WO2017065163A1 - 流路構造体および測定対象液体の測定装置 - Google Patents

流路構造体および測定対象液体の測定装置 Download PDF

Info

Publication number
WO2017065163A1
WO2017065163A1 PCT/JP2016/080226 JP2016080226W WO2017065163A1 WO 2017065163 A1 WO2017065163 A1 WO 2017065163A1 JP 2016080226 W JP2016080226 W JP 2016080226W WO 2017065163 A1 WO2017065163 A1 WO 2017065163A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
flow path
liquid
flow channel
structure according
Prior art date
Application number
PCT/JP2016/080226
Other languages
English (en)
French (fr)
Inventor
酒井 修
田口 好弘
健一郎 鮫島
由宗 鈴木
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to EP16855417.8A priority Critical patent/EP3364186B1/en
Priority to CN201690001169.1U priority patent/CN208140648U/zh
Priority to JP2017545211A priority patent/JP6704920B2/ja
Publication of WO2017065163A1 publication Critical patent/WO2017065163A1/ja
Priority to US15/939,825 priority patent/US10712320B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/18Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6091Cartridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • G01N2021/0314Double pass, autocollimated path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • G01N2030/746Optical detectors detecting along the line of flow, e.g. axial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns

Definitions

  • the present invention relates to a flow path structure used in a measurement apparatus for a measurement target liquid that can support POCT, and a measurement target liquid measurement apparatus incorporating the flow path structure.
  • HPLC High Performance Liquid Chromatography
  • Patent Document 1 discloses an HPLC apparatus including an eluent bottle, a deaeration device, a sample preparation unit, an analysis unit, a photometric mechanism, and an arithmetic circuit.
  • the photometric mechanism described in Patent Document 1 includes a photometric cell, a light source, a beam splitter, a measurement light receiving system, and a reference light receiving system, and is installed separately from an analysis unit having an analysis column.
  • POCT point-of-care testing
  • the present invention is for solving the above-described conventional problems, and an object of the present invention is to provide a flow channel structure that can easily cope with downsizing of a measuring apparatus in which the flow channel structure is incorporated. Another object of the present invention is to provide a flow channel structure that can easily cope with high sensitivity or trouble suppression of a measurement apparatus in which the flow channel structure is incorporated. Another object of the present invention is to provide an apparatus for measuring a liquid to be measured in which a flow channel structure is incorporated.
  • the flow channel structure of the present invention stores a supply flow channel that guides the liquid to be measured to the inside, and a separation element that separates a plurality of components contained in the liquid to be measured guided by the supply flow channel.
  • a detection unit that guides the measurement target liquid that is irradiated with the measurement light for measuring information on the component that is the measurement target liquid that has passed through the separation element storage unit.
  • the detection unit is a measurement channel part that guides the liquid to be measured, and an incident part that is provided at an end of the measurement channel part and guides the measurement light into the measurement channel part, And an exit portion that is provided at the other end of the measurement flow path portion and guides the measurement light from the measurement flow path portion.
  • the detection unit guides the measurement target liquid that is irradiated with the measurement light for measuring information about the component included in the measurement target liquid. That is, the measurement light is irradiated to the measurement target liquid flowing through the detection unit.
  • This detection unit is incorporated in the flow channel structure and is provided integrally with the flow channel structure. Thereby, the measuring apparatus in which the flow path structure is incorporated can be reduced in size, and a flow path structure that can easily cope with the downsizing of the measurement apparatus can be provided.
  • the detection unit is provided integrally with the flow channel structure, the volume of the flow channel connecting the separation element storage unit and the detection unit can be minimized. That is, the dead volume can be minimized. Thereby, the information regarding the composition of the liquid to be measured can be measured with high sensitivity. That is, the number of theoretical plates in the chromatogram can be increased.
  • the detection unit is provided integrally with the flow channel structure, it is not necessary to connect the flow channel structure and the detection unit with a pipe or the like. Therefore, troubles such as liquid leakage can be prevented from occurring inside the measuring apparatus in which the flow channel structure is incorporated.
  • the detection unit is incorporated in the flow channel structure, the trouble can be solved by replacing the flow channel structure even when a trouble related to the detection unit occurs. Thereby, POCT can be realized.
  • the center line of the measurement light may extend in a direction along the flow direction of the measurement target liquid flowing in the measurement flow channel portion. According to this, compared with the case where the center line of the measurement light intersects the flow direction of the measurement target liquid flowing through the measurement flow path portion, the volume of the measurement region is increased, and the optical path of the measurement light irradiated to the measurement target liquid The length can be increased. Thereby, the measuring device incorporating the flow channel structure can easily detect a slight change in absorbance, and can measure information on the composition of the liquid to be measured with high sensitivity.
  • the flow direction of the liquid to be measured flowing through the measurement flow channel portion may extend in a direction perpendicular to the main surface of the base material. According to this, since the flow direction of the measurement target liquid flowing through the measurement flow path portion extends in the plate thickness direction of the base material, the detection unit can be formed relatively easily, and the flow direction of the measurement target liquid And the center line of the measurement light can be matched relatively easily.
  • the flow direction of the measurement target liquid flowing through the measurement flow channel portion may extend in a direction parallel to the main surface of the base material. According to this, even when the flow direction of the liquid to be measured flowing through the measurement channel portion extends in the in-plane direction instead of the plate thickness direction of the base material, the center line of the measurement light and the measurement channel portion are By making the flowing direction of the measurement target liquid parallel, the volume of the measurement region can be increased, and the optical path length of the measurement light applied to the measurement target liquid can be increased. Thereby, the measuring device incorporating the flow channel structure can easily detect a slight change in absorbance, and can measure information on the composition of the liquid to be measured with high sensitivity.
  • the emission portion includes a reflection portion that is provided on a side opposite to the incident portion and reflects the measurement light irradiated on the measurement target liquid from the incident portion side. May be. According to this, even if it is a case where the light of the wavelength range which does not permeate
  • the reflection part may have a concave shape inside the detection part.
  • the suitable shape of a reflection part can be manufactured by designing the shape of the metal mold
  • the reflection part may have a convex shape protruding toward the inside of the detection part. According to this, since the measurement light reflected by the convex reflection part is dispersed inside the detection part, the optical path length of the measurement light applied to the measurement target liquid can be further increased. Thereby, the measuring device incorporating the flow channel structure can easily detect a slight change in absorbance, and can measure information related to the composition of the liquid to be measured with higher sensitivity.
  • the reflecting portion may have a parabolic surface. According to this, the measurement light emitted parallel to the parabolic surface axis of the reflecting portion is reflected by the reflecting portion and then gathers at the focal point of the parabolic surface of the reflecting portion. Therefore, when a light receiving unit that detects light reflected by the reflecting unit is provided at the focal point of the paraboloid of the reflecting unit, the light receiving unit measures information on the composition of the liquid to be measured with higher sensitivity. can do.
  • the reflecting portion may have a metal-containing layer provided on the surface of the base material. According to this, the reflection part reflects more measurement light. Therefore, the measurement apparatus incorporating the flow channel structure can measure information related to the composition of the liquid to be measured with higher sensitivity.
  • the reflection portion may include an oxide-containing layer provided on the metal-containing layer.
  • the oxide-containing layer functions as a protective layer for the metal-containing layer, and even when the liquid to be measured is blood, it is possible to suppress blood from being adsorbed on the metal-containing layer. .
  • the base material may be a bonded body of a plurality of plate-like members. According to this, the flow path structure which has various partial structures can be obtained efficiently.
  • any of the plurality of plate-like members may have transparency in the wavelength region of the measurement light.
  • the separation element may be a separation column.
  • the separation element may be an electrophoretic element.
  • a measuring apparatus for measuring a liquid to be measured includes any one of the above-described flow path structures, a liquid feeding unit that supplies a developing liquid to the flow path structures, and a measurement target liquid that is the flow path structure.
  • a sample introduction unit to be supplied to the body a light emitting unit for emitting measurement light for measuring information relating to components contained in the measurement target liquid, and a light receiving unit for detecting the measurement light irradiated to the measurement target liquid
  • a detector for detecting the measurement light irradiated to the measurement target liquid.
  • the detection unit guides the measurement target liquid irradiated with the measurement light for measuring information regarding the components included in the measurement target liquid. That is, the measurement light is irradiated to the measurement target liquid flowing through the detection unit.
  • This detection unit is incorporated in the flow channel structure and is provided integrally with the flow channel structure. Thereby, the measuring apparatus in which the flow path structure is incorporated can be reduced in size.
  • the detection unit is provided integrally with the flow channel structure, the volume of the flow channel connecting the separation element storage unit and the detection unit can be minimized. That is, the dead volume can be minimized. Thereby, the information regarding the composition of the liquid to be measured can be measured with high sensitivity. That is, the number of theoretical plates in the chromatogram can be increased.
  • the detection unit is provided integrally with the flow channel structure, it is not necessary to connect the flow channel structure and the detection unit with a pipe or the like. Therefore, troubles such as liquid leakage can be prevented from occurring inside the measuring apparatus in which the flow channel structure is incorporated.
  • the detection unit is incorporated in the flow channel structure, the trouble can be solved by replacing the flow channel structure even when a trouble related to the detection unit occurs. Thereby, POCT can be realized.
  • the present invention it is possible to provide a flow channel structure that can easily cope with the downsizing of a measuring apparatus incorporating the flow channel structure.
  • ADVANTAGE OF THE INVENTION it becomes possible to provide the measuring apparatus of the measuring object liquid incorporating the flow-path structure.
  • FIG. 4 is a schematic cross-sectional view taken along a cutting plane B1-B1 shown in FIG. It is a typical perspective view showing the channel structure concerning other embodiments.
  • FIG. 8 is a schematic cross-sectional view taken along a cutting plane B2-B2 illustrated in FIG.
  • FIG. 1 is a block diagram showing a measurement target liquid measuring apparatus including a flow channel structure according to the present embodiment.
  • FIG. 2 is a block diagram showing a measurement target liquid measuring apparatus including a flow channel structure according to a comparative example.
  • the measurement target liquid measuring apparatus 10 includes a liquid feeding unit 100, a sample introduction unit 200, a flow channel structure 300, and a detector 400.
  • the liquid feeding unit 100 includes a liquid storage unit 110 and a pump 120.
  • the liquid storage part 110 stores the developing liquid 111 as a mobile phase.
  • the pump 120 applies pressure fluctuation to the inside of the liquid storage unit 110 and supplies the developing liquid 111 stored in the liquid storage unit 110 to the flow path structure 300.
  • the sample introduction unit (injection unit) 200 includes a tank 210 and a valve 220.
  • the tank 210 stores a measurement target liquid (sample) 211.
  • the valve 220 When the valve 220 is opened, the sample introduction unit 200 supplies the measurement target liquid 211 stored in the tank 210 to the flow channel structure 300, and the measurement target liquid 211 and the developing liquid 111 supplied from the liquid storage unit 110. , Can be mixed.
  • the flow path structure 300 has a base material 301.
  • the base material 301 includes a supply channel 330 and a separation element storage unit 310.
  • the supply flow path 330 guides the supplied measurement target liquid 211 to the inside of the flow path structure 300.
  • the separation element storage unit 310 stores a separation element (separation column) 311.
  • the separation element 311 separates each component included in the measurement target liquid 211 by using the difference in interaction between each component included in the measurement target liquid 211 and the separation element 311. Specifically, for example, the separation element 311 uses the difference in moving speed based on the adsorptivity of each component included in the measurement target liquid 211 and the difference in distribution coefficient to convert each component included in the measurement target liquid 211. To separate. For example, when the measurement target liquid 211 is blood, the separation element 311 separates components contained in blood according to the size of the molecule and the charged state. For example, a silica monolith or the like is used as the separation element 311.
  • the liquid storage part 110 may be provided in the flow path structure 300.
  • the channel structure 300 may have the liquid storage part 110.
  • the developing liquid 111 stored in the liquid storage unit 110 is supplied to the separation element storage unit 310 based on the pressure fluctuation applied to the inside of the liquid storage unit 110 by the pump 120.
  • the flow channel structure 300 is incorporated into the measurement apparatus 10 as a measurement unit having the developing liquid 111 stored in the liquid storage unit 110.
  • the detector 400 includes a light emitting unit 410, a detecting unit 320, and a light receiving unit 420.
  • the light emitting unit 410 is fixed to, for example, a lid (not shown) of the flow channel structure 300, and emits measurement light toward the detection unit 320.
  • the wavelength of light emitted from the light emitting unit 410 is, for example, about 250 nanometers (nm) or more and 450 nm or less. However, the wavelength of the light emitted from the light emitting unit 410 is not limited to this.
  • the detection unit 320 is incorporated in the flow channel structure 300 and is provided integrally with the flow channel structure 300.
  • the flow channel structure 300 includes the supply flow channel 330, the separation element storage unit 310, and the detection unit 320.
  • the detection unit 320 is a part of the flow channel structure 300 and also a part of the detector 400.
  • the detection unit 320 functions as a discharge channel for discharging the mixed solution (mixed solution of the developing solution 111 and the measurement target liquid 211) that has passed through the separation element 311 and is irradiated with the measurement light emitted from the light emitting unit 410. It functions as a measurement channel that guides the measurement target liquid 211 to be measured.
  • the mixed liquid of the developing liquid 111 and the measurement target liquid 211 passes through the separation element 311 and is separated into components, and then passes through the detection unit 320. And discharged from the detection unit 320. At this time, the measurement light emitted from the light emitting unit 410 is applied to the liquid mixture that passes through the detection unit 320.
  • the measurement light emitted from the light emitting unit 410 is applied to the liquid mixture that passes through the detection unit 320.
  • the measurement light emitted from the light emitting unit 410 is applied to the liquid mixture that passes through the detection unit 320.
  • the light receiving unit 420 detects light transmitted through the liquid mixture, and calculates the concentration of each component contained in the measurement target liquid 211 based on the detected light intensity.
  • the light receiving unit 420 may store the calculated concentration of each component.
  • the pump 120 is driven, the developing liquid 111 inside the liquid storage unit 110 is supplied to the supply flow path 11, and the detection unit 320 is filled with the developing liquid 111.
  • the valve 220 is opened, and the measurement target liquid 211 inside the tank 210 is supplied to the flow path structure 300.
  • a mixed liquid of the developing liquid 111 and the measurement target liquid 211 is formed on the downstream side of the valve 220.
  • the pump 120 is further driven, the developing liquid 111 inside the liquid storage unit 110 is supplied to the supply flow path 11, and the mixed liquid formed on the downstream side of the valve 220 is supplied to the separation element 311.
  • the measurement target liquid 211 is separated.
  • the measurement light emitted from the light emitting unit 410 is irradiated to the liquid mixture that passes through the detection unit 320, and the light receiving unit 420 detects the light that has passed through the liquid mixture, whereby information on the composition of the liquid to be measured 211 is obtained. Get.
  • the measuring apparatus 10a according to the comparative example shown in FIG. 2 will be described.
  • the detection unit 320 of the detector 400 is not incorporated in the flow channel structure 300 and is provided separately from the flow channel structure 300. .
  • the flow channel structure 300 does not have the detection unit 320. Therefore, in the measurement apparatus 10a according to the comparative example, the detection unit 320 is not a part of the flow channel structure 300.
  • the detection unit 320 is connected to the flow path structure 300 via a pipe 490.
  • POCT point-of-care testing
  • the detection unit 320 is provided separately from the flow path structure 300, it is difficult to downsize the measurement apparatus 10a.
  • “dead volume” refers to the volume of the flow path that is not related to the separation of the measurement target liquid 211 among the volume of the flow path between the sample introduction unit 200 and the detector 400.
  • the detection unit 320 is provided as a separate body from the flow channel structure 300, so that the volume of the flow channel of the pipe 490 can be minimized. There is a limit.
  • the detection unit 320 is incorporated in the flow channel structure 300 and is provided integrally with the flow channel structure 300.
  • the measuring apparatus 10 can be reduced in size and the flow path structure 300 which can respond easily to size reduction of the measuring apparatus 10 can be provided.
  • the detection unit 320 is provided integrally with the flow channel structure 300, the volume of the flow channel connecting the separation element storage unit 310 and the detection unit 320 can be minimized. That is, the dead volume can be minimized. Thereby, the information regarding the composition of the measurement target liquid 211 can be measured with high sensitivity. That is, the number of theoretical plates in the chromatogram can be increased.
  • FIG. 3 is a schematic perspective view showing the flow channel structure according to the present embodiment.
  • FIG. 4 is a schematic exploded view showing the flow channel structure according to the present embodiment.
  • FIG. 5 is a schematic perspective view showing only the flow channel portion of the flow channel structure according to the present embodiment.
  • 6 is a schematic cross-sectional view taken along a cutting plane B1-B1 shown in FIG. In FIG. 6, the vicinity of the detection unit 320 is shown in an enlarged manner.
  • the flow path structure 300 has a base material 301.
  • the base material 301 of the flow path structure 300 according to this embodiment shown in FIGS. 3 and 4 is a bonded body of two plate-like members 302 and 303 made of a transparent material.
  • the two plate-like members 302 and 303 are both made of a transparent material. In other words, both of the two plate-like members 302 and 303 have transparency in the wavelength region of the measurement light.
  • the transparent material include glass, acrylic resin material, cycloolefin resin material, and polyester resin material.
  • At least one of the two plate-like members 302 and 303 is preferably made of a cycloolefin-based material, and both of the two plate-like members 302 and 303 are cycloolefin. More preferably, it is made of a system material.
  • the flow path structure 300 includes a separation element storage unit 310 and a detection unit 320. Both ends of the separation element storage unit 310 are open ends 312 and 313. The separation element 311 is housed in the separation element housing portion 310 between the two open ends 312 and 313.
  • the flow channel structure 300 has a supply flow channel 330.
  • One end of the supply channel 330 is formed as an opening 331, and the other end of the supply channel 330 is connected to one open end 312 of the separation element storage unit 310.
  • the supply flow path 330 is connected to the supply flow path 11 (see FIG. 1) of the measuring apparatus 10 and measures the developing liquid 111, the measurement target liquid 211, or the developing liquid 111 supplied through the supply flow path 11 of the measuring apparatus 10.
  • the liquid mixture with the target liquid 211 is guided to the separation element 311.
  • the flow path structure 300 has a discharge flow path 340.
  • One end of the discharge channel 340 is connected to the other open end 313 of the separation element storage unit 310, and the other end of the discharge channel 340 is formed as an opening 341.
  • the discharge flow path 340 discharges the developing liquid 111 that has passed through the separation element 311, the measurement target liquid 211, or the mixed liquid of the developing liquid 111 and the measurement target liquid 211 to the outside of the flow path structure 300 through the opening 341.
  • the detection unit 320 includes a measurement channel portion 323, an incident portion 325, and an emission portion 321 and forms a part of the discharge channel 340.
  • the detection unit 320 is a part of the discharge channel 340 that has an axis C1 that intersects the traveling direction of the liquid flowing through the separation element storage unit 310 (the traveling direction of the liquid passing through the separation element 311: arrow A11). That is, the axis C1 of the detection unit 320 intersects the traveling direction of the liquid flowing in the separation element storage unit 310 (arrow A11).
  • the axis C1 of the detection unit 320 corresponds to the axis C1 of the measurement flow path portion 323.
  • the measurement flow path portion 323 is a portion that guides the measurement target liquid 211.
  • the incident portion 325 is a portion that is provided at the end of the measurement channel portion 323 and guides measurement light into the measurement channel portion 323.
  • the incident portion 325 corresponds to the opening 341 of the discharge flow channel 340.
  • the emission part 321 is provided at the other end of the measurement flow path part 323 and is a part for leading measurement light from the measurement flow path part 323.
  • the exit portion 321 is provided at the end opposite to the entrance portion 325.
  • the traveling direction (flow direction) of the mixed liquid flowing in the measurement flow channel portion 323 is the traveling direction (flow direction) of the liquid flowing in the separation element storage unit 310 ( It is orthogonal to the arrow A11) and extends in the plate thickness direction of the plate-like members 302, 303 (direction perpendicular to the main surfaces 302a, 303a of the plate-like members 302, 303).
  • the mixed liquid of the developing liquid 111 and the liquid to be measured 211 passes through the separation element 311 and is separated into components, and then detected.
  • the flow is discharged to the outside of the flow channel structure 300 substantially along the axis C ⁇ b> 1 of the portion 320.
  • the maximum directing direction (center line direction) of the measurement light emitted from the light emitting unit 410 is substantially along the axis C ⁇ b> 1 of the detecting unit 320. ing. That is, the optical axis (center line of the measurement light) of the light emitting unit 410 (see FIG. 1) extends in the direction along the traveling direction (arrow A12) of the mixed liquid flowing through the measurement flow path portion 323, and the detection unit. It is substantially parallel to the axis C1 of 320.
  • At least a part of the measurement light applied to the mixed solution from the incident portion 325 side passes through the mixed solution and is derived from the emitting portion 321 to receive the light receiving unit 420 (FIG. Incident).
  • the light receiving unit 420 detects light transmitted through the liquid mixture, and calculates the concentration of each component contained in the measurement target liquid 211 based on the detected light intensity.
  • the detection unit 320 is incorporated in the flow path structure 300 formed as a bonded body of the two plate-like members 302 and 303.
  • the measuring apparatus 10 can be reduced in size and the flow path structure 300 which can respond easily to size reduction of the measuring apparatus 10 can be provided.
  • the detection unit 320 is incorporated in the flow channel structure 300, a dead volume can be minimized by using a part of the discharge flow channel 340 as the detection unit 320. Thereby, the information regarding the composition of the measurement target liquid 211 can be measured with high sensitivity.
  • the detection unit 320 is incorporated in the flow channel structure 300, the volume of the flow channel connecting the separation element storage unit 310 and the detection unit 320 can be minimized. Thereby, it can suppress that troubles, such as a liquid leak, generate
  • FIG. Further, even when a trouble related to the detection unit 320 occurs, the trouble can be solved by replacing the flow channel structure 300. Thereby, POCT can be realized.
  • the optical axis of the light emitting unit 410 extends in a direction along the traveling direction of the mixed liquid flowing through the detection unit 320, compared to the case where the optical axis of the light emitting unit 410 intersects the traveling direction of the mixed liquid, The volume of the measurement region can be increased, and the optical path length of the measurement light applied to the mixed liquid can be increased. Accordingly, the light receiving unit 420 can easily detect a slight change in absorbance, and can measure information related to the composition of the measurement target liquid 211 with high sensitivity.
  • the detection unit 320 can be formed relatively easily, and the axis C1 of the detection unit 320 and the light emitting unit 410 can be formed. Can be relatively easily aligned with the optical axis.
  • FIG. 7 is a schematic perspective view showing a flow channel structure according to another embodiment.
  • FIG. 8 is a schematic cross-sectional view taken along the cutting plane B2-B2 shown in FIG. In FIG. 8, the vicinity of the detection unit 320 is enlarged and only the flow path portion is shown.
  • the flow path structure 300a shown in FIG. 8 the axis C ⁇ b> 1 of the detection unit 320 intersects the traveling direction (arrow A ⁇ b> 11) of the liquid flowing through the separation element storage unit 310.
  • the traveling direction of the mixed liquid flowing through the measurement flow channel portion 323 is orthogonal to the traveling direction of the liquid flowing through the separation element storage unit 310 (arrow A11), It extends in the in-plane direction of the plate-like members 302 and 303 (direction parallel to the main surfaces 302a and 303a of the plate-like members 302 and 303).
  • the mixed liquid of the developing liquid 111 and the measurement target liquid 211 passes through the separation element 311 and is separated into each component, as indicated by arrows A11 and A14 illustrated in FIGS. It flows substantially along the axis C1.
  • the maximum directivity direction of the measurement light emitted from the light emitting unit 410 is substantially along the axis C ⁇ b> 1 of the detecting unit 320. That is, the optical axis of the light emitting unit 410 extends in a direction along the traveling direction (arrow A14) of the mixed liquid flowing through the measurement flow path portion 323 and is substantially parallel to the axis C1 of the detection unit 320.
  • Other structures are the same as those of the flow channel structure 300 described above with reference to FIGS.
  • the optical axis of the light emitting unit 410 is the measurement channel portion.
  • the volume of the measurement region can be increased, and the optical path length of the measurement light applied to the liquid mixture can be increased. Accordingly, the light receiving unit 420 can easily detect a slight change in absorbance, and can measure information related to the composition of the measurement target liquid 211 with high sensitivity. As for other effects, the same effects as those described above with reference to FIGS. 3 to 6 can be obtained.
  • FIG. 9 is a schematic cross-sectional view showing a flow channel structure according to still another embodiment.
  • FIG. 10 is a schematic perspective view illustrating the vicinity of the detection unit of the present embodiment in an enlarged manner.
  • FIG. 9 corresponds to a schematic cross-sectional view taken along the cutting plane B1-B1 shown in FIG. In FIG. 10, only the flow path portion is shown for the detection unit.
  • the flow path structure 300b illustrated in FIG. 9 includes a separation element storage unit 310 and a detection unit 320.
  • the traveling direction of the mixed liquid of the developing liquid 111 and the measurement target liquid 211 is the same as the traveling direction of the mixed liquid in the flow channel structure 300 described above with reference to FIGS. 3 to 6 (see arrows A11 and A12).
  • the traveling direction of the measuring light emitted from the light emitting unit 410 is the traveling direction of the measuring light in the flow channel structure 300 described above with reference to FIGS. 3 to 6 and the flow channel structure 300a described above with reference to FIGS. Is different.
  • the emission part 321 of the detection unit 320 of the flow path structure 300b according to the present embodiment includes a reflection unit 327.
  • the reflection part 327 is provided at the end opposite to the incident part 325 and has a concave shape inside the detection part 320.
  • the reflection part 327 may be formed on the plate-like member 302 or may be formed on the plate-like member 303. Alternatively, the reflection part 327 may be formed across the plate-like member 302 and the plate-like member 303.
  • the measurement light emitted from the light emitting unit 410 does not pass through the plate-like member 303 after passing through the liquid mixture passing through the measurement flow path portion 323 as diffused light.
  • the light is reflected by the reflecting portion 327 of the emission portion 321.
  • the measurement light emitted from the light emitting unit 410 passes through the liquid mixture passing through the measurement flow path portion 323, and then is reflected on the reflection portion 327 of the emission portion 321 and the side surfaces of the measurement flow path portion 323. May be reflected a plurality of times. That is, the reflection part 327 reflects the measurement light irradiated to the liquid mixture from the incident part 325 side.
  • the “emission part” is not limited to a part that guides the measurement light from the measurement flow path part 323 by transmitting the measurement light, but reflects the measurement light to reflect the measurement light path.
  • a portion for deriving measurement light from the portion 323 is included. As shown in FIG. 10, the measurement light reflected by the reflecting portion 327 of the emission portion 321 enters the light receiving portion 420 through the incident portion 325.
  • the light receiving unit 420 is not on the side opposite to the light emitting unit 410 as viewed from the flow channel structure 300b, but on the same side as the light emitting unit 410. Is provided.
  • the light receiving unit 420 detects the light transmitted through the mixed liquid and reflected by the reflecting unit 327, and calculates the concentration of each component contained in the measurement target liquid 211 based on the detected light intensity.
  • Other structures are the same as those of the flow channel structure 300 described above with reference to FIGS.
  • the plate-like members 302 and 303 are made of a cycloolefin polymer resin and light in a wavelength region that does not pass through the cycloolefin polymer resin is used as measurement light, reflection type detection is possible. It becomes possible. That is, the light receiving unit 420 can detect the light reflected by the reflecting unit 327 without being affected by the wavelength region of the measurement light.
  • the optical path length of the measurement light irradiated to the mixed liquid can be increased as compared with transmission type detection (see FIGS. 3 to 8). Accordingly, the light receiving unit 420 can easily detect a slight change in absorbance, and can measure information related to the composition of the measurement target liquid 211 with higher sensitivity.
  • a suitable shape of the reflecting portion 327 can be manufactured by appropriately designing the shape of the mold for molding the plate-like members 302 and 303. Accordingly, the light receiving unit 420 can stably detect light.
  • the reflecting portion 327 may have a layer containing a metal such as aluminum on the surface.
  • the metal-containing layer is formed by sputtering or vapor deposition, for example.
  • the light receiving unit 420 can measure information related to the composition of the measurement target liquid 211 with higher sensitivity because the reflection unit 327 reflects more measurement light.
  • the reflection unit 327 preferably includes a layer containing an oxide such as silicon dioxide (SiO 2 ) on the layer containing a metal. According to this, the layer containing an oxide functions as a protective layer for the layer containing a metal, and blood can be prevented from being adsorbed on the layer containing a metal.
  • FIG. 11 is a schematic perspective view showing a modification of the reflecting portion of the present embodiment.
  • the vicinity of the reflection part is enlarged and only the flow path part is shown.
  • the emission part 321 of the detection unit 320 illustrated in FIG. 11 includes a reflection unit 327a.
  • the reflection part 327a of the present modification is provided at the end opposite to the incident part 325 (for example, see FIG. 6) and has a convex shape protruding toward the inside of the detection part 320.
  • the reflection part 327 a may be formed on the plate-like member 302 or may be formed on the plate-like member 303. Alternatively, the reflecting portion 327a may be formed across the plate-like member 302 and the plate-like member 303.
  • the measurement light emitted from the light emitting unit 410 passes through the liquid mixture that passes through the measurement flow path portion 323 and is then reflected by the reflection portion 327 a of the emission portion 321 and the side surfaces of the measurement flow path portion 323.
  • a layer containing a metal such as aluminum is preferably formed on the side surface of the measurement flow path portion 323 by sputtering or vapor deposition.
  • Other structures are the same as the structure of the flow path structure 300b described above with reference to FIGS.
  • the optical path length of the measurement light applied to the mixed liquid can be made longer. Accordingly, the light receiving unit 420 can easily detect a slight change in absorbance, and can measure information related to the composition of the measurement target liquid 211 with higher sensitivity.
  • FIG. 12 is a schematic perspective view showing another modification of the reflecting portion of the present embodiment. In FIG. 12, only the flow path portion is shown for the detection unit.
  • the light emitting unit 410 described above with reference to FIGS. 9 and 10 emits measurement light as diffused light, while the light emitting unit 410 of this modification emits measurement light as parallel light.
  • the emission part 321 of the detection unit 320 illustrated in FIG. 12 includes a reflection unit 327b.
  • the reflection part 327b of this modification is provided at the end opposite to the incident part 325 and has a paraboloid.
  • the reflecting portion 327b may have a layer containing a metal such as aluminum on the surface.
  • the metal-containing layer is formed by sputtering or vapor deposition, for example.
  • the light receiving unit 420 is provided at the focal point of the paraboloid of the reflecting unit 327b. According to this, the measurement light emitted as parallel light from the light emitting part 410 in parallel to the axis of the paraboloid is reflected by the reflection part 327b, and then provided at the focal position of the paraboloid of the reflection part 327b. Collect in the light receiving unit 420. Therefore, the light receiving unit 420 can measure information related to the composition of the measurement target liquid 211 with higher sensitivity.
  • the specific configuration of the above-described measuring apparatus is appropriately set according to the configuration of the flow channel structure, the type of liquid to be measured, and the like.
  • the liquid storage unit 110 of the liquid feeding unit 100 may be provided in the flow channel structure 300.
  • the separation element may be an electrophoresis element.
  • the flow channel structure has an electrode portion in the flow channel, and this electrode portion can be electrically connected to the measuring device.

Abstract

流路構造体が組み込まれた測定装置の小型化に対応しやすい流路構造体として、測定対象液体を内部へ導く供給流路と、前記供給流路により導かれた前記測定対象液体に含まれる複数の成分を分離する分離素子を収納する分離素子収納部と、前記分離素子収納部を通過した前記測定対象液体であって前記成分に関する情報を測定するための測定光が照射される前記測定対象液体を導く検出部と、を有する基材を備え、前記検出部は、前記測定対象液体を導く測定流路部分と、前記測定流路部分の端部に設けられ、前記測定流路部分の内部に前記測定光を導く入射部分と、前記測定流路部分の他の端部に設けられ、前記測定流路部分から前記測定光を導き出す出射部分と、を有することを特徴とする流路構造体が提供される。

Description

流路構造体および測定対象液体の測定装置
 本発明は、POCTに対応しうる測定対象液体の測定装置に使用される流路構造体、および流路構造体が組み込まれた測定対象液体の測定装置に関する。
 測定対象液体の組成に関する情報を得る測定を行う場合には、例えば、高速液体クロマトグラフィ(HPLC:High Performance Liquid chromatography)装置が用いられる。
 HPLC装置に関し、特許文献1には、溶離液ボトル、脱気装置、試料調製ユニット、分析ユニット、測光機構および演算回路を備えたHPLC装置が開示されている。特許文献1に記載された測光機構は、測光セル、光源、ビームスプリッタ、測定用受光系および参照用受光系を有し、分析カラムを有する分析ユニットとは別に設置されている。
 ここで、近年、診療・看護現場で医療スタッフが実施する簡易・迅速検査などを意味するポイント・オブ・ケア検査(POCT:Point-of-Care Testing)の普及が進んでいる。POCTを実現する観点から、HPLC装置は小型であることが好ましい。
国際公開第2007/111282号
 しかし、特許文献1に記載されたHPLC装置では、測光機構が分析ユニットとは別に設置されているため、HPLC装置を小型化することは困難である。また、測定対象液体の組成に関する情報を高感度に測定するためには、測光機構と分析ユニットとを接続する流路の体積を極小化する必要がある。これに対して、特許文献1に記載されたHPLC装置では、測光機構が分析ユニットとは別に設置されているため、測光機構と分析ユニットとを接続する流路の体積を極小化することには限界がある。
 さらに、別部材として設置された各機能部の組み立て状態によっては、HPLC装置の内部おいて液漏れなどのトラブルが発生するおそれがある。液漏れなどのトラブルについては、専門知識がなければ対応することが困難である。そのため、特許文献1に記載されたHPLC装置については、専門知識を有していない一般の人の対応が必要なPOCT向けの機器として普及していないという問題がある。
 本発明は、上記従来の課題を解決するためのものであり、流路構造体が組み込まれた測定装置の小型化に対応しやすい流路構造体を提供することを目的とする。また、本発明は、流路構造体が組み込まれた測定装置の高感度化あるいはトラブル抑制に対応しやすい流路構造体を提供することを目的とする。本発明は、流路構造体が組み込まれた測定対象液体の測定装置を提供することも目的とする。
 本発明の流路構造体は、一態様において、測定対象液体を内部へ導く供給流路と、前記供給流路により導かれた前記測定対象液体に含まれる複数の成分を分離する分離素子を収納する分離素子収納部と、前記分離素子収納部を通過した前記測定対象液体であって前記成分に関する情報を測定するための測定光が照射される前記測定対象液体を導く検出部と、を有する基材を備え、前記検出部は、前記測定対象液体を導く測定流路部分と、前記測定流路部分の端部に設けられ、前記測定流路部分の内部に前記測定光を導く入射部分と、前記測定流路部分の他の端部に設けられ、前記測定流路部分から前記測定光を導き出す出射部分と、を有することを特徴とする。
 本発明の一態様に係る流路構造体によれば、検出部は、測定対象液体に含まれる成分に関する情報を測定するための測定光が照射される測定対象液体を導く。つまり、検出部を流れる測定対象液体には、測定光が照射される。この検出部が、流路構造体に組み込まれ、流路構造体と一体的に設けられている。これにより、流路構造体が組み込まれた測定装置を小型化することができ、測定装置の小型化に対応しやすい流路構造体を提供することができる。
 また、検出部が流路構造体と一体的に設けられているため、分離素子収納部と検出部とを接続する流路の体積を極小化することができる。つまり、デッドボリュームを極小化することができる。これにより、測定対象液体の組成に関する情報を高感度に測定することができる。つまり、クロマトグラムの理論段数をより高くすることができる。
 さらに、検出部が流路構造体と一体的に設けられているため、流路構造体と検出部とを配管などで接続する必要がない。そのため、流路構造体が組み込まれた測定装置の内部において液漏れなどのトラブルが発生することを抑えることができる。また、検出部が流路構造体に組み込まれているため、検出部に関するトラブルが発生した場合であっても、流路構造体を交換することでトラブルを解決することができる。これにより、POCTを実現することができる。
 本発明の流路構造体において、前記測定光の中心線は、前記測定流路部分を流れる前記測定対象液体の流れ方向に沿った方向に延びていてもよい。これによれば、測定光の中心線が測定流路部分を流れる測定対象液体の流れ方向と交差する場合と比較して、測定領域の体積を増やし、測定対象液体に照射される測定光の光路長を長くすることができる。これにより、流路構造体が組み込まれた測定装置は、僅かな吸光度の変化を検知しやすく、測定対象液体の組成に関する情報を高感度に測定することができる。
 本発明の流路構造体において、前記測定流路部分を流れる前記測定対象液体の流れ方向は、前記基材の主面に垂直な方向に延びていてもよい。これによれば、測定流路部分を流れる測定対象液体の流れ方向が基材の板厚方向に延びているため、検出部を比較的に容易に形成することができ、測定対象液体の流れ方向と測定光の中心線とを比較的容易に合わせることができる。
 本発明の流路構造体において、前記測定流路部分を流れる前記測定対象液体の流れ方向は、前記基材の主面に平行な方向に延びていてもよい。これによれば、測定流路部分を流れる測定対象液体の流れ方向が基材の板厚方向ではなく面内方向に延びている場合であっても、測定光の中心線と測定流路部分を流れる測定対象液体の流れ方向とを平行とすることにより、測定領域の体積を増やし、測定対象液体に照射される測定光の光路長を長くすることができる。これにより、流路構造体が組み込まれた測定装置は、僅かな吸光度の変化を検知しやすく、測定対象液体の組成に関する情報を高感度に測定することができる。
 本発明の流路構造体において、前記出射部分は、前記入射部分とは反対側に設けられ前記入射部分の側から前記測定対象液体に照射された前記測定光を反射する反射部を有していてもよい。これによれば、基材を透過しない波長領域の光を測定光として用いた場合であっても、反射型の検出が可能となる。つまり、流路構造体が組み込まれた測定装置は、測定光の波長領域に影響されることなく、反射部で反射した光を検知することができる。また、透過型の検出と比較すると、測定対象液体に照射される測定光の光路長を長くすることができる。これにより、流路構造体が組み込まれた測定装置は、僅かな吸光度の変化を検知しやすく、測定対象液体の組成に関する情報をより高感度に測定することができる。
 本発明の流路構造体において、前記反射部は、前記検出部の内部において凹形状を有していてもよい。これによれば、基材を成形する金型の形状を適宜設計することにより、反射部の好適な形状を製作することができる。これにより、流路構造体が組み込まれた測定装置は、光の検知を安定的に行うことができる。
 本発明の流路構造体において、前記反射部は、前記検出部の内部に向かって突出した凸形状を有していてもよい。これによれば、凸形状を有する反射部で反射した測定光が検出部の内部において分散するため、測定対象液体に照射される測定光の光路長をより長くすることができる。これにより、流路構造体が組み込まれた測定装置は、僅かな吸光度の変化を検知しやすく、測定対象液体の組成に関する情報をより高感度に測定することができる。
 本発明の流路構造体において、前記反射部は、放物面を有していてもよい。これによれば、反射部の放物面の軸に平行光として平行に放出された測定光は、反射部で反射した後、反射部の放物面の焦点の位置に集まる。そのため、反射部で反射した光を検知する受光部が反射部の放物面の焦点の位置に設けられた場合には、その受光部は、測定対象液体の組成に関する情報をより高感度に測定することができる。
 本発明の流路構造体において、前記反射部は、前記基材の表面に設けられた金属を含む層を有していてもよい。これによれば、反射部は、より多くの測定光を反射する。そのため、流路構造体が組み込まれた測定装置は、測定対象液体の組成に関する情報をより高感度に測定することができる。
 本発明の流路構造体において、前記反射部は、前記金属を含む層の上に設けられた酸化物を含む層を有していてもよい。これによれば、酸化物を含む層が金属を含む層の保護層として機能し、測定対象液体が血液である場合であっても、血液が金属を含む層に吸着することを抑えることができる。
 本発明の流路構造体において、前記基材は、複数の板状部材の貼合体とされていてもよい。これによれば、様々な部分構造を有する流路構造体を効率的に得ることができる。
 本発明の流路構造体において、前記複数の板状部材のいずれもが、前記測定光の波長領域について透過性を有していてもよい。
 本発明の流路構造体において、前記分離素子は、分離カラムであってもよい。
 本発明の流路構造体において、前記分離素子は、電気泳動素子であってもよい。
 本発明の測定対象液体の測定装置は、一態様において、上記のいずれかの流路構造体と、展開液を前記流路構造体に供給する送液部と、測定対象液体を前記流路構造体に供給する試料導入部と、前記測定対象液体に含まれる成分に関する情報を測定するための測定光を放出する発光部、および前記測定対象液体に照射された前記測定光を検知する受光部を有する検出器と、を備えたことを特徴とする。
 本発明の一態様に係る測定対象液体の測定装置によれば、検出部は、測定対象液体に含まれる成分に関する情報を測定するための測定光が照射される測定対象液体を導く。つまり、検出部を流れる測定対象液体には、測定光が照射される。この検出部が、流路構造体に組み込まれ、流路構造体と一体的に設けられている。これにより、流路構造体が組み込まれた測定装置を小型化することができる。
 また、検出部が流路構造体と一体的に設けられているため、分離素子収納部と検出部とを接続する流路の体積を極小化することができる。つまり、デッドボリュームを極小化することができる。これにより、測定対象液体の組成に関する情報を高感度に測定することができる。つまり、クロマトグラムの理論段数をより高くすることができる。
 さらに、検出部が流路構造体と一体的に設けられているため、流路構造体と検出部とを配管などで接続する必要がない。そのため、流路構造体が組み込まれた測定装置の内部において液漏れなどのトラブルが発生することを抑えることができる。また、検出部が流路構造体に組み込まれているため、検出部に関するトラブルが発生した場合であっても、流路構造体を交換することでトラブルを解決することができる。これにより、POCTを実現することができる。
 本発明によれば、流路構造体が組み込まれた測定装置の小型化に対応しやすい流路構造体を提供することが可能になる。また、本発明によれば、流路構造体が組み込まれた測定装置の高感度化あるいはトラブル抑制に対応しやすい流路構造体を提供することが可能になる。本発明によれば、流路構造体が組み込まれた測定対象液体の測定装置を提供することが可能になる。
本実施形態に係る流路構造体を備える測定対象液体の測定装置を表すブロック図である。 比較例に係る流路構造体を備える測定対象液体の測定装置を表すブロック図である。 本実施形態に係る流路構造体を表す模式的斜視図である。 本実施形態に係る流路構造体を表す模式的分解図である。 本実施形態に係る流路構造体の流路部分のみを表す模式的斜視図である。 図3に表した切断面B1-B1における模式的断面図である。 他の実施形態に係る流路構造体を表す模式的斜視図である。 図7に表した切断面B2-B2における模式的断面図である。 さらに他の実施形態に係る流路構造体を表す模式的断面図である。 本実施形態の検出部の近傍を拡大して表した模式的斜視図である。 本実施形態の反射部の変形例を表す模式的斜視図である。 本実施形態の反射部の他の変形例を表す模式的斜視図である。
 以下、本発明の実施形態に係る、流路構造体および測定対象液体の測定装置について、図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
 図1は、本実施形態に係る流路構造体を備える測定対象液体の測定装置を表すブロック図である。
 図2は、比較例に係る流路構造体を備える測定対象液体の測定装置を表すブロック図である。
 図1に表したように、本実施形態に係る測定対象液体の測定装置10は、送液部100と、試料導入部200と、流路構造体300と、検出器400と、を備える。
 送液部100は、貯液部110と、ポンプ120と、を有する。貯液部110は、移動相としての展開液111を貯留する。ポンプ120は、貯液部110の内部に圧力変動を与え、貯液部110に貯留された展開液111を流路構造体300に供給する。
 試料導入部(インジェクション部)200は、タンク210と、バルブ220と、を有する。タンク210は、測定対象液体(試料)211を貯留する。バルブ220が開くと、試料導入部200は、タンク210に貯留された測定対象液体211を流路構造体300に供給し、測定対象液体211と、貯液部110から供給された展開液111と、を混合させることができる。
 流路構造体300は、基材301を有する。基材301は、供給流路330と、分離素子収納部310と、を有する。供給流路330は、供給された測定対象液体211を流路構造体300の内部へ導く。分離素子収納部310は、分離素子(分離カラム)311を収納する。分離素子311は、測定対象液体211に含まれる各成分と、分離素子311と、の相互作用の違いを利用して、測定対象液体211に含まれる各成分を分離する。具体的には、例えば、分離素子311は、測定対象液体211に含まれる各成分の吸着性や分配係数の差に基づく移動速度の差を利用して、測定対象液体211に含まれる各成分を分離する。例えば、測定対象液体211が血液である場合には、分離素子311は、分子の大きさおよび荷電状態に応じて、血液に含まれる成分を分離する。分離素子311としては、例えばシリカモノリスなどが用いられる。
 なお、貯液部110は、流路構造体300に設けられていてもよい。言い換えれば、流路構造体300が貯液部110を有していてもよい。この場合には、貯液部110に貯留された展開液111は、ポンプ120により貯液部110の内部に与えられた圧力変動に基づいて分離素子収納部310に供給される。貯液部110が流路構造体300に設けられた場合には、流路構造体300は、貯液部110に貯留された展開液111を有する測定ユニットとして測定装置10に組み込まれる。
 検出器400は、発光部410と、検出部320と、受光部420と、を有する。発光部410は、例えば流路構造体300の蓋体(図示せず)などに固定され、検出部320へ向かって測定光を放出する。発光部410が放出する光の波長は、例えば約250ナノメートル(nm)以上、450nm以下程度である。但し、発光部410が放出する光の波長は、これだけには限定されない。
 検出部320は、流路構造体300に組み込まれ、流路構造体300と一体的に設けられている。言い換えれば、流路構造体300は、供給流路330と、分離素子収納部310と、検出部320と、を有する。本実施形態に係る測定装置10では、検出部320は、流路構造体300の一部であり、検出器400の一部でもある。検出部320は、分離素子311を通過した混合液(展開液111と測定対象液体211との混合液)を排出する排出用流路として機能するとともに、発光部410から放出された測定光が照射される測定対象液体211を導く測定用流路として機能する。
 具体的には、図1に表した矢印A1のように、展開液111と測定対象液体211との混合液は、分離素子311を通過し、各成分に分離された後、検出部320を通って検出部320から排出される。このとき、発光部410から放出された測定光が、検出部320を通る混合液に照射される。図1に表した矢印A2のように、混合液に照射された測定光の少なくとも一部は、混合液を透過し、受光部420に入射する。受光部420は、混合液を透過した光を検知し、検知した光の強度に基づいて測定対象液体211に含まれる各成分の濃度を演算する。受光部420は、演算した各成分の濃度を記憶してもよい。
 ここで、本実施形態に係る測定対象液体の測定方法の一例について説明する。
 まず、図1に表した矢印A3のように、ポンプ120を駆動し、貯液部110の内部の展開液111を供給流路11に供給して、検出部320を展開液111で満たす。続いて、バルブ220を開き、タンク210の内部の測定対象液体211を流路構造体300に供給する。その結果、バルブ220よりも下流側では、展開液111と測定対象液体211との混合液が形成される。
 続いて、ポンプ120をさらに駆動し、貯液部110の内部の展開液111を供給流路11に供給して、バルブ220よりも下流側で形成された混合液を分離素子311に供給し、測定対象液体211の分離を行う。続いて、検出部320を通る混合液に対して発光部410から放出された測定光を照射し、混合液を透過した光を受光部420が検知することにより、測定対象液体211の組成に関する情報を得る。
 ここで、図2に表した比較例に係る測定装置10aについて説明する。図2に表した比較例に係る測定装置10aでは、検出器400の検出部320は、流路構造体300には組み込まれておらず、流路構造体300とは別体として設けられている。言い換えれば、流路構造体300は、検出部320を有していない。そのため、比較例に係る測定装置10aでは、検出部320は、流路構造体300の一部ではない。検出部320は、配管490を介して流路構造体300と接続されている。
 近年、診療・看護現場で医療スタッフが実施する簡易・迅速検査などを意味するポイント・オブ・ケア検査(POCT:Point-of-Care Testing)の普及が進んでいる。POCTを実現する観点から、測定対象液体の測定装置は小型であることが好ましい。
 しかし、図2に表した比較例に係る測定装置10aでは、検出部320が流路構造体300とは別体として設けられているため、測定装置10aを小型化することは困難である。また、測定対象液体211の組成に関する情報を高感度に測定するためには、デッドボリュームを極小化する必要がある。これは、デッドボリュームが大きいと、分離素子311で分離した測定対象液体211の各成分が、デッドボリュームにおいて再び混合するためである。あるいは、測定対象液体211がデッドボリュームで拡散するためである。なお、本願明細書において「デッドボリューム」とは、試料導入部200と検出器400との間の流路の体積のうち、測定対象液体211の分離に関係のない流路の体積をいう。
 具体的には、流路構造体300と検出部320とを接続する配管490の流路の体積を極小化する必要がある。しかし、図2に表した比較例に係る測定装置10aでは、検出部320が流路構造体300とは別体として設けられているため、配管490の流路の体積を極小化することには限界がある。
 これに対して、図1に表した本実施形態に係る測定装置10では、検出部320は、流路構造体300に組み込まれ、流路構造体300と一体的に設けられている。これにより、測定装置10を小型化することができ、測定装置10の小型化に対応しやすい流路構造体300を提供することができる。
 また、検出部320が流路構造体300と一体的に設けられているため、分離素子収納部310と検出部320とを接続する流路の体積を極小化することができる。つまり、デッドボリュームを極小化することができる。これにより、測定対象液体211の組成に関する情報を高感度に測定することができる。つまり、クロマトグラムの理論段数をより高くすることができる。
 さらに、図2に表した比較例に係る測定装置10aのようには、流路構造体300と検出部320とを配管490で接続する必要がない。そのため、測定装置10の内部において液漏れなどのトラブルが発生することを抑えることができる。また、検出部320が流路構造体300に組み込まれているため、検出部320に関するトラブルが発生した場合であっても、流路構造体300を交換することでトラブルを解決することができる。これにより、POCTを実現することができる。
 次に、本実施形態に係る流路構造体の具体例について、図面を参照しつつ説明する。
 図3は、本実施形態に係る流路構造体を表す模式的斜視図である。
 図4は、本実施形態に係る流路構造体を表す模式的分解図である。
 図5は、本実施形態に係る流路構造体の流路部分のみを表す模式的斜視図である。
 図6は、図3に表した切断面B1-B1における模式的断面図である。
 図6では、検出部320の近傍を拡大して表している。
 流路構造体300は、基材301を有する。図3および図4に示される本実施形態に係る流路構造体300の基材301は、透明材料からなる2枚の板状部材302,303の貼合体とされている。2枚の板状部材302,303は、いずれも透明材料からなる。言い換えれば、2枚の板状部材302,303のいずれもが、測定光の波長領域について透過性を有する。透明材料として、ガラス、アクリル系樹脂材料、シクロオレフィン系樹脂材料、ポリエステル系樹脂材料などが挙げられる。製造しやすさと透明な波長範囲の広さの観点から、2枚の板状部材302,303の少なくとも一方はシクロオレフィン系材料からなることが好ましく、2枚の板状部材302,303ともにシクロオレフィン系材料からなることがより好ましい。
 本実施形態に係る流路構造体300は、分離素子収納部310と、検出部320と、を有する。分離素子収納部310の両端は、開放端312,313となっている。分離素子311は、2つの開放端312,313の間の分離素子収納部310に収納される。
 流路構造体300は、供給流路330を有する。供給流路330の一方の端部は、開口部331として形成され、供給流路330の他方の端部は、分離素子収納部310の一方の開放端312に接続されている。供給流路330は、測定装置10の供給流路11(図1参照)に接続され、測定装置10の供給流路11を通して供給された展開液111、測定対象液体211、あるいは展開液111と測定対象液体211との混合液を分離素子311へ導く。
 流路構造体300は、排出流路340を有する。排出流路340の一方の端部は、分離素子収納部310の他方の開放端313に接続され、排出流路340の他方の端部は、開口部341として形成されている。排出流路340は、分離素子311を通過した展開液111、測定対象液体211、あるいは展開液111と測定対象液体211との混合液を開口部341を通して流路構造体300の外部へ排出する。
 検出部320は、測定流路部分323と、入射部分325と、出射部分321と、を有し、排出流路340の一部を形成する。検出部320は、排出流路340のうちで、分離素子収納部310を流れる液体の進行方向(分離素子311を通過する液体の進行方向:矢印A11)と交差する軸C1を有する部分である。すなわち、検出部320の軸C1は、分離素子収納部310を流れる液体の進行方向(矢印A11)と交差する。検出部320の軸C1は、測定流路部分323の軸C1に相当する。
 測定流路部分323は、測定対象液体211を導く部分である。入射部分325は、測定流路部分323の端部に設けられ、測定流路部分323の内部に測定光を導く部分である。本実施形態に係る流路構造体300では、入射部分325は、排出流路340の開口部341に相当する。出射部分321は、測定流路部分323の他の端部に設けられ、測定流路部分323から測定光を導き出す部分である。具体的には、出射部分321は、入射部分325とは反対側の端部に設けられている。
 図6に表したように、本実施形態に係る流路構造体300では、測定流路部分323を流れる混合液の進行方向(流れ方向)は、分離素子収納部310を流れる液体の進行方向(矢印A11)と直交し、板状部材302,303の板厚方向(板状部材302,303の主面302a,303aに垂直な方向)に延びている。
 図3、図5および図6に表した矢印A11および矢印A12のように、展開液111と測定対象液体211との混合液は、分離素子311を通過し、各成分に分離された後、検出部320の軸C1に略沿って流れ流路構造体300の外部に排出される。一方で、図3、図5および図6に表した矢印A13のように、発光部410から放出された測定光の最大指向方向(中心線の方向)は、検出部320の軸C1に略沿っている。つまり、発光部410(図1参照)の光軸(測定光の中心線)は、測定流路部分323を流れる混合液の進行方向(矢印A12)に沿った方向に延びているとともに、検出部320の軸C1と略平行である。
 図6に表した矢印A13のように、入射部分325の側から混合液に照射された測定光の少なくとも一部は、混合液を透過し、出射部分321から導き出され、受光部420(図1参照)に入射する。受光部420は、混合液を透過した光を検知し、検知した光の強度に基づいて測定対象液体211に含まれる各成分の濃度を演算する。
 本実施形態によれば、2枚の板状部材302,303の貼合体として形成された流路構造体300に検出部320が組み込まれている。これにより、測定装置10を小型化することができ、測定装置10の小型化に対応しやすい流路構造体300を提供することができる。
 また、検出部320が流路構造体300に組み込まれているため、排出流路340の一部を検出部320として利用することにより、デッドボリュームを極小化することができる。これにより、測定対象液体211の組成に関する情報を高感度に測定することができる。
 また、検出部320が流路構造体300に組み込まれているため、分離素子収納部310と検出部320とを接続する流路の体積を極小化することができる。これにより、測定装置10の内部において液漏れなどのトラブルが発生することを抑えることができる。また、検出部320に関するトラブルが発生した場合であっても、流路構造体300を交換することでトラブルを解決することができる。これにより、POCTを実現することができる。
 また、発光部410の光軸が検出部320を流れる混合液の進行方向に沿った方向に延びているため、発光部410の光軸が混合液の進行方向と交差する場合と比較して、測定領域の体積を増やし、混合液に照射される測定光の光路長を長くすることができる。これにより、受光部420は、僅かな吸光度の変化を検知しやすく、測定対象液体211の組成に関する情報を高感度に測定することができる。
 さらに、検出部320の軸C1が板状部材302,303の板厚方向に延びているため、検出部320を比較的に容易に形成することができ、検出部320の軸C1と発光部410の光軸とを比較的容易に合わせることができる。
 図7は、他の実施形態に係る流路構造体を表す模式的斜視図である。
 図8は、図7に表した切断面B2-B2における模式的断面図である。
 図8では、検出部320の近傍を拡大して表し、流路部分のみを表している。
 図7に表した流路構造体300aは、分離素子収納部310と、検出部320と、を有する。図8に表したように、検出部320の軸C1は、分離素子収納部310を流れる液体の進行方向(矢印A11)と交差する。具体的には、本実施形態に係る流路構造体300aでは、測定流路部分323を流れる混合液の進行方向は、分離素子収納部310を流れる液体の進行方向(矢印A11)と直交し、板状部材302,303の面内方向(板状部材302,303の主面302a,303aに平行な方向)に延びている。
 図7および図8に表した矢印A11および矢印A14のように、展開液111と測定対象液体211との混合液は、分離素子311を通過し、各成分に分離された後、検出部320の軸C1に略沿って流れる。一方で、図7および図8に表した矢印A15のように、発光部410から放出された測定光の最大指向方向は、検出部320の軸C1に略沿っている。つまり、発光部410の光軸は、測定流路部分323を流れる混合液の進行方向(矢印A14)に沿った方向に延びているとともに、検出部320の軸C1と略平行である。
 その他の構造は、図3~図6に関して前述した流路構造体300と同様である。
 本実施形態によれば、検出部320の軸C1が板状部材302,303の板厚方向ではなく面内方向に延びている場合であっても、発光部410の光軸が測定流路部分323を流れる混合液の進行方向に沿った方向に延びていることにより、測定領域の体積を増やし、混合液に照射される測定光の光路長を長くすることができる。これにより、受光部420は、僅かな吸光度の変化を検知しやすく、測定対象液体211の組成に関する情報を高感度に測定することができる。また、その他の効果についても、図3~図6に関して前述した効果と同様の効果が得られる。
 図9は、さらに他の実施形態に係る流路構造体を表す模式的断面図である。
 図10は、本実施形態の検出部の近傍を拡大して表した模式的斜視図である。
 図9は、図3に表した切断面B1-B1における模式的断面図に相当する。
 図10では、検出部については、流路部分のみが表されている。
 図9に表した流路構造体300bは、分離素子収納部310と、検出部320と、を有する。展開液111と測定対象液体211との混合液の進行方向は、図3~図6に関して前述した流路構造体300における混合液の進行方向と同じである(矢印A11および矢印A12参照)。
 一方で、発光部410から放出された測定光の進行方向は、図3~図6に関して前述した流路構造体300ならびに図7および図8に関して前述した流路構造体300aにおける測定光の進行方向とは異なる。具体的には、本実施形態に係る流路構造体300bの検出部320の出射部分321は、反射部327を有する。反射部327は、入射部分325とは反対側の端部に設けられ、検出部320の内部において凹形状を有する。反射部327は、板状部材302に形成されてもよく、板状部材303に形成されてもよい。あるいは、反射部327は、板状部材302と板状部材303とにわたって形成されてもよい。
 図9に表した矢印A16および矢印A17のように、発光部410から放出された測定光は、拡散光として測定流路部分323を通る混合液を透過した後、板状部材303を透過せずに出射部分321の反射部327で反射する。あるいは、図10に表したように、発光部410から放出された測定光は、測定流路部分323を通る混合液を透過した後、出射部分321の反射部327および測定流路部分323の側面において複数回にわたって反射してもよい。つまり、反射部327は、入射部分325の側から混合液に照射された測定光を反射する。このように、本願明細書において「出射部分」とは、測定光を透過させることで測定流路部分323から測定光を導き出す部分だけには限定されず、測定光を反射させることで測定流路部分323から測定光を導き出す部分を含む。図10に表したように、出射部分321の反射部327で反射した測定光は、入射部分325を通り受光部420に入射する。
 このように、本実施形態に係る流路構造体300bが組み込まれた測定装置では、受光部420は、流路構造体300bからみて発光部410とは反対側ではなく、発光部410と同じ側に設けられている。受光部420は、混合液を透過し反射部327で反射した光を検知し、検知した光の強度に基づいて測定対象液体211に含まれる各成分の濃度を演算する。
 その他の構造は、図3~図6に関して前述した流路構造体300と同様である。
 本実施形態によれば、例えば板状部材302,303がシクロオレフィンポリマー樹脂からなり、シクロオレフィンポリマー樹脂を透過しない波長領域の光を測定光として用いた場合であっても、反射型の検出が可能となる。つまり、受光部420は、測定光の波長領域に影響されることなく、反射部327で反射した光を検知することができる。
 また、透過型の検出(図3~図8参照)と比較すると、混合液に照射される測定光の光路長を長くすることができる。これにより、受光部420は、僅かな吸光度の変化を検知しやすく、測定対象液体211の組成に関する情報をより高感度に測定することができる。また、板状部材302,303を成形する金型の形状を適宜設計することにより、反射部327の好適な形状を製作することができる。これにより、受光部420は、光の検知を安定的に行うことができる。
 反射部327は、例えばアルミニウムなどの金属を含む層を表面に有していてもよい。金属を含む層は、例えばスパッタや蒸着等により形成される。この場合には、反射部327がより多くの測定光を反射することにより、受光部420は、測定対象液体211の組成に関する情報をより高感度に測定することができる。なお、測定対象液体211が血液である場合には、反射部327は、金属を含む層の上に二酸化ケイ素(SiO)などの酸化物を含む層を有することが好ましい。これによれば、酸化物を含む層が金属を含む層の保護層として機能し、血液が金属を含む層に吸着することを抑えることができる。
 図11は、本実施形態の反射部の変形例を表す模式的斜視図である。
 図11では、反射部の近傍を拡大して表し、流路部分のみを表している。
 図11に表した検出部320の出射部分321は、反射部327aを有する。本変形例の反射部327aは、入射部分325(例えば、図6参照)とは反対側の端部に設けられ、検出部320の内部に向かって突出した凸形状を有する。反射部327aは、板状部材302に形成されてもよく、板状部材303に形成されてもよい。あるいは、反射部327aは、板状部材302と板状部材303とにわたって形成されてもよい。
 図11に表したように、発光部410から放出された測定光は、測定流路部分323を通る混合液を透過した後、出射部分321の反射部327aおよび測定流路部分323の側面で反射する。本変形例では、例えばアルミニウムなどの金属を含む層がスパッタや蒸着等により測定流路部分323の側面に形成されていることが好ましい。その他の構造は、図9および図10に関して前述した流路構造体300bの構造と同様である。
 本変形例によれば、凸形状を有する反射部327aで反射した測定光が検出部320の内部において分散するため、混合液に照射される測定光の光路長をより長くすることができる。これにより、受光部420は、僅かな吸光度の変化を検知しやすく、測定対象液体211の組成に関する情報をより高感度に測定することができる。
 図12は、本実施形態の反射部の他の変形例を表す模式的斜視図である。
 図12では、検出部については、流路部分のみが表されている。
 図9および図10に関して前述した発光部410は拡散光として測定光を放出する一方で、本変形例の発光部410は平行光として測定光を放出する。
 図12に表した検出部320の出射部分321は、反射部327bを有する。本変形例の反射部327bは、入射部分325とは反対側の端部に設けられ、放物面を有する。反射部327bは、例えばアルミニウムなどの金属を含む層を表面に有していてもよい。金属を含む層は、例えばスパッタや蒸着等により形成される。
 受光部420は、反射部327bの放物面の焦点の位置に設けられている。これによれば、発光部410から平行光として放物面の軸に平行に放出された測定光は、反射部327bで反射した後、反射部327bの放物面の焦点の位置に設けられた受光部420に集まる。そのため、受光部420は、測定対象液体211の組成に関する情報をより高感度に測定することができる。
 上記の測定装置の具体的な構成は、流路構造体の構成、測定対象液体の種類などに応じて適宜設定される。例えば、図1に関して前述したように、送液部100の貯液部110は、流路構造体300に設けられていてもよい。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 分離素子は電気泳動素子であってもよい。この場合には、流路構造体は流路内に電極部を有し、この電極部は測定装置と電気的に接続可能とされる。
 10、10a 測定装置
 11 供給流路
 100 送液部
 110 貯液部
 111 展開液
 120 ポンプ
 200 試料導入部
 210 タンク
 211 測定対象液体
 220 バルブ
 300、300a、300b 流路構造体
 301 基材
 302,303 板状部材
 302a、303a 主面
 310 分離素子収納部
 311 分離素子
 312,313 開放端
 320 検出部
 321 出射部分
 323 測定流路部分
 325 入射部分
 327、327a、327b 反射部
 330 供給流路
 331 開口部
 340 排出流路
 341 開口部
 400 検出器
 410 発光部
 420 受光部
 490 配管

Claims (15)

  1.  測定対象液体を内部へ導く供給流路と、
     前記供給流路により導かれた前記測定対象液体に含まれる複数の成分を分離する分離素子を収納する分離素子収納部と、
     前記分離素子収納部を通過した前記測定対象液体であって前記成分に関する情報を測定するための測定光が照射される前記測定対象液体を導く検出部と、
     を有する基材を備え、
     前記検出部は、
      前記測定対象液体を導く測定流路部分と、
      前記測定流路部分の端部に設けられ、前記測定流路部分の内部に前記測定光を導く入射部分と、
      前記測定流路部分の他の端部に設けられ、前記測定流路部分から前記測定光を導き出す出射部分と、
     を有することを特徴とする流路構造体。
  2.  前記測定光の中心線は、前記測定流路部分を流れる前記測定対象液体の流れ方向に沿った方向に延びたことを特徴とする請求項1記載の流路構造体。
  3.  前記測定流路部分を流れる前記測定対象液体の流れ方向は、前記基材の主面に垂直な方向に延びたことを特徴とする請求項2記載の流路構造体。
  4.  前記測定流路部分を流れる前記測定対象液体の流れ方向は、前記基材の主面に平行な方向に延びたことを特徴とする請求項2記載の流路構造体。
  5.  前記出射部分は、前記入射部分とは反対側に設けられ前記入射部分の側から前記測定対象液体に照射された前記測定光を反射する反射部を有することを特徴とする請求項1~4のいずれか1つに記載の流路構造体。
  6.  前記反射部は、前記検出部の内部において凹形状を有することを特徴とする請求項5記載の流路構造体。
  7.  前記反射部は、前記検出部の内部に向かって突出した凸形状を有することを特徴とする請求項5記載の流路構造体。
  8.  前記反射部は、放物面を有することを特徴とする請求項5記載の流路構造体。
  9.  前記反射部は、前記基材の表面に設けられた金属を含む層を有することを特徴とする請求項5~8のいずれか1つに記載の流路構造体。
  10.  前記反射部は、前記金属を含む層の上に設けられた酸化物を含む層を有することを特徴とする請求項9記載の流路構造体。
  11.  前記基材は、複数の板状部材の貼合体とされたことを特徴とする請求項1~10のいずれか1つに記載の流路構造体。
  12.  前記複数の板状部材のいずれもが、前記測定光の波長領域について透過性を有することを特徴とする請求項11記載の流路構造体。
  13.  前記分離素子は、分離カラムであることを特徴とする請求項1~12のいずれか1つに記載の流路構造体。
  14.  前記分離素子は、電気泳動素子であることを特徴とする請求項1~12のいずれか1つに記載の流路構造体。
  15.  請求項1~14のいずれか1つに記載の流路構造体と、
     展開液を前記流路構造体に供給する送液部と、
     測定対象液体を前記流路構造体に供給する試料導入部と、
     前記測定対象液体に含まれる成分に関する情報を測定するための測定光を放出する発光部、および前記測定対象液体に照射された前記測定光を検知する受光部を有する検出器と、
     を備えたことを特徴とする測定対象液体の測定装置。
PCT/JP2016/080226 2015-10-14 2016-10-12 流路構造体および測定対象液体の測定装置 WO2017065163A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16855417.8A EP3364186B1 (en) 2015-10-14 2016-10-12 Flow path structure and device for measuring measurement object liquid
CN201690001169.1U CN208140648U (zh) 2015-10-14 2016-10-12 流路结构体以及测定对象液体的测定装置
JP2017545211A JP6704920B2 (ja) 2015-10-14 2016-10-12 流路構造体および測定対象液体の測定装置
US15/939,825 US10712320B2 (en) 2015-10-14 2018-03-29 Flow channel structure and measuring device for measurement target liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015202518 2015-10-14
JP2015-202518 2015-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/939,825 Continuation US10712320B2 (en) 2015-10-14 2018-03-29 Flow channel structure and measuring device for measurement target liquid

Publications (1)

Publication Number Publication Date
WO2017065163A1 true WO2017065163A1 (ja) 2017-04-20

Family

ID=58517197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080226 WO2017065163A1 (ja) 2015-10-14 2016-10-12 流路構造体および測定対象液体の測定装置

Country Status (5)

Country Link
US (1) US10712320B2 (ja)
EP (1) EP3364186B1 (ja)
JP (1) JP6704920B2 (ja)
CN (1) CN208140648U (ja)
WO (1) WO2017065163A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195459A1 (ja) * 2019-03-25 2020-10-01
JP2020533560A (ja) * 2018-05-04 2020-11-19 イラミーナ インコーポレーテッド 統合マニホルドを有するフローセル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208140648U (zh) * 2015-10-14 2018-11-23 阿尔卑斯电气株式会社 流路结构体以及测定对象液体的测定装置
JP6549747B2 (ja) * 2017-04-14 2019-07-24 リオン株式会社 粒子測定装置および粒子測定方法
DE102019134399A1 (de) * 2019-12-13 2021-06-17 Dionex Softron Gmbh Herstellung von fluidischen Vorrichtungen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142386A (ja) * 1997-11-05 1999-05-28 Hitachi Ltd 検出器一体化分離カラム
JP2003121349A (ja) * 2001-08-07 2003-04-23 Mitsubishi Chemicals Corp 表面プラズモン共鳴センサチップ、並びにそれを用いた試料の分析方法及び分析装置
JP2006292636A (ja) * 2005-04-13 2006-10-26 Kyoto Univ マイクロカラムアレイシステム及びマイクロチャネル粒子構造体
JP2007218838A (ja) * 2006-02-20 2007-08-30 Kawamura Inst Of Chem Res 微量試料の導入方法およびマイクロ流体デバイス
JP2013529780A (ja) * 2010-06-25 2013-07-22 インペリアル イノベイションズ リミテッド 小型hplc装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307113A (en) * 1965-08-10 1967-02-28 Hughes Richard Swart Multipass nonregenerating laser amplifier crystal
DE59104604D1 (de) * 1990-11-26 1995-03-23 Ciba Geigy Ag Detektorzelle.
US5285310A (en) * 1992-01-21 1994-02-08 Regents Of The University Of California High power regenerative laser amplifier
US6873639B2 (en) * 1993-05-28 2005-03-29 Tong Zhang Multipass geometry and constructions for diode-pumped solid-state lasers and fiber lasers, and for optical amplifier and detector
US5553088A (en) * 1993-07-02 1996-09-03 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Laser amplifying system
US5533163A (en) * 1994-07-29 1996-07-02 Polaroid Corporation Optical fiber structure for efficient use of pump power
US5418880A (en) * 1994-07-29 1995-05-23 Polaroid Corporation High-power optical fiber amplifier or laser device
US5619522A (en) * 1995-09-07 1997-04-08 Dube; George Laser pump cavity
US6111096A (en) * 1997-10-31 2000-08-29 Bbi Bioseq, Inc. Nucleic acid isolation and purification
US7626017B2 (en) * 1997-10-31 2009-12-01 Pressure Biosciences, Inc. Pressure-enhanced extraction and purification
US6120985A (en) * 1997-10-31 2000-09-19 Bbi Bioseq, Inc. Pressure-enhanced extraction and purification
EP1046032A4 (en) * 1998-05-18 2002-05-29 Univ Washington LIQUID ANALYSIS CARTRIDGE
US6094297A (en) * 1998-07-07 2000-07-25 Trw Inc. End pumped zig-zag slab laser gain medium
US6370297B1 (en) * 1999-03-31 2002-04-09 Massachusetts Institute Of Technology Side pumped optical amplifiers and lasers
US6222872B1 (en) * 1999-09-15 2001-04-24 The Regents Of The University Of California Delivering pump light to a laser gain element while maintaining access to the laser beam
US7351376B1 (en) * 2000-06-05 2008-04-01 California Institute Of Technology Integrated active flux microfluidic devices and methods
FR2827957B1 (fr) * 2001-07-25 2003-09-26 Picometrics Appareil de separation par electrophorese sur veine liquide et de detection par fluorescence induite par laser
WO2003014711A1 (fr) 2001-08-07 2003-02-20 Mitsubishi Chemical Corporation Puce de detection a resonance de plasmon de surface et procede et dispositif d'analyse d'echantillon utilisant cette puce
US6839140B1 (en) * 2002-07-03 2005-01-04 Los Gatos Research Cavity-enhanced liquid absorption spectroscopy
JP2004069397A (ja) * 2002-08-02 2004-03-04 Nec Corp 分析チップおよび分析装置
US7130321B2 (en) * 2003-10-09 2006-10-31 Coherent, Inc. Intracavity frequency-tripled CW laser with traveling-wave ring-resonator
US7388895B2 (en) * 2003-11-21 2008-06-17 Tsinghua University Corner-pumping method and gain module for high power slab laser
US20070281288A1 (en) * 2004-01-27 2007-12-06 Shimshon Belkin Method and System for Detecting Analytes
CA2557485A1 (en) * 2004-02-26 2005-09-09 Thomsen Bioscience A/S Method, chip, device and integrated system for detection biological particles
ATE363758T1 (de) * 2004-05-29 2007-06-15 Trumpf Laser Gmbh & Co Kg Strahlformungsoptik und -modul für eine diodenlaseranordnung
CN101031802B (zh) * 2005-01-07 2012-11-07 积水化学工业株式会社 使用盒的检测装置
US7430231B2 (en) * 2005-04-29 2008-09-30 Ningyi Luo Vertical cavity surface emitting laser (VCSEL) arrays pumped solid-state lasers
WO2007002480A2 (en) * 2005-06-24 2007-01-04 Board Of Regents, The University Of Texas System Systems and methods including self-contained cartridges with detection systems and fluid delivery systems
US7535938B2 (en) * 2005-08-15 2009-05-19 Pavilion Integration Corporation Low-noise monolithic microchip lasers capable of producing wavelengths ranging from IR to UV based on efficient and cost-effective frequency conversion
WO2007065095A2 (en) * 2005-11-29 2007-06-07 Spencer Rosero System and method for supporting a biological chip device
JP5175213B2 (ja) * 2005-12-22 2013-04-03 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析システム
DE102005062174C5 (de) * 2005-12-23 2010-05-06 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Meßchip
CN101484792B (zh) 2006-03-24 2011-05-18 爱科来株式会社 糖基血红蛋白浓度测定方法和浓度测定装置
US20080026373A1 (en) * 2006-07-26 2008-01-31 Rodionova Natalia A Assays Based On Light Emission From Analyte Complexes Within A Cassette
JP2008043843A (ja) * 2006-08-11 2008-02-28 Yokogawa Electric Corp 化学処理用カートリッジおよびその使用方法
GB0624148D0 (en) * 2006-12-02 2007-01-10 Univ Teesside Detection method
EP2191897B1 (en) * 2007-06-21 2014-02-26 Gen-Probe Incorporated Instrument and receptacles for performing processes
WO2009039466A1 (en) * 2007-09-20 2009-03-26 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
US8486336B2 (en) * 2008-04-18 2013-07-16 Rohm Co., Ltd. Microchip
US7876443B2 (en) * 2008-09-29 2011-01-25 Battelle Memorial Institute Multipass optical device and process for gas and analyte determination
JP5695301B2 (ja) * 2009-04-03 2015-04-01 理研計器株式会社 マルチパスセルおよびガス測定器
JP5602053B2 (ja) * 2011-02-21 2014-10-08 富士フイルム株式会社 被検物質検出方法並びにそれに用いられる被検物質検出チップおよび被検物質検出装置
US9409175B2 (en) * 2012-02-28 2016-08-09 Arkray, Inc. Mixing apparatus
US10161007B2 (en) * 2012-08-13 2018-12-25 The Regents Of The University Of California Methods and systems for detecting biological components
US20160069798A1 (en) * 2013-04-30 2016-03-10 Nsk Ltd. Target substance capturing device and target substance detecting device
US10459241B2 (en) * 2014-04-30 2019-10-29 Hewlett-Packard Development Company, L.P. Imaging apparatus and methods using diffraction-based illumination
CN107250764A (zh) * 2015-01-19 2017-10-13 恩特格里斯公司 用于ir及uv监测的小体积长路径长度多程气体池
KR101638016B1 (ko) * 2015-05-28 2016-07-08 광주과학기술원 내시경
KR101766328B1 (ko) * 2015-05-28 2017-08-08 광주과학기술원 현미경
CN208140648U (zh) * 2015-10-14 2018-11-23 阿尔卑斯电气株式会社 流路结构体以及测定对象液体的测定装置
WO2017180909A1 (en) * 2016-04-13 2017-10-19 Nextgen Jane, Inc. Sample collection and preservation devices, systems and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142386A (ja) * 1997-11-05 1999-05-28 Hitachi Ltd 検出器一体化分離カラム
JP2003121349A (ja) * 2001-08-07 2003-04-23 Mitsubishi Chemicals Corp 表面プラズモン共鳴センサチップ、並びにそれを用いた試料の分析方法及び分析装置
JP2006292636A (ja) * 2005-04-13 2006-10-26 Kyoto Univ マイクロカラムアレイシステム及びマイクロチャネル粒子構造体
JP2007218838A (ja) * 2006-02-20 2007-08-30 Kawamura Inst Of Chem Res 微量試料の導入方法およびマイクロ流体デバイス
JP2013529780A (ja) * 2010-06-25 2013-07-22 インペリアル イノベイションズ リミテッド 小型hplc装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020533560A (ja) * 2018-05-04 2020-11-19 イラミーナ インコーポレーテッド 統合マニホルドを有するフローセル
JP7001716B2 (ja) 2018-05-04 2022-01-20 イラミーナ インコーポレーテッド 統合マニホルドを有するフローセル
US11376584B2 (en) 2018-05-04 2022-07-05 Illumina, Inc. Flow cell with integrated manifold
US11951477B2 (en) 2018-05-04 2024-04-09 Illumina, Inc. Flow cell with integrated manifold
JPWO2020195459A1 (ja) * 2019-03-25 2020-10-01
WO2020195459A1 (ja) * 2019-03-25 2020-10-01 アルプスアルパイン株式会社 流路プレート、測定装置及び分析方法

Also Published As

Publication number Publication date
US10712320B2 (en) 2020-07-14
EP3364186B1 (en) 2020-04-08
CN208140648U (zh) 2018-11-23
EP3364186A1 (en) 2018-08-22
JP6704920B2 (ja) 2020-06-03
EP3364186A4 (en) 2018-11-14
JPWO2017065163A1 (ja) 2018-08-30
US20180224408A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
WO2017065163A1 (ja) 流路構造体および測定対象液体の測定装置
JP6536413B2 (ja) 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法
JP6635168B2 (ja) 表面プラズモン共鳴蛍光分析方法
US20180088027A1 (en) Optical measurement device
US9726606B2 (en) Detection device
JP2005030830A (ja) 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ
CN102128809B (zh) 表面等离子共振传感器芯片组件及柱面棱镜芯片
JP2004361256A (ja) 表面プラズモン共鳴センサー及び表面プラズモン共鳴測定装置
JP5640873B2 (ja) 表面プラズモン励起蛍光計測装置及び表面プラズモン励起蛍光計測方法
US11175218B2 (en) Flow cell and detector equipped with the flow cell
US8094316B1 (en) Surface plasmon resonance coupler and disperser sensor
US20150338400A1 (en) Optical sensor, detection method using optical sensor, method for affixing capture body, and inspection unit
WO2018003045A1 (ja) アパーチャ機能を有するビームスプリッタ及びそのビームスプリッタを備えた検出器
JP7180760B2 (ja) クロマトグラフィ検出器用フローセルおよびクロマトグラフィ検出器
WO2021192735A1 (ja) 検出装置
WO2021024360A1 (ja) 液体クロマトグラフ用検出器
JP7147952B2 (ja) クロマトグラフ用検出器
JP2019506610A (ja) 少なくとも1つの溶液中の物質の吸光度を測定する方法及び測定装置
JPH04110750A (ja) 赤外分光光度計用液体フローセル
US10267735B2 (en) Surface plasmon-field enhanced fluorescence detection device
WO2017046913A1 (ja) 示差屈折率検出器
JPWO2021024360A5 (ja)
JPH10170427A (ja) 検出計セルおよび光学測定装置
JP2005241522A (ja) 流体分析装置
WO2017119063A1 (ja) 示差屈折率検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017545211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016855417

Country of ref document: EP