.5, 134.6, 132.8, 132.3, 132.1, 130.5, 130.1, 129.4, 129.0, 128.9, 128.4, 127.30, 127.27, 126.4, 124.1, 122.9, 122.2, 93.6.
 以上の測定結果によって、フェナントレンの3位にチオフェン-ジケトン基を有するフェナセン前駆体化合物(3-PheDKT)が収率56%で得られたことを確認した。
〈化合物A-4の合成〉
 3-PheDKT376mg(1.14mmol)、BF/EtO(三フッ化ホウ素ジエチルエーテル錯体)0.4 ml(3.0mmol)をベンゼン10mlに加え、1時間、80℃で還流した。反応終了後、析出した固体を吸引ろ過した。ヘキサン:酢酸エチル(3:1,v/v)を展開溶媒として用いたTLCで、Rf値0.13付近に新たなスポットが観測された。析出した固体から溶媒を除去することで、309mgの生成物を得た。生成物について、NMR測定を行い下記結果を得た。
 1H-NMR (600 MHz, DMSO-d6) δ:9.71 (bs, 1H), 9.16 (d, 1H, J = 8.3 Hz), 8.86 (d, 1H, J = 4.1 Hz), 8.46 (dd, 1H, J = 4.8, 1.2 Hz), 8.44 (dd, 1H, J = 8.5, 1.2 Hz), 8.25 (d, 1H, J = 8.5 Hz), 8.19 (s, 1H), 8.11 (two doublets, 2H), 8.00 (d, J = 7.8 Hz), 7.86 (t, 1H, J = 7.6 Hz), 7.77 (t, 1H, 7.3 Hz), 7.56 (dd, 1H, J = 4.8, 4.1 Hz).
 13C-NMR (150 MHz, DMSO-d6) δ:180.7, 170.8, 152.5, 147.3, 136.0, 131.9, 131.1, 129.9, 129.8, 129.6, 129.3, 129.0, 127.89, 127.88, 126.3, 125.24, 125.18, 124.9, 123.6, 115.1, 93.9.
 以上の測定結果によって、化合物A-4が収率72%で得られたことを確認した。
(比較化合物1の合成)
 上記A-1の合成において、原料である1-アセチルフェナントレンの代わりにアルドリッチ社製の2-アセチルフェナントレンを用いた以外は同様にして、比較化合物1を調製した。
Figure JPOXMLDOC01-appb-C000034
(比較化合物2の合成)
 上記A-1の合成において、原料である1-アセチルフェナントレンの代わりにアルドリッチ社製の9-アセチルフェナントレンを用いた以外は同様にして、比較化合物2を調製した。
Figure JPOXMLDOC01-appb-C000035
 下記構造を有する比較化合物3~5は公知であり、上記化合物A-1の合成において、市販されているアセチルフェニル、2-アセチルナフタレン及び2-アセチルアントラセンを用いた以外は同様にして、比較化合物3~5を調製した。
Figure JPOXMLDOC01-appb-C000036
≪評価≫
 上記にて調製したフェナセン化合物(A-1~A-4、比較化合物1及び2)並びにアセン化合物(比較化合物3~5)それぞれを含む各溶液(クロロホルム及びアセトニトリル)に対する蛍光の光物理特性(蛍光収率、蛍光寿命及び速度定数)を測定した。なお、表1にあるように、上記のそれぞれの化合物を含む溶液を、実施例1~4、比較例1~5とした。
<各物性の測定方法>
(蛍光収率の測定)
 紫外可視分光光度計(V-550、日本分光(株)製)を用いて吸収スペクトル及び最大吸収波長(λabs/nm)を測定した。絶対PL光量子収率測定装置(C9920-02、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物のモル吸光定数、最大蛍光波長及び蛍光収率(Φ)を測定した。結果を図1に示す。図1中、各化合物における吸収スペクトルを実線で示し、蛍光スペクトルを破線で示す。
(蛍光寿命の測定)
 小型蛍光寿命測定装置(C11367-01、浜松フォトニクス(株)製)を用いて、クロロホルム中及びアセトニトリル中における上記化合物の蛍光寿命(τ)を測定し、上記で得られた蛍光収率(Φ)と蛍光寿命(τ)との関係から、放射過程における速度定数(k)を算出した。蛍光収率、すなわち蛍光量子収率(Φ)とは、物質が吸収した光子のうち、蛍光として放出される光子の割合を表す。このため、蛍光収率が高いほど発光効率が良いことを示す。
 また、蛍光寿命(τ)の値は分子固有の値を有し、放射過程における速度定数の値(k)は蛍光収率(Φ)を蛍光寿命(τ)で除した値である。
 各化合物を溶解した溶液に対する上記の物性の測定結果を表1に示す。
 また、表1中の、化合物A-1~A-4、比較化合物1及び2の蛍光収率(Φ)、蛍光寿命(τ)、及び放射過程における速度定数(k)におけるクロロホルム中とアセトニトリル中での値の違いを、図2A及び図2Bに示す。
Figure JPOXMLDOC01-appb-T000037
 表1の結果から、実施例1~4のいずれも、クロロホルム中及びアセトニトリル中で高い蛍光収率を有した。一方、比較例では、いずれの溶媒中でも実施例に比べて低い蛍光収率であるか、あるいは、いずれかの溶媒中で蛍光収率が高くても、他方の溶媒中で低い蛍光収率を示した。
 また、図2A及び図2Bを参照すると、同じフェナントレン化合物で比較した場合には、フェナントレンの1位又は3位にフッ化ボロン-アリール-ジケトン基が結合した本発明の一実施形態に係るフェナセン化合物が溶媒の違いによらずに、他の位置にフッ化ボロン-アリール-ジケトン基が結合したフェナセン化合物より高い蛍光収率を有することが示された。一方、比較化合物2は、化合物A-1~A-4に近い蛍光収率を有するものの、蛍光寿命がやや劣ることが示された。
 また、図2Bの結果から、フッ化ボロン-アリール-ジケトン基が結合したフェナセン化合物のうち、アリール基としてフェニル、フリル及びチオフェンのいずれの置換基でも、溶媒の違いによらずに、高い蛍光収率を有することも示された。
 このように、本発明の一実施形態に係るフェナセン化合物は、環境に影響されにくく、かつ高い蛍光収率を有することが示された。
 2015年10月16日に出願された日本国特許出願2015-205045号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (10)

  1.  下記一般式(1)で表されるフェナセン化合物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)中、R、R、R、R、R、R、R、R、R及びR10は、それぞれ独立に、水素原子又は下記一般式(2)で表される基を表し、R、R及びRのいずれか1つは下記一般式(2)で表される基である。RとR10とは、R及びR10が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(2)中、*は前記一般式(1)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。)
  2.  前記一般式(1)中、Rが前記一般式(2)で表される基である請求項1に記載のフェナセン化合物。
  3.  下記一般式(3)で表される化合物のカルボニル基を保護化剤よって保護する保護化工程と、
     前記保護化工程によって得られた化合物を、光縮環反応によって縮環したベンゼン環を形成する光縮環工程と、
     前記光縮環工程によって得られた化合物を、脱保護化剤によって脱保護することにより下記一般式(4)で表されるフェナセン化合物を合成する脱保護化工程と、
     を含むフェナセン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003

    (一般式(3)中、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、及びR22は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、及びR22の少なくとも1つは、炭素数1~12のアシル基を表す。R21とR22とは、R21及びR22が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000004

    (一般式(4)中、R23、R24、R25、R26、R27、R28、R29、R30、R31及びR32は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は炭素数1~12のアシル基を表し、R23、R24、R25、R26、R27、R28、R29、R30、R31及びR32の少なくとも1つは、炭素数1~12のアシル基を表す。R31とR32とは、R31及びR32が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
  4.  前記保護化剤は、ジオール化合物である請求項3に記載のフェナセン化合物の製造方法。
  5.  前記脱保護化剤は、抱水クロラール及びペルオキシ一硫酸カリウムから選ばれるいずれか1つである請求項3又は請求項4に記載のフェナセン化合物の製造方法。
  6.  更に、前記脱保護化工程によって得られた化合物とカルボニル基含有化合物とを反応させることにより下記一般式(5)で表されるβ-ジケトン誘導体を合成するβ-ジケトン誘導体合成工程を含む請求項3~請求項5のいずれか一項に記載のフェナセン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005

    (一般式(5)中、R33、R34、R35、R36、R37、R38、R39、R40、R41及びR42は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(6)で表される基であり、R33、R34、R35、R36、R37、R38、R39、R40、R41及びR42の少なくとも1つは、下記一般式(6)で表される基を表す。R41とR42とは、R41及びR42が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000006

    (一般式(6)中、*は前記一般式(5)で表される化合物との結合位置を示す。Yはアリール基又はヘテロアリール基を表す。)
  7.  更に、前記β-ジケトン誘導体合成工程によって得られた化合物とハロゲン化ほう素とを反応させることにより、下記一般式(7)で表される錯体を形成する錯体形成工程を含む請求項6に記載のフェナセン化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000007

    (一般式(7)中、R43、R44、R45、R46、R47、R48、R49、R50、R51及びR52は、それぞれ独立に、水素原子、炭素数6以下のアルキル基又は下記一般式(2)で表される基であり、R43、R44、R45、R46、R47、R48、R49、R50、R51及びR52の少なくとも1つは、下記一般式(2)で表される基を表す。R51とR52とは、R51及びR52が結合する炭素原子とともに、互いに結合して縮環を形成していてもよい。)
    Figure JPOXMLDOC01-appb-C000008

    (一般式(2)中、*は前記一般式(7)で表される化合物との結合位置を示す。Xはハロゲン基を示し、Yはアリール基又はヘテロアリール基を表す。)
  8.  下記一般式(8)で表されるフェナセン化合物。
    Figure JPOXMLDOC01-appb-C000009

    (一般式(8)中、Yはフェニル基、フリル基又はチエニル基を表す。Zは縮環した0個以上のベンゼン環であることを示す。)
  9.  下記式(1-1)で表されるフェナセン化合物。
    Figure JPOXMLDOC01-appb-C000010
  10.  請求項1又は請求項2に記載のフェナセン化合物を含む有機発光素子。
PCT/JP2016/080392 2015-10-16 2016-10-13 フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子 WO2017065219A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187013574A KR102110059B1 (ko) 2015-10-16 2016-10-13 페나센 화합물, 페나센 화합물의 제조 방법 및 유기 발광 소자
JP2017545458A JP6811487B2 (ja) 2015-10-16 2016-10-13 フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子
CN201680060326.0A CN108137619B (zh) 2015-10-16 2016-10-13 菲烯化合物、菲烯化合物的制造方法以及有机发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015205045 2015-10-16
JP2015-205045 2015-10-16

Publications (1)

Publication Number Publication Date
WO2017065219A1 true WO2017065219A1 (ja) 2017-04-20

Family

ID=58517290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080392 WO2017065219A1 (ja) 2015-10-16 2016-10-13 フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子

Country Status (4)

Country Link
JP (1) JP6811487B2 (ja)
KR (1) KR102110059B1 (ja)
CN (1) CN108137619B (ja)
WO (1) WO2017065219A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176537A (ja) * 1985-02-01 1986-08-08 Mitsubishi Chem Ind Ltd 芳香族化合物のアシル化方法
JP2015178474A (ja) * 2014-03-19 2015-10-08 国立大学法人群馬大学 カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176537A (ja) * 1985-02-01 1986-08-08 Mitsubishi Chem Ind Ltd 芳香族化合物のアシル化方法
JP2015178474A (ja) * 2014-03-19 2015-10-08 国立大学法人群馬大学 カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ADAMS J. CHRISTOPHER ET AL.: "Friedel-crafts reactions in room temperature ionic liquids", CHEMICAL COMMUNICATIONS, 1998, pages 2097 - 2098, XP002172928 *
BACHMANN W. E. ET AL.: "Phenanthrene derivatives. V. Beckmann rearrangement of the oximes of acetylphenanthrenes and benzoylphenanthrenes", JOURNAL OF THE AMERICA CHEMSICAL SOCIETY, vol. 58, 1936, pages 2097 - 2101 *
BACHMANN W. E. ET AL.: "The preparation of phenanthryl amines and phenanthryl halides", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 58, May 1936 (1936-05-01), pages 857 - 858, XP055378196 *
BALO C. ET AL.: "1H NMR spectra of monosubstituted phenanthrenes", SPECTROCHIMICA ACTA, vol. 50 A, no. 5, 1994, pages 937 - 940, XP055378189 *
BUU-HOÏ N. P. ET AL.: "Les réactions de friedel-crafts d'acylation des hydrocarbures aromatiques polycycliques. II. Effets de solvant dans l'acétylation du phénanthrène", BULLETIN DE LA SOCIÉTÉ CHIMIQUE DE FRANCE, 1966, pages 180 - 184 *
CHANDRASEKHAR SOSALE ET AL.: "Chloral hydrate as a water carrier for the efficient deprotection of acetals, dithioacetals, and tetrahydropyranyl ethers in organic solvents", SYNTHETIC COMMUNICATIONS, vol. 44, no. 13, 2014, pages 1904 - 1913, XP055378197 *
FU WAI CHUNG ET AL.: "Exploiting aryl mesylates and tosylates in catalytic mono-alpha-arylation of aryl- and heteroarylketones", ORGANIC LETTERS, vol. 18, no. 8, 15 April 2016 (2016-04-15), pages 1872 - 1875, XP055378200 *
JIANG XUEZHONG ET AL.: "Efficient emission from a europium complex containing dendron- substituted diketone ligands", THIN SOLID FILMS, vol. 416, no. 1-2, 2 September 2002 (2002-09-02), pages 212 - 217, XP004389755 *
LEVY LIRON ET AL.: "Reversible Friedel-crafts acylations of phenanthrene: rearrangements of acetylphenanthrenes", LETTERS IN ORGANIC CHEMISTRY, vol. 4, no. 5, 2007, pages 314 - 318 *
OTA E.: "Some aromatic reactions using aluminum chloride-rich molten salts", PROCEEDINGS- ELECTROCHEMICAL SOCIETY, vol. 87, no. 7, 1987, pages 1002 - 1010 *

Also Published As

Publication number Publication date
CN108137619B (zh) 2021-04-20
JPWO2017065219A1 (ja) 2018-08-02
KR20180069029A (ko) 2018-06-22
KR102110059B1 (ko) 2020-05-12
CN108137619A (zh) 2018-06-08
JP6811487B2 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
US20170069855A1 (en) Chiral metal complexes as emitters for organic polarized electroluminescent devices
JP6675758B2 (ja) ホスファフルオレセイン化合物若しくはその塩、又はそれを用いた蛍光色素
JP2022045366A (ja) インダンジオン骨格を有する希土類錯体
JP2019214584A (ja) ハロゲン化化合物およびフラーレン誘導体の製造方法
JP5803025B2 (ja) フォトクロミック分子
JP7222517B2 (ja) 新規化合物及びその製造方法
WO2017065219A1 (ja) フェナセン化合物、フェナセン化合物の製造方法及び有機発光素子
JP6249210B2 (ja) 有機蛍光材料
JP6598573B2 (ja) 新規なベンゾインデノフルオレノピラン類及びその製造方法
JP6869524B2 (ja) アミノベンゾピラノキサンテン系(abpx)色素化合物の製造方法
JP2015178474A (ja) カルボニルフェナセン化合物、有機発光材料、有機半導体材料、及びカルボニルフェナセン化合物の製造方法
WO2015199141A1 (ja) 発光性・半導体性能を発現するクマリン系縮環化合物およびその製造方法
JP2012176928A (ja) ピレン誘導体、ピレン誘導体の製造方法、錯体、触媒、電子材料、発光材料および色素
KR101478884B1 (ko) 비스인돌일말레이미드계 화합물 및 이의 제조방법
JP5408822B2 (ja) 5,6,7,8−テトラ置換−1,4−ジアルコキシ−5,8−エポキシ−2,3−ジシアノ−5,8−ジヒドロナフタレン誘導体及びその製造方法
JP5521210B2 (ja) トリアリールアミン部位及び縮合環部位を有する化合物、及びその製造方法
JP6682115B2 (ja) フルオレン化合物、フルオレン化合物の製造方法及び有機発光素子
US11866393B2 (en) 7,7′-dihalo-3,3,3′,3′-tetramethyl-1,1′-spirobiindane and preparation method thereof
JP6516272B2 (ja) カーボンナノベルト及びその製造方法
JP2008106037A (ja) インドール化合物の製造方法およびインドール化合物
CN118005601A (zh) 一种具有聚集诱导发光性能的化合物及其制备方法
EP3822277A1 (en) Rare-earth complex, light-emitting material, light-emitting object, light-emitting device, interlayer for laminated glass, laminated glass, windshield for vehicle, wavelength conversion material, and security material
KR101511235B1 (ko) 2,6-다이아미노-9,10-다이하이드로안트라센을 고순도로 정제하는 방법
JP5487815B2 (ja) ピロメテン誘導体の製造方法
JP2021127298A (ja) ジケトピロロピロール化合物および蛍光プローブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187013574

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16855472

Country of ref document: EP

Kind code of ref document: A1